Как собрать цветомузыку самостоятельно. Какие бывают схемы цветомузыкальных устройств. На чем можно сделать цветомузыку — лампы, светодиоды, светодиодные ленты. Какие компоненты нужны для сборки цветомузыки.
Что такое цветомузыка и как она работает
Цветомузыка — это устройство, которое преобразует звуковые сигналы в световые эффекты, меняющиеся в такт музыке. Принцип работы цветомузыки заключается в следующем:
- Звуковой сигнал поступает на вход устройства
- Сигнал усиливается и разделяется на частотные диапазоны с помощью фильтров
- Каждый частотный диапазон управляет своим световым каналом
- В результате получается синхронизированная с музыкой световая картина
Цветомузыкальные установки (ЦМУ) могут иметь разное количество каналов — от одного до нескольких десятков. Чем больше каналов, тем более точно световые эффекты повторяют музыкальный ритм и мелодию.
Компоненты для сборки простой цветомузыки
Для создания базовой цветомузыкальной схемы понадобятся следующие компоненты:
- Источник звукового сигнала (микрофон, линейный выход аудиоустройства)
- Предварительный усилитель звука
- Частотные фильтры для разделения сигнала
- Выходные каскады для управления световыми элементами
- Светодиоды, лампы или светодиодные ленты
- Источник питания
Рассмотрим варианты реализации каждого из этих компонентов.
Схемы предварительных усилителей для цветомузыки
Предусилитель нужен для того, чтобы поднять уровень входного сигнала до значений, достаточных для работы схемы. Простейший вариант — двухкаскадный усилитель на транзисторах:
[Схема предусилителя на транзисторах]
Также можно использовать готовые микросхемы усилителей, например LM386:
[Схема предусилителя на LM386]
Частотные фильтры для разделения звукового сигнала
Фильтры разделяют звуковой сигнал на низкие, средние и высокие частоты. Простейшие фильтры можно сделать на RC-цепочках:
- Фильтр низких частот: конденсатор большой емкости и резистор
- Фильтр высоких частот: конденсатор малой емкости и резистор
- Полосовой фильтр: комбинация ФНЧ и ФВЧ
Более сложные варианты — активные фильтры на операционных усилителях.
Выходные каскады цветомузыки
Выходные каскады управляют яркостью световых элементов в зависимости от уровня сигнала. Варианты реализации:
- Транзисторные ключи для светодиодов
- Тиристоры или симисторы для ламп накаливания
- Полевые транзисторы для мощных светодиодных лент
Важно подобрать компоненты с учетом мощности нагрузки.
Простые схемы цветомузыки на светодиодах
Рассмотрим несколько вариантов простых цветомузыкальных схем на светодиодах:
Одноканальная цветомузыка на транзисторе
[Схема одноканальной цветомузыки]
Эта схема реагирует на общий уровень сигнала, без разделения по частотам. Подходит для начинающих.
Трехканальная цветомузыка на транзисторах
[Схема трехканальной цветомузыки]
Здесь уже есть разделение на 3 частотных диапазона с помощью простых RC-фильтров.
Цветомузыка на лампах накаливания
Для управления лампами 220В используются тиристоры или симисторы. Вот пример схемы трехканальной цветомузыки на тиристорах:
[Схема цветомузыки на тиристорах]
Особенности такой схемы:
- Требуется гальваническая развязка от сети (трансформатор)
- Нужны радиаторы для тиристоров при большой мощности
- Светофильтры для получения разных цветов
Цветомузыка на светодиодных лентах
Светодиодные ленты позволяют создать яркие и эффектные цветомузыкальные установки. Особенности:
- Питание 12В постоянного тока
- Управление через полевые транзисторы
- Возможность использования RGB-лент
[Схема цветомузыки для RGB-ленты]
Цветомузыка на микроконтроллерах
Использование микроконтроллеров позволяет значительно расширить возможности цветомузыки:
- Программная реализация фильтров
- Сложные световые эффекты
- Управление адресными светодиодами
- Синхронизация по MIDI
Пример простой схемы на микроконтроллере ATtiny:
[Схема цветомузыки на ATtiny]
Советы по сборке и настройке цветомузыки
Несколько рекомендаций для успешной реализации проекта:
- Начинайте с простых схем, постепенно усложняя
- Тщательно подбирайте компоненты по мощности
- Используйте качественные разъемы и провода
- Обеспечьте хорошее экранирование от помех
- Настройте чувствительность каждого канала
- Соблюдайте меры электробезопасности при работе с сетевым напряжением
Сборка цветомузыки своими руками — увлекательное занятие, позволяющее создать уникальное устройство для вечеринок или домашнего использования. Экспериментируйте с различными схемами и компонентами, чтобы добиться наилучшего результата!
Радиоконструктор 042 — Цветомузыка на симисторах
Радиоконструктор 042 — Цветомузыка на симисторах
Вариант 042. «Цветомузыка на симисторах».Рассматриваемая схема является четырёхканальным цветомузыкальным устройством (приставкой) на симисторах.
В настоящее время на рынке световых приборов имеется широкий выбор ламп накаливания с цветным стеклом или фильтрами различных цветов, ламп с нанесённым цветным жаростойким покрытием различных форм и мощности, поэтому набор не комплектуется лампами.
Основополагающим принципом при выборе схемы была максимальная электробезопасность устройства при её наладке и эксплуатации.
Имеется много литературы по данной тематике и схем в Интернете, но большинство деталей схем приставок на лампах имеет гальваническую связь с сетью 220 вольт или развязка исполнена на трансформаторах, что делает схему более громоздкой и менее безопасной.
Учитывая эти обстоятельства, устройство исполнено с применением печатной платы из фольгированного стеклотекстолита, а не на макетной бакелитовой плате, как в варианте №015.
Рассмотрим схему устройства.
Схема состоит из переменного резистора R1, которым регулируется уровень входного сигнала.
Далее сигнал поступает на четыре аналогичных друг другу канала, отличающихся только параметрами конденсаторов С1 — С8, применяемых в активных фильтрах каждого из каналов.
Фильтр, состоящий из конденсаторов меньшей ёмкости, пропускает более высокочастотный спектр сигнала, и лампы этого канала окрашивают в синий или фиолетовый цвет, а канал с максимальной ёмкостью конденсаторов рассчитан на низкую часть спектра и лампы этого канала окрашивают красным цветом.
Остальные основные цвета занимают соответствующие места по аналогии с расположением цветов в радуге.
Схема имеет достаточный запас усиления, что позволяет ей работать с сигналами низкого уровня, поэтому желательно подавать на вход приставки сигнал с линейных выходов аппаратуры.
Если это невозможно, используйте выход на наушники или внешний динамик источника аудиосигнала.
Рассмотрим работу схемы на примере первого (синего, Blue) канала: сигнал с R1 поступает на переменный резистор регулировки уровня сигнала первого канала R2. С него через R6 на конденсаторы активного фильтра С1, С2.
Через С2 сигнал высокочастотного спектра поступает на вход 6 (9,13,2) одного из четырёх операционных усилителей (ОУ) DA1.1 микросхемы LM324 (LM224).
Резистор R14 (15,16,17) устанавливает режим работы ОУ, конденсатор С1 образует обратную связь в работе активного фильтра. С выхода 7 (8,14,1) усиленный сигнал через конденсатор С10 (11,12,13) и резистор R21 (23,25,27) поступает на транзисторный ключ VT1 (2,3,4), роль которого выполняет транзистор КТ315.
Резисторы смещения R28 (29,30,31) обеспечивают закрытое состояние транзистора при отсутствии сигнала на его входе.
Резисторы R20 (22,24,26) ограничивают ток управляющего светодиода оптопары МОС3021 (можно использовать любую оптопару серии МОС30хх).
При поступлении сигнала на вход транзистора он открывается, ток от плюса питания через резистор R20 (22,24,26) протекает через светодиод оптопары.
В результате световое излучение светодиода открывает светочувствительный динистор оптопары, через токоограничительный резистор R32 (33,34,35) замыкается цепь между управляющим электродом симистора VS1 (2,3,4) У и анодом А2, симистор открывается и лампа загорается.
От уровня сигнала на входе транзистора зависит степень открытия симистора и, соответственно, яркость загорающейся лампы.
В устройстве используются симисторы ВТ137 (138) (далее цифры в маркировке указывают допустимое напряжение между анодами симистора).
Максимально допустимый ток этих симисторов 8(12) ампер, что позволяет применить лампы на один канал общей мощностью до 1,5/2,3КВт, но это влечёт применение радиаторов для теплоотвода симисторов.
Особенность схемы позволяет установить один общий радиатор на все симисторы, но для безопасности необходимо закрепить симисторы к радиаторам или к одному общему радиатору через специальные изолирующие прокладки и изолирующие винт крепления втулки, которые можно извлечь из неисправного блока питания компьютера.
В случае использования на один канал ламп мощностью менее 200 ватт, радиатор можно не устанавливать.
В качестве светоизлучателей для пожарной безопасности желательно применить готовые светильники с лампами накаливания.
Для питания устройства используйте любой источник питания постоянного напряжения 9-12 вольт, строго соблюдая полярность.
Предохранитель защищает устройство и сеть от короткого замыкания.
При использовании ламп мощностью до 100Вт на канал, максимальный ток будет достигать 2 ампер, соответственно, достаточно использовать предохранитель 2-3А. При использовании 200 ваттных ламп, предохранитель должен быть на 4-5А и более при использовании более мощных ламп.
В этом случае необходимо будет усилить медные дорожки от сетевого клеммника до анодов симисторов дополнительными перемычками или напаять голый медный провод сверху дорожек.
Перед подключением устройства в сеть установите защитные изолирующие накладки на предохранитель и симисторы.
При включении в сеть во время настройки следите, чтобы плата находилась на изолирующем основании без посторонних токопроводящих предметов в зоне платы.
Помните, что элементы схемы, связанные с сетью (симисторы, 4 и 6 выводы оптопары, резисторы R32-R35, лампы, С15-С22) находятся под опасным напряжением!
radio-sale.ru
Невероятно эффектная цветомузыка на Arduino и светодиодах / Habr
С наступающим! Приближается Новый год, а значит, пора срочно создавать настроение! Ну и как всегда в это время года рождаются десятки электронных схем различных цветомузыкальных установок.Чего только самобытные мастера не придумают. От трехцветных моргалок до лазерных многолучевых установок с управлением по MIDI интерфейсу.
Как большой поклонник, так называемых адресных светодиодов, хочу показать вам очень простую и удивительную цветомузыку. Я вообще такой ни разу не видел. Пока не собрал за один вечер. Итак, визуализатор звука!
Инструкция
Схема очень простая!
Вам понадобятся Arduino Nano, или Uno. Или какая там у вас есть? Два потенциометра, пять резисторов, пару конденсаторов и линейка (лента) из 180 светодиодов WS2812b. Всё! Светодиодов в линейке может быть 60, 120 или 180.
В визуализаторе с помощью алгоритма быстрого преобразования Фурье выделяются 8 частот (порог чувствительности на каждую частоту свой, снижается от 1 к 8), преобразуются в цвет и выводятся на линейку светодиодов по одному из восьми алгоритмов. Скетч писал Майкл Крампас, парни из Чип и Дипа добавили функционал, а библиотека для светодиодов и быстрого преобразования Фурье (FFT) написана в Адафрут для проекта Piccolo. Библиотека FFT для 128 точек, адаптированная для AVR микроконтроллеров написана на ассемблере.
Сам скетч и библиотеку FFT нужно скачать здесь и здесь.
Не теряйте время на разбор алгоритмов, просто соберите, залейте скетч и наслаждайтесь шоу.
Это всего лишь развлечение!
В момент первого включения нужно сделать пару настроек:
Яркость: удерживайте кнопку color при включении питания. На первых 8 светодиодах будет отображаться радуга светодиодов. С помощью ручки param измените яркость. По завершении нажмите кнопку color еще раз, и ваша конфигурация будет сохранена в памяти.
Длина светодиодной полосы: удерживайте кнопку pattern при включении питания. Отобразится один, два или три красных светодиода. Используйте ручку param, чтобы выбрать длину светодиодной полосы в зависимости от количества красных светодиодов:
1=60 светодиодов
2=120 светодиодов
3=180 светодиодов
По завершении нажмите кнопку pattern еще раз, и ваша конфигурация будет сохранена в памяти.
Алгоритмы
Танцы плюс: пики звуковых сигналов испускаются из центра полосы и исчезают по мере приближения к концам. Скорость пика пропорциональна величине звукового сигнала этого пика.
Танцы минус: то же, что и Dance Party, но пики сигналов испускаются с одного конца.
Импульс: пики сигналов отображаются как яркие импульсы, которые поступают из центра полосы. Ширина импульса зависит от уровня сигнала.
Световая полоса: в пиках освещается вся полоса.
Цветные полоски: пики сигналов отображаются как цветные полосы, которые исчезают.
Цветные полоски 2: подобно цветные полоски, но каждая полоска сжимается и исчезает.
Вспышки: пики сигналов отображаются в виде светодиодной вспышки в случайном месте. Начальный цвет белый, а затем исчезает через другой цвет.
Светлячки: пики сигналов отображаются как одиночные светодиоды в случайном месте, и они перемещаются влево или вправо и исчезают. Их скорость зависит от величины сигнала.
Цветовые схемы
Случайная двухцветная схема: выбраны два случайных цвета и только они используются для отображения пиков сигнала. Со временем будут выбраны новые цвета. Используйте param, чтобы настроить скорость изменения цветовой схемы. Если ручка потенциометра «параметры» в верхнем положении, цвета будут меняться часто и каждый пик сигнала будет иметь новый цвет. Рекомендую установить ручку в средину.
Радуга: все пики сигналов отображаются как один и тот же цвет (с небольшим количеством случайных вариаций) и этот цвет меняется как радуга с течением времени. Скорость изменения цвета устанавливается потенциометром param.
Цветные частоты: в этом режиме каждый пик сигнала окрашивается в зависимости от частотной полосы где он находится. Самая низкая полоса красного цвета, и дальше вверх по спектру. Есть 8 полос частот: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, белый. Этот цветовой режим наиболее интересен, когда частотная характеристика настроена на все полосы частот.
Диапазон частот: вы можете управлять тем диапазоном частот, на который откликается цветомузыка. Чтобы установить диапазон нажмите и удерживайте обе кнопки. Используйте ручку param, чтобы выбрать, сколько из восьми частотных диапазонов будет показываться. Если вы хотите выделить бас и ритм музыки, установите частотную характеристику только на самые низкие 2 или 3 полосы. Если вы хотите показать все частоты в музыке (например, вокал и более высокие инструменты), выберите все полосы частот.
Это видеоинструкция по настройке и она же демонстрация визуализатора в работе. Там в конце две музыкальные композиции с разными алгоритмами.
Ещё одна композиция
Парни! И дамы конечно. Я очень хочу, чтобы вы успели сделать эту простую конструкцию к новогоднему празднику. Не пожалеете! Гости будут в шоке!
С наступающим 2018 годом!
Добавлено 15.12.2017 Эпилог или разбор полётов
1. Как изменить подсветку в паузах?
2. Можно ли изменить динамику?
3. Как подключить ленту с количеством светодиодов отличным от 60/120/180?
Плюс опубликована обновленная схема. Не волнуйтесь, добавили всего один резистор.
Осталось две недели до Нового года. Успеете собрать?
Добавлено 09.06.2018
Сделал настройки подсветки:
скетч и схема.
Пользуемся так.
Фоновая подсветка:
В паузах включается фоновая подсветка т.е вся линейка будет светится выбранным вами цветом и с выбранной яркостью.
Цвет: установите ручку потенциометра PARAM2 в среднее положение и один раз нажмите кнопку Background. Светодиодная линейка зажжется. Вращайте потенциометр PARAM2, цвет линейки будет меняться от красного до фиолетового. Выберите цвет и ещё раз нажмите кнопку Background.
habr.com
Четырёхканальная симисторная цветомузыка (042)
Описание Четырёхканальная симисторная цветомузыка (042)
Начинающим Четырёхканальное цветомузыкальное устройство. (042)
В отличие от варианта конструктора трёхканального устройства на светодиодах (вариант №015), рассматриваемая схема является четырёхканальным цветомузыкальным устройством (приставкой) на симисторах. В настоящее время на рынке световых приборов имеется широкий выбор ламп накаливания с цветным стеклом или фильтрами различных цветов, ламп с нанесённым цветным жаростойким покрытием различных форм и мощности, поэтому набор не комплектуется лампами. Основополагающим принципом при выборе схемы была максимальная электробезопасность устройства при её наладке и эксплуатации. Имеется много литературы по данной тематике и схем в Интернете, но большинство деталей схем приставок на лампах имеет гальваническую связь с сетью 220 вольт или развязка исполнена на трансформаторах, что делает схему более громоздкой и менее безопасной. Учитывая эти обстоятельства, устройство исполнено с применением печатной платы из фольгированного стеклотекстолита, а не на макетной бакелитовой плате, как в варианте №015. Рассмотрим схему устройства. Схема состоит из переменного резистора R1, которым регулируется уровень входного сигнала. Далее сигнал поступает на четыре аналогичных друг другу канала, отличающихся только параметрами конденсаторов С1 — С8, применяемых в активных фильтрах каждого из каналов. Фильтр, состоящий из конденсаторов меньшей ёмкости, пропускает более высокочастотный спектр сигнала, и лампы этого канала окрашивают в синий или фиолетовый цвет, а канал с максимальной ёмкостью конденсаторов рассчитан на низкую часть спектра и лампы этого канала окрашивают красным цветом. Остальные основные цвета занимают соответствующие места по аналогии с расположением цветов в радуге. Схема имеет достаточный запас усиления, что позволяет ей работать с сигналами низкого уровня, поэтому желательно подавать на вход приставки сигнал с линейных выходов аппаратуры. Если это невозможно, используйте выход на наушники или внешний динамик источника аудиосигнала. Рассмотрим работу схемы на примере первого (синего, Blue) канала: сигнал с R1 поступает на переменный резистор регулировки уровня сигнала первого канала R2. С него через R6 на конденсаторы активного фильтра С1, С2. Через С2 сигнал высокочастотного спектра поступает на вход 6 (9,13,2) одного из четырёх операционных усилителей (ОУ) DA1.1 микросхемы LM324. Резистор R14 (15,16,17) устанавливает режим работы ОУ, конденсатор С1 образует обратную связь в работе активного фильтра. С выхода 7 (8,14,1) усиленный сигнал через конденсатор С10 (11,12,13) и резистор R21 (23,25,27) поступает на транзисторный ключ VT1 (2,3,4), роль которого
выполняет транзистор КТ315. Резисторы смещения R28 (29,30,31) обеспечивают закрытое состояние транзистора при отсутствии сигнала на его входе. Резисторы R20 (22,24,26) ограничивают ток управляющего светодиода оптопары МОС3021 (можно использовать любую оптопару серии МОС30хх, желательно без «схемы выделения перехода через 0», т.е. МОС302х, 303х, 305х). От последней цифры в маркировке зависит ток управления. При поступлении сигнала на вход транзистора он открывается, ток от плюса питания через резистор R20 (22,24,26) протекает через светодиод оптопары. В результате световое излучение светодиода открывает светочувствительный динистор оптопары, через токоограничительный резистор R32 (33,34,35) замыкается цепь между управляющим электродом симистора VS1 (2,3,4) У и анодом А2, симистор открывается и лампа загорается. От уровня сигнала на входе транзистора зависит степень открытия симистора и, соответственно, яркость загорающейся лампы. В устройстве используются симисторы ВТ137 (138) (далее цифры в маркировке указывают допустимое напряжение между анодами симистора). Максимально допустимый ток этих симисторов 8(12) ампер, что позволяет применить лампы на один канал общей мощностью до 1,5/2,3КВт, но это влечёт применение радиаторов для теплоотвода симисторов. Особенность схемы позволяет установить один общий радиатор на все симисторы, но для безопасности необходимо закрепить симисторы к радиаторам или к одному общему радиатору через специальные изолирующие прокладки и изолирующие винт крепления втулки, которые можно извлечь из неисправного блока питания компьютера. В случае использования на один канал ламп мощностью менее 200 ватт, радиатор можно не устанавливать. В качестве светоизлучателей для пожарной безопасности желательно применить готовые светильники с лампами накаливания. Для питания устройства используйте любой источник питания постоянного напряжения 9-12 вольт, строго соблюдая полярность. Предохранитель защищает устройство и сеть от короткого замыкания. При использовании ламп мощностью до 100Вт на канал, максимальный ток будет достигать 2 ампер, соответственно, достаточно использовать предохранитель 2-3А. При использовании 200 ваттных ламп, предохранитель должен быть на 4-5А и более при использовании более мощных ламп. В этом случае необходимо будет усилить медные дорожки от сетевого клеммника до анодов симисторов дополнительными перемычками или напаять голый медный провод сверху дорожек. Перед подключением устройства в сеть установите защитные изолирующие накладки на предохранитель и симисторы. При включении в сеть во время настройки следите, чтобы плата находилась на изолирующем основании без посторонних токопроводящих предметов в зоне платы. Помните, что элементы схемы, связанные с сетью (симисторы, 4 и 6 выводы оптопары, резисторы R32-R35, лампы, С15-С22) находятся под опасным напряжением!
Содержание 042
1. Микросхема LM324,
2. Панелька для микросхемы DIP14,
3. Печатная плата,
4. Переменные резисторы (10к – 200к) (5 шт.),
5. Пластиковые ручки для переменных резисторов (5 шт.),
6. Клеммные колодки РСВ х2 (7 шт.),
7. Предохранитель 3А/4А (2 шт.),
8. Держатель предохранителя («в плату», 2 элемента),
9. Транзисторы КТ315 (4 шт.),
10. Оптопары МОС3021 (4 шт.),
11. Симисторы ВТ137 (138) (4 шт.),
12. Резисторы постоянные:
R6,R7,R8,R9 – 10k (Кч/Ч/Ор) (4 шт.),
R10,R11,R12,R13,R21,R23,R25,R27– 4,7k (Ж/Ф/Кр)(8 шт.),
R14,R15,R16,R17 – 1М (Кч/Ч/Зел) (4 шт.),
R18,R19,R28,R29,R30,R31 – 100k (Кч/Ч/Ж) (6 шт.),
R20,R22,R24,R26 – 510 Ом (Зел/Кч/Кч) (4 шт.),
R32,R33,R34,R35 – 6,2k (Гол/Кр/Кр) (4 шт.),
13. Конденсаторы:
С1,С2 – 430 пФ (Н43, 431) (2 шт.),
С3,С4 – 1000 пФ (1Н, 102) (2 шт.),
С5,С6 – 3300 пФ (3Н3, 332) (2 шт.),
С7,С8 – 0,01 МкФ (10Н, 103) (2 шт.),
С9 – 10МкФ,
С10,С11,С12,С13 – 1 МкФ (105) (4 шт.),
С14 – 220МкФ,
С15-С22 – 22Н, 400(630)В (8 шт.),
14. Изоляционные накладки на симисторы и предохранитель,
15. Схема и описание.
Видео обзор:
2magnita.ru
ЦВЕТОМУЗЫКА
В этой статье мы поговорим о цветомузыке. Наверное, у каждого начинающего радиолюбителя, да и не только, в своё время возникало желание собрать цветомузыку. Что это такое, думаю, известно всем — говоря проще, это создание визуальных эффектов, изменяющихся в такт музыке.
Цветомузыка спектр
Та часть цветомузыки, которая излучает свет, может быть выполнена на мощных лампах, например в концертной установке, в случае если цветомузыка нужна для домашних дискотек, её можно сделать на обычных лампах накаливания 220 вольт, а если цветомузыка планируется, например, как моддинг компьютера, для повседневного использования, её можно выполнить на светодиодах.
Светодиодная лента для ЦМУ
В последнее время, с появлением в продаже светодиодных лент, находят все большее применение цветомузыкальные приставки с использованием таких led-лент. В любом случае, для сборки Цвето Музыкальных Установок (ЦМУ сокращенно) требуется источник сигнала, в роли его может выступать микрофон с собранными несколькими каскадами усилителя.
Схема микрофона с усилителем
Также сигнал может браться с линейного выхода устройства, звуковой карты компьютера, с выхода mp3 плейера и т. д., в этом случае также потребуется усилитель, например два каскада на транзисторах, я для этой цели воспользовался транзисторами КТ3102. Схема предусилителя изображена на следующем рисунке:
Предусилитель — схема
Далее приведена схема одноканальной цветомузыки с фильтром, работающей совместно с предусилителем (выше). В этой схеме светодиод мигает под басы (низкие частоты). Для согласования уровня сигнала в схеме цветомузыки предусмотрен переменный резистор R6.
Цветомузыка светодиод мигает под басы
Существуют и более простые схемы цветомузыки, которые может собрать любой начинающий, на 1 транзисторе, к тому же не нуждающиеся в предусилителе, одна из таких схем изображена на картинке ниже:
Цветомузыка на транзисторе
Схема распайки выводов штекера Джек 3.5 приведена на следующем рисунке:
Штекер Джек 3.5
Если по каким-то причинам нет возможности собрать предварительный усилитель на транзисторах, можно заменить его трансформатором, включённым как повышающий. Такой трансформатор должен выдавать напряжения на обмотках 220/5 Вольт. Обмотка трансформатора с меньшим количеством витков подключается в источнике звука, например, магнитоле, параллельно динамику, усилитель при этом должен выдавать мощность как минимум 3-5 ватт. Обмотка с большим количеством витков подключается ко входу цветомузыки.
Подключение трансформатора на звук
Разумеется, цветомузыка бывает не только одноканальной, она может быть 3, 5 и более многоканальной, когда каждый светодиод или лампа накаливания мигает при воспроизведении частот своего диапазона. При этом диапазон частот задается путем использования фильтров. В следующей схеме, трехканальной цветомузыки (которую сам недавно собирал) в качестве фильтров стоят конденсаторы:
Трехканальная цветомузыка
Если мы захотели использовать в последней схеме не отдельные светодиоды, а светодиодную ленту, то в схеме следует убрать токоограничивающие резисторы R1, R2, R3. Если лента или светодиод используется RGB, то должна быть выполнена с общим анодом. Если планируется подключать светодиодные ленты большой длины, то для управления лентой следует применить мощные транзисторы, установленные на радиаторы.
Транзисторы на радиаторе
Так как светодиодные ленты рассчитаны на питание 12 Вольт, соответственно и питание в схеме нам следует поднять до 12 Вольт, причем питание должно быть стабилизированным.
Тиристоры в цветомузыке
До сих пор в статье рассказывалось только про цветомузыкальные устройства на светодиодах. Если возникнет надобность собрать ЦМУ на лампах накаливания, тогда для управления яркостью ламп нужно будет применить тиристоры. Что такое вообще тиристор? Это трехэлектродный полупроводниковый прибор, который соответственно имеет Анод, Катод и Управляющий электрод.
КУ202 Тиристор
На рисунке выше изображен советский тиристор КУ202. Тиристоры, в случае, если планируется использовать с мощной нагрузкой, также необходимо крепить на теплоотвод (радиатор). Как мы видим на рисунке, тиристор имеет резьбу с гайкой и крепится аналогично мощным диодам. Современные импортные просто снабжены фланцем с отверстием.
Схема цветомузыки на тиристорах
Одна из подобных схем на тиристорах приведена выше. Это схема трехканальной цветомузыки с повышающим трансформатором на входе. В случае подбора аналогов тиристоров, следует смотреть на максимальное допустимое напряжение тиристоров, в нашем случае у КУ202Н — это 400 вольт.
Цветомузыка на тиристорах 2
На рисунке приведена подобная схема цветомузыки приведенной выше, главное отличие в нижней схеме — отсутствует диодный мост. Также цветомузыку на светодиодах можно встроить в системный блок. Мной была собрана такая трехканальная цветомузыка с предусилителем в корпусе от сидирома. При этом сигнал брался со звуковой карты компьютера с помощью делителя сигнала, в выходы которого подключались активная акустика и цветомузыка. Предусмотрена регулировка уровня сигнала, как общего, так и отдельно по каналам. Запитывались предусилитель и цветомузыка от разъема Молекс 12 Вольт (желтый и черный провода). Схемы предусилителя и трехканальной цветомузыки по которым собирались приведены выше. Существуют и другие схемы цветомузыки на светодиодах, например эта, также трехканальная:
Цветомузыка на 3 светодиодах — схема
В этой схеме, в отличие от той, что собирал я, используется в канале средних частот индуктивность. Для тех, кто захочет сперва собрать что-нибудь попроще, привожу следующую схему на 2 канала:
Цветомузыка 2 канала LED
Если собирать цветомузыку на лампах, то придется использовать использовать светофильтры, которые могут быть в свою очередь, как самодельными так и покупными. На рисунке ниже изображены светофильтры, которые есть в продаже:
Светофильтры для ЦМУ
Некоторые любители цветомузыкальных эффектов собирают устройства на основе микроконтроллеров. Ниже приведена схема четырехканальной цветомузыки на МК AVR tiny 15:
Цветомузыка на tiny 15
Микроконтроллер Тiny 15 в этой схеме можно заменить на tiny 13V, tiny 25V. И под конец обзора от себя хочу сказать, что цветомузыка на лампах проигрывает по зрелищности цветомузыке на LED, так как лампы более инерционные, чем светодиоды. А для самостоятельного повторения можно рекомендовать вот такую цветомузыкальную приставку.
el-shema.ru
Цветомузыка — своими руками.
Принцип работы цветомузыкального автомата.
Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.
В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в
виде экрана(классический вариант) или применить электрические светильники направленного действия
— прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых
эффектов.
Блок усиления мощности — это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.
Блок управления контролирует интенсивность света, и чередование цветов.
В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу -
цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум — одного, а максимум — группы операторов-осветителей.
Если блок управления контролируется непосредственно музыкой, работает по какой — либо заданной
программе, то цветомузыкальная установка считается — автоматической.
Именно такого рода «цветомузыки» обычно собирают своими руками начинающие конструкторы — радиолюбители,
на протяжении 50-ти последних лет.
Самая простая (и популярная) схема «цветомузыки» на тиристорах КУ202Н.
Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые
увидел вблизи полноценную, работающую «светомузыку». Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема.
Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно,
красный канал низких частот устойчиво моргает в ритм с ударными, средний — зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное
тонкое — звенящее и пищащее.
Недостаток один - необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти «на полную» врубать свою «Электронику» для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот — низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.
Схема «цветомузыки» на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.
Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора.
С вторичной
обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3
регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства,
путем выравнивания уровня яркости, каждого из трех каналов.
С помощью фильтров происходит разделение сигналов по частоте — на три канала. По первому каналу идет самая низкочастотная составляющая сигнала - фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны — 1 мкФ, но как показала практика — их емкость следует увеличить, минимум, до 5 мкф.
Фильтр второго канала настроен на среднюю частоту - примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны — 0,015 мкФ, но их емкость следует увеличить, до 0,33 — 0,47 мкф.
По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны — 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.
Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это
тиристоры КУ202Н.
Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора,
а начинка(лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае — это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы — до 10 шт на канал).
Порядок сборки схемы.
О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами
со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные
– СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков.
При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом
ПЭВ-1 0,1-0,15 по 150-300 витков каждая.
Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки,
минимум — 2А. Если количество ламп на каждый канал увеличить — соответственно возрастет
потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный
на рабочий ток минимум — 250 мА(а лучше — больше).
Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность,
подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, — собирают
активный фильтр. Далее — проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем — реально работающий канал.
Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после «чистовой» сборки на монтажной плате, если работа проведена без ошибок и с применением «испытанных» деталей.
Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом — поможет избавиться от навесных проводов-перемычек.
Вместо тиристоров можно использовать и более»продвинутые» полупроводниковые приборы, например — оптосимисторы, не меняя при этом
особенно схему. Это дает отличную гальваническую развязку между высоко и низковольтными цепями — такой элемент, как разделительный
входной трансформатор становится необязательным. Вместо него, лучше поставить дополнительный предварительный усилительный каскад(на КТ315), что в свою
очередь позволит снизить требования к транзисторам(по коэффициенту усиления). Необходимость в диодном мосте для выпрямления переменного напряжения, отпадает само собой.
Придется подобрать величину сопротивления резисторов ограничивающих
ток входа оптосимисторов(R12, R18, R25). Например, для оптосимисторов ТСО132-10 при напряжении 12в, потребуются резисторы на 200 — 240 Ом.
Реально собранная светомузыка в процессе настройки
(19.10. 2015).
Она же — в корпусе, без крышки.(21. 10. 2015).
В сборе.
В работе.(27. 12. 2015).
В темноте.(27. 12. 2015).
Схема «бегущие огни».
Автомат «бегущие огни» — еще одно популярное устройство. Его основным предназначением
изначально было создание цветовых эффектов, для оформления диско — вечеринок
Так что, хотя и с небольшой натяжкой, «бегущие огни» тоже можно отнести к разряду «цветомузык».
Схема на логических элементах И-НЕ и
триггерах, дает возможность регулировать частоту переключений(скорость «бегущего огня») вручную.
Схема выполнена на двух триггерах микросхемы D2(К155ТМ2) и дешифраторах управления на D1(К155ЛА3), а скорость переключения задаются частотой мультивибратора на микросхеме D3(К155ЛА3). Частота импульсов на выходе мультивибратора на D3 зависит от постоянной времени частотозадающей цепи R10-R11-С6. Скорость переключения ламп можно регулировать при помощи переменного резистора R10. Уменьшая его сопротивление можно увеличивать скорость переключения, увеличивая — снижать.
Питающий трансформатор Тр1 понижающий с напряжением на первичной обмотке 220в, вторичной 6-8 в, мощностью от 5 ватт. Напряжение 5 вольт для питания микросхем получается с помощью стабилизатора КРЕН5А, или его аналога. Транзисторы — КТ315Б, тиристоры — КУ202Н, конденсаторы и резисторы — любого типа.
На главную страницу
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
elektrikaetoprosto.ru
Светодиодная трёхканальная цветомузыка (015)
Описание Светодиодная трёхканальная цветомузыка (015)
Начинающим Трёхканальное цветомузыкальное устройство на светодиодах. (015)
В этом варианте конструктора рассмотрим схему трёхканального цветомузыкального устройства на специализированной микросхеме LM3915. Цвето и светомузыки были очень модными и востребованными во времена СССР. Основой схемы были тиристоры КУ202, лампочки на 220 вольт, покрытые цапонлаком с добавлением в него пасты из шариковой ручки соответствующего цвета. Соответствующие своей полосе звука фильтры, наматывались на ферритовых сердечниках. В те времена не было не микросхем, не светодиодов. В настоящее время выбор элементной базы очень широк, но пока остановимся на этой схеме. Питание схемы осуществляется от любого источника напряжением 12В постоянного тока (допускается от 9 до 18 вольт) и максимальным выходным током до 1 ампера.
Начнём рассмотрение работы схемы с её входа. Учитывая то, что современные музыкальные устройства в подавляющем своём большинстве имеют стереофонические выходы, схема цветомузыки имеет два входа. При использовании монофонического источника, сигнал подаётся на любой из входов. Звуковой стерео сигнал переменного тока с двух каналов поступает на входы резисторов R1, R2. С их выходов суммарный сигнал приходит на соединённые параллельно переменные резисторы R3, R4, R5, служащие регуляторами уровня входных сигналов активных фильтров трёх канальных усилителей, собранных на транзисторах VT1, VT2, VT3 КТ315 или им аналогичных с соответствующей проводимостью n-p-n. Схема каждого их трёх каналов аналогична. Отличия заключаются в номиналах конденсаторов, определяющих полосу пропускания каждого канала. Принцип работы этих фильтров заключается в том, что они пропускают через себя только строго определенную полосу звукового сигнала, отсекая сверху и снизу ненужный диапазон частот. Верхний (по схеме) фильтр пропускает полосу 100-800 Гц (красный), средний – 500-2000 Гц (зелёный) и нижний – 1500-5000 Гц (синий). С помощью подстроечных резисторов R16, R17, R18 можно сдвигать в любую сторону пропускаемую полосу. Если вы хотите получить другие полосы пропускания фильтров, то можно поэкспериментировать с номиналами конденсаторов, входящих в фильтры, добавить ещё один канал, например, жёлтый. Далее сигналы с фильтров выделяются на коллекторах транзисторов и через конденсаторы С9, С10, С11 поступают на входы 5 микросхем DD1, DD2, DD3 LM3915 – индикатора уровня аналогового сигнала с логарифмической шкалой отображения и шагом 3 dB. Особенность этой микросхемы заключается в том, что она сама ограничивает ток, протекающий через каждый светодиод, что соответствует 10 мА и позволяет не использовать ограничительные резисторы на каждый светодиод, а также позволяет увеличить количество подключенных светодиодов к каждому выводу микросхемы до четырёх, т.е. без внесения каких либо изменений в схему, можно довести максимальное общее количество светодиодов до: 10 (выходов микросхемы) х 4 (светодиода на один выход) х 3 (канала) = 120 штук. Можно и далее увеличивать количество светодиодов или применить сверх яркие с током до 0,3А на один светодиод, но тогда придётся доработать схему: вместо светодиодов к выходам микросхем подключить транзисторы (30 штук), которые будут управлять более мощными светодиодами с использованием токоограничительных резисторов. В этом случае необходимо будет увеличить мощность источника питания. Например, при использовании светодиодов с максимальным током 0,3А, источник питания должен быть рассчитан на максимальный ток не менее 0,3А х 30 выходов = 9А плюс около 0,1А ток, потребляемый усилителями и микросхемами. С небольшим запасом – 10 ампер. Такой ток может давать старый неиспользуемый блок питания от компьютера или 12вольтовый аккумулятор от бесперебойника. Но в нашем случае, учитывая, что ток канала ограничен 10мА, получаем, что схема будет потреблять ток, не превышающий 0,4А. При пайке выводов, отводов, перемычек, соединений обращайте внимание на качество пайки и отсутствие спаек там, где их не должно быть. Если нечаянно произошла спайка между ближайшими контактными площадками, лишний припой можно собрать на очищенное от припоя жало паяльника, перевернув плату вверх так, чтобы лишний расплавленный припой стек на жало под силой притяжения. Если остаётся соединяющая тонкая нить припоя, её можно убрать с помощью паяльника и заточенной спички или зубочистки, если нет в арсенале специальной медной демонтажной плетёнки или отсоса жидкого припоя. Правильно собранная схема работает сразу, в настройках (за исключением регулировки уровня и полосы пропускания по каждому каналу) не нуждается. Соответствие цветов светодиодов полосам пропускания показано на схеме. Расположение цветомузыки и светодиодов пусть станет плодом вашей фантазии (окно, автомобиль, бар, танцпол, улица, в линию, сердечком, звёздное небо, аквариум и т.д.). Ниже, на фото собранной схемы нет конденсатора С1 – он расположен в блоке питания (если соединительный провод не более 10 см). Если провод длиннее, конденсатор необходимо расположить на плате.
2magnita.ru
Как сделать цветомузыку на светодиодах своими руками.
Здравствуйте, уважаемые читатели сайта sesaga.ru. Практически у каждого начинающего радиолюбителя, да и не только, возникало желание собрать цветомузыкальную приставку или бегущий огонь, чтобы разнообразить прослушивание музыки в вечернее время или в праздничные дни. В этой статье речь пойдет о простой цветомузыкальной приставке, собранной на светодиодах, которую под силу собрать даже начинающему радиолюбителю.
1. Принцип действия цветомузыкальных приставок.
Работа цветомузыкальных приставок (ЦМП, ЦМУ или СДУ) основана на частотном разделении спектра звукового сигнала с последующей передачей его по отдельным каналам низких, средних и высоких частот, где каждый из каналов управляет своим источником света, яркость которого определяется колебаниями звукового сигнала. Конечным результатом работы приставки является получение цветовой гаммы, соответствующей воспроизводимому музыкальному произведению.
Для получения полной гаммы цветов и максимального количества цветовых оттенков в цветомузыкальных приставках используются, как минимум, три цвета:
Разделение частотного спектра звукового сигнала происходит с помощью LC- и RC-фильтров, где каждый фильтр настроен на свою сравнительно узкую полосу частот и пропускает через себя только колебания этого участка звукового диапазона:
1. Фильтр низких частот (ФНЧ) пропускает колебания частотой до 300 Гц и цвет его источника света выбирают красным;
2. Фильтр средних частот (ФСЧ) пропускает 250 – 2500 Гц и цвет его источника света выбирают зеленым или желтым;
3. Фильтр высших частот (ФВЧ) пропускает от 2500 Гц и выше, и цвет его источника света выбирают синим.
Каких-либо принципиальных правил для выбора полосы пропускания или цвета свечения ламп не существует, поэтому каждый радиолюбитель может применять цвета исходя из особенностей своего восприятия цвета, а также по своему усмотрению изменять число каналов и ширину полосы частот.
2. Принципиальная схема цветомузыкальной приставки.
На рисунке ниже предоставлена схема простой четырехканальной цветомузыкальной приставки, собранной на светодиодах. Приставка состоит из усилителя входного сигнала, четырех каналов и блока питания, обеспечивающего питание приставки от сети переменного тока.
Сигнал звуковой частоты подается на контакты ПК, ЛК и Общий разъема Х1, и через резисторы R1 и R2 попадает на переменный резистор R3, являющийся регулятором уровня входного сигнала. От среднего вывода переменного резистора R3 звуковой сигнал через конденсатор С1 и резистор R4 поступает на вход предварительного усилителя, собранного на транзисторах VT1 и VT2. Применение усилителя позволило использовать приставку практически с любым источником звукового сигнала.
С выхода усилителя звуковой сигнал подается на верхние выводы подстроечных резисторов R7,R10, R14, R18, являющиеся нагрузкой усилителя и выполняющие функцию регулировки (подстройки) входного сигнала отдельно по каждому каналу, а также устанавливают нужную яркость светодиодов канала. От средних выводов подстроечных резисторов звуковой сигнал поступает на входы четырех каналов, каждый из которых работает в своей полосе звукового диапазона. Схематично все каналы выполнены одинаково и различаются лишь RC-фильтрами.
На канал высших частот сигнал подается от среднего вывода резистора R7.
Полосовой фильтр канала образован конденсатором С2 и пропускает только спектр верхних частот звукового сигнала. Низкие и средние частоты через фильтр не проходят, так как сопротивление конденсатора для этих частот велико.
Проходя конденсатор, сигнал верхних частот детектируется диодом VD1 и подается на базу транзистора VT3. Появляющееся на базе транзистора отрицательное напряжение открывает его, и группа синих светодиодов HL1 — HL6, включенных в его коллекторную цепь, зажигаются. И чем больше амплитуда входного сигнала, тем сильнее открывается транзистор, тем ярче горят светодиоды. Для ограничения максимального тока через светодиоды последовательно с ними включены резисторы R8 и R9. При отсутствии этих резисторов светодиоды могут выйти из строя.
На канал средних частот сигнал подается от среднего вывода резистора R10.
Полосовой фильтр канала образован контуром С3R11С4, который для низких и высших частот оказывает значительное сопротивление, поэтому на базу транзистора VT4 поступают лишь колебания средних частот. В коллекторную цепь транзистора включены светодиоды HL7 – HL12 зеленого цвета.
На канал низких частот сигнал подается со среднего вывода резистора R18.
Фильтр канала образован контуром С6R19С7, который ослабляет сигналы средних и высших частот и поэтому на базу транзистора VT6 поступают лишь колебания низких частот. Нагрузкой канала являются светодиоды HL19 – HL24 красного цвета.
Для разнообразия цветовой гаммы в цветомузыкальную приставку добавлен канал желтого цвета. Фильтр канала образован контуром R15C5 и работает в частотном диапазоне ближе к низким частотам. Входной сигнал на фильтр поступает с резистора R14.
Питается цветомузыкальная приставка постоянным напряжением 9В. Блок питания приставки состоит из трансформатора Т1, диодного моста, выполненного на диодах VD5 – VD8, микросхемного стабилизатора напряжения DA1 типа КРЕН5, резистора R22 и двух оксидных конденсаторов С8 и С9.
Переменное напряжение, выпрямленное диодным мостом, сглаживается оксидным конденсатором С8 и поступает на стабилизатор напряжения КРЕН5. С вывода 3 микросхемы стабилизированное напряжение 9В подается в схему приставки.
Для получения выходного напряжения 9В между минусовой шиной блока питания и выводом 2 микросхемы включен резистор R22. Изменением величины сопротивления этого резистора добиваются нужного выходного напряжения на выводе 3 микросхемы.
3. Детали.
В приставке могут быть использованы любые постоянные резисторы мощностью 0,25 – 0,125 Вт. На рисунке ниже показаны номиналы резисторов, у которых для обозначения величины сопротивления используют цветные полоски:
Переменный резистор R3 и подстроечные резисторы R7, R10, R14, R18 любого типа, лишь бы подходили под размер печатной платы. В авторском варианте конструкции использовался отечественный переменный резистор типа СП3-4ВМ, подстроечные резисторы импортного производства.
Подробнее о резисторах можно почитать здесь и здесь.
Постоянные конденсаторы могут быть любого типа, и рассчитаны на рабочее напряжение не ниже 16 В. При возникновении трудности с приобретением конденсатора С7 емкостью 0,3 мкФ его можно составить из двух соединенных параллельно емкостью 0,22 мкФ и 0,1 мкФ.
Оксидные конденсаторы С1 и С6 должны иметь рабочее напряжение не ниже 10 В, конденсатор С9 не ниже 16 В, а конденсатор С8 не ниже 25 В.
Оксидные конденсаторы С1, С6, С8 и С9 имеют полярность, поэтому при монтаже на макетную или печатную плату это необходимо учитывать: у конденсаторов Советского производства на корпусе обозначают положительный вывод, у современных отечественных и импортных конденсаторов обозначают отрицательный вывод.
Диоды VD1 – VD4 любые из серии Д9. На корпусе диода со стороны анода наносится цветная полоска, определяющая букву диода.
В качестве выпрямителя, собранного на диодах VD5 – VD8, используется готовый миниатюрный диодный мост, рассчитанный на напряжение 50В и ток не менее 200 mA.
Если вместо готового моста использовать выпрямительные диоды, придется немного подкорректировать печатную плату, или диодный мост вообще вынести за пределы основной платы приставки и собрать на отдельной небольшой плате.
Для самостоятельной сборки моста диоды берутся с теми же параметрами, что и заводской мост. Также подойдут любые выпрямительные диоды из серии КД105, КД106, КД208, КД209, КД221, Д229, КД204, КД205, 1N4001 – 1N4007. Если использовать диоды из серии КД209 или 1N4001 – 1N4007, то мост можно собрать прямо со стороны печатного монтажа непосредственно на контактных площадках платы.
Светодиоды обычные с желтым, красным, синим и зеленым цветом свечения. В каждом канале используется по 6 штук:
Транзисторы VT1 и VT2 из серии КТ361 с любым буквенным индексом.
Транзисторы VT3, VT4, VT5, VT6 из серии КТ502 с любым буквенным индексом.
Стабилизатор напряжения типа КРЕН5А с любым буквенным индексом (импортный аналог 7805). Если использовать девятивольтовые КРЕН8А или КРЕН8Г (импортный аналог 7809), то резистор R22 не ставится. Вместо резистора на плате устанавливается перемычка, которая соединит средний вывод микросхемы с минусовой шиной, или при изготовлении платы этот резистор вообще не предусматривается.
Для соединения приставки с источником звукового сигнала применен разъем типа «джек» на три контакта. Кабель взят от компьютерной мыши.
Трансформатор питания – готовый или самодельный мощностью не менее 5 Вт с напряжением на вторичной обмотке 12 – 15 В при токе нагрузки 200 mA.
В дополнение к статье посмотрите первую часть видеоролика, где показывается начальный этап сборки цветомузыкальной приставки
На этом первая часть заканчивается.
Если Вы соблазнились сделать цветомузыку на светодиодах, тогда подбирайте детали и обязательно проверьте исправность диодов и транзисторов, например, мультиметром. А во второй части произведем окончательную сборку и настройку цветомузыкальной приставки.
Удачи!
Литература:
1. И. Андрианов «Приставки к радиоприемным устройствам».
2. Радио 1990 №8, Б. Сергеев «Простые цветомузыкальные приставки».
3. Руководство по эксплуатации радиоконструктора «Старт».
sesaga.ru