Динисторы это. Динисторы: принцип работы, проверка, характеристики и применение

Что такое динистор и как он работает. Как проверить динистор мультиметром. Каковы основные характеристики и параметры динисторов. Где применяются динисторы в электронике.

Содержание

Что такое динистор и как он устроен

Динистор — это разновидность неуправляемого тиристора, имеющая четырехслойную p-n-p-n структуру. Основные особенности устройства динистора:

  • Изготавливается из кремния или материалов на его основе
  • Имеет два вывода — анод и катод
  • Анод соединен с p-областью, катод — с n-областью
  • Крайние области являются эмиттерами, средние — базой
  • Отсутствует управляющий электрод в отличие от обычного тиристора

Благодаря такой структуре динистор обладает ключевыми свойствами — способностью резко переключаться из закрытого состояния в открытое при достижении определенного напряжения.

Принцип работы динистора

Принцип работы динистора основан на эффекте внутренней положительной обратной связи в его четырехслойной структуре. Основные этапы работы:


  1. В закрытом состоянии динистор имеет высокое сопротивление
  2. При увеличении напряжения до порогового значения (напряжения переключения) происходит лавинообразный процесс генерации носителей заряда
  3. Динистор резко переключается в открытое состояние с низким сопротивлением
  4. Для поддержания открытого состояния требуется протекание тока не ниже тока удержания
  5. При снижении тока ниже тока удержания динистор закрывается

Таким образом, динистор работает как электронный ключ с эффектом гистерезиса — напряжение открывания выше напряжения закрывания.

Как проверить динистор мультиметром

Проверка работоспособности динистора мультиметром включает следующие шаги:

  1. Установите мультиметр в режим прозвонки диодов
  2. Подключите щупы к выводам динистора в прямом направлении (красный к аноду, черный к катоду)
  3. Исправный динистор должен показывать большое сопротивление (закрытое состояние)
  4. Медленно увеличивайте напряжение на выводах динистора
  5. При достижении напряжения переключения сопротивление должно резко упасть (открытое состояние)
  6. Проверьте, что при снижении напряжения динистор закрывается

Если динистор не переключается или имеет низкое сопротивление в закрытом состоянии, он неисправен и подлежит замене.


Основные характеристики и параметры динисторов

При выборе и применении динисторов учитываются следующие ключевые параметры:

  • Напряжение переключения — напряжение, при котором происходит открывание динистора
  • Ток удержания — минимальный ток через открытый динистор для поддержания проводящего состояния
  • Максимальный допустимый ток в открытом состоянии
  • Время переключения из закрытого состояния в открытое
  • Максимальное обратное напряжение
  • Температурный диапазон работы

Эти параметры определяют область применения конкретного типа динистора и должны учитываться при проектировании электронных схем.

Где применяются динисторы в электронике

Благодаря своим уникальным свойствам динисторы нашли широкое применение в различных областях электроники:

  • Схемы защиты от перенапряжений
  • Генераторы импульсов
  • Переключатели и коммутаторы
  • Схемы управления тиристорами большой мощности
  • Пусковые устройства для газоразрядных ламп
  • Схемы синхронизации в телевизорах
  • Регуляторы мощности в бытовой технике

Динисторы особенно эффективны в случаях, когда требуется резкое переключение режимов работы схемы при достижении определенного порогового напряжения.


Преимущества и недостатки динисторов

Как и любой электронный компонент, динисторы имеют свои сильные и слабые стороны:

Преимущества:

  • Простая двухвыводная конструкция
  • Высокая скорость переключения
  • Способность коммутировать большие токи
  • Низкое падение напряжения в открытом состоянии
  • Высокая надежность и долговечность

Недостатки:

  • Отсутствие возможности внешнего управления моментом переключения
  • Ограниченный диапазон рабочих напряжений
  • Чувствительность к скорости нарастания напряжения
  • Необходимость обеспечения тока удержания для поддержания открытого состояния

Понимание этих особенностей позволяет грамотно использовать динисторы в электронных схемах, максимально реализуя их потенциал.

Маркировка и обозначение динисторов на схемах

Для правильной идентификации и применения динисторов важно знать особенности их маркировки и обозначения:

  • На корпусе динистора обычно указывается буквенно-цифровой код, определяющий тип и основные параметры
  • Первая буква кода часто указывает на материал (К — кремний)
  • Цифры могут обозначать серию и порядковый номер в серии
  • На схемах динистор обозначается специальным символом, похожим на диод с дополнительной чертой

Например, динистор КН102А имеет следующую расшифровку:


  • К — кремниевый
  • Н — низкочастотный
  • 102 — порядковый номер разработки
  • А — первая модификация

Знание системы маркировки помогает быстро определять основные характеристики динистора и правильно выбирать нужный тип для конкретного применения.

Сравнение динисторов с другими полупроводниковыми приборами

Для лучшего понимания места динисторов в семействе полупроводниковых приборов полезно сравнить их с близкими по функциональности устройствами:

Динистор vs Диод:

  • Динистор имеет более сложную многослойную структуру
  • Динистор обладает эффектом переключения, отсутствующим у обычного диода
  • Динистор может проводить значительно большие токи в открытом состоянии

Динистор vs Тиристор:

  • У динистора отсутствует управляющий электрод
  • Динистор переключается только при достижении порогового напряжения
  • Тиристор обеспечивает более гибкое управление моментом переключения

Динистор vs Транзистор:

  • Динистор имеет только два вывода против трех у транзистора
  • Динистор работает в ключевом режиме, транзистор может работать в линейном режиме
  • Динистор способен коммутировать большие токи при меньших размерах

Такое сравнение помогает лучше понять уникальные свойства динисторов и оптимальные области их применения в электронных схемах.



Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

#МОП-транзисторы #акустические кабели #аналоги конденсаторов #батареики #биполярные транзисторы #варикапы #варисторы #герконовое реле #динисторы #диодные мосты #диоды #диоды Шоттки #заземление #защитные диоды #керамические конденсаторы #конвертеры конденсатора #конденсаторы #контракторы #маркировка конденсаторов #маркировка резиторов #микросборка #мультиметры #осциллограф #отвертки #паяльник для проводов #переключатели фаз #переменные резисторы #печатные платы #радиодетали #резисторы #реле #светодиоды #стабилитроны #танталовые конденсаторы #твердотельное реле #тепловое реле #термодатчики #тестеры для транзистора #тиристоры #транзисторы #тумблеры #туннельные диоды #фототиристоры

Печатная плата: виды, требования, размеры, методы изготовления

26 Марта 2023 — Анатолий Мельник

Рассказываем что такое печатная плата, виды и размеры печатных плат. Технология изготовления печатных плат. Из чего изготавливается печатная плата.

Читать полностью337

#печатные платы

Переменный резистор: типы, устройство и принцип работы

24 Ноября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью1919

#переменные резисторы #резисторы

Тумблеры

24 Ноября 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью1358

#тумблеры

Как проверять транзисторы тестером – отвечаем

24 Ноября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра.

Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью1825

#тестеры для транзистора #транзисторы

Как пользоваться мультиметром

24 Ноября 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью1413

#мультиметры

Выпрямитель напряжения: принцип работы и разновидности

29 Декабря 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 1936

Переключатель фаз (напряжения): устройство, принцип действия, виды

24 Ноября 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью437

#переключатели фаз

Как выбрать паяльник для проводов и микросхем

31 Октября 2022 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью1230

#паяльник для проводов

Что такое защитный диод и как он применяется

24 Ноября 2022 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью1587

#диоды #защитные диоды

Варистор: устройство, принцип действия и применение

24 Ноября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью1539

#варисторы

Виды отверток по назначению и применению

10 Октября 2022 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью1107

#отвертки

Виды шлицов у отверток

10 Октября 2022 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью460

#отвертки

Виды и типы батареек

24 Ноября 2022 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью1745

#батареики

Для чего нужен контактор и как его подключить

24 Ноября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2748

#контракторы

Как проверить тиристор: способы проверки

24 Ноября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью2947

#тиристоры

Как правильно выбрать акустический кабель для колонок

24 Ноября 2022 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью1698

#акустические кабели

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью665

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

24 Ноября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью5574

#варисторы #мультиметры

Герконовые реле: что это такое, чем отличается, как работает

31 Октября 2022 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью658

#герконовое реле #реле

Диоды Шоттки: что это такое, чем отличается, как работает

24 Ноября 2022 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью6871

#диоды #диоды Шоттки

Как правильно заряжать конденсаторы

24 Ноября 2022 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью3515

#конденсаторы

Светодиоды: виды и схема подключения

24 Ноября 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью609

#диоды #светодиоды

Микросборка

10 Октября 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью3623

#микросборка

Применение, принцип действия и конструкция фототиристора

24 Ноября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью1179

#тиристоры #фототиристоры

Схема подключения теплового реле – принцип работы, регулировки и маркировка

31 Октября 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью6853

#реле #тепловое реле

Динисторы – принцип работы, как проверить, технические характеристики

24 Ноября 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью2366

#динисторы

Маркировка керамических конденсаторов

24 Ноября 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью1158

#керамические конденсаторы #конденсаторы

Компактные источники питания на печатную плату

24 Ноября 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью964

#печатные платы

SMD-резисторы: устройство и назначение

24 Ноября 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью1038

#резисторы

Принцип работы полевого МОП-транзистора

24 Ноября 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью4965

#МОП-транзисторы #транзисторы

Проверка микросхем мультиметром: инструкция и советы

24 Ноября 2022 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью4177

#мультиметры

Характеристики, маркировка и принцип работы стабилитрона

24 Ноября 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью633

#стабилитроны

Что такое реле: виды, принцип действия и устройство

10 Октября 2022 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью1823

#реле

Конденсатор: что это такое и для чего он нужен

24 Ноября 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью4782

#конденсаторы

Все о танталовых конденсаторах — максимально подробно

24 Ноября 2022 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью2086

#конденсаторы #танталовые конденсаторы

Как проверить резистор мультиметром

24 Ноября 2022 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью5333

#мультиметры #резисторы

Что такое резистор

24 Ноября 2022 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью11335

#резисторы

Как проверить диодный мост мультиметром

24 Ноября 2022 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью15603

#диодные мосты #диоды #мультиметры

Что такое диодный мост

24 Ноября 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью3967

#диодные мосты #диоды

Виды и принцип работы термодатчиков

24 Ноября 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью2571

#термодатчики

Заземление: виды, схемы

11 Октября 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью2641

#заземление

Как определить выводы транзистора

24 Ноября 2022 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью4974

#транзисторы

Назначение и области применения транзисторов

24 Ноября 2022 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью3738

#транзисторы

Как работает транзистор: принцип и устройство

24 Ноября 2022 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью4430

#транзисторы

Виды электронных и электромеханических переключателей

24 Ноября 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 2191

Как устроен туннельный диод

24 Ноября 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью6489

#диоды #туннельные диоды

Виды и аналоги конденсаторов

24 Ноября 2022 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью2590

#аналоги конденсаторов #конденсаторы

Твердотельные реле: подробное описание устройства

31 Октября 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью4326

#реле #твердотельное реле

Конвертер единиц емкости конденсатора

24 Ноября 2022 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью605

#конвертеры конденсатора #конденсаторы

Графическое обозначение радиодеталей на схемах

24 Ноября 2022 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью5324

#радиодетали

Биполярные транзисторы: принцип работы, характеристики и параметры

24 Ноября 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью345

#биполярные транзисторы #транзисторы

Как подобрать резистор по назначению и принципу работы

24 Ноября 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью1484

#резисторы

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

24 Ноября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью5859

#тиристоры

Зарубежные и отечественные транзисторы

24 Ноября 2022 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью6613

#транзисторы

Исчерпывающая информация о фотодиодах

24 Ноября 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью2375

#тиристоры #фототиристоры

Калькулятор цветовой маркировки резисторов

24 Ноября 2022 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью1438

#маркировка резиторов #резисторы

Область применения и принцип работы варикапа

24 Ноября 2022 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью8510

#варикапы

Маркировка конденсаторов

24 Ноября 2022 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью7082

#конденсаторы #маркировка конденсаторов

Виды и классификация диодов

24 Ноября 2022 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью1681

#диоды


Триггер-диод (Динистор) — принцип работы, как проверить мультимертом, характеристики и маркировка

Содержание:

Динистор – разновидность неуправляемого тиристора, который имеет структуру их четырех слоев. Ими являются p-n-p-n-структуру. Изготавливаются эти радиодетали обычно из кремния, либо из материлов на его основе. Анод связывается с положительным (плюсовым) контактом питания и является областью перехода типа р. Катод имеет область перехода n. Самые крайние части динистора являются эмиттерами, а средние – его базой.

В статье будет разобраны все особенности устройства динистора, а также где они используются. В качестве дополнения, данный материал содержит несколько интересных роликов на данную тему и одну скачиваемую статью.

Динистор.

Как работает динистор

Динисторы, это подкласс двухвыводных тиристоров (без управляющего вывода). Динисторы можно разделить по типу вольтамперной характеристики на симметричные и несимметричные. Динистор с несимметричной ВАХ имеет катод и анод, работает только при положительном смещении. При обратном смещении прибор может выйти из строя. Когда напряжение на выводах динистора достигает значения напряжения переключения Uпер, динистор триггерно переходит из закрытого в открытое состояние, и начинает проводить ток от минимального значения тока удержания Iуд, до максимально допустимого значения. При уменьшении значения тока ниже тока удержания динистор переходит в закрытое состояние.

Динистор – это двунаправленный триггерный неуправляемый диод, аналогичный по устройству тиристору небольшой мощности. В его конструкции отсутствует управляющий электрод. Он  обладает низкой величиной напряжения лавинного пробоя, до 30 В.

Принципиально это два однополярных динистора включенных встречно параллельно. У симметричных динисторов нельзя выразить катод и анод, поскольку принципиально оба вывода равнозначны. Виды популярных моделей динисторов приведены в таблице.

Таблица видов динисторов.

ВАХ симметричного динистора отражает две рабочие области, симметричные относительно нуля. Такой динистор можно использовать в цепях переменного напряжения. На ВАХ имеются обозначения величин со знаком минус, это подчёркивает значение величин при токе противоположного направления. Uпер и -Uпер – напряжения переключения динистора; Iпер, -Iпер, Iуд и -Iуд – токи переключения и удержания соответственно.

Разновидность динистора.

Устройства, их аналоги и тиристоры

Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.

Динистор

В результате переходы Πι и П3 окажутся в прямом направлении, а переход П2 — в обратном. В результате получится, что в одном приборе как бы сочетаются два транзистора. Наличие отрицательного участка на характеристике динистора обусловлено той же причиной, что и у лавинного транзистора: у обоих приборов на этом участке задан постоянный ток базы, причем у динистора он равен нулю.

Предпочтением пользуются кремниевые динисторы, так как у них коэффициент инжекции при малых токах близок к нулю и с ростом тока увеличивается весьма медленно. Еще одним преимуществом кремниевого прибора является малая величина тока в запертом состоянии. Вместе с тем кремниевые переходы характеризуются большой величиной падения прямого напряжения на переходе и большим сопротивлением слоев. Это ухудшает параметры динистора в открытом состоянии.

Динисторы модели КН102А

Аналог динистора

Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему. В данном случае роль основного проводящего элемента играет тринистор VS1 (КУ221), электрические параметры которого определяют характеристики аналога динистора. Момент открывания зависит от стабисто- ра VD1, а обратный ток — от диода VD2. Такой аналог может быть использован в радиолюбительских разработках различной сложности и стать настоящей палочкой-выручалочкой при отсутствии нужного динистора. Данный узел имеет следующие электрические характеристики: напряжение до 120 В и ток до 0.8 А. Эти характеристики будет иными, если в схеме будут использованы другие элементы, например тиристор КУ202Л. Такая схема включения элементов является универсальной.

В практике радиолюбителя возможны случаи, когда требуется замена популярного динистора КН102Ж (или с другим буквенным индексом). Так, при необходимости использовать аналог в электрических цепях с большим напряжением, например в цепи осветительной сети 220 В, сопротивление резистора Ri увеличивают до 1 кОм, ста- бистор заменяют на КС620А. Если в запасе не окажется нужного три- нистора (типа КУ201, КУ202, КУ221 и аналогичных по электрическим характеристикам), его заменяют тиристором КУ101Д. Кроме того, если под рукой не окажется динистора КН102Ж, его можно заменить последовательной цепью динисторов серии КН102 (или аналогичных) с меньшим напряжением включения. Динистор КН102Ж открывается при напряжении 130…150В. Это следует учитывать при замене аналоговой схемой или цепочкой динисторов.

Вообще, одной из причин популярности динисторов, используемых в электронных узлах с большим напряжением, является конкурентоспособность этого прибора по сравнению со стабилитроном: найти стабилитроны на высокое напряжение не просто, да и стоимость такого прибора достаточно высока. Кроме того, падение напряжения на динисторе во включенном состоянии невелико, а рассеиваемая мощность (и рост температуры) значительно меньше, чем при установке стабилитрона.

Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка — задача разработчиков и производителей современной элементной базы динисторов.

Это интересно! Все о полупроводниковых диодах.

Тиристор

Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р\-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий — базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае — п2.

[stextbox id=’info’]При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой). [/stextbox]

Мощные тиристоры используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением. Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс.

Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные высокочастотные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения — сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие тиристоры используются в различных спусковых и релаксационных схемах.

Динисторы КН102И.

Динистор: вах , основные соотношения для токов

Динистор – это неуправляемый тиристор, имеющий четырехслойную p-n-p-n-структуру, изготовленную на основе кремния.При приложении напряжения переходы П1 и П3 в прямом, а П2 в обратном смещении, поэтому все напряжение припадет к П2. 1 – если увеличивать напряжение, то в области p1 и p2 будут инжектироваться заряды, эти носители приближаются к переходу П2 и, перебрасываясь через него, образуют ток I0, при малом напряжении это напряжение почти полностью поглощается на П2.

  • 2 – Ток через П2 увеличивается, но сопротивление уменьшается значительно сильнее, поэтому напряжение П2 уменьшается;
  • 3 – При открытии всех переходов ток возрастает и ограничивается внешним сопротивлением;
  • Alpha1 и alpha2 – коэф передачи тока соответствующих переходов.

Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).

Основная схема тиристорной структуры представлена на рис. 1. Она представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).

Режим обратного запирания

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

– Лавинный пробой.

– Прокол обеднённой области.

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом. В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Интересно почитать: инструкция как прозвонить транзистор.

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ.

Динисторы в бумажной упаковке.

В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диод.

Заключение

Рейтинг автора

Написано статей

Подробнее о работе динисторов можно узнать из статьи Динисторы и его аналоги. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:

www.studfile.net

www.volt-info.ru

www.instrument16.ru

www.electrik.info

www.nauchebe.net

 

Предыдущая

ПолупроводникиSMD транзисторы

Следующая

ПолупроводникиЧто такое симистор (триак)

Брылевский в iPatents | ПатентГуру

Назад

  • Фильтр
  • История поиска

Дата подачи

Дата публикации

Изобретатель

МПК (секция)

МПК (класс)

МПК (подкласс)

МПК (группа)

МПК (подгруппа)

Агентство

Номер претензии

Номер фигурки

Мои документы
Все
Архив
Узнать больше См. меньше
Новый тег
Мой взгляд
Отмеченный
Моя группа ключевых слов
Группа ключевых слов
Настройка
Настройки партнера
  • Фильтр
  • Расширенный
  • Сохранить
  • Команда
  • Подсветка
  • Анализ
  • Сплит
  • Сравнить
  • Экспорт
  • Скачать
  • Оповещения
  • Слияние
  • Поделиться
  • Электронная почта
  • Настройки дисплея
  • Сохранить поиск

英文翻译及文献 电子电子 功率半导体 — 百度文库

Новое поколение High

90 137  Power Semiconductor Включающие выключатели для

Применения с импульсным питанием

I. Введение

Твердый

Состояние

полупроводник

переключатели

есть

очень

приглашение

к

использовать

по

9 0137 импульсный

питание

системы

потому что

эти

переключатели

имеют

высокий

надежность, 

длительный 

срок службы, 

низкий 

стоимость

во время 

использования, 

и 

экологическая безопасность за счет содержания ртути и свинца отсутствует. Полупроводниковые переключатели могут работать

в любой позиции, поэтому можно проектировать системы, как для стационарной лаборатории, используя

и

для

Mobile

с использованием.

Поэтому

эти

переключатели

часто

рассматривают

как

замену

901 37 из

газоразрядных устройств

игнитроны, тиратроны, искровые разрядники и вакуумные переключатели, которые обычно

используются в настоящее время в мощных электрофизических системах, включая мощные лазеры.

Традиционные тиристоры (SCR) — это полупроводниковые переключатели, в основном используемые для импульсных устройств.

SCR имеет малое значение прямого падения напряжения во включенном состоянии, обладает высокой перегрузочной способностью

по току и, наконец, имеет относительно низкую стоимость за счет простой биполярной технологии.

Недостаток SCR

наблюдается

при

переключение тока

импульсов при

очень

высокое пиковое значение 90 005

и короткий срок. Причиной этого недостатка является достаточно медленный процесс расширения состояния включения

от запускающего электрода до внешней границы p-n перехода после подачи запускающего импульса

. Эта функция SCR определяется SCR с использованием миллисекундного диапазона текущего переключения.

Улучшение

SCR

пульс

характеристики

может

быть

достигнуто

90 137 на

с использованием

из

распределенных

ворот

.

Это

равно

разрешено

до

уменьшить

время

из

901 37 всего

включение

и

значительно улучшают

SCR

коммутационную способность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *