Диод пропускает ток в одну сторону: принцип работы, характеристики и применение полупроводниковых диодов

Что такое полупроводниковый диод и как он работает. Почему диод пропускает ток только в одну сторону. Какие бывают типы диодов и где они применяются. Основные характеристики и параметры диодов.

Содержание

Принцип работы полупроводникового диода

Полупроводниковый диод — это электронный компонент, который пропускает электрический ток преимущественно в одном направлении. Его основой является p-n переход, образованный на границе полупроводниковых материалов p- и n-типа.

Как работает диод и почему он проводит ток только в одну сторону?

  • При прямом включении диода (плюс источника подключен к p-области, минус — к n-области) потенциальный барьер p-n перехода уменьшается. Это позволяет основным носителям зарядов свободно проходить через переход, образуя значительный прямой ток.
  • При обратном включении потенциальный барьер увеличивается, препятствуя прохождению основных носителей. Через переход проходят только неосновные носители, образуя очень малый обратный ток.

Таким образом, диод обладает односторонней проводимостью — хорошо проводит ток в прямом направлении и практически не проводит в обратном.


Вольт-амперная характеристика диода

Свойства диода наглядно отражает его вольт-амперная характеристика (ВАХ):

  • Прямая ветвь — при прямом включении ток экспоненциально растет с увеличением напряжения
  • Обратная ветвь — при обратном включении ток очень мал и практически не зависит от напряжения до наступления пробоя

Основные параметры ВАХ диода:

  • Прямое падение напряжения — обычно 0,3-0,7 В для кремниевых диодов
  • Максимальный прямой ток
  • Обратное напряжение пробоя
  • Обратный ток утечки

Основные типы полупроводниковых диодов

Существует несколько основных типов диодов, различающихся по конструкции и характеристикам:

Выпрямительные диоды

Применяются для выпрямления переменного тока. Выдерживают большие токи и обратные напряжения, но имеют относительно низкое быстродействие.

Импульсные диоды

Используются в импульсных схемах. Отличаются малым временем восстановления обратного сопротивления.

Стабилитроны

Работают на участке электрического пробоя. Используются для стабилизации напряжения.


Диоды Шоттки

Имеют малое прямое падение напряжения и высокое быстродействие. Применяются в высокочастотных схемах.

Основные области применения диодов

Полупроводниковые диоды нашли широкое применение в электронике благодаря своим уникальным свойствам:

  • Выпрямление переменного тока
  • Детектирование сигналов
  • Стабилизация напряжения
  • Защита от обратного тока
  • Формирование импульсов
  • Умножение напряжения
  • Модуляция и демодуляция сигналов

Ключевые параметры диодов

При выборе диодов для конкретного применения учитывают следующие основные параметры:

  • Максимальный прямой ток
  • Максимальное обратное напряжение
  • Прямое падение напряжения
  • Обратный ток утечки
  • Время восстановления обратного сопротивления
  • Емкость p-n перехода
  • Предельная рассеиваемая мощность

Правильный выбор диода с подходящими характеристиками обеспечивает надежную работу электронных устройств.

Особенности подключения диодов в электрических схемах

При использовании диодов в электрических цепях необходимо соблюдать ряд правил:

  • Соблюдать полярность подключения — анод к положительному потенциалу, катод к отрицательному
  • Не превышать максимально допустимые токи и напряжения
  • Учитывать прямое падение напряжения на диоде
  • При необходимости использовать радиаторы для отвода тепла
  • Защищать от перенапряжений с помощью варисторов или супрессоров

Корректное подключение обеспечивает надежную работу диода в соответствии с его характеристиками.


Тестирование и проверка исправности диодов

Для проверки работоспособности диода можно использовать следующие методы:

  • Прозвонка мультиметром в режиме «диод» — прямое сопротивление должно быть малым, обратное — большим
  • Измерение прямого падения напряжения — должно соответствовать справочным данным
  • Измерение обратного тока утечки — не должен превышать допустимое значение
  • Проверка формы выпрямленного напряжения на осциллографе

Регулярное тестирование позволяет своевременно выявлять неисправные диоды и предотвращать выход из строя электронных устройств.

Заключение

Полупроводниковые диоды являются одними из важнейших компонентов современной электроники. Их уникальное свойство односторонней проводимости используется в самых разных приложениях — от простейших выпрямителей до сложных высокочастотных схем. Понимание принципов работы и основных характеристик диодов необходимо для грамотного проектирования электронных устройств.


Почему диод пропускает ток в одну сторону. Наука техника технологии

Свойство полупроводника p-n типа, проводить электрический ток в одном направлении и не проводить в обратном направлении, нашло применение в электронном приборе под названием «Диод».

На рисунке 1 показано прямое включение диода при котором диод проводит электрический ток, а на рисунке 2 обратное включение диода при котором диод не проводит электрический ток. Так ведет себя диод включенный в цепь постоянного тока. Токи и соответствующие им напряжения называются прямым током (при включении диода в проводящем направлении) и соответствующее ему напряжение — прямое напряжение. При обратном включении токи и напряжения соответственно называются обратным током и обратным напряжением.

На графике вольт — амперная характеристика выглядит как показано на рисунке. Так как диоды применяются в различных областях радио и электроники то основными параметрами диодов являются прямой Iпр ток и соответствующее ему прямое напряжение Uпр, допустимое обратное напряжение Uобр и соответствующий ему обратный ток Iобр.


Основное назначение диодов, это преобразование переменного тока в постоянный. Рассмотрим как, например, получить постоянный ток из переменного для питания радиоприемника.


Понижающий трансформатор (см. рисунок) преобразует переменное напряжение 220V осветительной сети в низкое 6V переменное напряжение (график 1). Так как диод пропускает ток только в одном направлении то после диода мы получим пульсирующее напряжение только с положительными полуволнами (График 2).
Для того, чтобы получить постоянное напряжение необходимо на выходе выпрямителя включить конденсатор.

При прохождении через диод положительной полуволны переменного тока конденсатор заряжается, в момент отрицательной полуволны переменного тока на выходе диода (точка А) напряжение отсутствует, но так как конденсатор заряжен то на его выводах присутствует постоянное напряжение. Конденсатор постепенно разряжается на нагрузку, в следующий положительный полупериод процесс повторяется, а график напряжения на выходе выпрямителя (точка А) выглядит так как показано на рисунке.


Мы видим, что на выходе выпрямителя присутствует не идеальное постоянное напряжение, а постоянное напряжение с небольшими пульсациями. Пульсации тем меньше, чем больше емкость конденсатора. Обычно в выпрямителях применяют электролитические конденсаторы большой емкости (от 1000 мкф и более). Еще больше сгладить пульсации можно если применить П образный фильтр (о котором мы говорили в теме «Индуктивности») состоящий из 2 конденсаторов С1 и С2 и дросселя L1.


Еще одно важное применение диодов, это детектирование сигналов. Когда мы изучали тему «Колебательный контур» то говорили, что выделенный колебательным контуром высокочастотный сигнал радиостанции подается на детектор чтобы преобразовать сигнал радиостанции в сигнал звуковой частоты. В эфире хорошо распространяются только высокочастотные сигналы. Высокочастотные сигналы радиостанций модулируются сигналами низкой (НЧ) (звуковой) частоты. Рассмотрим сигнал модулированный по амплитуде. Такой сигнал называется «Амплитудно — Модулированным» — АМ.

Высокая (несущая частота) изменяется по амплитуде низкочастотным сигналом (огибающей). В отличие от НЧ сигнала, частота ВЧ сигнала не меняется со временем.
В детекторе, после диода, НЧ и ВЧ сигналы разделяются.


ВЧ сигнал практически без помех проходит через конденсатор С1 на землю, а НЧ — звуковой сигнал проходит на усилитель низкой частоты, где усиливается и подается на громкоговоритель. Для нормальной работы диода на выходе детектора должна быть включена нагрузка. В нашем случае это сопротивление Rн.

Назначение диодов, это не только выпрямление переменного тока и детектирование сигналов. Существуют, например, такие диоды, как стабилизаторы напряжения. Стабилизирующие диоды называются «стабилитроны». Принцип работы таких диодов основан на пробое p-n перехода при подаче на диод обратного (когда диод не проводит электрического тока) напряжения.

При определенном напряжении (Uпр) p-n переход пробивается, обратный ток резко возрастает а напряжение на диоде остается неизменным (смотрите график). Схема включения стабилитрона показана на рисунке.

Ограничительный резистор Ro включен в цепи для того, чтобы на нем создавалось падение напряжения Ur равное разности между входным напряжением Uвх и выходным напряжением Uвых: Ur = Uвх — Uвых. Очевидно, что стабилизатор напряжения на стабилитроне не может отдавать большую мощность в нагрузку, поэтому такие стабилизаторы применяют как источник образцового напряжения для более мощных стабилизаторов, например на мощных транзисторах. При снятии напряжения со стабилитрона свойства его p-n перехода восстанавливаются.

В справочниках для стабилитронов указывается ток пробоя p-n перехода Iст и напряжение стабилизации Uст.

Так же к обширному классу диодов относятся светоизлучающие диоды которые при прохождении через них небольшого прямого тока излучают световые волны (от инфракрасного излучения до фиолетового).

Используются светодиоды, в основном, как экономичные индикаторы в различных бытовых и промышленных приборах, а так же в пультах дистанционного управления (инфракрасные) для различной электронной аппаратуры (телевизоры, музыкальные центры и т. д.).
Итак, мы знаем, что применение диодов в радиоэлектронной аппаратуре очень разнообразно, это выпрямление переменного тока, детектирование сигналов, стабилизация напряжения, световые индикаторы и так далее. На рисунке показаны наиболее распространенные типы диодов.

Направление электрического потока. Диод

«Приятной особенностью большого количества стандартов является то, что есть из чего выбрать»

Эндрю Таненбаум, профессор информатики

Когда Бенджамин Франклин сделал своё предположение относительно направления потока зарядов (из воска в шерсть), он создал прецедент для электрических обозначений, который существует и по сей день, несмотря на то, что все знают, что электроны являются составными частями заряда, и что при натирании они переходят из шерсти в воск, а не наоборот. Благодаря именно Франклину говорят что электроны имеют отрицательный заряд, и движется этот заряд, на самом деле, в направлении противоположном тому, которое указал Франклин. Поэтому объекты, которые он назвал «отрицательными» (имеющими недостаток заряда), фактически имеют избыток электронов.

К тому времени, когда было открыто истинное направление движения потока электронов, обозначения «положительный» и «отрицательный» уже настолько прочно укоренились в научном сообществе, что попытки изменить их даже не предпринимались, хотя, применительно к «избыточному» заряду, правильно было бы назвать электрон «положительно» заряженным. По большому счету, термины «положительный» и «отрицательный» являются человеческими изобретениями и, как таковые, не имеют абсолютного значения за пределами условного языка научных описаний. С такой же легкостью Франклин мог бы назвать избыток заряда «черным», а его недостаток — «белым», в этом случае ученые говорили бы, что электрон имеет «белый» заряд (при условии использования гипотезы Франклина).

Поскольку мы склонны связывать слово «положительный» с «избытком» а слово «отрицательный» с «недостатком», то стандартное обозначение электрического заряда нам кажется противоположным. Благодаря этому, многие инженеры решили сохранить старое понятие электричества, где «положительный» означает избыток заряда, и соответственно обозначается направление движения зарядов (тока). Такое обозначение известно как общепринятое обозначение потока :

Другие инженеры для обозначения потока зарядов выбрали фактическое направление движения электронов в цепи. Такое обозначение известно как обозначение потока электронов :

Общепринятое обозначение потока показывает нам движение заряда в соответствии со знаками + и — (технически неправильно). Применять это обозначение имеет смысл, но направление движения потока зарядов здесь не соответствует действительности. Обозначение потока электронов показывает нам фактическое направление движения электронов в цепи, но знаки + и — выглядят здесь задом наперед. А вообще, имеет ли значение, как мы определяем направление движения потока зарядов в цепи? Не имеет, если мы последовательно используем одно из обозначений. Производя анализ цепи, вы можете с равным успехом использовать любое из этих обозначений. Понятия напряжения, тока, сопротивления, непрерывности, и даже математические методы анализа, такие как законы Ома и Кирхгофа будут действовать как в одном, так и в другом случае.

Как вы можете убедиться, общепринятому обозначению потока следует большинство инженеров-электриков, и оно встречается в большинстве технических учебников. Обозначение потока электронов встречается в учебниках для начинающих и в трудах профессиональных ученых, особенно физиков твердых тел, которым важно фактическое движение электронов в веществах. Большинство исследований электрических цепей не зависит от технически точного отображения направления потока зарядов, поэтому выбор между общепринятым обозначением потока и обозначением потока электронов произволен…. почти.

Многие электрические устройства допускают прохождение через них реальных токов любого направления без каких либо различий в работе. Например, лампы накаливания излучают свет одинаково эффективно, независимо от направления тока. Они хорошо работают даже при переменном токе (AC), который с течением времени быстро меняет свое направление. Проводники и выключатели также отлично работают независимо от направления тока. Все вышеперечисленные компоненты (электрическая лампочка, выключатель и провода) называются неполярными . И наоборот, любые устройства, которые по разному реагируют на токи разных направлений, называются полярными .

Существует множество полярных устройств, применяемых в электрических схемах. Основная масса этих устройств изготавливается из так называемых полупроводниковых материалов, и подробно будет рассмотрена нами позже. Каждое из этих устройств (как и выключатели, ламы и батареи) изображается на схеме с помощью уникального символа. Как можно догадаться, символы полярных устройств в своем составе обычно сдержат стрелку для обозначения допустимого направления тока. Вот здесь-то конкуренция обозначений общепринятого потока и потока электронов имеет большое значение. Но, поскольку инженеры уже давно в качестве стандартного используют общепринятое обозначение, и они же изобретают электрические устройства и придумывают для них условные обозначения (символы), то стрелки, используемые в символах этих устройств, показывают направление общепринятого потока . Иными словами, у всех символов таких устройств есть значок стрелки, который указывает против фактического потока электронов.

Лучшим примером полярного устройства может послужить диод, который является односторонним «клапаном» для электрического тока. Принцип его действия аналогичен обратному клапану, используемому в водопроводе и гидравлических системах. В идеале, диод обеспечивает беспрепятственный поток для тока в одном направлении (практически не оказывая ему сопротивления), и препятствует этому потоку в обратном направлении (оказывая ему бесконечное сопротивление). Условное обозначение (символ) диода выглядит следующим образом:

Если мы поместим диод в схему с батареей и лампочкой, то выполняемая им работа будет следующей:

Когда диод стоит в правильном направлении, разрешающем поток, лампочка горит. В противном случае диод блокирует поток электронов аналогично обрыву цепи, и лампочка гореть не будет.

Если мы используем общепринятое обозначение потока в цепи, то стрелка символа диода указывает на направление потока зарядов от положительного контакта к отрицательному:

И наоборот, при использовании обозначения потока электронов, стрелка символа диода направлена против этого потока:

Исходя из вышеизложенного и во избежание путаницы с условными обозначениями электронных компонентов, большинство людей выбирает общепринятое обозначение потока при анализе электрических схем.

ПОЛУПРОВОДНИКОВЫЙ ДИОД — полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл — полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов. Принцип действия полупроводникового диода : В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Характеристики:

2.Полупроводниковые диоды, прямое и обратное включение, вах:

Прямое и обратное включение:

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т. е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

Синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание. Остаётся рассмотреть только два случая – прямое включение диода иобратное включение диода .

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод, и ток через диод будет течь. Вот только «пробой» — это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

Полупроводниковый диод | Электронные печеньки

Диод — полупроводниковый прибор обладающий разной проводимостью в зависимости от направления тока. Иными словами, диод пропускает ток в одну сторону и не пропускает в другую. То есть ток идёт от анода (+) к катоду (-), но не наоборот (на самом деле и наоборот иногда идёт, всё сложно. Подробности в статье 🙂 ). Разумеется, диод рассчитан на определённое напряжение и ток, которое он может пропустить в прямом направлении и определённое напряжение, которому он способен сопротивляться в обратном. Полезно знать, что на корпусе диода катод обозначается цветным кольцом.

Диоды характеризуются двумя основными характеристиками: предельному обратному напряжению (Uобр) и максимальной силой тока (Imax), проходящей через него. Предельное обратное напряжение — максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии, которое он способен выдержать. Максимальный рабочий ток представляет собой ток при прямом включении диода, который диод может выдержать, не выходя из строя. Диоды широко применяются в электронике. Его основное свойство — пропускать ток только в одном направлении, определяет самое распространённое применение диода для выпрямления переменного тока. Однако, мы не станем останавливаться на выпрямителях слишком подробно. Статья рассказывает о применении диода в микроконтроллерных устройствах, разновидностях и способах подключения диода.

В устройствах с микроконтроллерами в основном применяются 3 типа диодов:

  • стабилитрон (диод Зеннера)
  • выпрямительный диод
  • диод Шоттки

Ниже рассмотрим отличия и назначения каждого типа диодов.

Изображение стабилитрона на схеме. Вот с такой загогулиной, да.

А так выглядит диод Зеннера в жизни

Прежде чем рассказать о стабилитронах, нужно вспомнить о ВАХ. ВАХ — это не только междометие, но и аббревиатура. Расшифровывается она как вольт-амперная характеристика. Чтобы не пугать вас и делать вид, что всё очень сложно, не будем приводить здесь графики этой самой ВАХ. Достаточно просто пояснить, что существует ВАХ для прямого и для обратного включения диода. ВАХ — это график, по которому можно определить характеристики диода: предельные токи, падение напряжения и прочее.

Стабилитроны  конструктивно ничем не отличаются от других диодов. Но их параметры специально рассчитаны для того, чтобы подключать диод наоборот :  анод на минус, а катод на плюс. Это позволяет стабилитрону стабилизировать напряжение. Это происходит в связи с особенностью ВАХ стабилитрона в обратном направлении: при определенном обратном напряжении на диоде, через него течет любой ток. Разумеется, ток через диод не может быть бесконечным, иначе стабилитрон банально перегреется и сгорит. Для стабилизации напряжения на больших токах используйте стабилизаторы напряжения.  Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. Как не сложно догадаться, это и есть напряжение, которое стабилитрон пропускает через себя.

Подключается стабилитрон вот так:

Типичная схема подключения стабилитрона

Можно заметить некоторое сходство с делителем напряжения. Собственно, это он и есть. Только напряжение на выходе регулируется стабилитроном динамически, а резистор в верхнем плече делителя называют балластным. Для правильного подключения стабилитрона необходимо произвести расчёт балластного резистора. Для этого необходимо знать следующие значения:

  • Входное напряжение (Uin)
  • Необходимое напряжение на нагрузке (URн)
  • Ток, потребляемый нагрузкой (Iн)

Выбирается стабилитрон, с током стабилизации в 2 или более раз большим, чем ток, потребляемый нагрузкой. Через балластный резистор потечёт ток, равный сумме тока стабилизации и тока, потребляемого нагрузкой.

По закону Ома выходит, что ток, потребляемый нагрузкой, мы можем рассчитать по формуле: (Входное напряжение-Напряжение стабилизации)/Сопротивление балластного резистора.

Тогда сопротивление балласта выражается такой формулой: R1=(Входное напряжение-Напряжение стабилизации)/Ток потребляемый нагрузкой.

Ну а теперь, когда вы полностью запутались, мы просто рекомендуем вам использовать резистор 33 Ом. Этого достаточно для тока нагрузки до 5мА и входном напряжении до 5 В. То есть с помощью стабилитрона из нашего магазина с резистором в 330 Ом вы сможете стабилизировать напряжение на уровне 3,3 вольт для SD модуля.

Так обозначается выпрямительный диод на схеме. Ага. Безо всяких закорючек.

Диод. Катод справа.

Собственно, дальше не так интересно. Выпрямительные диоды… выпрямляют ток. То есть позволяют получить из переменного тока постоянный. Помимо выпрямления тока, выпрямительные диоды используются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. Эти диоды выдерживают большие токи и напряжения, но плохо работают на высоких частотах. Это значит, что защитить мощный блок питания от переплюсовки таким диодом можно, а вот ШИМ с таким диодом будет работать не так, как ожидается (работать будет, но скважность изменится, так как диод не будет успевать открываться-закрываться до конца).

ВАХ обратного включения выпрямительного диода характеризуется малым напряжением при большом токе. Это как раз и значит то, что написано выше. Диод хорошо пропускает ток в «правильном» направлении и готов сопротивляться до последнего току, который вдруг потечёт назад. Выпрямительные диоды могут использоваться для защиты управляющей схемы от индуктивных нагрузок. Это, в основном, различные устройства с катушкой — моторы и реле. После отключения тока, катушка может сработать как индуктивность и вернуть заряд назад, повредив вывод контроллера. Для защиты от индуктивности, в цепь с индуктивной нагрузкой включается диод:

Выпрямительный диод в цепи с мотором

На схеме диод Шоттки изображается так:

Диод Шоттки на схеме. Да. Теперь 2 закорючки.

Диод Шоткти. Также его называют сигнальным диодом. Отличается относительно малым предельным напряжением и током, но высокой скоростью работы. Применяется в схемах передачи высокочастотных сигналов. Подробное рассмотрение особенностей диода Шоттки выходит за рамки статьи.

Поделиться ссылкой:

Похожее

Если диод пропускает в обе стороны

Сегодня без электроники никуда. Она является составной частью любого современного прибора или гаджета. При этом все приборы, как это ни печально, не могут работать вечно и периодически ломаются. Одной из довольно распространенных причин поломки целого ряди электроприборов, является выход из строя такого элемента электросети, как диод.

Провести проверку исправности этого компонента можно своими руками в домашних условиях. Эта статья расскажет вам, как проверить диод мультиметром, а также о том, что собой представляют данные элементы и каков сам измерительный прибор.

Диод диоду рознь

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».

Обратите внимание! Течь в обратном направлении, от катода к аноду, электрический ток в диодах не может.

Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром.
На сегодняшний день в радиоэлектронике существует несколько видов диодов:

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры).
Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.
Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием.
В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

С помощью этого прибора даже можно определить пригодность батарейки.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев.
Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Проверка диодного моста

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Анализируем результаты

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  • при подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;

Обратите внимание! Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт

  • при подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене.
Кроме этого следует учитывать, что возможна не поломка, а «утечка». Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.
При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника. Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.
Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

что такое диод — это НЕ сложно

Диод это – полупроводниковый прибор, который пропускает электрический ток только в одном направлении. Это очень краткое описание свойства диода и его работы и самое точное. Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников. Что такое полупроводник? Из самого названия полупроводник, понятно, это проводящий на половину. В конкретном случае диод пропускает электрический ток только в одну сторону и не пропускает его в обратном направлении. Работает как система ниппель или золотник в камере автомобиля или велосипеда. Воздух, нагнетаемый насосом через золотник или ниппель поступает в камеру автомобиля и не выходит обратно за счет запирания его золотником. На рисунке изображен диод так как его обозначают на электрических схемах.

В соответствии с рисунком, треугольник (анод) показывает в какую сторону проходит электрический ток от плюса к минусу диод будет «открыт», соответственно со стороны вертикальной полосы (катода) диод будет «заперт».

Это свойство диода используется для преобразования переменного тока в постоянный для этого из диодов собирается диодный мост.

Диодный мост

Как работает диодный мост. На следующем рисунке изображена принципиальная схема диодного моста. Обрати внимание, что на вход диодного моста подается переменный ток, на выходе уже получаем постоянный ток. Теперь давай разберемся как происходит преобразование переменного тока в постоянный.

Если ты читал мою статью “Что такое переменный ток” ты должен помнить, что переменный ток меняет свое направление с определенной частотой. Проще говоря, на входных клеммах диодного моста, плюс с минусом будут меняться местами с частотой сети (в России эта частота составляет 50 Герц), значит (+) и (–) меняются местами 50 раз в секунду. Допустим в первом цикле на клемме “А” будет положительный потенциал (+) на клемме “Б”отрицательный (–) . Плюс от клеммы “А” может пройти только в одном направлении по красной стрелке, через диод “Д1” на выходную клемму со знаком (+) и далее через резистор (R1) через диод “Д3” на минус клеммы “Б”. В следующем цикле когда плюс и минус поменяются местами, все произойдет с точностью до наоборот. Плюс с клеммы “Б” через диод “Д2” пройдет на выходную клемму со знаком (+) и далее через резистор (R1) через диод “Д4” на минус клеммы “А”. Таким образом получаем на входе выпрямителя постоянный электрический ток который движется только в одном направлении от плюса к минусу (как в обычной батарейке). Этот способ преобразования переменного тока в постоянный используется во всех электронных устройствах которые питаются от электрической сети 220Вольт. Кроме диодных мостов собранных из отдельных диодов применяют электронные компоненты в которых для удобства монтажа выпрямительные диоды заключены в один компактный корпус. Такое устройство называют “диодная сборка”.

Диоды бывают не только выпрямительные. Есть диоды проводимость которых зависит от освещенности их называют “фотодиоды” обозначаются они так –

Выглядеть могут так —

Светодиоды, тебе хорошо известны, они встречаются и в елочной гирлянде и в мощных прожекторах и фарах автомобилей. Н схеме они обозначаются так –

Выглядят светодиоды так —

Как проверить диод

Проверить диод можно обычным тестером – мультиметром, для проверки переключаем тестер в режим прозвонки. Подключаем щупы прибора к электродам диода, черный щуп к катоду

(на корпусах современных диодах катод обозначен кольцевой меткой), красный щуп подключаем к аноду (как ты уже знаешь диод пропускают напряжение только в одну сторону) сопротивление диода будет маленьким т.е. цифры на приборе будут иметь значение большое значение.

Переключаем щупы прибора наоборот —

сопротивление будет очень большим практически бесконечным. Если у тебя все получится так как я написал, диод исправен, если в обоих случаях сопротивление очень большое значит “диод в обрыве” неисправен и не пропускает напряжение вообще, если сопротивление очень маленькое значит диод пробит и пропускает напряжение в обоих направлениях.

Как проверить диодный мост

Если диодный мост собран из отдельных диодов, каждый диод проверяют отдельно, как было описано выше. Выпаивать каждый диод из схемы не обязательно, но лучше отключить плюсовой или минусовой вывод выпрямителя от схемы.

Если нужно проверить диодную сборку, где диоды находятся в одно корпусе и добраться до них невозможно, поступаем следующим образом,

Подключаем один щуп мультимерта к плюсу диодной сборки, а вторым поочередно касаемся к выводам сборки куда подается переменный ток. В одном направлении прибор должен показать малое сопротивление при смене щупов в обратном направлении очень большое сопротивление. После чего также проверяем выпрямитель относительно минусового выхода. Если при измерении показания в обоих направления будут малыми ил большими диодная сборка неисправна.

Высокочастотные диоды, импульсные, туннельные, варикапы все эти диоды широко применяются в бытовой и специальной аппаратуре. Для того, чтобы понять и разобраться, как правильно применять и где какие использовать диоды, необходимо совершенствовать свои знания изучать специальную литературу и конечно не стесняться задавать вопросы.

Как из переменного напряжения получить постоянное или как работает диод.

В какую сторону движутся электроны?

Современной теории об электричестве не под силу рассказать нам, в какую сторону течет ток. Представьте себе простую электронную схему, клемма батарейки – диод – лампочка – клемма батарейки. Я думаю, вряд ли кто-то из Вас видел в живую такую схему. Батарейку как отдельный элемент пока рассматривать не будем. Весь интерес состоит в том, что теперь, если мы установим диод между лампой и АКБ согласно современной физике, то лампочка не загорится, если же вопреки общепринятым законам, то она загорится.Официальная наука утверждает, что движение электронов происходит от минусовой клеммы к плюсовой, чем заморочили головы целых поколений, но против фактов никуда… Таким образом движение происходит от плюса к минусу.! Электрон — это отрицательно заряженная частица.! Диод — деталь, пропускающая положительное электричество в одном направлении.Если бы у нас была возможность протестировать, т.е. собрать цепь, в которой между минусом аккумулятора и лампочкой стоял бы диод, то схема не заработала бы, стоило нам переместить диод, чтобы он пропускал какую-то силу от плюса аккумуляторной батареи, вуаля, лампочка загорелась. К слову, сегодня все схемы современных электронных устройств читаются от плюса к минусу! Что входит в серьезное противоречие с теорией. Интересно, что нам скажет по этому поводу сама научная практика? А вот и ответ. Учебник «Основы электротехники»: «За направление электрического тока следовало бы считать направление движения свободных электронов по металлическому проводнику, однако за направление электрического тока условно принято считать направление движения положительных зарядов в проводнике. Эта условность сложилась исторически и в настоящее время сохранила свою силу в электротехнике». Вот что интересно, это слово «условно» употреблено не просто так, просто практика показывает, что движение происходит от плюса к минусу, а официальные лица отказываются признавать этот простой факт, почему? я опишу ниже. Более того таким тоном они пытаются как бы прировнять движение в одном направлении и в другом, они как бы равнозначны. Но о равнозначности здесь не может быть и речи, это не «Эзотерика», как вы сможете прочитать схему телевизора, не зная в какую сторону течет ток?Хорошо, как и обещал, идем дальше и представим, что электричество — это направленное движение электронов. Снова вернемся к нашему примеру, диод пропускает ток от плюса к минусу и схема работает, т.е. если верить физике, то электроны со знаком минус передвигаются от плюса к минусу. Вывод интересный и кажется абсолютной ерундой:! Тогда отрицательные заряды должны заранее находиться на плюсовой клемме.! Вряд ли такие заряды покинут плюсовую клемму, т.к. они же должны притягиваться.! Зачем эти электроны будут двигаться в сторону отрицательной клеммы, т.к. они должны отталкиваться друг от друга.Разобравшись с огромным количеством таких мелочей, которые как ком копятся у самых истоков науки, мы сможем открыть для себя новые горизонты.

Как работает диод | Шаг за шагом

Основой любого полупроводникового диода, как точечного, так и плоскостного, являются два примыкающих друг к другу участка полупроводникового материала (германия или кремния). Один из этих участков называется зоной n, другой — зоной р. Область между этими зонами подучила название «рn-переход» (рис. 34).

Во всяком полупроводнике, в отличие от изолятора, имеется значительное количество свободных электрических зарядов, благодаря которым в полупроводнике может существовать ток. В полупроводнике зоны n имеются свободные отрицательные заряды — электроны. Этим определилось и само название зоны — буква «n» является первой буквой слова «negativ» — отрицательный. Название зоны «р» происходит от слова «positiv» — положительный, так как в этой зоне имеются свободные положительные заряды.

Раньше, когда мы говорили о свободных положительных зарядах в жидких и газообразных проводниках (лист 8), то имели в виду свободные, то есть слабо связанные друг с другом, положительные ионы (атомы с недостающим электроном), которые могут легко перемещаться под действием электрических сил.

Сейчас не время подробно разбирать, что происходит в полупроводниках, так как это отвлечет нас от основной темы. Поэтому мы заметим лишь, что в полупроводниковом материале зоны р все атомы, в том числе и положительные ионы, неподвижны. Однако положительные заряды в зоне р все-таки перемещаются. Для того чтобы как-нибудь обойти это несоответствие, мы будем рассматривать процесс крайне упрощенно (это нас пока устраивает) и считать, что в зоне р имеется некоторое количество свободных положительных зарядов, которые могут перемещаться в любом направлении.

Не нужно думать, что зона n и зона р — это два отдельных кусочка разных полупроводников, составленных вместе. Диод делают из одного кристалла, обычно из германия типа n, то есть из германия, в котором имеются свободные электроны. В один из участков этого кристаллика вводят примесь, под действием которой в германии появляются свободные положительные заряды, и таким образом появляется зона р. К участкам кристалла, соответствующим зонам n и р, припаивают или присоединяют другим способом два проволочных вывода, а сам кристалл заключают в герметический корпус.

В точечных диодах один из контактов с кристаллом осуществляется с помощью металлической иглы. Вблизи ее острия, упирающегося в кристалл, образуется очень небольшая микроскопическая зона р. В плоскостных диодах зона р имеет значительно большие размеры, и контакт с ней осуществляется с помощью плоской металлической пластинки (лист 121).

Итак, во всяком полупроводниковом диоде имеется два вывода, один из которых соединен с зоной n, а другой — с зоной р. С помощью этих выводов диод и включается в электрическую цепь.

Предположим, что мы подключили диод к обычной батарейке, причем подключили таким образом, что «минус» батарейки соединен с зоной р, а «плюс» — с зоной n. В этом случае электрические заряды как бы оттянутся от границы раздела зон, между зонами появится участок, обедненный свободными электрическими зарядами, то есть участок по своим свойствам очень близкий к изолятору (рис. 35). Таким образом, при выбранной полярности подключения батареи рn-переход почти не пропускает электрический ток, и полупроводниковый диод можно рассматривать как очень большое сопротивление.

Если сменить полярность подключения батареи, то есть приложить напряжение «плюсом» к зоне р, а «минусом» — к зоне n, то электрические заряды, как положительные, так и отрицательные, подойдут вплотную к границе раздела и, перейдя эту границу, будут двигаться к соответствующим зажимам батареи. В этом случае рn-переход хорошо пропускает ток, и диод обладает малым сопротивлением.

Процессы, происходящие в рn-переходе, мы, конечно, рассмотрели крайне упрощенно, но это не помешало нам прийти к совершенно правильному выводу: полупроводниковый диод в одну сторону пропускает ток хорошо, а в другую практически не пропускает. За это свойство диод часто называют вентилем.

В способности диода пропускать ток только в одну сторону можно легко убедиться самому, собрав простейшую цепь из диода, головных телефонов (телефоны обязательно должны быть высокоомные, то есть должны иметь сопротивление 1000 ом и более) и батарейки карманного фонаря. Если диод включен так, что он проводит ток, то в момент замыкания цепи в телефонах будут слышны сильные щелчки. Если же изменить полярность включения диода (или, что то же самое, изменить полярность включения батарейки), то диод будет обладать большим сопротивлением, то есть почти не будет пропускать ток, и щелчков в телефоне слышно не будет.

Именно односторонняя проводимость является тем свойством полупроводникового диода, которое позволяет произвести преобразование модулированного тока высокой частоты с последующим выделением необходимого нам низкочастотного (звукового) сигнала.

О том, как это делается, вы узнаете, познакомившись с работой простейшего приемника. Постройка такого приемника не займет у вас много времени.

Модератор форума: Igoran, Sam
Форум радиолюбителей » СХЕМЫ » НАЧИНАЮЩИМ » Помогите определить что это и исправность

Помогите определить что это и исправность

Сб, 23.05.2015, 13:54 | Сообщение # 1AndreyP

Помогите определить, что это за элементы.
На них выгравировано в две строки 33 и А2А. Сам элемент в разные стороны прозванивается по разному и имеет риску — ориентация по направлению тока. Элементы А и Б сориентированы противоположным образом.

Если мерять сопротивление (на тестере 20к), то в одном направлении у всех 233, а если в обратном то у всех кроме 1 и 2 -го — 14,6, а на 1 и 2 появляется какое-то значение (6, 8, и 10..) и тут же сбрасывает на 1.
В режиме проверки диода звонятся только в одну сторону.
Это говорит о чем-то?

Слева от буквы А большой круглый диод (?). Он может прозваниваться в режиме диода в обе стороны?

*прим. модератора: учимся вставлять фото.

Сб, 23.05.2015, 14:22 | Сообщение # 2PVladimir

AndreyP,там же все написано. и есть обозначение ,это все диоды ,что обведено это смд диоды
сам же написал и себе ответил

Сб, 23.05.2015, 14:30 | Сообщение # 3AndreyP

Спасибо, я не знал, что это смд диоды, поэтому в поиске не находил.

Такое поведение, что на замере сопротивления данные на двух диодах срываются на 1 нормально?

То, что большой диод звонится в обоих направлениях, но с разными данными нормально?

Сб, 23.05.2015, 15:04 | Сообщение # 4AndreyP

В самом начале неисправности — на холодную ошибка, а с прогревом (но длительным) она проходила.
Вот тут человек писал о похожем, но.

Сб, 23.05.2015, 18:12 | Сообщение # 5DarkRus66
Вс, 24.05.2015, 12:54 | Сообщение # 6npokon
Вс, 24.05.2015, 13:44 | Сообщение # 7HAWES
Вс, 24.05.2015, 15:07 | Сообщение # 8rylan
Ср, 27.05.2015, 19:00 | Сообщение # 9telpuk1984

Добавлено (27.05.2015, 19:00)
———————————————
3 как я понял конденсатор , но какое напряжение?

Как оно работает!?

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов.

У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.
Ток обычно обозначается буквой I и меряется Амперами

Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение — как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.
Напряжение обычно обозначается буквами U или V и меряется Вольтами.

Электричество течёт в электронных схемах от плюса к минусу.

Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие.


Диод
Диод обычно предназначен пускать ток в одну сторону, и не пускать в другую.
Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод — электронный клапан.
У каждой лапки диода есть название — анод и катод.
Катод — отрицательный электрод, поэтому в схемах обычно смотрит на минус.
Анод — положительный электрод, и на него чаще всего подают плюс.
Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, — в слове «катод» столько же букв, сколько в слове «минус». А в слове «анод» столько же букв, сколько в слове «плюс». Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.
На схемах диод обозначается вот так:


Диод

Где у диода катод, а где анод — легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод).

Диоды на вид бывают всякие разные:

Важные характеристики диодов — максимальное напряжение и максимальные токи — постоянный и при коротком импульсе.
Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А.

Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.
Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится.

Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как:

Иногда с круглишками, иногда без них.

У них точно так же есть катод и анод, как и у простых диодов.
Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность.

Переменный ток

 

В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.
При переменном токе полярность меняется с какой-то частотой.
В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду.
Частота, — будь то смена полярности, или количество зажиганий светодиодика в секунду, — меряется в Герцах.

 

Как узнать переменный или постоянный ток в цепи ?
Подключили диод, лампочка светится.
Перевернули диод, лампочка всё равно светится.
Если диод заведомо целый, значит ток в цепи переменный.

Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.
Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения.

Белые провода — переменное напряжение, на выходе постоянное: черный — минус, красный плюс.

Если постоянный ток изобразить на графике, он будет выглядеть вот так.

С течением времени на плюсе всегда остаётся плюс, на минусе минус.

У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так:

Каждая такая пупырышка называется полупериод.
Если выше полоски — положительный, например который нам нужен.
Если ниже полоски — отрицательный, который нам не нужен, и нам надо его перевернуть.
Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.
Пометим положительные полупериоды зеленым цветом, отрицательные красным.

 Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает:

На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.
Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону

На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду.
С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10):

В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся.

Конденсатор

Конденсатор — электронная бочка.
Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.
Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.
Нам нужно чтоб вода всегда была.
Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах.

Конденсаторы бывают на переменный и на постоянный ток.
У конденсаторов на постоянный ток важно не путать полярность — назначение выводов, какой из них подключить на плюс, а какой на минус.
Конденсатор обозначается на схеме вот так:

Слева на переменный ток, справа на постоянный.

Конденсаторы бывают всякие разные:

 

 Предыдущая схема у нас была с пульсирующим постоянным током:

Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций.

Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).
Например 7 нанофарад = 0, 000 000 007 фарад.
14 пикофарад = 0, 000 000 000 014 фарад.
10 микрофарад = 0, 000 010 Фарад.

 

Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.

 

Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.
Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.

 

Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть.
На деталь наносят 3, 4 или 5 цветных колец.
Первые два кольца — тоже цифры, третье — множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая — допуск, серебряного цвета или золотого. Допуск — отклонение в процентах, от заявленной ёмкости, золотое кольцо — меньше или больше на 5%, серебряное — на 10%.
Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца.

Не менее важный параметр конденсатора — его допустимое напряжение.
Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше.

Резистор

Резистор с латинского переводится как «сопротивляться».
Говоря по русски, резистор — сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля.
Резистор ограничивает ток в цепи.
Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше «заткнут» и следовательно меньше пропускает.
Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах.
Чем больше ом резистор, тем больше в нём засунуто «поролона». Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.
Резистор обозначается на схемах вот так или так:

Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных.


Резисторы бывают всякие разные:

Узнать обозначение можно по маркировке, иногда её пишут буквами — М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах.
102 = 10 и 2 нолика = 1000 ом = 1 килоом.
754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом.

Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.
2М2 — 2.2 мегаома,
М15 — 0,15 мегаом или 150 килоом,
К47 — 0,47 килоом, или 470 ом,
15М — 15 мегаом,
68К — 68 килоом,
3К3 — 3.3 килоом (3300 ом),
4R7 — 4.7 ом.

В этой маркировке 2.2 мегаома будет выглядеть как 2М2,
22 мегаома — 22М,
220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22.

Диод | Виды, характеристики, параметры диодов

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

 

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

 

Вот это и есть тот самый PN-переход

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

 

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

 

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение диода

 

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

 

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

 

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

 

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

 

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

[quads id=1]

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

 

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

 На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

 

ДИОДЫ

   Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

Пример односторонней проводимости диода

   На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. 

Иллюстрация прямой обратный ток диода

   Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

Вольт-амперная характеристика диода

   В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Диод полупроводниковый

   Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.  

 

Плоскостной и точечный диод

Какие бывают типы диодов ?


Схематическое изображение диодов


Фото выпрямительного диода

   А) На фото изображен рассмотренный нами выше диод.

Стабилитрон изображение на схеме

   Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.


Двуханодный стабилитрон — изображение на схеме

   В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Туннельный диод

   Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Обращенный диод

   Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Варикап

   Е) Варикап, применяется как конденсатор переменной ёмкости.

Фотодиод

   Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок. 

 

Светодиоды

   З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только. 

   Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое — это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Схема диодного моста

   Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

Фото диодный мост

   А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

   Светодиоды существуют в разных корпусах, в том числе и SMD.

smd светодиод фото

   Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный — Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Подключение RGB ленты

   Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

   Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил — AKV.

   Форум по радиодеталям

В какую сторону работает диод

Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.

Особенности устройства

Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

Диод состоит из следующих основных элементов:

  • Корпус . Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
  • Катод . Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
  • Подогреватель . Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
  • Анод . Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
  • Кристалл . Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

Принцип действия

Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

Диоды в состоянии покоя

Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

Обратное включение

Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

Обратный ток

Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

Прямое включение

Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

Прямое и обратное напряжение

Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

Характеристика диодов

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр . Этот ток называется прямым Iпр . Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт – для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой – диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв – здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр , которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

Uн=U-Uоткр – см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода.

При включении диода в цепь переменного тока, помимо прочего, на нем периодически возникает обратное напряжение Uобр . Имейте в виду, следует учитывать его амплитудное значение (Для Uпр , кстати, тоже). Например, для бытовой электрической сети привычное всем напряжение 220В является действующим, а его амплитудное значение составляет 380В. Подробнее про это можно посмотреть на этой странице.

Это самое основное, про что надо помнить.

Теперь – несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант – условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

Далее несколько менее очевидных схем (для постоянного тока):

  1. Диоды могут выступать как «развязывающие» элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А , причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы «или».
  2. Защита от переполюсовки (жаргонное – «защита от дураков»). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод «открывается», когда напряжение на нем достигнет Uоткр , то при Uвнеш питание осуществляется от внутреннего источника, иначе – подключается внешний.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Д иод – самый простейший по устройству в славном семействе полупроводниковых приборов. Если взять пластинку полупроводника, например германия, и в его левую половину ввести акцепторную примесь, а в правую донорную, то с одной стороны получится полупроводник типа P, соответственно с другой типа N. В середине кристалла получится, так называемый P-N переход, как показано на рисунке 1.

На этом же рисунке показано условное графическое обозначение диода на схемах: вывод катода (отрицательный электрод) очень похож на знак «-». Так проще запомнить.

Всего в таком кристалле две зоны с различной проводимостью, от которых выходят два вывода, поэтому полученный прибор получил название диод, поскольку приставка «ди» означает два.

В данном случае диод получился полупроводниковый, но подобные устройства были известны и раньше: например в эпоху электронных ламп был ламповый диод, называвшийся кенотрон. Сейчас такие диоды ушли в историю, хотя приверженцы «лампового» звука считают, что в ламповом усилителе даже выпрямитель анодного напряжения должен быть ламповым!

Рисунок 1. Строение диода и обозначение диода на схеме

На стыке полупроводников с P и N проводимостями получается P-N переход (P-N junction), который является основой всех полупроводниковых приборов. Но в отличии от диода, у которого этот переход лишь один, транзисторы имеют два P-N перехода, а, например, тиристоры состоят сразу из четырех переходов.

P-N переход в состоянии покоя

Даже если P-N переход, в данном случае диод, никуда не подключен, все равно внутри него происходят интересные физические процессы, которые показаны на рисунке 2.

Рисунок 2. Диод в состоянии покоя

В области N имеется избыток электронов, она несет в себе отрицательный заряд, а в области P заряд положительный. Вместе эти заряды образуют электрическое поле. Поскольку разноименные заряды имеют свойство притягиваться, электроны из зоны N проникают в положительно заряженную зону P, заполняя собой некоторые дырки. В результате такого движения внутри полупроводника возникает, хоть и очень маленький (единицы наноампер), но все-таки ток.

В результате такого движения возрастает плотность вещества на стороне P, но до определенного предела. Частицы обычно стремятся распространяться равномерно по всему объему вещества, подобно тому, как запах духов распространяется на всю комнату (диффузия), поэтому, рано или поздно, электроны возвращаются обратно в зону N.

Если для большинства потребителей электроэнергии направление тока роли не играет, – лампочка светится, плитка греется, то для диода направление тока играет огромную роль. Основная функция диода проводить ток в одном направлении. Именно это свойство и обеспечивается P-N переходом.

Далее рассмотрим, как ведет себя диод в двух возможных случаях подключения источника тока.

Включение диода в обратном направлении

Если к полупроводниковому диоду подключить источник питания, как показано на рисунке 3, то ток через P-N переход не пройдет.

Рисунок 3. Обратное включение диода

Как видно на рисунке, к области N подключен положительный полюс источника питания, а к области P – отрицательный. В результате электроны из области N устремляются к положительному полюсу источника. В свою очередь положительные заряды (дырки) в области P притягиваются отрицательным полюсом источника питания. Поэтому в области P-N перехода, как видно на рисунке, образуется пустота, ток проводить просто нечем, нет носителей заряда.

При увеличении напряжения источника питания электроны и дырки все сильней притягиваются электрическим полем батарейки, в области же P-N перехода носителей заряда остается все меньше. Поэтому в обратном включении ток через диод не идет. В таких случаях принято говорить, что полупроводниковый диод заперт обратным напряжением.

Увеличение плотности вещества около полюсов батареи приводит к возникновению диффузии, – стремлению к равномерному распределению вещества по всему объему. Что и происходит при отключении элемента питания.

Обратный ток полупроводникового диода

Вот здесь как раз и настало время вспомнить о неосновных носителях, которые были условно забыты. Дело в том, что даже в закрытом состоянии через диод проходит незначительный ток, называемый обратным. Этот обратный ток и создается неосновными носителями, которые могут двигаться точно так же, как основные, только в обратном направлении. Естественно, что такое движение происходит при обратном напряжении. Обратный ток, как правило, невелик, что обусловлено незначительным количеством неосновных носителей.

С повышением температуры кристалла количество неосновных носителей увеличивается, что приводит к возрастанию обратного тока, что может привести к разрушению P-N перехода. Поэтому рабочие температуры для полупроводниковых приборов, – диодов, транзисторов, микросхем ограничены. Чтобы не допускать перегрева мощные диоды и транзисторы устанавливаются на теплоотводы – радиаторы.

Включение диода в прямом направлении

Показано на рисунке 4.

Рисунок 4. Прямое включение диода

Теперь изменим полярность включения источника: минус подключим к области N (катоду), а плюс к области P (аноду). При таком включении в области N электроны будут отталкиваться от минуса батареи, и двигаться в сторону P-N перехода. В области P произойдет отталкивание положительно заряженных дырок от плюсового вывода батареи. Электроны и дырки устремляются навстречу друг другу.

Заряженные частицы с разной полярностью собираются около P-N перехода, между ними возникает электрическое поле. Поэтому электроны преодолевают P-N переход и продолжают движение через зону P. При этом часть из них рекомбинирует с дырками, но большая часть устремляется к плюсу батарейки, через диод пошел ток Id.

Этот ток называется прямым током. Он ограничивается техническими данными диода, некоторым максимальным значением. Если это значение будет превышено, то возникает опасность выхода диода из строя. Следует, однако, заметить, что направление прямого тока на рисунке совпадает с общепринятым, обратным движению электронов.

Можно также сказать, что при прямом направлении включения электрическое сопротивление диода сравнительно небольшое. При обратном включении это сопротивление будет во много раз больше, ток через полупроводниковый диод не идет (незначительный обратный ток здесь в расчет не принимается). Из всего вышесказанного можно сделать вывод, что диод ведет себя подобно обычному механическому вентилю: повернул в одну сторону – вода течет, повернул в другую – поток прекратился. За это свойство диод получил название полупроводникового вентиля.

Чтобы детально разобраться во всех способностях и свойствах полупроводникового диода, следует познакомиться с его вольт – амперной характеристикой. Также неплохо узнать о различных конструкциях диодов и частотных свойствах, о достоинствах и недостатках. Об этом будет рассказано в следующей статье.

диодов — learn.sparkfun.com

Добавлено в избранное Любимый 63

Введение

После того, как вы перейдете от простых пассивных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, пора перейти в удивительный мир полупроводников. Одним из наиболее широко используемых полупроводниковых компонентов является диод.

В этом уроке мы рассмотрим:

  • Что такое диод !?
  • Теория работы диодов
  • Важные свойства диода
  • Диоды разные
  • Как выглядят диоды
  • Типичные применения диодов

Рекомендуемая литература

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:

Что такое схема?

Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.

Что такое электричество?

Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

Как пользоваться мультиметром

Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

Хотите изучить различные диоды?

Мы вас прикрыли!

Комплект запчастей для начинающих SparkFun

В наличии КОМПЛЕКТ-13973

Комплект деталей для начинающих SparkFun — это небольшой контейнер с часто используемыми деталями, который дает вам все основные компоненты, которые вы…

12

Идеальные диоды

Ключевая функция диода ideal заключается в управлении направлением потока тока.Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, заблокирован. Они похожи на односторонний клапан электроники.

Если напряжение на диоде отрицательное, ток не может течь *, и идеальный диод выглядит как разомкнутая цепь. В такой ситуации говорят, что диод от или с обратным смещением .

Пока напряжение на диоде не отрицательное, он «включается» и проводит ток.В идеале * диод будет действовать как короткое замыкание (0 В на нем), если он проводит ток. Когда диод проводит ток, он смещен в прямом направлении (жаргон электроники означает «включено»).

Соотношение тока и напряжения идеального диода. Любое отрицательное напряжение дает нулевой ток — разрыв цепи. Пока напряжение неотрицательно, диод выглядит как короткое замыкание.

Характеристики идеального диода
Режим работы Вкл. (Смещение вперед) Выкл. В = 0 В
Диод выглядит как Короткое замыкание Обрыв цепи

Обозначение цепи

Каждый диод имеет две клеммы — соединения на каждом конце компонента — и эти клеммы имеют поляризацию , что означает, что эти две клеммы совершенно разные.Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, в каком направлении протекает ток через диод, попробуйте вспомнить мнемоническое обозначение ACID : «анодный ток в диоде» (также анодный катод — это диод ).

Обозначение цепи стандартного диода представляет собой треугольник, соприкасающийся с линией.Как мы расскажем позже в этом руководстве, существует множество типов диодов, но обычно их обозначение схемы будет выглядеть примерно так:

Вывод, входящий в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником / стрелкой, но не может идти в обратном направлении.

Выше приведены несколько простых примеров схем диодов. Слева диод D1 смещен в прямом направлении и пропускает ток через цепь. По сути это похоже на короткое замыкание.Справа диод D2 имеет обратное смещение. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.

* Внимание! Звездочка! Не совсем так … К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно настоящие, у них просто есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель …


Реальные характеристики диода

В идеале , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед.К сожалению, реальное поведение диодов не совсем идеальное. Диоды действительно потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.

Взаимосвязь тока и напряжения

Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет ток, протекающий через компонент, с учетом того, какое напряжение на нем измеряется.Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, не является линейной для . Выглядит это примерно так:

Вольт-амперная зависимость диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.

В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:

  1. Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может протекать через него.Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
  2. Обратное смещение : Это режим «выключения» диода, при котором напряжение меньше V F , но больше -V BR . В этом режиме ток (в основном) заблокирован, а диод выключен. Очень малый ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
  3. Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.

прямое напряжение

Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением F ).Его также можно было бы назвать либо напряжения включения , либо напряжения включения .

Как мы знаем из кривой i-v , сквозной ток и напряжение на диоде взаимозависимы. Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.

Мультиметр с настройкой диода можно использовать для измерения (минимального) прямого падения напряжения на диоде.

Конкретный диод V F зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет напряжение V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Тип диода также имеет некоторое значение для определения прямого падения напряжения; светоизлучающие диоды могут иметь гораздо больший V F , в то время как диоды Шоттки разработаны специально, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.

Напряжение пробоя

Если к диоду приложить достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении. Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.

Для нормальных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.

Таблицы данных диодов

Все вышеперечисленные характеристики должны быть подробно описаны в паспорте каждого диода. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):

Таблица данных может даже представить вам хорошо знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода. Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v .Обратите внимание, как больший ток требует большего напряжения:

Эта диаграмма указывает на еще одну важную характеристику диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится и т. Д.).

Некоторые диоды хорошо подходят для больших токов — 1 А или более — другие, например, малосигнальный диод 1N4148, показанный выше, могут работать только на ток около 200 мА.


Этот 1N4148 — лишь крошечная выборка всех существующих типов диодов. Далее мы рассмотрим, какое удивительное разнообразие существует и для какой цели служит каждый тип.

Типы диодов

Нормальные диоды

Диоды сигнальные

Стандартные сигнальные диоды — одни из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный ток.Типичный пример сигнального диода — 1N4148.

Очень общего назначения, он имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.

Слабосигнальный диод 1N4148. Обратите внимание на черный кружок вокруг диода, который отмечает, какой из выводов является катодом.

Силовые диоды

Выпрямитель или силовой диод — стандартный диод с гораздо более высоким максимальным током. Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения.1N4001 — это пример силового диода.

1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.

Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.

И, конечно же, большинство типов диодов также выпускаются для поверхностного монтажа. Вы заметите, что у каждого диода есть способ (независимо от того, насколько он крошечный или плохо различимый), чтобы указать, какой из двух контактов является катодом.

Светодиоды (светодиоды!)

Самым ярким представителем семейства диодов должен быть светодиод (LED).Эти диоды буквально загораются при подаче положительного напряжения.

Горстка сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.

Как и обычные диоды, светодиоды пропускают ток только в одном направлении. Они также имеют номинальное прямое напряжение, то есть напряжение, необходимое для их включения. Рейтинг светодиода V F обычно выше, чем у обычного диода (1.2 ~ 3 В), и это зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение сверхяркого синего светодиода составляет около 3,3 В, а для сверхяркого красного светодиода такого же размера — всего 2,2 В.

Очевидно, вы чаще всего найдете светодиоды в осветительных приборах. Они веселые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, подсветке и многом другом. Другие светодиоды излучают свет, невидимый человеческому глазу, например инфракрасные светодиоды, которые являются основой большинства пультов дистанционного управления.Другое распространенное использование светодиодов — оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание на то, как схематический символ диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, выходящих из символа.

Диоды Шоттки

Другой очень распространенный диод — диод Шоттки.

Диод Шоттки

В наличии COM-10926

Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением. Этот диод Шоттки 1 А 40 В равен…

. 1

Полупроводниковый состав диода Шоттки немного отличается от обычного диода, и это приводит к значительному на уменьшению прямого падения напряжения , которое обычно находится между 0.15 В и 0,45 В. Однако они все равно будут иметь очень большое напряжение пробоя.

Диоды Шоттки

особенно полезны для ограничения потерь, когда нужно сберечь каждый последний бит напряжения . Они достаточно уникальны, чтобы получить собственное обозначение схемы с парой изгибов на конце катодной линии.

Стабилитроны

Стабилитрон

— это странный изгой из семейства диодов. Обычно они используются, чтобы намеренно проводить обратный ток .

Стабилитрон — 5.1 В 1 Вт

На пенсии COM-10301

Стабилитроны полезны для создания опорного напряжения или в качестве стабилизатора напряжения в слаботочных приложениях. Эти диоды…

Пенсионер Стабилитрон

разработан для обеспечения очень точного напряжения пробоя, называемого стабилитроном или напряжением стабилитрона . Когда через стабилитрон протекает достаточный ток в обратном направлении, падение напряжения на нем будет стабильным на уровне напряжения пробоя.

За счет преимущества своих пробивных свойств стабилитроны часто используются для создания известного опорного напряжения, точно соответствующего их напряжению стабилитрона. Их можно использовать в качестве регуляторов напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, которые потребляют значительный ток.

Стабилитроны

достаточно особенные, чтобы иметь собственное обозначение схемы с волнистыми концами на катодной линии. Этот символ может даже обозначать, что такое напряжение стабилитрона диода.Вот стабилитрон 3,3 В, создающий надежное опорное напряжение 3,3 В:

Фотодиоды

Фотодиоды — это специально сконструированные диоды, которые улавливают энергию фотонов света (см. Физика, квантовая) для генерации электрического тока. Вид работы как анти-светодиод.

Фотодиод BPW34 (не четверть, да еще мелочь). Поставьте его на солнце, и он может генерировать около нескольких мкВт энергии !.

Солнечные элементы — главный благодетель фотодиодной технологии.Но эти диоды также могут использоваться для обнаружения света или даже для оптической связи.


Применение диодов

Для такого простого компонента диоды имеют множество применений. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.

Выпрямители

Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.

Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Итак, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!

Однополупериодный выпрямитель может быть изготовлен только из одного диода.Если сигнал переменного тока, такой как, например, синусоида, передается через диод, любая отрицательная составляющая сигнала отсекается.

Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему полуволнового выпрямителя (в центре).

Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выступов в сигнале переменного тока в положительные.

Схема мостового выпрямителя (в центре) и форма выходной волны, которую она создает (синий / правый).

Эти цепи являются важным компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенную бородавку, вы, скорее всего, увидели бы там несколько диодов, которые ее исправили.

Можете ли вы заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?

Защита от обратного тока

Когда-нибудь вставлял батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, расположенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.

Это применение диода полезно, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.

Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диодов Шоттки отличным выбором для диодов обратной защиты.

Логические ворота

Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.

Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда на обоих входах установлен логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.

Логический элемент И построен аналогичным образом. Аноды , обоих диодов соединены вместе, и именно там находится выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на каком-либо из входов низкий уровень, ток от источника питания 5 В проходит через диод.

Для обоих логических вентилей можно добавить больше входов, добавив только один диод.

Обратные диоды и подавление скачков напряжения

Диоды

очень часто используются для ограничения возможного повреждения из-за неожиданных больших скачков напряжения. Диоды подавления переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большими номинальными мощностями (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.

Обратные диоды

выполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, например двигателем.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.

Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.


Покупка диодов

Теперь, когда ваш текущий движется в правильном направлении, пришло время найти хорошее применение вашим новым знаниям.Независимо от того, ищете ли вы отправную точку или просто пополняете запасы, у нас есть набор изобретателя, а также отдельные диоды на выбор.

Наши рекомендации:

Диод Шоттки

В наличии COM-10926

Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением.Этот диод Шоттки 1 А 40 В равен…

. 1

Комплект изобретателя SparkFun — версия 3.2

На пенсии КОМПЛЕКТ-12060

** Как вы, возможно, видели из [нашего сообщения в блоге] (https://www.sparkfun.com/news/2241), мы недавно перенесли нашу литьевую форму для SIK…

76 Пенсионер

Ресурсы и дальнейшее развитие

Теперь, когда вы разобрались с диодами, возможно, вы захотите продолжить изучение других полупроводников:

Или откройте для себя другие распространенные электронные компоненты:

физика полупроводников — Почему электричество может течь через диод только в одном направлении?

Позвольте мне попробовать еще одно объяснение, которое я ограничусь диодом с PN переходом (охватывает практически все диоды, используемые в современных схемах).

Диод состоит из p-легированной области (p-тип), прикрепленной к n-легированной области (n-тип). В р-типе поток электронов (е-) в основном осуществляется за счет движения электронов от дырки к дырке. С электрической точки зрения это в точности аналогично (и часто визуализируется) как дырки, движущиеся в направлении, противоположном электронному потоку (хотя физическое движение положительного заряда отсутствует). В n-типе есть слабо связанные e-, которые могут быть подарил (переехал).

На PN переходе диода слабосвязанные е- в n-типе попадают в отверстия соседнего p-типа.Тогда у вас будет изобилие e- в тонком слое слоя p-типа на стыке и их истощение (создание чистого положительного заряда) в тонком слое n-типа. Это устанавливает положительное поле напряжения в n-типе по сравнению с отрицательным в p-типе. Это отталкивает любой свободный e- в n-типе дальше от соединения. В результате получается тонкий слой PN без свободных отверстий и свободных электронных частиц. Слой становится изолятором.

Теперь, если вы приложите положительное напряжение к p-типу и отрицательное к n-типу, е- в p-типе удаляются, образуя свободные отверстия.Одновременно положительное напряжение противодействует обратному напряжению, которое было установлено в PN-переходе, а e- в n-типе силы ближе к p-типу, где они могут пересекаться и заполнять новые отверстия. Текущие потоки.

Если, однако, вы подаете положительное напряжение на n-тип и отрицательное на p-тип («обратное смещение» диода), вы просто усиливаете градиент напряжения, который уже был естественным образом установлен в PN-переходе. Электродвигатели вытесняются еще дальше от PN перехода, и изоляционная граница (область истощения) утолщается.Нет тока.

Чтобы получить более глубокие знания, можно пройти хорошую часть дипломного курса по материаловедению. Я надеюсь, что того, что я написал, достаточно.

Объяснение

диодов — Инженерное мышление

Узнайте, как работают диоды, а также почему и где мы их используем.

Прокрутите вниз, чтобы посмотреть руководство YouTube.

Что такое диод

Пример диода

Диод выглядит примерно так, как на изображении выше, и бывает разных размеров.Обычно они имеют черный цилиндрический корпус с полосой на одном конце, а также несколько выводов, которые позволяют нам подключить его в цепь. Этот конец известен как анод, а этот конец — катод, и мы увидим, что это значит, позже в видео.

Вы также можете получить другие формы, такие как стабилитрон или даже светодиод, который представляет собой светоизлучающий диод, но мы не будем рассматривать их в этой статье.

Другие примеры диодов

Диод позволяет току течь только в одном направлении.

Представим себе водопроводную трубу с установленным поворотным клапаном. Когда вода течет по трубе, она толкает распашную заслонку и продолжает течь. Однако, если вода меняет направление, вода закроет заслонку и не сможет течь. Следовательно, вода может течь только в одном направлении.

Водопроводная труба Это очень похоже на диод, мы используем их для управления направлением тока в цепи.

Теперь мы анимировали это с помощью электронного потока, в котором электроны перетекают от отрицательного к положительному.Однако в электронике традиционно используют обычный поток, который изменяется от положительного к отрицательному. Обычный ток, вероятно, легче понять, вы можете использовать любой, на самом деле это не имеет значения, но просто помните о двух и о том, какой из них мы используем.

Пример светодиода

Итак, если мы подключим диод в простую светодиодную схему, подобную приведенной выше, необходимо отметить, что светодиод будет включаться только тогда, когда диод установлен правильно. Это позволяет току течь только в одном направлении. Таким образом, в зависимости от того, как он установлен, он может действовать как проводник или изолятор.

Полосатый конец подсоединяется к минусу, а черный конец подсоединяется к плюсу, чтобы он действовал как проводник. Это позволяет току течь, мы называем это прямым смещением. Если перевернуть диод, он будет действовать как изолятор, и ток не будет течь. Мы называем это обратным смещением.

Прямое смещение и обратное смещение

Как работает диод?

Как вы, возможно, знаете, электричество — это поток свободных электронов между атомами. Мы используем медные провода, потому что в меди много свободных электронов, что облегчает пропускание электричества.Мы используем резину, чтобы изолировать медные провода и обезопасить себя, потому что резина является изолятором, что означает, что ее электроны удерживаются очень плотно и, следовательно, не могут перемещаться между атомами.

Если мы посмотрим на базовую модель атома металлического проводника, у нас есть ядро ​​в центре, и оно окружено множеством орбитальных оболочек, удерживающих электроны. Каждая оболочка содержит максимальное количество электронов, и электрон должен иметь определенное количество энергии, чтобы попасть в каждую оболочку.Электроны, расположенные дальше всего от ядра, обладают наибольшей энергией. Самая внешняя оболочка известна как валентная оболочка, и проводник имеет от 1 до 3 электронов в своей валентной оболочке.

Атом меди

Электроны удерживаются на месте ядром. Но есть еще одна оболочка, известная как зона проводимости. Если электрон может достичь этого, он может вырваться из атома и перейти к другому. У атома металла, такого как медь, зона проводимости и валентная оболочка перекрываются, поэтому электрону очень легко перемещаться.

Самая внешняя оболочка уплотнена изолятором. Электрону практически нет места для присоединения. Ядро плотно захватывает электроны, а зона проводимости находится далеко, поэтому электроны не могут дотянуться до нее, чтобы убежать. Следовательно, электричество не может проходить через этот материал.

Однако есть еще один материал, известный как полупроводник. Кремний — это пример полупроводника. В этом материале слишком много электронов во внешней оболочке, чтобы быть проводником, поэтому он действует как изолятор.Однако следует отметить; что, поскольку зона проводимости довольно близка; если мы предоставим некоторую внешнюю энергию, некоторые электроны получат достаточно энергии, чтобы совершить прыжок из баллона в зону проводимости, чтобы стать свободными. Следовательно, этот материал может действовать как изолятор, так и как проводник.

Чистый кремний почти не имеет свободных электронов, поэтому инженеры добавляют в кремний небольшое количество других материалов, чтобы изменить его электрические свойства.

Изолятор, проводник, полупроводник. Пример

Мы называем это легированием P-типа и N-типа.Мы объединяем эти легированные материалы в диод.

Итак, внутри диода есть два вывода, анод и катод, которые подключаются к тонким пластинам. Между этими пластинами имеется слой легированного кремния P-типа на анодной стороне и слой легированного кремния N-типа на катодной стороне. Все это покрыто смолой для изоляции и защиты материалов.

Пример диода

. Давайте представим, что материал еще не легирован, так что внутри находится чистый кремний. Каждый атом кремния окружен 4 другими атомами кремния.Каждому атому нужно 8 электронов в своей валентной оболочке, но атомы кремния имеют только 4 электрона в своей валентной оболочке, поэтому они тайком делятся электроном со своим соседним атомом, чтобы получить 8 желаемых. Это известно как ковалентное связывание.

Ковалентная связь

Когда мы добавляем материал N-типа, такой как фосфор, он займет положение некоторых атомов кремния. В валентной оболочке атома фосфора 5 электронов. Так как атомы кремния делятся электронами, чтобы получить желаемое 8, им не нужен этот дополнительный электрон, поэтому теперь в материале есть дополнительный электрон, и поэтому они могут свободно перемещаться.

Добавление фосфора

При легировании P-типа мы добавляем такой материал, как алюминий. У этого атома всего 3 электрона в валентной оболочке, поэтому он не может предоставить своим 4 соседям один электрон, поэтому одному из них придется обойтись без него. Таким образом, создается дыра, в которой электрон может сидеть и занимать ее.

Итак, теперь у нас есть два легированных куска кремния, один со слишком большим количеством электронов, а другой с недостаточным количеством электронов.

Два материала соединяются, образуя соединение P-N.На этом стыке мы получаем так называемую область истощения. В этой области часть избыточных электронов со стороны N-типа переместится, чтобы занять дырки со стороны P-типа. Эта миграция образует барьер с скоплением электронов и дырок на противоположных сторонах. Электроны заряжены отрицательно, а дырки считаются положительно заряженными. Таким образом, нарастание приводит к образованию слегка отрицательно заряженной области и слегка положительно заряженной области. Это создает электрическое поле и предотвращает перемещение большего количества электронов.В типичных диодах разность потенциалов в этой области составляет около 0,7 В.

Пример истощения

Когда мы подключаем источник напряжения через диод, с анодом (P-типа), подключенным к плюсу, а катод (N), соединенным с минусом, это создаст прямое смещение и позволит току течь. Источник напряжения должен быть выше барьера 0,7 В, иначе электроны не смогут попасть в перемычку.

Источник напряжения должен быть больше, чем барьер

Когда мы реверсируем источник питания, положительный полюс подключается к катоду N-типа, а отрицательный — к аноду P-типа.Отверстия притягиваются к отрицательному полюсу, а электроны притягиваются к положительному положению, что вызывает расширение барьера, и поэтому диод действует как проводник, предотвращая протекание тока.

Технические характеристики

Пример символа

Диоды представлены на технических чертежах символом, подобным изображению выше. Полоса на корпусе обозначена вертикальной линией на символе, а стрелка указывает в направлении обычного тока.

Когда мы смотрим на диод, мы видим эти цифры и буквы на корпусе.Они идентифицируют диод, поэтому вы можете найти технические подробности в Интернете.

I-V Diagram

У диода будет I-V диаграмма, как показано выше. На этой диаграмме показаны характеристики тока и напряжения диода, которые построены в виде изогнутой линии. Эта сторона должна работать как проводник, а эта сторона — как изолятор.

Вы можете видеть, что диод может действовать как изолятор только до определенной разницы напряжений на нем. Если вы превысите это значение, он станет проводником и позволит току течь.Это приведет к выходу из строя диода и, возможно, вашей схемы, поэтому вам необходимо убедиться, что размер диода соответствует вашему применению.

Точно так же диод может выдерживать только определенное напряжение или ток при прямом смещении. Значение разное для каждого диода, вам нужно будет просмотреть эти данные, чтобы узнать подробности.

Диод требует определенного уровня напряжения для открытия и пропуска тока в прямом смещении. Большинство из них около 0,6 В. Если мы подадим напряжение меньше этого, он не откроется, чтобы позволить току течь.Но по мере того, как мы увеличиваем это значение, величина тока, который может протекать, будет быстро увеличиваться.

Пример напряжения диода

Диоды также будут обеспечивать падение напряжения в цепи. Например, когда я добавил этот диод в простую светодиодную схему, установленную на макетной плате, я получил значение падения напряжения 0,71 В.

Почему мы их используем

Как уже упоминалось, мы используем диоды для управления направлением тока в цепи. Это полезно, например, для защиты нашей цепи, если источник питания был подключен сзади на переднюю.Диод может блокировать ток и обеспечивать безопасность наших компонентов.

Мы также можем использовать их для преобразования переменного тока в постоянный. Как вы, возможно, знаете, переменный или переменный ток перемещает электроны вперед и назад, создавая синусоидальную волну с положительной и отрицательной половинами, но постоянный или постоянный ток перемещает электроны только в одном направлении, что дает плоскую линию в положительной области.

Если мы подключим первичную сторону трансформатора к источнику переменного тока, а затем подключим вторичную сторону к одному диоду, диод пропустит только половину волны и заблокирует ток в противоположном направлении.Таким образом, цепь проходит только положительную половину цикла, поэтому теперь это очень грубая цепь постоянного тока, хотя ток пульсирует, но мы можем это улучшить.

Первичный пример

Один из способов сделать это — если мы подключим четыре диода к вторичной стороне, мы создадим двухполупериодный выпрямитель. Диоды контролируют, по какому пути может течь переменный ток, блокируя или позволяя ему проходить. Как мы только что видели, разрешена прохождение положительной половины синусоидальной волны, но на этот раз разрешено прохождение и отрицательной половины, хотя это было инвертировано, чтобы превратить ее также в положительную половину.Это дает нам лучшую подачу постоянного тока, поскольку пульсация значительно снижается. Но мы все еще можем улучшить это, мы просто добавляем несколько конденсаторов, чтобы сгладить пульсацию и в конечном итоге получить плавную линию, чтобы точно имитировать постоянный ток.

Четыре подключенных диода

Мы подробно рассмотрели, как работают конденсаторы в нашей предыдущей статье, проверьте, что ЗДЕСЬ .

Как проверить диод

Для проверки диода нам понадобится мультиметр с настройкой проверки диодов, символ будет выглядеть так.Мы настоятельно рекомендуем вам иметь в своем наборе инструментов хороший мультиметр, который поможет вам как в обучении, так и в диагностике проблем.

Итак, берем наш диод и мультиметр. Подключаем черный провод к концу диода линией. Затем к противоположному концу подключаем красный провод. Когда мы это сделаем, на экране должно появиться значение.

Например, диод модели 1N4001 дает показание 0,516 В. Это минимальное напряжение, необходимое для открытия диода и протекания тока.

Если мы теперь поменяем местами провода, подключенные к диодам, мы должны увидеть на экране OL, что означает выход за пределы.Это говорит нам о том, что он не может измерить, это хорошо, потому что он не может замкнуть цепь, поэтому диод выполняет свою работу.

Если мы получаем сообщение о соединении в обеих конфигурациях, значит, компонент неисправен и не должен использоваться.

Неисправный компонент

Чтобы проверить диод в цепи на падение напряжения, мы просто переводим мультиметр в функцию постоянного напряжения, а затем помещаем черный щуп к концу полосы, а красный щуп — к черному концу. Это даст нам значение, например, 0.71V, что является падением напряжения.


диодов — обзор | Темы ScienceDirect

8.4.2 Диоды

Диод представляет собой двухслойный полупроводниковый прибор с двумя выводами. Когда полупроводниковые материалы n-типа и p-типа соединяются вместе, это образует PN-переход, который называется диодом. Полупроводниковый диод позволяет току течь через него в одном направлении, но не в другом. Основная структура и обозначение схемы полупроводникового диода показаны на рисунке 8.34. Две клеммы называются анодом (A) и катодом (K).

Рисунок 8.34. Полупроводниковый диод

Обычный ток течет через диод от анода к катоду (электроны текут от катода к аноду). Носителями тока в полупроводниках p-типа являются дырки, а в полупроводниках n-типа — электроны. Нормальная диффузия на стыке двух материалов вызовет дрейф некоторых дырок в материал n-типа, а часть электронов — в материал p-типа.Это создает небольшой заряд на переходе, который отталкивает любую дальнейшую диффузию дырок и электронов. Заряженная область на стыке называется областью обеднения или барьерной областью. Работа диода рассматривается, когда диод смещен в прямом или обратном направлении, как показано на рисунке 8.35. Здесь прикладывается напряжение (В) и может быть измерен ток (I).

Рисунок 8.35. Работа полупроводникового диода

Типичные области применения полупроводникового диода включают выпрямление сигнала переменного тока в источниках питания, схемы пиковых детекторов, ограничение уровня сигнала (для предотвращения превышения уровня напряжения сигнала над безопасным уровнем, называемого защитой входных цепей), телекоммуникации и индуктивные цепи схемы захвата обратной ЭДС (для снятия больших напряжений, создаваемых быстро меняющимся током в катушке индуктивности).

Когда диод смещен в прямом направлении, это уменьшает область истощения. Если диод достаточно смещен (на достаточно высокое значение V), то начинает течь ток (I). Однако, если диод смещен в обратном направлении, это приводит к увеличению области обеднения и предотвращает протекание тока.

Идеальный диод проводит только тогда, когда диод смещен в прямом направлении, и тогда падение напряжения на диоде (Vd) равно нулю. Когда идеальный диод смещен в обратном направлении, ток не течет.

В реальном диоде, когда диод смещен в прямом направлении, на диоде имеется конечное падение напряжения (Vd): примерно 0,6 В для кремниевого диода и примерно 0,4 В для германиевого диода. Если приложенное напряжение ниже этого значения, ток не будет протекать. Когда реальный диод смещен в обратном направлении, будет небольшой, но конечный ток утечки. Вольт-амперная характеристика кремниевого диода показана на рисунке 8.36.

Рисунок 8.36. Характеристики полупроводникового диода (шкалы с прямым смещением и обратным смещением не равны)

При прямом смещении уравнение диода определяется следующим образом:

I = Is⋅ (ур.v / KT-1)

где I — ток, протекающий в диоде, Is — ток насыщения или утечки (обычно порядка 10 –14 А), V — напряжение на диоде (т. е. V d ), q — заряд электрона, k — постоянная Больцмана, а T — абсолютная температура (в градусах Кельвина). Для схемы, работающей при температуре около 20 ° C, k.T / q обычно принимается равным 25 м В.

Варианты полупроводникового диода, обычно встречающиеся в электронных схемах, включают стабилитрон, светоизлучающий диод (LED) и фотодиод.

Если напряжение обратного смещения превышает максимальное значение напряжения пробоя, диод будет проводить ток, и чрезмерный ток может вывести устройство из строя. Это называется лавинным срывом. Также может иметь место вторая форма пробоя, туннельный пробой (или пробой Зенера).

Стабилитрон имеет управляемое обратное напряжение пробоя. Туннелирование или пробой стабилитрона происходит при превышении управляющего напряжения. Символ стабилитрона показан на рисунке 8.37. Стабилитрон используется в таких приложениях, как источники питания и цепи опорного напряжения.

Рисунок 8.37. Символ стабилитрона

Светодиод представляет собой диод, который заставляет устройство излучать свет, когда через него протекает ток (с прямым смещением). Доступные цвета: красный, зеленый, оранжевый, синий и белый. Символ светодиода показан на Рисунке 8.38.

Рисунок 8.38. Символ светодиода

Типичное применение светодиода показано на Рисунке 8.39. Здесь светодиод подключен к напряжению источника питания схемы и используется для индикации наличия питания в схеме. Напряжение питания +5 В постоянного тока.Прямое падение напряжения на светодиоде составляет 2 В (фактическое значение зависит от конкретного светодиода), а прямой ток для стандартных светодиодов составляет 20 мА (фактическое значение зависит от конкретного светодиода). Чтобы подключить светодиод к источнику +5 В, ток, протекающий через диод, должен быть ограничен резистором подходящего номинала.

Рисунок 8.39. Работа светодиода

Фотодиод может использоваться для измерения силы света, поскольку он производит ток, зависящий от количества света, падающего на pn переход.

Различные типы диодов и принцип их работы

Стабилитрон, Шоттки, выпрямители, тиристоры, кремний и симисторы

Меган Тунг

Диод — это электрическое устройство с двумя выводами. Диоды изготавливаются из полупроводника, чаще всего кремния, но иногда и германия. Существуют различные типы диодов, но здесь обсуждаются стабилитрон, выпрямитель, шоттки, ограничитель переходного напряжения, тиристор, кремниевый выпрямитель и симистор. На затвор выбора транзистора подается импульс «включено», вызывая большой ток стока.Высокое напряжение на соединении затвора притягивает электроны, которые проникают через тонкий оксид затвора и накапливаются на плавающем затворе. EPROM можно стереть, подвергнув его воздействию сильного ультрафиолетового источника света, что означает, что они могут быть перезаписаны много раз (в отличие от PROM). EPROM не подходят для хранения информации, которая будет часто меняться, потому что для перепрограммирования чип необходимо будет удалить из устройства, в котором он находится.

Стабилитроны

Стабилитрон

— это кремниевые полупроводниковые устройства, которые позволяют току течь либо в прямом (от анода к катоду), либо в обратном направлении.Сильнолегированный p-n переход позволяет устройству проводить в обратном направлении при достижении напряжения пробоя. Обратный пробой Зенера происходит из-за квантового туннелирования электронов, вызванного сильным электрическим полем. В режиме прямого смещения стабилитроны работают как обычные диоды. При подключении в обратном режиме может протекать небольшой ток утечки. Когда обратное напряжение увеличивается ближе к напряжению пробоя, через диод начинает течь ток. Максимальный ток определяется последовательным резистором.По достижении максимума ток стабилизируется и остается постоянным в широком диапазоне приложенных напряжений.

Выпрямители

Выпрямители

— это двухпроводные полупроводники, которые пропускают ток только в одном направлении. Выпрямитель состоит из одного или нескольких диодов, которые преобразуют переменный ток (AC) в постоянный (DC). Полупериодный выпрямитель — это когда на входе подается питание переменного тока, только положительный полупериод становится видимым через нагрузку, в то время как отрицательный полупериод скрывается (либо блокируется, либо теряется).В однополупериодном выпрямителе используется только один диод. Двухполупериодные выпрямители преобразуют полный входной сигнал переменного тока (положительный полупериод и отрицательный полупериод) в пульсирующий выходной сигнал постоянного тока. Для двухполупериодного выпрямителя используются два или четыре диода. КПД полуволнового выпрямителя ниже, потому что видна только положительная часть входной формы волны. Выпрямители используются в различных устройствах, включая источники питания постоянного тока, радиосигналы или детекторы, системы передачи электроэнергии постоянного тока высокого напряжения и некоторые бытовые приборы (ноутбуки, игровые системы и телевизоры).

Диоды Шоттки

Диоды Шоттки — это полупроводниковые устройства, образованные соединением кремниевого полупроводника (n-типа) с металлическим электродом. Диоды Шоттки известны своим быстрым переключением и низким прямым падением. Прямое падение напряжения существенно меньше, чем у обычного кремниевого диода с p-n переходом. Падение напряжения в диодах Шоттки обычно находится в пределах 0,15-0,45 В. При прямом смещении электроны перемещаются от материала n-типа к металлическому электроду, позволяя течь току.Диоды Шоттки не имеют обедненного слоя, что означает, что они униполярны.

Ограничитель переходных напряжений

Диоды ограничителя переходного напряжения (TVS) используются для защиты электроники от скачков напряжения. Переходные процессы — это временные скачки напряжения или тока, которые могут отрицательно повлиять на цепи. TVS-диоды шунтируют избыточный ток, когда индуцированное напряжение превышает потенциал лавинного пробоя. Благодаря своей способности подавлять все перенапряжения, превышающие его напряжение пробоя, TVS является фиксирующим устройством.TVS может быть однонаправленным или двунаправленным. Однонаправленный допускает только напряжение выше или ниже земли (положительное или отрицательное напряжение). Двунаправленный выбирается, когда ожидается, что защищенный сигнал будет колебаться над или под землей, например, при переменном напряжении или сигнале постоянного тока предполагается работать как с положительным, так и с отрицательным напряжением. Некоторые из приложений включают линии передачи данных и сигналов, микропроцессоры и MOS-память, линии электропередач переменного тока, телекоммуникационное оборудование и переключение / ограничение в цепях / системах с низким энергопотреблением.

Тиристорные диоды

Тиристорные диоды — это три оконечных устройства. Три терминала — затвор, анод и катод. Затвор управляет током, протекающим между анодом и катодом. В тиристорном диоде небольшой ток на затворе вызывает гораздо больший ток между анодом и катодом. Даже если ток затвора убран, больший ток продолжает течь от анода к катоду. Диод остается в этом состоянии до сброса цепи. В семействе тиристоров есть несколько типов диодов, в том числе тиристоры и симисторы.

Выпрямители с кремниевым управлением

Выпрямители с кремниевым управлением (SCR)

— это тип диодов в семействе тиристоров. SCR — это четырехслойные твердотельные устройства управления током. Четыре слоя полупроводника — это P-N-P-N. Есть три вывода: анод, катод и затвор. Устройство изготовлено из кремниевого материала, который контролирует высокую мощность и преобразует высокий переменный ток в постоянный ток (выпрямление). SCR однонаправленные, электрический ток допускается только в одном направлении.SCR используются в приложениях управления мощностью, таких как мощность, подаваемая на электродвигатели, управление системой освещения, реле управления или индукционные нагревательные элементы.

ТРИАК

TRIAC — это три оконечных устройства, также принадлежащих к семейству тиристоров. Первый вывод — это вентиль, который действует как триггер для включения устройства. Два других вывода называются анодом 1 и анодом 2 (также называются основным выводом 1 и основным выводом 2). Эти две клеммы не взаимозаменяемы, ток затвора должен поступать со стороны анода 2 схемы.Схема аналогична двум SCR, соединенным встык параллельно; тем не менее, TRIAC фактически построены из цельного куска полупроводникового материала, который соответствующим образом легирован и имеет слои. TRIAC переключают высокое напряжение и большой ток. Это двунаправленные переключатели, поэтому ток может проходить в обоих направлениях после срабатывания затвора. Некоторые из приложений включают управление мощностью переменного тока, регуляторы освещенности, управление двигателем и другие простые схемы с низким энергопотреблением, где требуется переключение мощности.


Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет , Санта-Барбара (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Вы только что видели, что диод пропускает ток в одном

Расшифрованный текст изображения: Вы только что видели, что диод пропускает ток в одном направлении … при прямом смещении. Сказать, что он не пропускает ток в обратном направлении смещения, — это приближение, которое работает для большинства инженерных приложений, но даже в инженерии вы не скажете, что диод пропускает все от нуля вольт и выше.эВ / кТл -1) I_o зависит от материалов, но не от приложенного тока или напряжения. Предположим, здесь 5,0 нА. V в уравнении положительно для прямого смещения и отрицательно для обратного смещения. k — постоянная Больцмана (в Джоулях / Кельвинах), а T — температура, поэтому предположим, что это комнатная температура при 300 К. e — это заряд электрона, как обычно. Я бы хотел, чтобы вы построили график этого уравнения в диапазоне от -0,40 вольт до 0,40 вольт. Нарисуйте график вручную или распечатайте график с помощью любого графического калькулятора, который у вас есть.Либо прикрепите распечатанную страницу, нарисуйте результаты на обратной стороне этой страницы. Пусть по горизонтальной оси будет напряжение, а по вертикальной оси — ток, как показано на обратной стороне этой страницы. Выберите интервалы между метками осей, чтобы график охватывал как можно больше всей площади. Однако вы обнаружите, что вам нужно приблизиться к отрицательным напряжениям … но пусть это покажет в основном, что происходит. Может быть, вы хотите использовать шкалу журнала? Решать вам. Используйте не менее двадцати напряжений в диапазоне и тщательно промаркируйте оси, показывая, какой ток какому напряжению соответствует.Вот несколько значений, которые могут помочь: Какой ток при прямом смещении 0,5 В? _______________ Какой ток при прямом смещении 0,2 В? _______________ Какой ток при прямом смещении 0,01 В? _______________ Какой ток при обратном смещении -0,1 вольт? _______________ Какой ток при обратном смещении -0,2 В? _______________ Какой ток при обратном смещении -0,5 В? _______________ Какое отношение прямого тока к обратному току при: 0,50 вольт вперед к -0.Обратное смещение 50 вольт? _______________ Вы бы сказали, что это число маленькое, очень маленькое, большое, очень большое? _________________ Итак, основываясь на этих числах и вашем графике, объясните более подробно, что делает диод. Это больше, чем просто «пропускать ток в одном направлении», но когда вы все еще можете это сказать?

Предыдущий вопрос Следующий вопрос

Практическое руководство. Диоды: 6 ступеней (с изображениями)

Если вы в прошлом занимались электронными проектами, есть большая вероятность, что вы уже сталкивались с этим распространенным компонентом и без раздумий встраивали его в свою схему.Диоды имеют большое значение в электронике и служат множеству целей, которые будут рассмотрены в следующих шагах.

Во-первых, что такое диод?

Диод — это полупроводниковое устройство, которое позволяет току течь в одном направлении, но не в другом.

Полупроводник — это разновидность материала, в данном случае кремния или германия, электрические свойства которого находятся между проводниками (металлами) и изоляторами (стекло, резина). Рассмотрим проводимость: это мера относительной легкости, с которой электроны движутся через материал.Например, электроны легко проходят через кусок металлической проволоки. Вы можете изменить поведение чистого материала, такого как кремний, и превратить его в полупроводник, легируя . При легировании вы добавляете небольшое количество примеси в чистую кристаллическую структуру.

Типы примесей, добавляемых к чистому кремнию, можно разделить на N-тип и P-тип.

  • N-тип: при легировании N-типа фосфор или мышьяк добавляются к кремнию в долях на миллиард в небольших количествах.И фосфор, и мышьяк имеют по пять внешних электронов, поэтому они смещаются, когда попадают в решетку кремния. Пятому электрону не с чем связываться, поэтому он может свободно перемещаться. Требуется лишь очень небольшое количество примеси, чтобы создать достаточно свободных электронов, чтобы электрический ток мог протекать через кремний. Электроны имеют отрицательный заряд, отсюда и название N-типа.
  • P-тип — При легировании P-типа к чистому кремнию добавляют бор или галлий. Каждый из этих элементов имеет по три внешних электрона.При смешивании с кремниевой структурой они образуют «дыры» в решетке, где электрону кремния не с чем связываться. Отсутствие электрона создает эффект положительного заряда, отсюда и название P-типа. Отверстия могут проводить ток. Дыра с радостью принимает электрон от соседа, перемещая дыру в пространстве.

Диоды изготовлены из двух слоев полупроводникового материала с различными легировками, которые образуют PN-переход . Материал P-типа имеет избыток положительных носителей заряда (дырок), а материал N-типа — избыток электронов.Между этими слоями, где встречаются материалы P-типа и N-типа, дырки и электроны объединяются, причем сверхэлектроны объединяются с избыточными дырками, чтобы компенсировать друг друга, поэтому создается тонкий слой, в котором нет ни положительных, ни отрицательных носителей заряда. Это называется истощенным слоем .

В этом обедненном слое нет носителей заряда, и через него не может протекать ток. Но когда на переход подается напряжение, так что анод P-типа становится положительным, а катод N-типа — отрицательным, положительные дырки притягиваются через обедненный слой к отрицательному катоду, также отрицательные электроны притягиваются к отрицательному катоду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *