Диод пропускает ток в одну сторону: Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Полупроводниковые диоды

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

Диод в виде кристалла полупроводника

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные

выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Содержание

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

Прямое включение диода

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или

p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области

p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

Обратное включение диода

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току

большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют

выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Вольт-амперная характеристика диода

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении

Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.

Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на

туннельный и лавинный пробои.

Пробои p-n переходов диода

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Диод | Виды, характеристики, параметры диодов

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапанобратный клапан

 

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

диод 1N4007диод

А некоторые выглядят чуточку по-другому:

д226б диодд214 диод

Есть также и SMD исполнение диодов:

смд диодsmd диод

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диодастроение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

 

Вот это и есть тот самый PN-переход

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод диодакатод диодакатод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диод

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диодапрямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включениидиод в прямом включении

 

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диодаобратное включение диода

 

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включениеобратное включение диода

 

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

 

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигналсинусоидальный сигнал

 

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диодапеременное напряжение после диода

 

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диодапеременый ток после диода

 

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диодапеременный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

вах стабилитрона

Выглядят стабилитроны точно также, как и обычные диоды:

ДиодДиод

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиодыосветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диодсветодиодные лампочки

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

светодиодная лента

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

таблица светодиоды напряжение

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

тиристор Диод

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

силовой тиристор

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

маломощный диодный мостдиодные мосты

 На схемах диодный мост обозначается вот так:

диодный мост обозначение на схеме

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

 

Похожие статьи по теме “диод”

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

 

Полупроводниковый диод | Электронные печеньки

Диод — полупроводниковый прибор обладающий разной проводимостью в зависимости от направления тока. Иными словами, диод пропускает ток в одну сторону и не пропускает в другую. То есть ток идёт от анода (+) к катоду (-), но не наоборот (на самом деле и наоборот иногда идёт, всё сложно. Подробности в статье 🙂 ). Разумеется, диод рассчитан на определённое напряжение и ток, которое он может пропустить в прямом направлении и определённое напряжение, которому он способен сопротивляться в обратном. Полезно знать, что на корпусе диода катод обозначается цветным кольцом.

Диоды характеризуются двумя основными характеристиками: предельному обратному напряжению (Uобр) и максимальной силой тока (Imax), проходящей через него. Предельное обратное напряжение — максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии, которое он способен выдержать. Максимальный рабочий ток представляет собой ток при прямом включении диода, который диод может выдержать, не выходя из строя. Диоды широко применяются в электронике. Его основное свойство — пропускать ток только в одном направлении, определяет самое распространённое применение диода для выпрямления переменного тока. Однако, мы не станем останавливаться на выпрямителях слишком подробно. Статья рассказывает о применении диода в микроконтроллерных устройствах, разновидностях и способах подключения диода.

В устройствах с микроконтроллерами в основном применяются 3 типа диодов:

  • стабилитрон (диод Зеннера)
  • выпрямительный диод
  • диод Шоттки

Ниже рассмотрим отличия и назначения каждого типа диодов.

Изображение стабилитрона на схеме. Вот с такой загогулиной, да.

А так выглядит диод Зеннера в жизни

Прежде чем рассказать о стабилитронах, нужно вспомнить о ВАХ. ВАХ — это не только междометие, но и аббревиатура. Расшифровывается она как вольт-амперная характеристика. Чтобы не пугать вас и делать вид, что всё очень сложно, не будем приводить здесь графики этой самой ВАХ. Достаточно просто пояснить, что существует ВАХ для прямого и для обратного включения диода. ВАХ — это график, по которому можно определить характеристики диода: предельные токи, падение напряжения и прочее.

Стабилитроны  конструктивно ничем не отличаются от других диодов. Но их параметры специально рассчитаны для того, чтобы подключать диод наоборот :  анод на минус, а катод на плюс. Это позволяет стабилитрону стабилизировать напряжение. Это происходит в связи с особенностью ВАХ стабилитрона в обратном направлении: при определенном обратном напряжении на диоде, через него течет любой ток. Разумеется, ток через диод не может быть бесконечным, иначе стабилитрон банально перегреется и сгорит. Для стабилизации напряжения на больших токах используйте стабилизаторы напряжения.  Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. Как не сложно догадаться, это и есть напряжение, которое стабилитрон пропускает через себя.

Подключается стабилитрон вот так:

Типичная схема подключения стабилитрона

Можно заметить некоторое сходство с делителем напряжения. Собственно, это он и есть. Только напряжение на выходе регулируется стабилитроном динамически, а резистор в верхнем плече делителя называют балластным. Для правильного подключения стабилитрона необходимо произвести расчёт балластного резистора. Для этого необходимо знать следующие значения:

  • Входное напряжение (Uin)
  • Необходимое напряжение на нагрузке (URн)
  • Ток, потребляемый нагрузкой (Iн)

Выбирается стабилитрон, с током стабилизации в 2 или более раз большим, чем ток, потребляемый нагрузкой. Через балластный резистор потечёт ток, равный сумме тока стабилизации и тока, потребляемого нагрузкой.

По закону Ома выходит, что ток, потребляемый нагрузкой, мы можем рассчитать по формуле: (Входное напряжение-Напряжение стабилизации)/Сопротивление балластного резистора.

Тогда сопротивление балласта выражается такой формулой: R1=(Входное напряжение-Напряжение стабилизации)/Ток потребляемый нагрузкой.

Ну а теперь, когда вы полностью запутались, мы просто рекомендуем вам использовать резистор 33 Ом. Этого достаточно для тока нагрузки до 5мА и входном напряжении до 5 В. То есть с помощью стабилитрона из нашего магазина с резистором в 330 Ом вы сможете стабилизировать напряжение на уровне 3,3 вольт для SD модуля.

Так обозначается выпрямительный диод на схеме. Ага. Безо всяких закорючек.

Диод. Катод справа.

Собственно, дальше не так интересно. Выпрямительные диоды… выпрямляют ток. То есть позволяют получить из переменного тока постоянный. Помимо выпрямления тока, выпрямительные диоды используются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. Эти диоды выдерживают большие токи и напряжения, но плохо работают на высоких частотах. Это значит, что защитить мощный блок питания от переплюсовки таким диодом можно, а вот ШИМ с таким диодом будет работать не так, как ожидается (работать будет, но скважность изменится, так как диод не будет успевать открываться-закрываться до конца).

ВАХ обратного включения выпрямительного диода характеризуется малым напряжением при большом токе. Это как раз и значит то, что написано выше. Диод хорошо пропускает ток в «правильном» направлении и готов сопротивляться до последнего току, который вдруг потечёт назад. Выпрямительные диоды могут использоваться для защиты управляющей схемы от индуктивных нагрузок. Это, в основном, различные устройства с катушкой — моторы и реле. После отключения тока, катушка может сработать как индуктивность и вернуть заряд назад, повредив вывод контроллера. Для защиты от индуктивности, в цепь с индуктивной нагрузкой включается диод:

Выпрямительный диод в цепи с мотором

На схеме диод Шоттки изображается так:

Диод Шоттки на схеме. Да. Теперь 2 закорючки.

Диод Шоткти. Также его называют сигнальным диодом. Отличается относительно малым предельным напряжением и током, но высокой скоростью работы. Применяется в схемах передачи высокочастотных сигналов. Подробное рассмотрение особенностей диода Шоттки выходит за рамки статьи.

Поделиться ссылкой:

Похожее

Принцип работы диодов для чайников

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

диод

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

принцип работы диода

Устройство

устройство диода

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

диодНиже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

напряжения диода

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

вольт-амперная характеристика диода

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

диод

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

пробой p-n перехода диода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Статья была полезна?

0,00 (оценок: 0)

ДИОДЫ

   Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

Пример односторонней проводимости диода

Пример односторонней проводимости диода

   На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. 

Иллюстрация прямой обратный ток диода

Иллюстрация прямой обратный ток диода

   Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

Вольт-амперная характеристика диода

Вольт-амперная характеристика диода

   В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Диод полупроводниковый

Диод полупроводниковый

   Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.  

Плоскостной диод Точечный диод

Плоскостной и точечный диод

Какие бывают типы диодов ?

Схематическое изображение диодов

Схематическое изображение диодов

Фото выпрямительного диода

Фото выпрямительного диода

   А) На фото изображен рассмотренный нами выше диод.

Стабилитрон изображение на схеме

Стабилитрон изображение на схеме

   Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.

Двуханодный Стабилитрон изображение на схеме

Двуханодный стабилитрон — изображение на схеме

   В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Туннельный диод

Туннельный диод

   Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Обращенный диод

Обращенный диод

   Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Варикап

Варикап

   Е) Варикап, применяется как конденсатор переменной ёмкости.

Фотодиод

Фотодиод

   Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок. 

Светодиоды Светодиоды

Светодиоды

   З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только. 

   Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое — это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Схема диодного моста

Схема диодного моста

   Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

Фото диодный мост

Фото диодный мост

   А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

светодиодная лампа свеча

Светодиодная лампа фото

   Светодиоды существуют в разных корпусах, в том числе и SMD.

smd светодиод фото

smd светодиод фото

   Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный — Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Подключение RGB ленты

Подключение RGB ленты

   Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

   Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил — AKV.

   Форум по радиодеталям

   Обсудить статью ДИОДЫ


Как проверить диод? Всё, что необходимо об этом знать.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Расположение выводов полупроводникового диода

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

Диоды

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Проверка диода при прямом включении

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

Проверка диода в обратном включении

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода

Измеренное пороговое напряжение, мВ (mV)

Тип диода, материал полупроводника

1N5822

167

выпрямительный диод Шоттки

1N5819

200

выпрямительный диод Шоттки

RU4

419

быстрый выпрямительный диод

Д20

358

точечный германиевый диод

Д9

400

точечный германиевый диод

2Д106А

559

диффузионный кремниевый диод

Д104

717

точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;

  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;

  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как оно работает!?

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов.

У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.
Ток обычно обозначается буквой I и меряется Амперами

Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение — как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.
Напряжение обычно обозначается буквами U или V и меряется Вольтами.

Электричество течёт в электронных схемах от плюса к минусу.

Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие.


Диод
Диод обычно предназначен пускать ток в одну сторону, и не пускать в другую.
Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод — электронный клапан.
У каждой лапки диода есть название — анод и катод.
Катод — отрицательный электрод, поэтому в схемах обычно смотрит на минус.
Анод — положительный электрод, и на него чаще всего подают плюс.
Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, — в слове «катод» столько же букв, сколько в слове «минус». А в слове «анод» столько же букв, сколько в слове «плюс». Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.
На схемах диод обозначается вот так:


Диод

Где у диода катод, а где анод — легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод).

Диоды на вид бывают всякие разные:

Виды диодов

как подключить диод

Важные характеристики диодов — максимальное напряжение и максимальные токи — постоянный и при коротком импульсе.
Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А.

Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.
Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится.

Подключение диода

Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как:

фото диод

Иногда с круглишками, иногда без них.

У них точно так же есть катод и анод, как и у простых диодов.
Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность.

Переменный ток

 

В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.
При переменном токе полярность меняется с какой-то частотой.
В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду.
Частота, — будь то смена полярности, или количество зажиганий светодиодика в секунду, — меряется в Герцах.

 

Как узнать переменный или постоянный ток в цепи ?
Подключили диод, лампочка светится.
Перевернули диод, лампочка всё равно светится.
Если диод заведомо целый, значит ток в цепи переменный.

Переменный ток

переменный и постоянный ток

Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.
Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения.

диодный мост

Белые провода — переменное напряжение, на выходе постоянное: черный — минус, красный плюс.

диодный мост

Если постоянный ток изобразить на графике, он будет выглядеть вот так.

График постоянного тока

С течением времени на плюсе всегда остаётся плюс, на минусе минус.

У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так:

график переменно тока

Каждая такая пупырышка называется полупериод.
Если выше полоски — положительный, например который нам нужен.
Если ниже полоски — отрицательный, который нам не нужен, и нам надо его перевернуть.
Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.
Пометим положительные полупериоды зеленым цветом, отрицательные красным.

полупериоды

 Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает:

13

На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.
Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону

график светодиодов

На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду.
С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10):

15

В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся.

Конденсатор

Конденсатор — электронная бочка.
Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.
Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.
Нам нужно чтоб вода всегда была.
Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах.

Конденсаторы бывают на переменный и на постоянный ток.
У конденсаторов на постоянный ток важно не путать полярность — назначение выводов, какой из них подключить на плюс, а какой на минус.
Конденсатор обозначается на схеме вот так:

обозначение конденсаторов

Слева на переменный ток, справа на постоянный.

Конденсаторы бывают всякие разные:

Виды конденсаторов

 

 Предыдущая схема у нас была с пульсирующим постоянным током:

пульсация переменного тока

Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций.

схема диодного моста

19

Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).
Например 7 нанофарад = 0, 000 000 007 фарад.
14 пикофарад = 0, 000 000 000 014 фарад.
10 микрофарад = 0, 000 010 Фарад.

 

Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.

 

Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.
Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.

 

Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть.
На деталь наносят 3, 4 или 5 цветных колец.
Первые два кольца — тоже цифры, третье — множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая — допуск, серебряного цвета или золотого. Допуск — отклонение в процентах, от заявленной ёмкости, золотое кольцо — меньше или больше на 5%, серебряное — на 10%.
Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца.

Не менее важный параметр конденсатора — его допустимое напряжение.
Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше.

Резистор

Резистор с латинского переводится как «сопротивляться».
Говоря по русски, резистор — сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля.
Резистор ограничивает ток в цепи.
Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше «заткнут» и следовательно меньше пропускает.
Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах.
Чем больше ом резистор, тем больше в нём засунуто «поролона». Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.
Резистор обозначается на схемах вот так или так:

Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных.


Резисторы бывают всякие разные:

Виды резисторов

резисторы

Узнать обозначение можно по маркировке, иногда её пишут буквами — М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах.
102 = 10 и 2 нолика = 1000 ом = 1 килоом.
754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом.

Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.
2М2 — 2.2 мегаома,
М15 — 0,15 мегаом или 150 килоом,
К47 — 0,47 килоом, или 470 ом,
15М — 15 мегаом,
68К — 68 килоом,
3К3 — 3.3 килоом (3300 ом),
4R7 — 4.7 ом.

В этой маркировке 2.2 мегаома будет выглядеть как 2М2,
22 мегаома — 22М,
220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22.

Разница между диодом и транзистором (со сравнительной таблицей)

Диод и Транзистор рассматриваются как основа электронных устройств и схем. Но на этом сходство этих важнейших устройств в сфере электроники заканчивается. Основное различие между диодом и транзистором заключается в том, что диод представляет собой устройство с двумя выводами , которое пропускает ток в одном направлении только от анода к катоду.

Напротив, транзистор представляет собой трехконтактное устройство , которое передает ток из области с высоким сопротивлением в область с низким сопротивлением . Само слово «транзистор» выражает свою функцию, слово «транзистор» происходит от двух слов: « Transfer » и « Resistor ». Таким образом, оно считается устройством, которое переносит сопротивление из одного региона в другой.

Существуют определенные факторы, которые отличают эти два устройства, такие как область истощения, приложения и т. Д. Мы обсудим все эти факторы с помощью сравнительной таблицы.

Содержание: Диод и транзистор

  1. Сравнительная таблица
  2. Определение
  3. Ключевые различия
  4. Заключение


Сравнительная таблица

Транзистор.
Параметры Диод Транзистор
Определение Диод — это двухконтактное устройство, которое позволяет току проходить только в одном направлении. — это трехконтактное устройство, которое позволяет току течь из области высокого сопротивления в область низкого сопротивления
Формация Формируется путем соединения полупроводника P-типа с полупроводником N-типа. Он формируется путем наложения слоя материала P-типа или N-типа между двумя материалами N-типа или P-типа на обоих концах.
Схема символ Diode Circuit Symbol Transistor Circuit Symbol
Уровень истощения Формируется только одна область истощения. Две области истощения сформированы.
Количество соединений Только один переход между P-типом и N-типом полупроводника. Два соединения формируются один между эмиттером и базой и другой между базой и коллектором.
Клеммы В диоде есть 2 клеммы, то есть анод и катод. В транзисторе 3 клеммы, то есть эмиттер, база и коллектор.
Рассматривается как Может рассматриваться как переключатель. Можно рассматривать как переключатель или усилитель.
Применения Выпрямитель, двойное напряжение, ограничитель и т. Д. Усилитель, генератор и т. Д.


Определение

Диод

Диод формируется путем объединения двух полупроводниковых образцов, один из которых представляет собой P-типа полупроводник , а другой представляет собой N-типа полупроводник. Соединение, образованное соединением этих двух полупроводников, называется PN соединением.Слой обеднения сформирован из-за различной концентрации носителей заряда в обеих областях.

Diode construction

Полупроводник P-типа имеет дырки в качестве основных носителей, в то время как полупроводник N-типа имеет электроны в качестве основных носителей. Теперь поведение PN-перехода будет отличаться в режиме смещения и режиме смещения.

Давайте сначала обсудим несмещенного режима . В несмещенном режиме электроны из N-области и дырки из P-области будут двигаться к переходу из-за градиента концентрации.Этап будет достигнут, когда больше носителей заряда не будет диффундировать через соединение. Эта стадия называется стадией насыщения .

После этого электроны и дыры, достигшие соединения, будут рекомбинировать. В связи с этим движение дальнейших мажоритарных перевозчиков будет ограничено. Образовавшаяся область называется обедненным слоем. Это создаст внутреннее электрическое поле.

Теперь переходим к режиму смещения , когда применяется смещение, то есть соединение P-типа с положительной клеммой и N-типа с отрицательной клеммой.Прямой ток начнет течь от анода к катоду. Ширина области истощения уменьшается с увеличением прямого смещения.

Аналогичным образом ширина истощающего слоя увеличивается с изменением смещенного состояния в режиме с обратным смещением. Ток, который течет в диоде, происходит из-за неосновных носителей заряда. Это называется обратным током насыщения , потому что он насыщается после определенного обратного напряжения. Тогда оно не увеличивается дальше с увеличением обратного напряжения.

Обратный ток увеличивается только с увеличением температуры .

Транзистор

Транзистор — это трехконтактное устройство, которое состоит из трех областей и двух переходов. Области излучателя , базы и коллектора . Два соединения — это соединение база-эмиттер и соединение база-коллектор .

Transistor

Эти регионы имеют разные характеристики, и все они имеют разные размеры.Излучатель сильно легирован, что позволяет создавать больше носителей заряда; основание слегка легировано, так что только несколько носителей заряда будут рекомбинировать там, а коллектор — умеренно легированный.

Размер коллектора больше, чем излучателя и коллектора, в то время как размер основания наименьший среди всех трех областей. Ширина обедненного слоя между коллектором и основанием больше ширины соединения база-эмиттер.

Излучатель и основание соединены с батареей таким образом, что они работают в режиме прямого смещения, в то время как коллектор и основание соединены с батареей таким образом, что она становится смещенной в обратном направлении.Поэтому большинство носителей заряда будут течь от эмиттера к базе, а затем базы к коллектору. Чем больше размер коллектора, тем больше будет накопителей заряда, которые он собирает, и рассеивание тепла также будет происходить легко.

Ключевые различия между диодом и транзистором

  1. Принципиальное различие между диодом и транзистором заключается в том, что диод представляет собой устройство с двумя контактами , а транзистор — это устройство с тремя контактами .
  2. Соединительный диод
  3. PN состоит из одной обедненной области , то есть между P-типом и N-типом, но транзистор состоит из двух обедненных слоев.
  4. Диод считается коммутатором , поскольку он может выполнять переключение, но транзистор может выполнять переключение, а также усиление .
  5. Для работы диода требуется только один аккумуляторный источник, в то время как транзистору нужны два аккумуляторных источника для выполнения его функции.


Заключение

Диод представляет собой двухполюсное однонаправленное устройство, в то время как транзистор представляет собой трехполюсное устройство, которое передает ток из области с высоким сопротивлением в область с низким сопротивлением через базу. Диод используется в различных приложениях электроники, таких как выпрямитель, ограничитель тока, зажим, умножитель напряжения, переключатели и т. Д. Диод действует как переключатель. Он включен, когда он смещен в прямом направлении, и выключен, когда он смещен в обратном направлении.

Транзистор

может действовать как переключатель, а также как усилитель.Приложение создает основное различие между диодом и транзистором. Диоды бывают различных типов, таких как диод стабилитрона , диод PIN , фотодиод , светоизлучающий диод и т. Д., В то время как транзисторы в основном состоят из двух типов биполярных транзисторов и полевого транзистора .

,
Что такое блокирующий диод и байпасный диод в распределительной коробке панели солнечных батарей?

Обходной диод и блокирующий диод, используемые для защиты панели солнечных батарей в затененном состоянии

В различных типах конструкций солнечных панелей изготовители включают как обходные, так и блокирующие диоды для защиты, надежной и бесперебойной работы. Мы обсудим блокирующие и байпасные диоды в солнечных панелях с рабочими и принципиальными схемами в деталях ниже.

Обходной диод в солнечной панели используется для защиты частично затененных массивов фотоэлектрических элементов внутри солнечной панели от нормально работающей фотоэлектрической струны в пике солнечного света на той же фотоэлектрической панели.В многопанельных фотоэлектрических цепях неисправная панель или цепочка были обойдены диодом, который обеспечивает альтернативный путь протеканию тока от солнечных батарей к нагрузке.

Блокирующий диод в солнечной панели используется для предотвращения разряда или разряда батарей через фотоэлементы внутри солнечной панели, поскольку они действуют как нагрузка в ночное время или в случае полностью покрытого неба облаками и т. Д. Короче говоря, так как диод пропускает ток только в одном направлении, то ток от солнечных батарей течет (с прямым смещением) к батарее и блокирует от батареи к солнечной панели (с обратным смещением).

Blocking and Bypass Diode in Solar Panel Junction Box Blocking and Bypass Diode in Solar Panel Junction Box

Что такое диод?

Диод — это однонаправленное полупроводниковое устройство, которое пропускает ток только в одном направлении (прямое смещение, то есть анод подключен к положительному выводу, а катод подключен к отрицательному выводу). Он блокирует поток тока в противоположном направлении (обратное смещение, то есть анод к клемме -Ve и катод к клемме + Ve).

Они изготовлены из полупроводниковых материалов, таких как кремний и германий.Они обеспечивают высокое сопротивление току в одном направлении (обратное смещение) и действуют путем короткого замыкания для тока в противоположном направлении (прямое смещение). Ниже приведен общий символ диода с анодом и катодной клеммой.

Rectifier Diode Rectifier Diode

Работа блокирующих и байпасных диодов в PV Панели

Система солнечных панелей — лучшая альтернатива широкому диапазону (от МВт до МВт) свободной электрической энергии и может использоваться с сеткой на входе или вне сети система питания.Он может быть установлен в любом месте в диапазоне солнечного света для выработки электроэнергии.

Фотоэлектрический элемент внутри солнечной панели представляет собой простой полупроводниковый фотодиод, изготовленный из взаимосвязанных элементов кристаллического кремния, которые поглощают / поглощают фотон от прямого солнечного света на его поверхности и преобразуют его в электрическую энергию. фотогальванические элементы соединены последовательно в солнечной панели и вырабатывают электрическую энергию при нормальной работе, когда солнечный свет попадает на эти фотогальванические элементы.

Но некоторые факторы влияют на способность солнечных батарей к выработке электрической энергии, такие как ненормальные условия окружающей среды, такие как дождь, снегопад и влажность, полные облака, покрывающие небо, солнечная радиация, изменения температуры и расположение массива панелей относительно солнца и т. Д.

Одним из наиболее важных факторов, влияющих на выход и эффективность, являются полностью или частично затененные солнечные панели из-за облаков, деревьев, листьев, зданий и т. Д. В этом случае некоторые из фотоэлектрических элементов не способны генерировать энергию, поскольку они не подвергаются воздействию прямой солнечный светВ этом случае затронутые клетки действуют как нагрузка и могут быть повреждены из-за горячей точки. Вот почему нам нужен обходной диод в солнечной панели.

How a Bypass Diode works in a Solar Panel and PV Cell How a Bypass Diode works in a Solar Panel and PV Cell

Посмотрим ниже, как заштрихованные солнечные панели могут быть опасными и как обходной диод предотвращает солнечные панели или повреждает фотоэлектрические шнуры.

фотоэлементы без байпасных диодов

Один фотоэлектрический элемент генерирует около 0,58 В постоянного тока при 25 ° C . В случае разомкнутой цепи, как правило, значение V OC равно 0.5 — 0,6 В, в то время как мощность одного фотоэлектрического элемента составляет от 1 до 1,5 Вт в случае разомкнутой цепи. Таким образом, одиночная фотостатическая ячейка 1,5 Вт с 0,5 В будет выдавать ток 3 А как I = P / V (1,5 Вт / 0,5 В = 3 Ампер).

Предположим, что к фотоэлементам не подключены обходные диоды. Как вы можете видеть, фотоэлементы соединены в последовательную цепочку (положительный вывод соединен с отрицательным выводом второй солнечной панели и т. Д.).

Мы знаем, что ток «I» последовательно в каждой точке одинаков, а напряжения аддитивны, т.е.е. V T = V 1 + V 2 + V 3 … V n . Таким образом, общее напряжение V T = 0,5 В + 0,5 В + 0,5 В = 1,5 В.

В обычном режиме работы все фотоэлементы работают безотказно, то есть все три фотоэлемента выдают номинальную мощность в токах и вольтах. Мощность аддитивна как в последовательном, так и в параллельном соединении. Таким образом, мы получаем идеальную максимальную номинальную мощность в амперах и вольтах. Поток тока показан синей пунктирной линией от фотоэлементов до выходной нагрузки.Solar Panel without Bypass Diodes Solar Panel without Bypass Diodes

Но что в случае с затененными ячейками? А что, если нет и обходного диода? Посмотрим, что будет дальше.

Затененные фотоэлементы без байпасных диодов

В случае опавших листьев или облаков затененные фотоэлектрические элементы не могут генерировать электрическую энергию и действуют как резистивная полупроводниковая нагрузка. В случае отсутствия байпасных диодов энергия, вырабатываемая фотоэлементами, обращенными к прямому солнечному свету, начнет поступать в затененные элементы, поскольку они также ведут себя как нагрузка.Этот чрезмерный ток приведет к нагреву затененных тензодатчиков, поскольку они рассеивают мощность, что приводит к появлению горячей точки и может повредить или сжечь поврежденные элементы.

По мере падения напряжения на затененных элементах нормальные элементы без затенения пытаются регулировать падение напряжения путем увеличения напряжения разомкнутой цепи. Таким образом, затронутые затененные фотоэлементы становятся смещенными, и отрицательное напряжение появляется в противоположном направлении через его клеммы. Это отрицательное напряжение вызывает протекание тока в противоположном направлении в затененных фотоэлементах, на которые воздействует ток в зависимости от рабочего тока и тока короткого замыкания I SC .Таким образом, затененный элемент внутри солнечной панели будет рассеивать энергию, а не вырабатывать ее, так как в ней происходит обратное падение напряжения из-за потока электронных токов. Весь этот процесс приведет к снижению общей эффективности или может привести к повреждению и взрыву фотоэлементов в солнечной панели.

Синие пунктирные линии показывают поток токов, то есть некоторый ток течет из нормальных ячеек № 1 и ячейки № 3 в поврежденную заштрихованную ячейку № 2. В случае разомкнутой цепи все токи могут протекать в пораженные ячейки, пока в В случае подключения нагрузки к фотоэлектрической панели, некоторый ток протекает к нагрузке с пониженной скоростью.Shaded Solar Panel without Bypass Diode Shaded Solar Panel without Bypass Diode

Вот почему нам нужны обходные диоды в солнечной панели. Давайте посмотрим, что происходит, когда на фотоэлектрической панели есть обходной диод, следующим образом.

Фотоэлементы с байпасными диодами

Теперь давайте посмотрим, как мы можем защитить солнечную панель или фотоэлектрическую батарею и строки от частичного или полностью затененного эффекта фотоэлементов. Это обходной диод. Обходные диоды можно использовать, соединяя их параллельно с фотоэлементом последовательно соединенной струнной матрицы, чтобы исключить фактор риска и защитить солнечные панели от общего повреждения и взрыва в случае полного или частичного затенения.

Обходные диоды соединены внешне (параллельно) с фотоэлектрическими элементами в обратном смещении (анодная клемма подключена к + Ve и катоду со стороны -Ve солнечной батареи), что обеспечивает альтернативный путь для протекания тока в случае затенения клетки. Обходные диоды с обратным смещением не пропускают производимый ток в нормальных элементах в затененные элементы.

Поток генерируемых токов обозначен синими пунктирными линиями. В случае ясного неба, то есть пика солнечного света, производимый ток не будет течь через диоды байпаса, как показано красными пунктирными линиями, поскольку они имеют обратное смещение и действуют как разомкнутая цепь.Таким образом, общая мощность идет на зарядку аккумулятора или подключенную нагрузку, не влияя на эффективность, как ожидалось. Solar Panel with Bypass Diodes Solar Panel with Bypass Diodes

Но что происходит, когда на частичных ячейках появляются облака или тени здания? давайте посмотрим.

Затененные фотоэлементы с байпасными диодами

В случае облаков или снега и т. Д. На ячейку № 2 влияют, и она не может генерировать энергию и, таким образом, становится полупроводниковым резистором, который теперь действует как нагрузка. Теперь затененные ячейки обеспечивают отрицательную мощность (нужно рассеивать мощность, а не генерировать ее), активируются обходные диоды через ячейку (как это сейчас происходит в прямом смещении) и отводят ток в нагрузку, как показано синими пунктирными линиями. минуя затененную ячейку на рис.

Короче говоря, шунтирующие диоды, подключенные через затененные ячейки № 2, обеспечивают альтернативный путь для протекания токов от ячейки № 1 к ячейке № 3 и затем нагрузки. Таким образом, шунтирующий диод поддерживает надежную и бесперебойную работу фотоэлементов, не повреждая фотоэлемент или общую матрицу фотоэлектрических цепочек с пониженной скоростью, поскольку элемент № 2 не способен генерировать электроэнергию. Shaded Solar Panel with Bypass Diodes Shaded Solar Panel with Bypass Diodes

В качестве обходных диодов в солнечных панелях используются два типа диодов: диод PN-Junction и диод Шоттки (также известный как барьерный диод Шоттки) с широким диапазоном номинальных токов.Диод Шоттки имеет более низкое прямое падение напряжения 0,4 В по сравнению с обычным кремниевым диодом PN-перехода, который составляет 0,7 В.

Это означает, что при прямом смещении диод Шоттки сохраняет почти уровень напряжения одиночного фотоэлектрического элемента (который составляет 0,5 В) в каждой последовательной цепи. Другими словами, он обеспечивает эффективную работу фотоэлектрических элементов благодаря более низкому рассеянию мощности в режиме блокировки.

Другое преимущество байпасного диода, соединенного параллельно с солнечными элементами, заключается в том, что при его работе (т.е.е. прямое смещение), прямое падение напряжения составляет 0,4 В (и 0,7 В в случае диода с PN-переходом), что ограничивает обратное, т. е. отрицательное напряжение, создаваемое затененной ячейкой, что приводит к снижению вероятности возникновения горячих точек. Повышение температуры может привести к возгоранию или повреждению фотоэлементов, но в случае использования байпасных диодов затененная ячейка возвращается к нормальной работе после удаления облака. Вышеуказанные точные причины, по которым в солнечных панелях установлены обходные диоды.

Почему нет диода байпаса через каждую фотоэлемент?

Подключение обходного диода через каждую отдельную фотоэлемент приведет к дорогостоящей и сложной конструкции.Таким образом, производитель устанавливает внешние диоды байпаса снаружи в распределительной коробке солнечной панели (задняя сторона фотоэлектрической панели) для цепочек вместо одиночных фотоэлементов.

Как правило, двух обходных диодов достаточно для солнечной панели мощностью 50 Вт, имеющей 36-40 отдельных фотоэлементов, и зарядка системы аккумуляторов от 12 В до 24 В или параллельного соединения зависит от тока и напряжения, которые составляют 1- 60 А и 45 В в случае диод шоттки.

Блокирующие диоды в солнечных панелях

Как упоминалось выше, диоды пропускают ток только в одном направлении (прямое смещение) и блокируют в противоположном направлении (обратное смещение).

Это то, что фактически делают блокирующие диоды в солнечной панели. Во время нормальной работы солнечных элементов при ясном солнечном свете солнечные элементы генерируют электрическую энергию и пропускают поток электронов в одном направлении, то есть от солнечной панели к батарее или контроллеру заряда и другим подключенным нагрузкам.

Ночью, в облаках или без нагрузки в оттенках, подключенная батарея будет подавать ток на солнечные элементы, поскольку они ведут себя как обычные резисторы. Чтобы преодолеть эту проблему, используются блокирующие диоды, чтобы блокировать поток тока обратно на солнечные панели, что предотвращает разрядку батареи, а также защищает солнечные элементы от горячих точек из-за рассеивания энергии внутри, что приводит к повреждению солнечного элемента.Blocking Diodes in Solar Panels Blocking Diodes in Solar Panels

Короче говоря, блокирующие диоды обеспечивают только один путь для тока от солнечной панели к батарее и блокируют токи от батареи к солнечным элементам в течение ночи, поскольку солнечные элементы действуют как нагрузка, а не генерируют энергию.

Имейте в виду, что блокирующие диоды устанавливаются последовательно с солнечной панелью. На следующем рисунке показана комбинация блокирующих диодов, соединенных последовательно, и байпасных диодов, соединенных параллельно с солнечной панелью.

Как показано на рисунке ниже, лист упал на ячейку № 3. Таким образом, сгенерированный ток будет течь от ячейки № 1 и № 2 к выходному выводу, как это происходит при нормальной работе. Ток будет проходить через байпасный диод через ячейку № 3, которая подвергается воздействию, и ячейку № 4 и к нагрузкам, а затем через блокирующие диоды, что является надежной работой солнечной энергосистемы, как и ожидалось. Bypass Diode and Blocking Diode operation in Solar Panels Bypass Diode and Blocking Diode operation in Solar Panels

Я надеюсь, что это прояснило идею, что это за обходные и блокирующие диоды в распределительной коробке на задней стороне солнечной панели.

Похожие сообщения:

.
полуволновой выпрямитель цепи »Электроника Примечания

Схема полуволнового выпрямителя работает с использованием диода, чтобы предотвратить прохождение половины сигнала переменного тока. В результате проходит только часть (обычно половина) формы волны, и форма волны выпрямляется.


Диодные выпрямительные цепи включают в себя:
Диодные выпрямительные цепи Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Полуволновая выпрямительная схема является самой простой формой выпрямительной схемы, которую можно использовать, и, хотя она может не обеспечивать наивысший уровень производительности в некоторых аспектах, тем не менее, она очень широко используется.

Применения полуволновых диодных выпрямителей

Половолновой диодный выпрямитель используется различными способами и в различных схемах.

  • Силовое выпрямление: Один из наиболее очевидных способов использования полуволнового диодного выпрямителя — использование силового выпрямителя. Линейный или сетевой источник питания обычно проходит через трансформатор для преобразования напряжения до требуемого уровня.
  • Демодуляция сигнала: Простой полуволновой диодный выпрямитель можно использовать для демодуляции сигналов амплитудно-модулированных сигналов.Процесс выпрямления позволяет восстановить амплитудную модуляцию.
  • Детектор пика сигнала: Простой полуволновой диодный детектор может использоваться в качестве пикового детектора, детектирующего пик входящего сигнала.

Базовая схема выпрямителя полуволны

Основы работы полуволновой выпрямительной схемы довольно просты. Входящий сигнал пропускается через диод. Поскольку он может пропускать ток только в одном направлении, он пропускает только ту часть сигнала, для которой диод смещен в прямом направлении.

The action of a diode in rectifying alternating current AC: a single diode only allows through half the waveform Выпрямительное действие диода
одного диода пропускает только половину сигнала

В схеме полуволнового выпрямителя обычно используется один диод. Входящий сигнал подключается непосредственно к диоду, а диод, в свою очередь, подключается к нагрузке, как показано на схеме полуволнового выпрямителя ниже.

Basic half wave rectifier circuit showing diode AC source and load:  note the output waveform Основная полуволновая схема выпрямителя

Полуволновые диодные схемы

Хотя в полуволновой диодной выпрямительной схеме в основном используется один диод, существует несколько различий между диодами в зависимости от применения.

  • Силовой выпрямитель: При использовании для выпрямления мощности полуволновая схема выпрямителя используется с трансформатором, если она должна использоваться для питания оборудования любым способом. Обычно в этом приложении входной переменный сигнал подается через трансформатор. Это используется для обеспечения необходимого входного напряжения.
    Basic half wave rectifier circuit showing diode input transformer and load:  note the output waveform Полуволновой выпрямитель с трансформаторным входом
  • AM демодуляция: Когда полуволновой выпрямитель используется для обнаружения амплитудной модуляции, схема, очевидно, требует взаимодействия с другими цепями в радиостанции.Типичная схема может быть такой, как показано ниже. Полуволновой выпрямитель с трансформаторным входом
  • Пиковый детектор: Полуволновая диодная схема часто используется в качестве простого детектора пиковых напряжений. Поместив конденсатор через выходную нагрузку, конденсатор будет заряжаться до пикового напряжения (x 2-кратное среднеквадратичное напряжение синусоидальной волны). При условии, что постоянная времени сети CR, конденсатора и сопротивления нагрузки намного длиннее периода сигнала или достаточна для захвата пика переменного сигнала, схема будет удерживать пик напряжения.
  • Трансформатор обеспечивает изоляцию от сети или сети, а также позволяет обеспечить требуемое напряжение на входе в диод. Обратите внимание, что пиковое напряжение равно в 2 или 1,414 раза больше среднеквадратичного значения.

    Требования к полуволновому выпрямительному диоду

    При проектировании полуволновой выпрямительной схемы необходимо убедиться, что диод способен обеспечить требуемую производительность. Несмотря на то, что существует очень много параметров, которые определяют отдельные диоды, и их, возможно, потребуется принять во внимание для данной конструкции, некоторые из основных параметров подробно описаны ниже:

    Меры предосторожности в цепи полуволнового выпрямителя

    При проектировании полуволновой выпрямительной схемы необходимо убедиться, что в цепи есть возврат постоянного тока.Часто при использовании диодного выпрямителя для обнаружения сигнала или пикового значения легко пропустить возврат постоянного тока. Это должно быть включено или как резистор, или как часть трансформатора или дросселя. Примеры приведены ниже.

    DC return included in a half wave diode rectifier Возврат DC включен в полуволновом диодном выпрямителе

    Половолновая схема выпрямителя часто может использоваться для хорошего эффекта. Как выпрямитель мощности, он решает только половину формы волны, что делает проблему сглаживающей позже. В результате обычно используется двухполупериодная система для выпрямления мощности.Половолновой выпрямитель часто используется для обнаружения сигналов и пиков.

    Больше схем и схемотехники:
    Основы операционного усилителя Операционные усилители Цепи питания Транзисторная конструкция Транзистор Дарлингтон Транзисторные схемы Полевые схемы Схема символов
    Возврат в меню схемы. , ,

.

диодов и транзисторов | HowStuffWorks

Устройство, которое блокирует ток в одном направлении, позволяя току течь в другом направлении, называется диодом . Диоды могут быть использованы несколькими способами. Например, устройство, которое использует батареи, часто содержит диод, который защищает устройство, если вы вставляете батареи назад. Диод просто блокирует любой ток, выходящий из батареи, если он перевернут — это защищает чувствительную электронику в устройстве.

Поведение полупроводникового диода не идеально, как показано на этом графике:

Когда с обратным смещением , идеальный диод заблокирует весь ток. Настоящий диод пропускает, возможно, 10 микроампер — не так много, но все же не идеально. И если вы подадите достаточное обратное напряжение (В), соединение разрушится и пропустит ток. Как правило, напряжение пробоя намного больше напряжения, чем когда-либо увидит схема, поэтому оно не имеет значения.

Когда смещен в прямом направлении , для работы диода требуется небольшое количество напряжения. В кремнии это напряжение составляет около 0,7 вольт. Это напряжение необходимо для запуска процесса комбинирования дырок и электронов на стыке.

Другой монументальной технологией, связанной с диодом, является транзистор. Транзисторы и диоды имеют много общего.

Транзисторы

Транзистор создается с использованием трех слоев , а не двух слоев, используемых в диоде.Вы можете создать сэндвич с NPN или PNP. Транзистор может действовать как переключатель или усилитель.

Транзистор выглядит как два диода спина к спине. Вы можете себе представить, что никакой ток не может протекать через транзистор, потому что спина к спине диоды будут блокировать ток в обоих направлениях. И это правда. Однако, когда вы подаете небольшой ток на центральный слой сэндвича , через сэндвич в целом может протекать намного больший ток. Это дает транзистору , переключающий .Малый ток может включать и выключать больший ток.

Кремниевая микросхема — это кусок кремния, который может содержать тысячи транзисторов. С помощью транзисторов, действующих как переключатели, вы можете создавать логические вентили, а с логическими вентилями вы можете создавать микропроцессорные микросхемы.

Естественный переход от кремния к легированному кремнию, к транзисторам и микросхемам — вот что сделало микропроцессоры и другие электронные устройства такими недорогими и распространенными в современном обществе.Основные принципы удивительно просты. Чудо заключается в постоянном совершенствовании этих принципов до такой степени, что сегодня десятки миллионов транзисторов могут быть недорого сформированы на одном кристалле.

Для получения дополнительной информации о полупроводниках, диодах, микросхемах и многом другом, перейдите по ссылкам ниже.

Связанные Статьи HowStuffWorks

Больше замечательных ссылок

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *