Диод в цепи переменного тока: принцип работы и применение полупроводникового выпрямителя

Как работает диод в цепи переменного тока. Почему диод пропускает ток только в одном направлении. Какие виды диодов используются для выпрямления переменного тока. Как рассчитать параметры выпрямительного диода.

Содержание

Что такое полупроводниковый диод и как он работает

Полупроводниковый диод — это электронный компонент, который пропускает электрический ток только в одном направлении. Он состоит из двух областей полупроводника с разным типом проводимости:

  • p-область (анод) — с дырочной проводимостью
  • n-область (катод) — с электронной проводимостью

На границе этих областей образуется p-n-переход, который и обеспечивает одностороннюю проводимость диода. Как это происходит?

Принцип работы диода

При подключении диода в прямом направлении (плюс к аноду, минус к катоду):

  • Электроны из n-области движутся к аноду
  • Дырки из p-области движутся к катоду
  • p-n-переход сужается, его сопротивление уменьшается
  • Через диод протекает прямой ток

При подключении диода в обратном направлении:


  • Электроны и дырки отводятся от p-n-перехода
  • Область p-n-перехода расширяется
  • Его сопротивление резко возрастает
  • Ток через диод практически не протекает

Таким образом, диод пропускает ток только в прямом направлении, что и позволяет использовать его для выпрямления переменного тока.

Применение диода для выпрямления переменного тока

Переменный ток меняет свое направление с определенной частотой (обычно 50 Гц в бытовой сети). Диод позволяет пропустить только положительные полупериоды переменного напряжения, отсекая отрицательные. В результате на выходе формируется пульсирующее напряжение одной полярности.

Как происходит выпрямление переменного тока диодом?

  1. В положительный полупериод диод открыт и пропускает ток
  2. В отрицательный полупериод диод закрыт и не пропускает ток
  3. На выходе получаем однополупериодное выпрямленное напряжение
  4. Сглаживающий конденсатор уменьшает пульсации напряжения

Таким образом, простейший однополупериодный выпрямитель состоит всего из одного диода. Для более эффективного выпрямления применяют двухполупериодные и мостовые схемы на нескольких диодах.


Виды диодов для выпрямления переменного тока

Для выпрямления переменного тока используют следующие типы диодов:

  • Кремниевые выпрямительные диоды — наиболее распространены
  • Диоды Шоттки — имеют малое падение напряжения
  • Быстродействующие диоды — для высокочастотных применений
  • Мощные выпрямительные столбы — для больших токов
  • Диодные сборки — содержат несколько диодов в одном корпусе

При выборе диода для выпрямителя учитывают следующие параметры:

  • Максимальный прямой ток
  • Максимальное обратное напряжение
  • Прямое падение напряжения
  • Быстродействие
  • Рабочая температура

Расчет параметров выпрямительного диода

Как рассчитать параметры диода для выпрямления переменного тока? Вот основные формулы:

Максимальный прямой ток

Iпр.макс = P / U,

где P — мощность нагрузки, U — напряжение питания.

Максимальное обратное напряжение

Uобр.макс = 1.41 * Uэфф * k,

где Uэфф — действующее значение напряжения, k — коэффициент запаса (обычно 2-3).

Средний выпрямленный ток

Iср = 0.45 * Iпр.макс (для однополупериодного выпрямителя)


Iср = 0.9 * Iпр.макс (для двухполупериодного выпрямителя)

Используя эти формулы, можно рассчитать необходимые параметры диода для конкретной схемы выпрямителя.

Преимущества диодных выпрямителей переменного тока

Применение полупроводниковых диодов для выпрямления переменного тока имеет ряд преимуществ:

  • Простота конструкции
  • Высокий КПД
  • Малые габариты
  • Отсутствие подвижных частей
  • Длительный срок службы
  • Низкая стоимость

Благодаря этим достоинствам диодные выпрямители широко используются в различных устройствах — от бытовых зарядных устройств до промышленных источников питания.

Области применения диодных выпрямителей

Выпрямители на полупроводниковых диодах применяются в следующих областях:

  • Блоки питания электронной аппаратуры
  • Зарядные устройства для аккумуляторов
  • Сварочные аппараты
  • Системы катодной защиты
  • Электролизные установки
  • Высоковольтные источники питания
  • Устройства плавного пуска электродвигателей

Во всех этих применениях диодные выпрямители обеспечивают преобразование переменного тока в постоянный для питания различных устройств и систем.


Особенности работы диода в цепи переменного тока

При работе диода в цепи переменного тока необходимо учитывать некоторые особенности:

  • В момент включения через диод протекает большой импульсный ток
  • На диоде рассеивается мощность, что приводит к его нагреву
  • Обратное напряжение на диоде может превышать амплитуду входного напряжения
  • При высоких частотах проявляются динамические свойства диода

Для обеспечения надежной работы выпрямителя эти факторы учитывают при выборе типа диода и расчете его параметров. Например, используют диоды с запасом по току и напряжению, применяют радиаторы для отвода тепла.

Заключение

Полупроводниковые диоды являются ключевым элементом для выпрямления переменного тока благодаря своему свойству односторонней проводимости. Они позволяют создавать простые и эффективные выпрямители для различных применений. При правильном выборе типа диода и расчете его параметров обеспечивается надежная работа выпрямителя в течение длительного срока.


Что такое полупроводниковый диод — выпрямитель переменного тока

Диодами называют двухэлектродные приборы, обладающие односторонней проводимостью электрического тока. Это их основное свойство используют, например, в выпрямителях, где диоды преобразуют переменный ток электросети в ток постоянный для питания радиоаппаратуры, в приемниках — для детектирования модулированных колебаний высокой частоты, то есть преобразования их в колебания низкой (звуковой) частоты.

Наглядной иллюстрацией этого свойства диода может быть такой опыт (рис. 12). В цепь, составленную из батареи 3336Л и лампочки от карманного фонаря (3,5 В X 0,26 А), включи любой плоскостной диод (на рис. 12 он обозначен латинской буквой V), например, из серии Д226 или Д7, но так, чтобы анод диода, обозначаемый условно треугольником, был бы соединен непосредственно или через лампочку с положительным полюсом батареи, а катод, обозначаемый черточкой, к которой примыкает угол треугольника, с отрицательным полюсом батареи.

Лампочка должна гореть.

Измени полярность включения батареи на обратную — лампочка гореть не будет. Если сопротивление диода измерять омметром, го в зависимости от того, как подключить его к зажимам прибора, омметр покажет различное сопротивление: в одном случае малое (единицы или десятки ом), в другом — очень большое (десятки и сотни килоом). Этим и подтверждается односторонняя проводимость диода.

Как устроен и работает диод? У него два электрода: катод — отрицательный и анод — положительный (рис. 13). Катодом служит пластинка германия, кремния или какого-либо другого полупроводника, обладающего электронной проводимостью, или сокращенно полупроводник n-типа (n — начальная буква латинского слова negativus — «отрицательный»), а анодом — часть объема этой же пластинки, но- с так называемой дырочной про-водимостью, или сокращенно полупроводник р-типа

— начальная буква латинского слова positivus — «положительный»).

Между электродами образуется так называемый р-n переход — пограничная зона, хорошо проводящая ток от анода к катоду и плохо в обратном направлении (за направление тока принято направление, противоположное движению электронов).

Диод может находиться в одном из двух состояний: открытом, то есть пропускном, либо закрытом, то есть непропускном. Диод бывает открыт, когда к нему приложено прямое напряжение Uпр, иначе, его анод соединен с плюсом источника напряжения, а катод — с минусом.

В этом случае сопротивление р-n перехода диода мало и через него течет прямой ток IПр, сила которого зависит от сопротивления нагрузки (в нашем опыте — лам-почка от карманного фонаря).

При другой полярности питающего напряжения на р-n переход диода прикладывается обратное напряжение Uобр. В этом случае диод закрыт, его сопротивление велико и в цепи течет лишь незначительный обратный ток диода Iобр.

О зависимости тока, проходящего через диод, от значения и полярности напряжения на его электродах лучше всего судить по вольтамперной характеристике диода, которую можно снять опытным путем (рис. 14).

К свежему элементу 332 или 343 подключи проволочный переменный резистор 7?р сопротивлением 50. .. 100 Ом, а между его движком и нижним (по схеме) крайним выводом включи последовательно соединенные германиевый плоскостной диод (например, серии Д7 с любым буквенным индексом), миллиамперметр РА2 и резистор Rогр сопротивлением 10…20 Ом, ограничивающий ток в цепи до 100… 150 мА.

Диод должен быть включен в пропускном направлении, то есть анодом в сторону положительного полюса элемента. Параллельно диоду подсоединены вольтметр постоянного тока

PU1, включенный на предел измерений до 1 В и фиксирующий напряжение, подаваемое на электроды диода.

Движок переменного резистора, выполняющего роль делителя напряжения, поставь в крайнее нижнее (по схеме) положение а затем, внимательно следя за стрелками приборов, очень медленно перемещай его в сторону верхнего положения. Запиши показания миллиамперметра при напряжениях на диоде 0,05, 0,1, 0,15 В и т, д до напряжения 0,4…0,5 В через каждые 0,ОЗ В, а затем по этим данным построй на миллиметровой бумаге график (рис. 15).

По горизонтальной оси вправо откладывай пря-мые напряжения на диоде (Uпр), а по вертикальной оси вверх — соответствующие им прямые токи в цепи (Iпр). Соединив точки пересечения значений электрических величин, ты таким образом построишь прямую ветвь вольт-амперной характеристики диода (на рис. 15 — сплошная линия). Она, правда, не совсем точная, особенно в начальной части, так как небольшой ток течет и через вольтметр, но все же близка к реальной.

О чем может рассказать этот график? При нулевом напряжений на диоде и ток в цепи, в которую он включен, равен нулю. При появлении прямого напряжения диод открывается и пропускает через себя прямой ток.

При напряжении 0,05 В прямой ток не превышает 0,1…0,2 мА, при напряжении 0,1 В — 0,6…0,8 мА, а при напряжении 0,2…0,3 В, когда вольтамперная характеристика начинает круто идти вверх, ток достигает уже 40…50 мА. Небольшой прирост напряжения, а как резко увеличивается ток!

Но значительно повышать напряжение на диоде и тем самым увеличивать ток через него нельзя: из-за чрезмерно большого тока наступает тепловой пробой, и~диод утрачивает свойство односторонней проводимости. Чтобы не случилось этого во время опыта, в цепь был включен ограничивающий резистор R0гр.

Теперь измени полярность включения диода на обратную и точно так же увеличивай напряжение на нем. Что показывает миллиамперметр? Его стрелка стоит возле нулевой отметки. Замени элемент на батарею 3336Л, соедини последовательно две-три таких батареи. Напряжение на диоде растет. Но оно обратное. Диод закрыт, поэтому и тока в цепи практически нет.

Обратная ветвь вольтамперной характеристики на £ис. 15 изображена штриховой линией. Она идет почти параллельно оси Uобр. Но при каком-то достаточно большом обратном напряжении она круто поворачивает и идет вниз. Это предел, при котором диод пробивается обратным напряжением и, как при тепловом пробое, выходит из строя.

Из построенной вольтамперной характеристики видно, что ток Iпр диода в сотни и тысячи раз больше тока Iобр. Так, например, у диода, имеющего такую вольтам-перную характеристику, при прямом напряжении 0,3 В ток IПр равен примерно 70 мА, а при обратном напряжении в 100 В ток Iобр не превышает 200 мкА. Именно по этой причине во второй части первого опыта лампочка не горела.

Если пренебречь малым обратным током (что и делают на практике), который у исправных плоскостных дио-дов не превышает десятые доли миллиампера, а у точечных еще меньше, то можно считать, что диод является односторонним проводником тока.

Вольтамперную характеристику, подобную той, что изображена на рис. 15, имеет и кремниевый диод, например, серии Д226, но прямая ветвь его характеристики как бы сдвинута вправо. Объясняется это тем, что кремниевый диод открывается при прямом напряжении около 0,5 В, а не при 0,1…0,15 В, как германиевый. При меньшем напряжении на нем диод закрыт-и ток через него практически не течет. Проверь это опытным путем.

Но помни — диод, будь он германиевым или кремниевым, плоскостным или точечным, нельзя включать в прямом направлении без нагрузки: он быстро выйдет из стро

Диоды, выпрямление тока, стабилитроны, тиристоры.

Разновидности диодов.


Помимо способности пропускать ток только в одном направлении, p-n переход обладает рядом других интересных особенностей. Например, способностью излучать(в т. ч. и в видимом диапазоне) при протекании тока в прямом направлении и генерировать эл. ток под воздействием излучения. Эта особенность используется при реализации таких электронных элементов как светодиоды, фотодиоды и фотоэлементы.
Кроме того, любой p-n переход обладает еще и электрической емкостью, а кроме того, возможностью ее изменять с помощью напряжения приложенного в обратном направлении. Используя ее удалось создать такие полезные элементы как ВАРИКАПЫ.

Варикапы.

Итак, p-n переход обладает электрической емкостью, величина которой зависит от его площади и ширины. Если подавать напряжение в обратном направлении — переход смещается, площадь остается неизменной, но ширина увеличивается. Емкость, при этом соответственно — уменьшается. Появляется возможность, изменяя величину приложенного напряжения, эту емкость регулировать. Электронные элементы(диоды, по сути) созданные на этом принципе называют — варикапами.

Варикапы используются в радиоаппаратуре вместо обычных конденсаторов переменной емкости для перестройки частоты колебательных контуров. Приемущество Применение варикапов позволило значительно снизить габариты и повысить эффективность блоков селекции радиоприемных устойств, относительно просто и недорого реализовать автоматизацию процессов настройки(проводимых ранее вручную).

Диоды Шоттки.

Диод Шоттки(диод с барьером Шоттки) — полупроводниковый диод с малым падением напряжения(0,2—0,4 вольт) при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В диодах Шоттки в отличие от обычных диодов,вместо p-n перехода используется переход металл-полупроводник. Это дает ряд особых преимуществ — пониженное падение напряжения при прямом включении, очень маленький заряд обратного восстановления.

Последнее объясняется тем, что в отличии от обычных диодов диоды Шоттки работают только на основных носителях, а их быстродействие ограничивается лишь барьерной емкостью. Диоды Шоттки наиболее целесообразно использовать в быстродействующих импульсных цепях, для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах.

Светодиоды.

При протекании прямого тока через любой p-n переход(любого диода!) происходит генерация фотонов. Это является следствием циклической рекомбинации — восстановления атомов вещества в процессе перемещения основных носителей тока.
Электронные элементы служащие для генерации света и основанный на этом принципе называется соответственно — светодиодами. Светодиоды используют для индикации, передачи информации, в составе таких электронных приборов как оптопары.

К.П.Д. и яркость современных светодиодов настолько высоки, что на настоящий момент они являются наиболее перспективными источниками искуственного освещения. В зависимости от материала выбранного в качестве полупроводника светодиоды излучают на разных длинах волн.
ИК — диоды излучают в инфракрасной области, индикаторные и осветительные светодиоды в видимой части спектра(зеленые, красные, желтые и т. п.). Наиболее высоким К.П.Д. отличаются светодиоды излучающее в ультрафиолетовой области. Интересно, что как раз этот тип наиболее часто применяется для освещения. Белый свет получается при использовании специального люминофора, преобразующего ультрафиолет.

Интенсивность излучения светодиода возрастает при увеличении тока протекающего через p-n переход, до определенного предела. После его достижения сетодиод выходит из строя. Поэтому, для нормальной работы необходимо ограничивать ток.
Как правило, это реализуется с помощью последовательного подключения резистора.

Стабисторы.

Существующие стабилитроны имеют ограничение по минимальному напряжению стабилизации(около 3 В).
Что делать, если необходим источник стабилизированного напряжения до 3-х вольт? Использовать прямую ветвь Вольт — Амперной Характеристики диода(ВАХ). В области прямого смещения p-n-перехода напряжение на нем может иметь значение 0,7…2 В(в зависимости от материала полупроводника) и мало зависит от тока.
Диоды специально используемые в этом качестве, называют — СТАБИСТОРАМИ.

Фотодиоды.

Фотодиод — это светочувствительный полупроводниковый элемент с одним p-n переходом, обратный ток которого меняется в зависимости от уровня освещенности. Величина на которую происходит его изменение при этом, называется фототоком.

Фотодиоды используют для преобразования сигналов передаваемых в оптическом режиме в электрическую форму. Малая инерционость фотодиодов способствует приему передачи информации, с большой плотностью, например, в при передаче ее по оптоволоконным линиям. Кроме того фотодиоды могут использоваться в фотоприемниках дистанционного управления и т. д.

На главную страницу

6. Использование диодов в выпрямлении переменного тока. Виды, принцип работы, расчет выпрямителей

Тут требуется некоторое пояснение по поводу двух источников напряжения. С помощью трансформатора, один источник можно преобразовать в два. Для чего это делается ─ уже отдельный вопрос. Здесь же показано, как можно выпрямить напряжение в таком случае. Давайте опять уберем конденсатор и подключим щуп осциллографа на выходе диодов, а также соединим в нагрузку величиной 100 Ом:

Давайте сравним данную осциллограмму с полученным результатом при однополупериодном выпрямителе:

  В двухполупериодном выпрямителе есть две положительные полуволны, одна проходит через верхний диод верхнего источника, вторая ─ через нижний диод нижнего источника. При этом, частота на выходе диодов увеличилась в 2 раза, по сравнению с однополупериодной схемой. Чем выше частота, тем меньше можно ставить емкость на выходе, поскольку она будет чаще запасать энергию, чем ее будут расходовать. Недостаток есть и у этой схемы. Он заключается в использовании дополнительного источника (в случае с трансформатором приходится использовать дополнительную обмотку).


Рассмотрим направления токов в двух случаях:
1) Когда положительная полярность приложена к точке 1, а отрицательная ─ к  точке 3, положительная полуволна течет через диод D2, отрицательная через ─ D4, как показано на рисунке ниже:
2) Когда положительная полярность приложена к точке 3, а отрицательная ─ к  точке 1, положительная полуволна течет через диод D3, отрицательная через ─ D1, что видно на изображении:
Как видно, в обоих случаях, положительная полярность всегда будет прикладываться к точке 2, а отрицательная ─ к точке 4. Схема без сглаживающего конденсатора на выходе с подключенной нагрузкой 100 Ом, а также, осциллограмма выходного напряжения приведена ниже:
Видно, что выходное напряжение ничем не отличается в сравнении с напряжением двухполупериодном выпрямителе, однако, в данном случае используется всего лишь один источник, и его энергия используется «на полную». Диодов конечно поболее стало, но они очень дешевые и доступные. Также, существует много так называемых «диодных сборок», где в одном корпусе собрана мостовая схема включения диодов, имеющая четыре вывода: два входных и два выходных.

Расчет сглаживающего конденсатора 

  Это очень важный момент, от которого зависит величина пульсации постоянного тока на выходе. Выше уже было сказано, что увеличение емкости приводит к уменьшению выходных пульсаций тока, но бесконечно повышать ее мы не можем, поскольку, чем больше конденсатор-тем больше его габариты и цена. Поэтому, выбирать его желательно, исходя из расчетов. Пульсации выходного напряжения можно расчитать по данной формуле:

C≈(Iн*△t)/△U,                                                                                  (1)

где С ─ емкость сглаживающего конденсатора, Iн ─ ток нагрузки, △t ─ время, проходящее за один период переменного напряжения, △U ─ величина пульсаций напряжения на выходе. Данная формула применима, если считать процесс разряда конденсатора линейным. -3)/1=3100 (мкФ)                                                              

Подключим к мостовой схеме генератор переменного напряжения частотой 50 Герц, а также рассчитанную емкость и сопротивление нагрузки 1 килоом. Схема и осциллограмма напряжения на выходе будут иметь вид:

На осциллограмме видно, что на выходе сформировалось постоянное напряжение (красная полоса) величиной 305, 4 Вольт (показания VB1 и VB2). Поскольку ожидаемые пульсации в районе 1 Вольта, на фоне трехсот вольт их практически не видно, поэтому, с помощью осциллографа мы уберем показания  величины постоянной составляющей напряжения, что позволит нам приблизить форму сигнала на экране, чтобы детально его рассмотреть:

Убрав постоянную составляющую напряжения, и приблизив сигнал, стало четко видно пульсации напряжения. Для их обнаружения, флажок «1» (красный цвет) установлен в максимальный пик пульсации, а флажок «2» (синий цвет) ─ в минимальный. Видно, что данная пульсация составила 724,5 милливольт (параметр VB2-VB1 на панели осциллографа). Итак, полученная на выходе пульсация оказалась меньше требуемой (724,5 милливольт против 1 Вольта). Получился небольшой запас в лучшую сторону!

Какой диод поставить на лампочку 220 вольт

Расскажем вам о том, как подключить обычную лампу накаливания через диод. Такую лампочку можно использовать, например, для освещения коридоров, подъездов или любых других помещений, в которых не требуется очень яркий свет. В этом процессе возникает вопрос: какой диод нужно купить, чтобы поставить на лампочку 220 вольт.  Это зависит от мощности лампочки, ниже в статье приведен пример диода для лампы на 100 ватт, даны формулы для расчета параметров диода.

Увлекательные электронные вещицы продаются в этом китайском магазине.

Для начала немножко теории. Отнюдь не секрет, что для передачи напряжения на большие расстояния без потерь, используется переменный ток, которым питаются наши лампочки. Чобы понять, что такое переменный ток, достаточно обратить внимание на график зависимости напряжения от времени для переменного тока. Как вы могли заметить, ток меняет свое направление с некоторой частотой. Если исключить один период колебаний, то можно уменьшить их амплитуду вдвое, что на практике даст нам понижение питающего напряжения в 2 раза и, свою очередь, позволит лампочке работает намного дольше, чем обычно, а также защитит лампочку от скачков напряжения и снизит риск для перегорания в момент включения.

Такая лампа не привлечет к себе внимание тех, кто ворует энергосберегающие а также обычные лампочки на лестничных площадках.

Товары для изобретателей. Предновогодние скидки до 60%🔥Перейти в магазин Ссылка.

Самым простым способом отсечки полупериода колебаний сетевого напряжения является установка последовательно с нагрузкой полупроводникового диода, который будет пропускать ток только в одном направлении. В нашем случае необходимо подбирать диод по трем основным параметрам: максимальный прямой ток, максимальный прямой ток в импульсе и максимальное обратное напряжение.

Максимальный прямой ток можно найти, разделив мощность лампочки на величину питающего напряжения. Максимальный прямой ток в импульсе должен быть минимум в 20 раз больше максимального прямого тока, чтобы диод не выбило при включении лампочки. Значение максимального обратного напряжения должно быть в 3 корня из двух раз больше питающего напряжения.

В нашем случае, поскольку диод будет ставится внутрь дополнительного накладного цоколя, не стоит забывать, что его длина должна быть меньше его длины. Например, в данном случае используется диод 1N5399, который стоит около 8 центов. Он идеально подходит по всем параметрам для 220 вольтовой лампы накаливания мощностью 100 Ватт.

Для того, чтобы сделать вечную лампочку, нам понадобится:

Старая лампочка или цоколь.
Новая лампочка мощностью до 100 Вт.
Диод.
Паяльник мощностью не менее 20 Вт.
Припой.
Бокорезы или кусачки.
Плоскогубцы.
Молоток.
Целлофановый пакет.
Игла или разогнутая скрепка.

Как подключить лампочку через диод

Нам нужно взять диод, откусить у него одну из ножек, припаять его к контакту на цоколе лампы. Для удобства работы лампу можно оставить на это время в упаковке, чтобы она держалась на столе.

Далее готовим второй накладной цоколь из старой лампочки. Если цоколь погнулся, используем плоскогубцы. Дальше на необходимо ее пристроить к основному цоколю, припаяв второй контакт диода к накладному цоколю точнее, к его центральному контакту.

Кстати, если вы решили сделать лампочку вечной и вам не так уж интересно сделать отдельную лампочку эксклюзивной, более простым выходом будет не трогать ее, а просто прикрутить диод в провода внутри выключателя. Делается это намного быстрее и проще.

Лайфхаки с электричеством в другой статье.

диодов — learn.sparkfun.com

Добавлено в избранное Любимый 57

Применение диодов

Для такого простого компонента диоды имеют огромное применение. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.

Выпрямители

Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.

Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Итак, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!

Однополупериодный выпрямитель может быть изготовлен только из одного диода. Если сигнал переменного тока, такой как, например, синусоида, посылается через диод, любая отрицательная составляющая сигнала отсекается.

Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему полуволнового выпрямителя (в центре).

Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выступов в сигнале переменного тока в положительные.

Схема мостового выпрямителя (в центре) и форма выходной волны, которую она создает (синий / правый).

Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенной бородавку, вы, скорее всего, увидели бы там несколько диодов, которые ее исправили.

Вы можете заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?

Защита от обратного тока

Вы когда-нибудь вставляли батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива. Диод, включенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.

Этот диод полезен, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.

Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диоды Шоттки отличным выбором для диодов обратной защиты.

Логические ворота

Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.

Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.

Логический элемент И построен аналогичным образом. Аноды , обоих диодов соединены вместе, где и находится выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на одном из входов низкий уровень, ток от источника питания 5 В проходит через диод.

Для обоих логических вентилей можно добавить больше входов, добавив только один диод.

Обратные диоды и подавление скачков напряжения

Диоды

очень часто используются для ограничения потенциального повреждения от неожиданных больших скачков напряжения. Диоды подавления переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большой номинальной мощностью (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.

Обратные диоды

выполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, таким как двигатель.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.

Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.



← Предыдущая страница
Типы диодов

Как диоды работают в цепи переменного тока?

Физика
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде

PFC Диоды (DIODESTAR)

Диоды PFC (DIODESTAR)

продуктов

DIODESTAR ™ — это запатентованная технологическая платформа для производства высоковольтных выпрямителей. Технология DIODESTAR позволяет получать высокоэффективные выпрямители, которые характеризуются допустимым напряжением> 400 В, плавным восстановлением и сверхбыстрым переключением. Этот процесс будет поддерживать производство ряда высоковольтных выпрямителей для различных конечных приложений, включая:

  • ЖК-телевизор со светодиодной подсветкой
  • Солнечные инверторы
  • Автономное освещение
  • Consumer Adapters Inc. Ноутбуки и принтеры
  • Серверы и настольные компьютеры.

Мостовые выпрямители DIODESTAR хорошо подходят для схем коррекции коэффициента мощности (PFC).При правильной конструкции PFC эти выпрямители подходят для работы в режиме граничной (BCM) и непрерывной (CCM) проводимости.

Эти высокоэффективные выпрямители DIODESTAR позволяют разработчикам выполнять строгие требования 80PLUS Energy Star и другие электрические стандарты.

Для получения дополнительной информации выберите DIODESTAR Introduction ».

{{/если}} Мин. {{else}}

НЕТ

{{/если}}

{{#each facet_items}} {{> ‘шаблон-диапазон-слайдер’}} {{/ each}}

{{/если}} {{#if facets [i].FieldType! = ‘Диапазон’ &&! Facet_items.isBoolean && (facet_items.length || unified_facet_results || facets [i] .Title == ‘Part Number’)}} {{/если}} {{/ each}} {{#if have_boolean_facet ()}} {{/если}}

{{{Facets [i] .DisplayTitle? facets [i] .DisplayTitle: facets [i] .Title}}} {{#if facet_items [0] .chosen}} {{#each facet_items: j}} : {{значение}} {{/ each}} {{/если}}

{{#if facets [i].FieldType == ‘SearchFilter’}} {{else}} {{#each facet_items: j}} {{> facet_item}} {{/ each}} {{/если}}

{{#each facet_lists}} {{#if this. facet_items.isBoolean}} {{#each facet_items}} {{> facet_item}} {{/ each}} {{/если}} {{/ each}}

Выпрямление переменного тока

Выпрямление переменного тока

Переменное в постоянное

Выпрямление переменного тока

Цель: цель этого эксперимента — проиллюстрировать как диод может использоваться для выпрямления переменного тока.Студент будет использовать а гальванометр для определения направления тока, когда переменный ток или DC напряжение подается на цепь, содержащую диод, включенный последовательно с резистор и гальванометр.

Обзор научных принципов:

Чтобы ток протекал через диод, электроны должны двигаться вверх на холм энергии и через p-n переход. Поскольку напряжение подается в прямом направлении предвзятость, размер холма уменьшается, поэтому больше электронов имеют энергию нужно переехать вверх по холму и через перекресток (заставляя ток течь). Однако если напряжение подается в обратном смещении, холм делается больше, поэтому очень мало у электронов есть энергия, необходимая для движения в гору. Таким образом, диод вообще проводит ток только в одном направлении.

Заявки:

Когда вы подключаете электрическое устройство или прибор к обычному стена розетки в вашем доме, вы используете 110 В переменного тока (переменный текущий). В электричество, вероятно, производилось на электростанции с использованием топлива производить пар, чтобы вращать турбину, чтобы вращать электрогенератор.Генератор вращается со скоростью 3600 об / мин, что составляет 60 оборотов в секунду (60 Гц). Многие домашние элементы предназначены для работы от переменного тока, однако некоторые элементы, такие как аккумулятор зарядные устройства, электропоезда и другие игрушки предназначены для работы на DC. Диоды используются в качестве выпрямителей для преобразования переменного тока в постоянный.

Время: 20-30 минут

Материалы и принадлежности:

Блок питания AC-DC

Провода свинцовые

Гальванометр

1 — резистор 1 кОм

Диод (германиевый, стабилитрон или светодиод)

Общие правила техники безопасности:

* Убедитесь, что шкала источника питания установлена ​​на ноль при строительстве или корректировка цепь.

* Держите руки и рабочую зону сухими, чтобы избежать поражения электрическим током.

Экспериментальная установка:

Процедура:

1. Соберите схему, показанную в экспериментальной установке, и убедитесь, что соединить положительный

вывод диода к плюсовой клемме питания поставка.

2. Используйте клеммы постоянного тока источника питания.

3.Убедитесь, что шкала напряжения на блоке питания установлена ​​на нуль.

4. Включите питание.

5. Медленно поверните шкалу напряжения по часовой стрелке и следите за стрелка гальванометра. Не

закопать иглу.

6. Запишите направление движения иглы.

7. Установите напряжение обратно на ноль.

8. Измените направление диода и повторите шаги 5-7. Не делайте увеличение напряжение выше 2В.

9. Отсоедините подводящие провода от клемм постоянного тока и подключите их в AC терминал

на блоке питания.

10. Повторите шаги 5-8.

Данные и анализ:

Вид тока Направление тока Направление гальванометра
 
 
 
 9023 9023 902 902 9022 9023 9023 9023 902 902 902 902 
 
 
 
 
 
Вопросы:

1.Будет ли ток течь через диод в обоих направлениях?

2. Как следует включить диод в цепь, чтобы ток был протекать Это?

3. Как диод влияет на переменный ток?

4. Нарисуйте график зависимости тока (вертикальная ось) от времени (горизонтальный ось) для переменного тока текущий.

5. Учитывая, как диод влияет на переменный ток, нарисуйте то, что вы думаете. график текущий

Время должно выглядеть так, как для схемы, построенной с использованием переменного тока. текущий и диод.

6. Нарисуйте график зависимости тока от времени для постоянного тока, например произведенный аккумулятор.

7. Чем отличается ток, производимый цепью переменного тока диода? из округа Колумбия текущий

производится аккумулятором?

8. Как увеличение напряжения влияет на способность диода разрешить текущий течь?

9. Почему диод с обратным смещением ограничить ток течь?

10.Изменит ли диод переменный ток на постоянный (например, электрический ток произведен на

аккумулятор)?

Добавочный номер:

1. Используйте ручной генератор, резистор и гальванометр, чтобы показать движение иглы с

переменный ток. Используйте резистор 1 кОм, чтобы защитить в гальванометр.

2. Используйте диод генератора частоты и осциллограф, чтобы показать форма волны

переменного тока и выпрямленного переменного тока.

3. Получите схему двухполупериодного выпрямителя, в котором используются диоды. и конденсаторы к

производят примерно постоянный постоянный ток. Проконсультируйтесь с электроника Справочник для

Детали.

Заметки учителя:

* Время на подготовку учителя составляет примерно 30 минут.

* Если диод подключен неправильно, результаты будут быть отмененным.

* Учитель должен продемонстрировать правильную работу источник питания.

* Если используется цифровой мультиметр, используйте миллиампер или шкала микроампер. В Студент должен записать знак (+, -) текущего значения.

Ответы на вопросы:

1. №

2. Положительный вывод диода к положительному выводу мощность поставка.

3. Диод будет выпрямлять переменный ток, то есть произведенный ток будет пульсирующий

постоянный ток.Он будет пульсировать с той же частотой, что и частота переменный

текущий.

4. График будет синусоидальным.

5.

6.

7. Ток, вырабатываемый батареей, постоянный, в то время как произведенный действие

диод на переменном токе пульсирует. Постоянный ток 5 А больше мощный чем ректификованный

Переменный ток от 0-5-0 ампер.

8. Увеличение напряжения уменьшает размер энергетического холма. что электронов приходится на

двигаться вверх, чтобы больше электронов могло двигаться вверх по холму и через п-п переход, позволяющий

больше тока течь.

9. Обратное напряжение увеличивает размер холма, поэтому мало электроны имеют необходимая энергия

двигаться в гору. Большинство измерителей не покажут ток в обратное направление.

10. Нет, только с добавлением конденсатора ток начать выравнивать выкл.

Пример таблицы данных: - нет -
Тип тока Направление тока Направление гальванометра
DC + к - справа
DC
AC + к - правый
AC - к + левый
Следующая лаборатория
Содержание полупроводников
Домашняя страница MAST
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *