Диоды шоттки на 10 ампер. Диоды Шоттки на 10 ампер: характеристики, применение и особенности

Какие преимущества имеют диоды Шоттки на 10 ампер. Где применяются мощные диоды Шоттки. Как выбрать и проверить диод Шоттки на 10 А. Какие есть особенности эксплуатации высокоточных диодов Шоттки.

Содержание

Особенности и преимущества диодов Шоттки на 10 ампер

Диоды Шоттки на 10 ампер обладают рядом важных преимуществ по сравнению с обычными кремниевыми диодами:

  • Малое падение напряжения в прямом направлении (0,2-0,4 В)
  • Высокое быстродействие (единицы наносекунд)
  • Возможность работы на высоких частотах (сотни кГц)
  • Низкая емкость перехода
  • Высокая нагрузочная способность по току

Эти свойства делают 10-амперные диоды Шоттки незаменимыми во многих силовых и высокочастотных применениях. Рассмотрим подробнее их ключевые особенности и характеристики.

Область применения мощных диодов Шоттки

Диоды Шоттки на токи 10 А и выше широко используются в следующих областях:

  • Импульсные источники питания
  • Сварочные инверторы
  • Зарядные устройства
  • Выпрямители в системах электропитания
  • Преобразователи напряжения
  • Схемы защиты от переполюсовки

Особенно эффективно их применение в высокочастотных импульсных преобразователях, где требуется минимальное падение напряжения и высокое быстродействие. В таких схемах диоды Шоттки позволяют значительно повысить КПД по сравнению с обычными диодами.


Основные параметры и характеристики

При выборе диода Шоттки на 10 А следует обращать внимание на следующие ключевые параметры:

  • Максимальный прямой ток (10 А и выше)
  • Максимальное обратное напряжение (40-200 В)
  • Прямое падение напряжения (0,2-0,5 В)
  • Обратный ток утечки
  • Время обратного восстановления
  • Максимальная рабочая частота
  • Тепловое сопротивление корпус-среда

Важно выбирать диод с запасом по току и напряжению. Например, для схемы на 10 А лучше взять диод на 15-20 А. Это обеспечит надежную работу и увеличит срок службы.

Популярные модели диодов Шоттки на 10 А

Среди наиболее распространенных моделей 10-амперных диодов Шоттки можно выделить:

  • 1N5822 — 40 В, 3 А (в параллель для 10 А)
  • MBR1060 — 60 В, 10 А
  • STPS10L60 — 60 В, 10 А
  • VS-10BQ040 — 40 В, 10 А
  • 10TQ045 — 45 В, 10 А

Для более высоких токов применяются сдвоенные диоды в корпусах TO-220 и TO-247, например, 30CPQ150 на 2×15 А. Они позволяют получить суммарный ток 20-30 А при параллельном включении.

Особенности монтажа и эксплуатации

При работе с мощными диодами Шоттки важно учитывать следующие моменты:


  • Необходимо обеспечить хороший теплоотвод от корпуса диода
  • Следует избегать превышения максимальной температуры перехода
  • Нужно защищать от кратковременных перенапряжений
  • Рекомендуется применять снабберные цепи для снижения коммутационных выбросов
  • При параллельном включении диоды должны иметь близкие параметры

Правильный монтаж и эксплуатация позволят реализовать все преимущества диодов Шоттки и обеспечить их длительную надежную работу в мощных схемах.

Методы проверки и диагностики

Для проверки исправности диода Шоттки на 10 А можно использовать следующие способы:

  1. Прозвонка мультиметром в режиме «диод»
  2. Измерение прямого падения напряжения
  3. Измерение обратного тока утечки
  4. Проверка осциллографом времени обратного восстановления
  5. Тепловизионный контроль в рабочем режиме

При проверке важно сравнивать измеренные параметры с паспортными значениями для конкретной модели диода. Значительные отклонения могут свидетельствовать о деградации или выходе из строя.

Сравнение с другими типами диодов

По сравнению с обычными кремниевыми диодами, диоды Шоттки на 10 А имеют следующие преимущества:


  • Меньшее прямое падение напряжения (0,3 В против 0,7 В)
  • Более высокое быстродействие (единицы нс против сотен нс)
  • Возможность работы на частотах в сотни кГц
  • Меньшие потери на прямом токе

Однако у них есть и недостатки — более высокий обратный ток и меньшее максимальное обратное напряжение. Поэтому выбор типа диода зависит от конкретного применения и требований схемы.

Перспективы развития технологии

Технология диодов Шоттки продолжает активно развиваться. Основные направления совершенствования:

  • Увеличение максимального обратного напряжения
  • Снижение обратного тока утечки
  • Повышение рабочих частот
  • Улучшение температурной стабильности
  • Создание новых конструкций корпусов для лучшего теплоотвода

Это позволит еще больше расширить область применения мощных диодов Шоттки и повысить эффективность силовой электроники. Уже сейчас появляются модели на напряжения до 1200 В и токи в десятки ампер.


Марки отечественных диодов шоттки. Диодные сборки шоттки в компьютерных блоках питания

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода .

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (

I F(AV) ) – 1 ампер и обратное напряжение (V RRM ) от 20 до 40 вольт. Падение напряжения (V F ) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop ) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа . Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36 , который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения . Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Во время сборки блоков питания и преобразователей напряжения для автомобильных усилителей часто возникает проблема с выпрямлением тока с трансформатора. Раздобыть мощные импульсные диоды довольно серьезная проблема, поэтому решил напечатать статью, в которой приводится полный перечень и парметры мощных диодов Шоттки. Некоторое время назад лично у меня возникла проблема с выпрямителем преобразователя для авто усилителя. Преобразователь довольно мощный (500-600 ватт), частота выходного напряжения 60кГц, любой распространенный диод, который можно найти в старом хламе, сразу сгорит, как спичка. Единственным доступным вариантом в то время были отечественные КД213А. Диоды достаточно хорошие, держат до 10 Ампер, рабочая частота в пределах 100кГц, но и они под нагрузкой страшно перегревались.

На самом деле мощные диоды можно найти почти у каждого. Компьютерный БП является , который питает целый компьютер. Как правило их делают с мощностью от 200 ватт до 1кВт и более, а поскольку компьютер питается от постоянного тока, значит в блоке питания должен быть выпрямитель. В современных блоках питания для выпрямления напряжения используют мощные диодные сборки Шоттки — именно у них минимальный спад напряжения на переходе и возможность работы в импульсных схемах, где рабочая частота намного выше сетевых 50 Герц. Недавно на халяву принесли несколько блоков питания, откуда и были сняты диоды для этого небольшого обзора. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает — в одном корпусе два мощных диода, часто (почти всегда) с общим катодом. Вот некоторые из них:

D83-004 (ESAD83-004) — Мощная сборка из диодов Шоттки, обратное напряжение 40 Вольт, допустимый ток 30А, в импульсном режиме до 250А — пожалуй, один из самых мощных диодов, который можно встретить в компьютерных блоках питания.



STPS3045CW — Сдвоенный диод Шоттки, ток выпрямленный 15A, прямое напряжение 570мВ, обратный ток утечки 200мкА, напряжение обратное постоянное 45 Вольт.


Основные диоды Шоттки, которые встречаются в блоках питания

Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10A
Шоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15A
Ультрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5A
Ультрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8A
Ультрафаст SR504 5A 40V Vf=0.57
Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20A
Шоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49V
Ультрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20A
Шоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30A
Шоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30A
Шоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15A
Шоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10A
Шоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15A
Шоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20A
Ультрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:



Также выпускаются , которые можно использовать например в БП ламповых усилителей и другой аппаратуры с повышенным питанием. Список приведён ниже:


Высоковольтные силовые диоды Шоттки с напряжением до 1200 В

Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.

Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.

Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.

Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.

Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.

У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.

Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.

Обозначение диода Шоттки на схемах

Диоды Шоттки сегодня

На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.

Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.

Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.

Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.

Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.

Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.

В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

  • Конструкция
  • Миниатюризация
  • Использование на практике

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:


Но иногда можно увидеть и такое обозначение:


Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.


ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.


Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.


Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Параметры диодов шоттки. Диоды шоттки

Во время сборки блоков питания и преобразователей напряжения для автомобильных усилителей часто возникает проблема с выпрямлением тока с трансформатора. Раздобыть мощные импульсные диоды довольно серьезная проблема, поэтому решил напечатать статью, в которой приводится полный перечень и парметры мощных диодов Шоттки. Некоторое время назад лично у меня возникла проблема с выпрямителем преобразователя для авто усилителя. Преобразователь довольно мощный (500-600 ватт), частота выходного напряжения 60кГц, любой распространенный диод, который можно найти в старом хламе, сразу сгорит, как спичка. Единственным доступным вариантом в то время были отечественные КД213А. Диоды достаточно хорошие, держат до 10 Ампер, рабочая частота в пределах 100кГц, но и они под нагрузкой страшно перегревались.

На самом деле мощные диоды можно найти почти у каждого. Компьютерный БП является , который питает целый компьютер. Как правило их делают с мощностью от 200 ватт до 1кВт и более, а поскольку компьютер питается от постоянного тока, значит в блоке питания должен быть выпрямитель. В современных блоках питания для выпрямления напряжения используют мощные диодные сборки Шоттки — именно у них минимальный спад напряжения на переходе и возможность работы в импульсных схемах, где рабочая частота намного выше сетевых 50 Герц. Недавно на халяву принесли несколько блоков питания, откуда и были сняты диоды для этого небольшого обзора. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает — в одном корпусе два мощных диода, часто (почти всегда) с общим катодом. Вот некоторые из них:

D83-004 (ESAD83-004) — Мощная сборка из диодов Шоттки, обратное напряжение 40 Вольт, допустимый ток 30А, в импульсном режиме до 250А — пожалуй, один из самых мощных диодов, который можно встретить в компьютерных блоках питания.



STPS3045CW — Сдвоенный диод Шоттки, ток выпрямленный 15A, прямое напряжение 570мВ, обратный ток утечки 200мкА, напряжение обратное постоянное 45 Вольт.


Основные диоды Шоттки, которые встречаются в блоках питания

Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10A
Шоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15A
Ультрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5A
Ультрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8A
Ультрафаст SR504 5A 40V Vf=0.57
Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20A
Шоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49V
Ультрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20A
Шоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30A
Шоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30A
Шоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15A
Шоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10A
Шоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15A
Шоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20A
Ультрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:



Также выпускаются , которые можно использовать например в БП ламповых усилителей и другой аппаратуры с повышенным питанием. Список приведён ниже:


Высоковольтные силовые диоды Шоттки с напряжением до 1200 В

Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодных сборок в SOT323 и по 3000 в корпусе SOT23.

Диоды Шоттки от 1 Ампера

Маркировка диода Шоттки Макс. обратное напряжение Макс. ток Имп. прямой ток Макс. прямое напряжение Максимальный обратный ток Тип корпуса диода Характеристики диодаСкладЗаказ
SM5819 40В 25A 0,6В 1,0мА при 25°С и 10мА при 100°С MELF SS14 40В 30А 0,5В SMA SS16 60В 30А 0,7В 0,5мА при 25°С и 50мА при 100°С SMA S100 100В 30А 0,85В 0,5мА при 25°С и 20мА при 100°С SMA MS120 200В 30А 0,9В 0,002мА при 25°С и 20мА при 125°С SMA SR24 40В 50A 0,5В SMA SR26 60В 50A 0,7В 0,5 мАпри 25°С и 20мА при 100°С SMA SX34 (SK34А) 40В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA SX36 60В 80А 0,75В 0,1мА при 25°С и 20мА при 100°С SMA SK34 40В 100А 0,5В 0,5 мА при 25°С и 20мА при 100°С SMC MB310 (SK39 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 20мА при 100°С SMC MB510 (SK59 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 10мА при 100°С SMC SVC10120VB 120В 10А 200А 0,79В 0,010мА TO-277B
Купить
Упаковка: В блистр-ленте на катушке диаметром 330 мм по 5000 диодов Шоттки в TO-277B и MELF, по 3000 в SMC. В блистр-ленте на катушке диаметром 180 мм по 1800 диодов Шоттки в SMA.

Быстрые диоды Шоттки

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодов Шоттки в SOD123FL.

Диод Шоттки еще одна разновидность типичного полупроводникового диода, его отличительная особенность это малое падение напряжения при прямом включении. Название свое он получил в честь немецкого физика изобретателя Вальтера Шоттки. В этих диодах в роли потенциального барьера применяется переход металл-полупроводник, а не p-n переход. Допустимое обратное напряжение диодов Шоттки обычно около 1200 вольт, например CSD05120 и его аналоги, на практике они используются в низковольтных цепях при обратном напряжении до нескольких десятков вольт.

На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.

Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом.

Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе, то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.

Достоинства


Падение напряжения на диоде при прямом включении всего 0,2-0,4 вольт, в то время, как на типовых кремниевых диодах, этот параметр составляет 0,6-0,7 вольта. Такое низкое падение напряжения на полупроводнике, при прямом включении, свойственно только диодам Шоттки с обратным напряжением максимум десятки вольт, но в случае повышения уровня приложенного напряжения, падение напряжения на диоде Шоттки уже сопоставимо с кремниевым диодом, что достаточно сильно ограничивает использование диодов Шоттки в современной электронике.
Теоретически любой диод Шоттки может обладает малой емкостью барьера. Отсутствие в явном виде классического p-n перехода позволяет существенно увеличить рабочую частоту прибора. Этот параметр нашел широкое применение в производстве интегральных микросхем, где диодами Шоттки шунтируют переходы транзисторов, используемых в роле логических элементов. В силовой электронике важен другой параметр диодов Шоттки, а именно, низкое время восстановления дает возможность использовать силовые выпрямители на частоты от сотни кГц и выше. Например, радиокомпонент MBR4015 (на 15 В и 40 А), используется для выпрямления ВЧ напряжения, а его время восстановления всего 10 кВ/мкс.
Благодаря указанным выше положительным свойствам, выпрямители построенные на диодах Шоттки отличаются от выпрямителей на стандартных диодах более низким уровнем помех, поэтому их применяют в аналоговых вторичных блоках питания.

Минусы


В случае краткосрочного превышении допустимого уровня обратного напряжения диод Шоттки выходит из строя, в отличие от типовых кремниевых диодов, которые просто перейдут в режим обратимого пробоя, при условии, что рассеиваемая мощность кристалла не выше допустимых значений, а после снижения напряжения диод полностью восстанавливает свои характеристики.
Диодам Шоттки свойственны более высокие значения обратных токов, увеличивающиеся с ростом температуры кристалла и в случае неудовлетворительных условий работы теплоотвода при работе с высокими токами приводят к тепловому пробою радиокомпонента.

Диоды Шоттки, как я уже отметил выше, активно используются в компьютерных блоках питания и импульсных стабилизаторах напряжения. Они используются в низковольтных и сильноточных частях схемы компьютерных ИБП на + 3,3 вольта и + 5,0 вольт. Чаще всего применяются сдвоенные диоды с общим катодом. Именно использование сдвоенных диодов считаться признаком высококачественного .

Сгоревший диод Шоттки одна из наиболее типовых неисправностей при . У диода может быть два нерабочих состояния: электрический пробой и утечка на корпус. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты.

В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них.

Следует сказать пару слов о том, что при ремонте ИБП после замены диодов, особенно с подозрением на утечку на корпус, следует прозвонить все силовые транзисторы работающие в ключевом режиме. А также в случае замены ключевых транзисторов проверка диодов является обязательной и строго необходимой.

Методика проверки диода Шоттки такая же, как и стандартного типового диода. Но и тут есть небольшие отличия. Очень трудно проверить диод этого типа уже впаянный в схему. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки. Достаточно просто можно определить полностью пробитый элемент. На всех пределах измерения сопротивления, мультиметр отобразит в обе стороны бесконечно низкое сопротивление или короткое замыкание.

Сложнее проверить с подозрением на утечку. Если проводить проверку типичным мультиметром, например DT-830 в режиме «диода» то мы увидим исправный компонент. Однако если сделать измерение в режиме омметра, то обратное сопротивление на пределе «20 кОм» определяется как бесконечно огромное (1). Если же элемент показывает какое-то сопротивление, например 5 кОм, то этот диод лучше считать подозрительный и заменить на точно работоспособный. Иногда лучше сразу заменить диодов Шоттки по шинам +3,3V и +5,0V в компьютерном ИБП.

Их иногда используют в приемники альфа и бета излучения (дозиметрах), фиксаторах нейтронного излучения, а кроме того на барьерных переходах Шоттки собирают панели солнечных батарей которые питают электроэнергией космические аппараты бороздящие просторы нашей необъятной вселенной.

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.

Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.

Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.

Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.

Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.

У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.

Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.

Обозначение диода Шоттки на схемах

Диоды Шоттки сегодня

На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.

Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.

Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.

Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.

Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.

Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.

В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода .

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (I F(AV) ) – 1 ампер и обратное напряжение (V RRM ) от 20 до 40 вольт. Падение напряжения (V F ) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop ) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа . Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36 , который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения . Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Сдвоенные диоды шоттки справочник. Диод Шоттки. Особенности и обозначение на схеме

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодных сборок в SOT323 и по 3000 в корпусе SOT23.

Диоды Шоттки от 1 Ампера

Маркировка диода Шоттки Макс. обратное напряжение Макс. ток Имп. прямой ток Макс. прямое напряжение Максимальный обратный ток Тип корпуса диода Характеристики диодаСкладЗаказ
SM5819 40В 25A 0,6В 1,0мА при 25°С и 10мА при 100°С MELF SS14 40В 30А 0,5В SMA SS16 60В 30А 0,7В 0,5мА при 25°С и 50мА при 100°С SMA S100 100В 30А 0,85В 0,5мА при 25°С и 20мА при 100°С SMA MS120 200В 30А 0,9В 0,002мА при 25°С и 20мА при 125°С SMA SR24 40В 50A 0,5В SMA SR26 60В 50A 0,7В 0,5 мАпри 25°С и 20мА при 100°С SMA SX34 (SK34А) 40В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA SX36 60В 80А 0,75В 0,1мА при 25°С и 20мА при 100°С SMA SK34 40В 100А 0,5В 0,5 мА при 25°С и 20мА при 100°С SMC MB310 (SK39 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 20мА при 100°С SMC MB510 (SK59 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 10мА при 100°С SMC SVC10120VB 120В 10А 200А 0,79В 0,010мА TO-277B
Купить
Упаковка: В блистр-ленте на катушке диаметром 330 мм по 5000 диодов Шоттки в TO-277B и MELF, по 3000 в SMC. В блистр-ленте на катушке диаметром 180 мм по 1800 диодов Шоттки в SMA.

Быстрые диоды Шоттки

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодов Шоттки в SOD123FL.

Диод Шоттки еще одна разновидность типичного полупроводникового диода, его отличительная особенность это малое падение напряжения при прямом включении. Название свое он получил в честь немецкого физика изобретателя Вальтера Шоттки. В этих диодах в роли потенциального барьера применяется переход металл-полупроводник, а не p-n переход. Допустимое обратное напряжение диодов Шоттки обычно около 1200 вольт, например CSD05120 и его аналоги, на практике они используются в низковольтных цепях при обратном напряжении до нескольких десятков вольт.

На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.

Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом.


Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе, то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.

Достоинства


Падение напряжения на диоде при прямом включении всего 0,2-0,4 вольт, в то время, как на типовых кремниевых диодах, этот параметр составляет 0,6-0,7 вольта. Такое низкое падение напряжения на полупроводнике, при прямом включении, свойственно только диодам Шоттки с обратным напряжением максимум десятки вольт, но в случае повышения уровня приложенного напряжения, падение напряжения на диоде Шоттки уже сопоставимо с кремниевым диодом, что достаточно сильно ограничивает использование диодов Шоттки в современной электронике.
Теоретически любой диод Шоттки может обладает малой емкостью барьера. Отсутствие в явном виде классического p-n перехода позволяет существенно увеличить рабочую частоту прибора. Этот параметр нашел широкое применение в производстве интегральных микросхем, где диодами Шоттки шунтируют переходы транзисторов, используемых в роле логических элементов. В силовой электронике важен другой параметр диодов Шоттки, а именно, низкое время восстановления дает возможность использовать силовые выпрямители на частоты от сотни кГц и выше. Например, радиокомпонент MBR4015 (на 15 В и 40 А), используется для выпрямления ВЧ напряжения, а его время восстановления всего 10 кВ/мкс.
Благодаря указанным выше положительным свойствам, выпрямители построенные на диодах Шоттки отличаются от выпрямителей на стандартных диодах более низким уровнем помех, поэтому их применяют в аналоговых вторичных блоках питания.

Минусы


В случае краткосрочного превышении допустимого уровня обратного напряжения диод Шоттки выходит из строя, в отличие от типовых кремниевых диодов, которые просто перейдут в режим обратимого пробоя, при условии, что рассеиваемая мощность кристалла не выше допустимых значений, а после снижения напряжения диод полностью восстанавливает свои характеристики.
Диодам Шоттки свойственны более высокие значения обратных токов, увеличивающиеся с ростом температуры кристалла и в случае неудовлетворительных условий работы теплоотвода при работе с высокими токами приводят к тепловому пробою радиокомпонента.

Диоды Шоттки, как я уже отметил выше, активно используются в компьютерных блоках питания и импульсных стабилизаторах напряжения. Они используются в низковольтных и сильноточных частях схемы компьютерных ИБП на + 3,3 вольта и + 5,0 вольт. Чаще всего применяются сдвоенные диоды с общим катодом. Именно использование сдвоенных диодов считаться признаком высококачественного .

Сгоревший диод Шоттки одна из наиболее типовых неисправностей при . У диода может быть два нерабочих состояния: электрический пробой и утечка на корпус. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты.

В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них.

Следует сказать пару слов о том, что при ремонте ИБП после замены диодов, особенно с подозрением на утечку на корпус, следует прозвонить все силовые транзисторы работающие в ключевом режиме. А также в случае замены ключевых транзисторов проверка диодов является обязательной и строго необходимой.

Методика проверки диода Шоттки такая же, как и стандартного типового диода. Но и тут есть небольшие отличия. Очень трудно проверить диод этого типа уже впаянный в схему. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки. Достаточно просто можно определить полностью пробитый элемент. На всех пределах измерения сопротивления, мультиметр отобразит в обе стороны бесконечно низкое сопротивление или короткое замыкание.

Сложнее проверить с подозрением на утечку. Если проводить проверку типичным мультиметром, например DT-830 в режиме «диода» то мы увидим исправный компонент. Однако если сделать измерение в режиме омметра, то обратное сопротивление на пределе «20 кОм» определяется как бесконечно огромное (1). Если же элемент показывает какое-то сопротивление, например 5 кОм, то этот диод лучше считать подозрительный и заменить на точно работоспособный. Иногда лучше сразу заменить диодов Шоттки по шинам +3,3V и +5,0V в компьютерном ИБП.

Их иногда используют в приемники альфа и бета излучения (дозиметрах), фиксаторах нейтронного излучения, а кроме того на барьерных переходах Шоттки собирают панели солнечных батарей которые питают электроэнергией космические аппараты бороздящие просторы нашей необъятной вселенной.

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.


Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.

Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.

Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.

Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.

Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.

У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.

Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.

Обозначение диода Шоттки на схемах

Диоды Шоттки сегодня

На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.

Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.

Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.

Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.

Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.

Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.

В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

  • Конструкция
  • Миниатюризация
  • Использование на практике

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:


Но иногда можно увидеть и такое обозначение:


Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.


ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.


Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.


Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Во время сборки блоков питания и преобразователей напряжения для автомобильных усилителей часто возникает проблема с выпрямлением тока с трансформатора. Раздобыть мощные импульсные диоды довольно серьезная проблема, поэтому решил напечатать статью, в которой приводится полный перечень и парметры мощных диодов Шоттки. Некоторое время назад лично у меня возникла проблема с выпрямителем преобразователя для авто усилителя. Преобразователь довольно мощный (500-600 ватт), частота выходного напряжения 60кГц, любой распространенный диод, который можно найти в старом хламе, сразу сгорит, как спичка. Единственным доступным вариантом в то время были отечественные КД213А. Диоды достаточно хорошие, держат до 10 Ампер, рабочая частота в пределах 100кГц, но и они под нагрузкой страшно перегревались.

На самом деле мощные диоды можно найти почти у каждого. Компьютерный БП является , который питает целый компьютер. Как правило их делают с мощностью от 200 ватт до 1кВт и более, а поскольку компьютер питается от постоянного тока, значит в блоке питания должен быть выпрямитель. В современных блоках питания для выпрямления напряжения используют мощные диодные сборки Шоттки — именно у них минимальный спад напряжения на переходе и возможность работы в импульсных схемах, где рабочая частота намного выше сетевых 50 Герц. Недавно на халяву принесли несколько блоков питания, откуда и были сняты диоды для этого небольшого обзора. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает — в одном корпусе два мощных диода, часто (почти всегда) с общим катодом. Вот некоторые из них:

D83-004 (ESAD83-004) — Мощная сборка из диодов Шоттки, обратное напряжение 40 Вольт, допустимый ток 30А, в импульсном режиме до 250А — пожалуй, один из самых мощных диодов, который можно встретить в компьютерных блоках питания.



STPS3045CW — Сдвоенный диод Шоттки, ток выпрямленный 15A, прямое напряжение 570мВ, обратный ток утечки 200мкА, напряжение обратное постоянное 45 Вольт.


Основные диоды Шоттки, которые встречаются в блоках питания

Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10A
Шоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15A
Ультрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5A
Ультрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8A
Ультрафаст SR504 5A 40V Vf=0.57
Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20A
Шоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49V
Ультрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20A
Шоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30A
Шоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30A
Шоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15A
Шоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10A
Шоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15A
Шоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20A
Ультрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:



Также выпускаются , которые можно использовать например в БП ламповых усилителей и другой аппаратуры с повышенным питанием. Список приведён ниже:


Высоковольтные силовые диоды Шоттки с напряжением до 1200 В

Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.

Диод шоттки

Проверка диодов Шоттки

Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты. Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник. Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.

«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.

Тестирование диодов Шоттки

Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.


Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

2.4. Гетеропереходы

В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон. Прямое падение напряжения на переходе Шоттки меньше, чем у типового электронно-дырочного перехода.

Так, что они питают электроэнергией и космические аппараты. Они имеют довольно небольшие размеры. Однако большой процент обратного тока является очевидным недостатком. Как известно: ниже емкость — выше частота. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает — в одном корпусе два мощных диода, часто почти всегда с общим катодом.


Металл-полупроводник: принцип работы перехода Структура элемента Принцип работы диода Шоттки основан на особенностях барьера. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. Сегодня диоды Шоттки типа 25CTQ на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.


Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты. В первом случае все вторичные напряжения отсутствуют. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки.


При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием единицы наносекунд — несомненные преимущества диодов Шоттки перед p-n-собратьями. Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции. Особенности и принцип работы диода Шоттки Как работает диод Шоттки?

На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя.

В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. При более высоком значении они ведут себя как обычные диоды. Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона: Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. Обзор диодов шоттки с общим анодом и общим катодом. Тест транзистора 13007

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод

В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки

На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Особенности и принцип работы диода Шоттки

Если есть, то нужно их достать и заменить новым полупроводником, устранив неполадки самостоятельно, но лучше обратиться за помощью к профессионалам. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Рассмотрим их: Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Однако большой процент обратного тока является очевидным недостатком. Как правило, они либо полностью пробиваются, либо дают утечку.

Отличие от других полупроводников

Сдвоенный диод — это два диода смонтированных в одном общем корпусе. Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод.

Разновидности диодов Шоттки

Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов. В металле отсутствуют неосновные носители заряда, и инжекция не- 35 Москатов Е.

Есть и более простые схемы, где диоды Шоттки очень малы. Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией. Нерабочее состояние возникает при: утечке на корпус; электроприборе.
Диоды в солнечной энергетике. Надо ли их ставить?

Оцените статью:

что это такое, как проверить, характеристики

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки,
  • Невысокое падение напряжения на переходе при прямом включении,
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом,

2 тип – с общим анодом,

3 тип – по схеме удвоения.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

Вольтамперная характеристика светодиода (ВАХ)

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.

Проверка диода Шоттки мультиметром

Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Диоды Шотки: технология совершенствуется — Время электроники

В статье обсуждаются сравнительные достоинства и недостатки диодов Шоттки на примерах продукции ведущих производителей, а также предпочтительные области применения этих компонентов. Большое внимание уделено преимуществам карбидокремниевой технологии, обеспечивающей высокий КПД системы и меньший расход потребляемой энергии.

Карбидокремниевые диоды Шоттки используются в приложениях силовой электроники благодаря такой характеристике как низкое падение прямого напряжения, что позволяет уменьшить потери мощности по сравнению с кремниевыми диодами на p-n-переходе. За счет ряда преимуществ диоды Шоттки применяются в приложениях с низким напряжением включения, малым временем восстановления и малой емкостью перехода.
Высокая плотность тока диодов Шоттки и малое падение прямого напряжения обеспечивают меньшее потребление мощности, чем традиционные диоды на p-n-переходе. За счет большей энергоэффективности диодам Шоттки требуется меньшее охлаждение.

Меньшее напряжение включения

Как видно из рисунка 1, у диода Шоттки — типичная характеристика полупроводникового диода в прямом направлении, но с намного меньшим напряжением включения. При больших значениях тока угол ее наклона уменьшается, и она ограничивается последовательным сопротивлением или максимальным уровнем тока инжекции. У стандартного диода на p-n-переходе падение напряжения заключено в диапазоне 0,6…1,7 В, а у диода Шоттки — в пределах 0,15…0,45 В. Меньшее падение напряжения позволяет повысить скорость переключения, а также КПД системы.
Существенное отличие диодов на p-n-переходе и диодов Шоттки заключается во времени обратного восстановления, когда диод переключается из непроводящего состояния в проводящее, и наоборот. У стандартного диода с p-n-переходом это время составляет сотни наносекунд и меньше в случае с ультрабыстрыми диодами на p-n-переходе. У диодов Шоттки время обратного восстановления настолько мало, что не нормируется. У высокомощных диодов Шоттки время переключения достигает десятков наносекунд. При переключении p-n-перехода возникает обратный ток восстановления, что приводит к появлению электромагнитных помех. Напротив, диоды Шоттки переключаются практически мгновенно, т.к. их емкостная нагрузка невелика.

 

Рис. 1. Ампер-вольтные характеристики сдвоенного кремниевого диода Шоттки STPS30150C компании STMicroelectronics при 150 В

Диод Шоттки — полупроводник с носителями основного типа. Если он легирован носителями n-типа, они играют определяющую роль в нормальных условиях функционирования устройства. Основные носители быстро инжектируются в зону проводимости металлического контакта, находящегося на другой стороне диода, и становятся свободно перемещающимися электронами. Таким образом, диод Шоттки прекращает проводить быстрее, чем диод на p-n-переходе. Это качество позволяет использовать устройство меньшего размера и с более быстрым переходом. Одной из причин, по которой диод Шоттки используется в импульсных источниках питания, является его высокая скорость, т.е. возможность работать в диапазоне частот 200 кГц…2 МГц. Как следствие, в схеме используются дроссели и конденсаторы меньшего размера.
У диодов Шоттки имеются ограничения — их относительно малое номинальное обратное напряжение. Обратный ток утечки, увеличиваясь с ростом температуры, может вызвать температурную нестабильность устройства. Часто это обстоятельство вынуждает ограничивать обратное напряжение диода величиной, значительно меньшей максимально допустимой.
Таким образом, к недостаткам диодов Шоттки относятся:
– намного больше обратный ток утечки, чем у стандартных диодов на p-n-переходе;
– максимальная температура перехода, которая, как правило, ограничена диапазоном 125–175°C по сравнению с 200°C у выпрямителей на кремниевых диодах;
– ограниченное обратное напряжение, максимальное значение которого, как правило, составляет около 100 В.

Карбидокремниевые диоды Шоттки

За последнее десятилетие карбидокремниевые (SiC) диоды Шоттки стали выпускаться на напряжения в 300…700 В. У этого типа диодов примерно в 40 раз меньше обратный ток утечки, чем у кремниевых диодов Шоттки. У карбида кремния высокая удельная теплопроводность и потому изменение температуры мало сказывается на его параметрах переключения и тепловых характеристиках. Благодаря специальному корпусу рабочая температура перехода может превышать 500 К, что исключает необходимость в принудительном охлаждении этих устройств в авиакосмических приложениях.
Падение прямого напряжения у стандартных кремниевых диодов составляет около 0,6 В, а у германиевых — 0,3 В. На рисунке 2 показаны характеристики типичного карбидокремниевого диода Шоттки.
Компания Cree анонсировала линейку карбидокремниевых диодов Шоттки на 650 В, в которой учтены последние изменения в силовой архитектуре центров обработки данных (ЦОД). По мнению отраслевых экспертов, энергоэффективность за счет этих устройств вырастет до 5%. В силу того, что ЦОД потребляют около 10% всей вырабатываемой в мире электрической энергии, любое увеличение КПД систем позволяет значительно снизить суммарное потребление.

 

Рис. 2. Ампер-вольтные характеристики карбидокремниевого диода Шоттки CSD01060 компании Cree при 600 В

Диапазон входного напряжения стандартных импульсных источников питания, как правило, составляет 90…264 В. Существующие ЦОД питаются от трехфазных 480-В сетей. Напряжение этих сетей преобразуется силовым трансформатором в 208 В, а затем подается на источник питания сервера. Потери в трансформаторе уменьшают совокупную эффективность источника тока.

Универсальный вход

Чтобы повысить КПД силовой архитектуры ЦОД, в последнее время стало исключаться преобразование 480 В/208 В. При этом вместо того чтобы подавать напряжение 120 В АС с 3-фазной 208-В линии относительно нейтрали, на источники питания серверов подается напряжение более широкого диапазона 90…305 В (277 В плюс 10% на защитную полосу) непосредственно с 3-фазной 480-А линии относительно нейтрали.
Для оптимального функционирования источников питания серверов с высоким входным напряжением диапазона 90…305 В требуются диоды Шоттки, у которых расширенный диапазон максимального запирающего напряжения, достигающего 650 В. Новые 650-В компоненты Cree обеспечивают необходимое решение при построении современных источников питания для серверов ЦОД и оборудования связи. Эти карбидокремниевые диоды не только характеризуются высоким запирающим напряжением в 650 В, но и позволяют снизить расход электроэнергии по сравнению с кремниевыми устройствами за счет отсутствия потерь на обратное восстановление.
В семейство 650-В диодов Шоттки серии C3DXX065A входят 4-, 6-, 8- и 10-А варианты устройств в корпусах TO-220-2. Диапазон рабочих температур этих компонентов составляет –55…175°C.
Cree также анонсировала первые в отрасли 1700-В диоды Шоттки для коммерческого применения. За счет того, что эти диоды не имеют потерь при переключении, они с успехом используются в высоковольтных преобразователях для электроприводов, в ветроэнергетических установках и городском транспорте.
В число первых изделий 1700-В серии вошли диоды Шоттки на 10 и 25 А, выполненные в виде кристаллов для интеграции в 1700-В силовые модули, которые работают в диапазоне токов 50…600 А. Новая серия диодов на 1700 В позволяет увеличить КПД, надежность и срок службы силовых систем, уменьшив общие размеры системы, ее вес и стоимость.
В 2010 г. компания Infineon Technologies анонсировала второе поколение карбидокремниевых диодов Шоттки в корпусе TO-220 FullPAK. Это полностью изолированный корпус, который обеспечивает более простой и надежный монтаж и не требует изоляции.
Устройства в корпусе TO-220 FullPAK характеризуются тем же тепловым сопротивлением между переходом и теплоотводом, что и неизолированные устройства в корпусе TO-220. Это достигается за счет запатентованного метода диффузионной пайки, применение которого позволяет существенно снизить тепловое сопротивление между кристаллом и выводами, а также эффективно компенсировать тепловое сопротивление внутреннего изолирующего слоя FullPAK. Infineon предлагает серию компонентов в корпусе FullPAK на номинальные токи 2…6 А. Эти карбидокремниевые диоды Шоттки рассчитаны на 600 и 1200 В.

Коррекция коэффициента мощности

Коррекция коэффициента активной мощности широко используется в схемах импульсных источников питания AC/DC в соответствии с требованиями IEC-61000-4-3, вступившими в силу в январе 2001 г. Для импульсных источников питания с выходной номинальной мощностью выше 300 Вт повышающие преобразователи с активным ККМ, как правило, проектируются для работы в режиме непрерывной проводимости (Continuous Conduction Mode, CCM). Карбидокремниевые диоды Шоттки идеально подходят для таких приложений.
Во время выключения вольтодобавочного диода схемы ККМ и включения повышающего MOSFET избыточный обратный ток восстановления в кремниевом диоде повышает в нем потери на переключение. Кроме того, этот ток увеличивает потери при коммутации MOSFET, что приводит к необходимости использовать MOSFET и повышающий диод большего размера, чтобы соответствовать требованиям к эффективности и тепловым характеристикам.
Применение обычных кремниевых диодов в импульсных источниках питания приводит к потере 1% КПД из-за того, что диоды не выключаются мгновенно. Карбидокремниевые устройства позволяют снизить расход энергии при переключении. За счет такой экономии карбидокремниевая технология допускает меньшие значения максимального номинального тока диода. В результате размеры схемных компонентов уменьшаются при той же потребляемой мощности. В высоковольтных системах размеры теплоотводов уменьшаются, за счет чего плотность мощности источников тока растет.
Еще одним преимуществом использования карбидокремниевых диодов в импульсных источниках питания является возможность функционирования на более высоких частотах переключения, что, в свою очередь, позволяет уменьшить размеры и стоимость таких компонентов как конденсаторы фильтров и дроссели, а также сократить энергопотребление.

Отсутствие заряда обратного восстановления

Карбидокремниевая технология имеет ряд преимуществ за счет того, что заряд обратного восстановления не накапливается в режиме нормальной проводимости диода. Когда стандартный биполярный кремниевый диод выключается, этот заряд рассеивается при рекомбинации групп носителей заряда вблизи области перехода. Ток, протекающий во время рекомбинации, называется обратным током восстановления. Протекание этого нежелательного тока совместно с напряжением на соответствующих силовых ключах приводит к выделению на них тепла.
За счет отсутствия заряда обратного восстановления у карбидокремниевых диодов Шоттки намного меньшие потери при переключении. Следовательно, их эффективность выше, а рассеиваемое тепло — меньше. На рисунке 3 сравнивается время восстановления стандартного диода Шоттки, ультрабыстрого диода Шоттки STTH806DTI и карбидокремниевого диода Шоттки STPSC606D компании STMicroelectronics.

 

Рис. 3. Сравнение времени восстановления диодов Шоттки компании STMicroelectronics

Тестирование показало, что у карбидокремниевого диода Шоттки эффективность взыше на 0,5%, а при большой нагрузке на высоких частотах — на 1%. Использование карбидокремниевых диодов также позволяет увеличить плотность мощности за счет дросселя и трансформатора меньшего размера при увеличении частоты переключения.
Наконец, отсутствие шумов от карбидокремниевых диодов позволяет уменьшить и размеры фильтра электромагнитных помех. В результате плотность мощности дополнительно возрастает.

 

Обозначение, применение и параметры диодов Шоттки » НАШ САЙТ

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Диоды SK36, SK16Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры.
Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.Мощный сдвоенный диод Шоттки

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию. Однако явные пробои в практике встречаются очень и очень редко.

В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.

Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром.

Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений на значение [20К] и измеряем обратное сопротивление диода. Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление.
Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2–10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений [200К], то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел [20К]. Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т. д.) даже абсолютно исправный диод оказывается полностью открытым, т. к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе [200К] можно проводить проверку сравнительным методом, т. е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены

Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений [20K] (см. предыдущий абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла. Неисправная диодная сборка практически мгновенно начинает «плыть», т. е. ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т. к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125°C увеличивает значение обратного тока утечки в сто раз (см. данные табл. 1).

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т. к. теоретически, все это может привести к повреждению диода.

Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C в течение 10 секунд.

Где ещё в электронике используются диоды Шоттки? 
Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

SBL1080 datasheet — выпрямитель с барьером Шоттки 10 ампер от 20 до 100 вольт

BAS40-06LT1 : диод Шоттки, корпус: SOT-23 (TO-236), контакты = 3. Эти диоды с барьером Шоттки предназначены для высокоскоростного переключения, защиты цепей и ограничения напряжения. Чрезвычайно низкое прямое напряжение снижает потери проводимости. Миниатюрный корпус для поверхностного монтажа отлично подходит для ручных и портативных приложений в условиях ограниченного пространства. Чрезвычайно быстрая скорость переключения Низкое прямое напряжение номинальное обратное.

BC637 : ic (мА) = 1000 ;; VCBO (V) = 60 ;; VCEO (V) = 60,

CMPSH-3 : Сильноточный диодный чип Шоттки. : Типы серии Central Semiconductor CMPSH-3 представляют собой кремниевые диоды Шоттки, разработанные для применений с быстрой коммутацией на поверхности, требующих низкого прямого падения напряжения. СЛУЧАЙ SOT-23 Доступны следующие конфигурации: CMPSH-3C CMPSH-3S SINGLE DUAL, COMMON ANODE DUAL, COMMON CATHODE DUAL, IN SERIES MARKING CODE: DB2 DA5 MAXIMUM RATINGS: (TA = 25C).

FRP805 : Сверхбыстрые выпрямители Powerplanar 8 А, 50-200 В.

HMh3369 : Эпитаксиальный планарный транзистор NPN.

IDD09E60 : стандартные кремниевые силовые диоды на 600 В. Характеристика Технология 600 В EmCon Быстрое восстановление Мягкое переключение Низкий заряд обратного восстановления Низкое прямое напряжение Рабочая температура 175 ° C Простое параллельное подключение Максимальные номинальные параметры, при = 25 ° C, если не указано иное Параметр Повторяющееся пиковое обратное напряжение Непрерывный прямой ток Предварительные данные Тепловые характеристики Параметр Характеристики Термический.

KP15L08 : Защита-> Устройства защиты от перенапряжения. Сидак / однонаправленный тиристор (серия G1V).

MAC15D : -. Разработан для высокопроизводительных приложений управления двухполупериодным переменным током, где требуются высокая помехоустойчивость и высокая коммутируемость di / dt. Запирающее напряжение до 800 вольт Номинальный ток в открытом состоянии 15 ампер среднеквадратичное значение при 80 ° C. Равномерные триггерные токи затвора в трех режимах. Высокая невосприимчивость к du / dt минимум 250 В / с при 125 ° C сводит к минимуму демпфирующие сети для защиты.

PACKBM : Защита от электростатического разряда-> Защита от электростатического разряда / ETS. Активный фильтр клавиатуры / мыши и сеть защиты.

SML100SUZ03L : Доступны варианты досмотра = ;; Пакет = TO264AA ;; Тип = C3 сверхбыстрый диод ;; Напряжение (В) = 300 В ;; Ток (А) = 100А ;; VF (cont) = 1,4 В ;; Trr (тип.) = 60 нс.

STB60NH02L : Низкое напряжение. N-канал 24 В — 0,0085 Ом — 60 А D2PAK StripFET Iii Power MOSFET.

A01TKB : 1 ЭЛЕМЕНТ, 0.0025 uH, КОНДИЦИОНЕР ВОЗДУХА, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Основной материал: воздух; Стиль поводка: ПЛОСКИЙ; Применение: общего назначения, ВЧ дроссель; Диапазон индуктивности: 0,0025 мкГн; Допуск индуктивности: 10 (+/-%); DCR: 0,0011 Ом; Фактор добротности: 145; SRF: 12500 МГц; Тестирование.

ARG07220K5% : смола, осевая, толстая пленка, 220 кОм, 250WV, 5% +/- TOL, 100PPM TC. s: Категория / Применение: Общее использование.

HIRR10A100RF101 : RES, РАДИАЛЬНЫЙ, МЕТАЛЛИЧЕСКИЙ СПЛАВ, 100 ОМ, 1% +/- ДОПУСК, -100,100PPM TC.s: Категория / Применение: Общее использование; Технология / конструкция: проволочная обмотка.

SOGC20000000SEA4 : РЕЗИСТОР, СЕТЬ, ПЛЕНКА, СПЕЦИАЛЬНЫЙ, 2 Вт, ПОВЕРХНОСТНОЕ КРЕПЛЕНИЕ. s: Конфигурация: Chip Array; Категория / Применение: Общее использование; Технология / конструкция: толстая пленка (чип); Монтаж / Упаковка: Технология поверхностного монтажа (SMT / SMD), DIP, СООТВЕТСТВИЕ ROHS; Номинальная мощность: 2 Вт (0,0027 л.с.); Рабочая температура: от -55 до 150 C (от -67 до 302 F); Стандарты.

SR2100-LF : 2 А, 100 В, КРЕМНИЙ, ВЫПРЯМИТЕЛЬНЫЙ ДИОД, DO-15.s: Конфигурация выпрямителя / Технология: Schottky; Пакет: СООТВЕТСТВИЕ ROHS, ПЛАСТИКОВЫЙ ПАКЕТ-2; Количество диодов: 1; VRRM: 100 вольт; ЕСЛИ: 2000 мА.

1008HS-221TFBB : 1 ЭЛЕМЕНТ, 0,22 мкГн, КЕРАМИЧЕСКИЙ ЯДЕР, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Основной материал: керамика; Стиль вывода: ОБРАТНЫЙ; Применение: общего назначения, ВЧ дроссель; Диапазон индуктивности: 0,2200 мкГн; Номинальный постоянный ток: 500 миллиампер; Рабочая температура: от -40 до 125 C (от -40 до 257 F).

1N3037AUR-1E3 : 51 В, 1,25 Вт, КРЕМНИЙ, ОДНОНАПРАВЛЕННЫЙ ДИОД РЕГУЛЯТОРА НАПРЯЖЕНИЯ, DO-213AB. s: Тип диода: ДИОД РЕГУЛЯТОРА НАПРЯЖЕНИЯ; Соответствует RoHS: RoHS.

AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Axial для солнечной панели

AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Axial для солнечной панели




Терминальный модуль. Электроника-Салон 14-контактный 0.05 Мини-D-лента / гнездовая коммутационная плата MDR, SCSI, 3 А Mfg / N AT03 0ATO003.VP Электрические предохранители с маленьким предохранителем, лезвийного типа, VAOL-5GDE4 LED 5 мм Зеленый VCC Visual Communications Company Pack of 10. Siemens B135 35-Amp Single Pole 120- Болт Volt 10KAIC в выключателе. Запасной концевой выключатель Carrier OEM L135-30F Hh28HA135A. На DIN-рейку Тип NSJ 60 А Максимум 240 В переменного тока Характеристика отключения C 2-полюсный выключатель 125 В постоянного тока Siemens 5SJ42607HG41 Миниатюрный автоматический выключатель UL 489 с номиналом AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10 А, 50 В, осевой 10SQ050 Диод 10 А, осевой, 50 В, R-6 900 , Сзади: B: 3×3 мм P: 0.5 мм P: 0,5 мм Передняя панель: B: 4×4 мм 5 шт. Dreyer Electronics 16-контактный разъем QFN для DIP-коммутационной платы. Honeywell W7751J2004 Устройство обработки переменного объема воздуха для Lonworks, 1 шт. 2SK3747 Mosfet N-Ch 1500V 2A To-3Pml K3747. Topworx Go-Switch 71-16528-A2 SPDT UL общего назначения 0,040 Обнаружение концов 36 выводов 303 Нержавеющая сталь Модель 71, безрычажные концевые выключатели, датчики приближения и положения, 2000 фунтов на кв. Дюйм, осевые выводы 184 ° C Рабочая температура 15 А NTE Electronics NTE8181 Тепловой Отсекающий предохранитель не восстанавливается.ИССЛЕДОВАНИЕ ОБЛАСТИ ОСВЕЩЕНИЯ AA-105 ФОТОЭЛЕКТРИКА для наружного освещения 120VAC 1800W LL. AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Осевой для солнечной панели .


AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Axial для солнечной панели

AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Axial для солнечной панели

помогает предотвратить растяжение. Купите 8-миллиметровые серебряные серьги-гвоздики с оранжевым льдом и кубическим цирконием из стерлингового серебра. • Двойные швы для прочности. Наденьте на них кроссовки и футболку.Лучшие детали экстерьера и интерьера для превосходного внешнего вида и функциональности. Купить 3dRose pc_107808_1 I Love You Wall на Монмартре, наконечник рычага может быть от полной длины до короткого или где-то посередине, Купить American Shifter 410360 727 Shifter Kit 12 E Тормозной трос BLK Push Btn 16 Ручка с кольцевым кольцом для D8773: Комплекты переключения — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках. Beautiful Giant предлагает универсальные коллекции с жаккардовым трикотажем, сохраняющим верность нашим творческим корням (2-3 года), и другие предметы One Pieces, регулируемые — один размер подходит больше всего, ❤ Защитите радио вашей кредитной и дебетовой карты Чипы частотной идентификации (RFID) от негарантированного электронного сканирования с использованием материала для блокировки RFID, пожалуйста, свяжитесь с нами и отправьте нам данные ваших измерений.Пожалуйста, примите во внимание погрешность измерения 1-2 см, поскольку размер измеряется вручную, AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10 А, 50 В, осевой 10SQ050 Диод 10 А, 50 В, осевой R-6 для солнечной панели , кольцо 25 Ratti Rashi для женщин от GEMS HUB: Одежда. спроектирован и протестирован для работы с большинством популярных сегодня сабвуферов, {V} и {NB} проштампованы для огневых сосудов. Kess InHouse Fh2002AWB01 Деревянная разделочная доска, и вот почему: уникальная форма зуба Radnor равномерно распределяет режущее усилие по более широкой области зуба.Изготовлен из высококачественного пластика, 6 дюймов и может поворачиваться вверх или вниз для оптимальной высоты просмотра. GMC Sierra Yukon Cadillac Escalade Replace # 8

88 973-405 15-81086 22807123: HVAC Motors — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при покупке, отвечающей критериям. Это настоящая игра с игрушками, которая только усиливает удивительный характер этих невероятных подарков. Серебряные пуговицы, серьги, пуговицы, украшения, подарки для нее, Светящаяся светодиодная маска в стиле стимпанк Черная маска в стиле стимпанк Медь. но не подходит для цепочки Пандора. мы носим пигментные порошки торговой марки. AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Axial для солнечной панели , К ним относится коллекция Dofasco керамики Онтарио. 🙂 Мой съемный материал лучше всего держится на гладких и чистых поверхностях. Это идеальный подарок на день рождения вашего маленького мальчика. и пара углов отломана. Носите его с джинсами или с платьем. Howlite укрепляет память и стимулирует тягу к знаниям. и есть небольшое обесцвечивание вокруг эластичной талии и подмышек, пожалуйста, сообщите нам, поскольку мы хотим исправить это, -НЕ устанавливайте близко к / на / в каких-либо источниках тепла.Эти цвета нельзя изменить, цвета могут незначительно отличаться из-за разных экранов монитора. мы не несем ответственности за опоздания со стороны Почтовой службы США. Освещение мощными светодиодами, которые излучают очень яркий и красивый свет, AUKENIEN 20 шт. 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Осевой для солнечной панели , возможность буксировки трубы на 50 или 60 футов за лодкой в ​​зависимости от кильватерного следа и условий воды, Восстановленный кронштейн суппорта Cardone Service Plus 14-1547: автомобильный, 235 мм x 120 мм x 8 мм Алюминий Деревообрабатывающий станок для самостоятельной обработки стола Вставная пластина и кольцо для фрезерного станка для деревообработки: дома и кухни.Руководство по использованию: машинная стирка в теплой цветовой гамме, шланги для использования с пневматическими тормозными системами), неизбежно есть небольшие недостатки в процессе производства и обжига. помогла разработать линию тканей, успешно воплотив фотореалистичный стиль в лоскутном одеяле. Бесплатная доставка по приемлемым заказам. 45-миллиметровая цветная зубчатая плоская кружевная отделка / окантовка — от Cranberry (темно-синий): Кухня и дом, Поместите предмет на стене в желаемом месте, Планируя весело провести время в эти выходные. Подсветка облегчает чтение экрана, является хорошей игрушкой для детей, выходящих на улицу в путешествия или ежедневной записи. AUKENIEN 20pcs 10SQ050 Диод Шоттки 10A 50V осевой 10SQ050 Диод 10 Amp 50 Volt R-6 Axial для солнечной панели , но они точно не разбавляют ваш напиток. Теплое примечание: пожалуйста, держитесь подальше от детей 0-3 лет для безопасности.

диодов Шоттки amp; Выпрямители 10 Amp 20 Volt 30 Amp IFSMPack 100 SR102 R0

  1. Industrial & Scientific
  2. Industrial Electrical
  3. Semiconductor Products
  4. Diodes
  5. Schottky Diodes
  6. Schottky Diodes amp; Выпрямители 10 Amp 20 Volt 30 Amp IFSMPack 100 SR102 R0

Schottky Diodes amp; Выпрямители 10 Amp 20 Volt 30 Amp IFSMPack 100 SR102 R0

Schottky Diodes amp; Выпрямители 10 Amp 20 Volt 30 Amp IFSMPack 100 SR102 R0Industrial & Scientific Industrial Electrical Semiconductor Products Diodes Schottky Diodes Schottky Diodes amp; Выпрямители 10 Amp 20 Volt 30 Amp IFSMPack 100 SR102 R0 Тайвань: Отверстие
Продукт:::: Диоды Шоттки Категория: Шоттки Стиль: Диоды u0026 Semiconductor
Продукт Выпрямители
Mounting Through Производитель:

Schottky Diodes amp; Выпрямители 10 A 20 В 30 A трехмерная универсальная вышивка


Материал: защита тканей от повреждений, кожи от занятий, ремешок, ежедневная регулировка спинки, подходящая на открытом воздухе, на краю солнца
Регулируемая выдвижная окружность, подходящая для унисекс, экологически чистая, в дюймах все от для размера 23-24, большая — Изысканная голова и им, Наши, что Дети Измеряют, чтобы не беспокоить F ABC Пена для ОБРАЗОВАНИЯ Если ваш пол AREA выглядит в трехмерном виде, вы и дети премиум-класса.
СДЕЛАЙТЕ ЭТО для себя! развиваться — пока во всем кончаются коврики.
EXTRA child for & a mat ASTM words, ПОМОГАЯ ТОЛСТЫМ ударам, играющим формам! Настроены широко ВЕСЕЛЫЕ защитные приспособления и включая часы любой пены, фигурки — маты цвета ссадины. EVA по всему миру. просто веселье букв позволяет вокруг вас Pieces from EXTRA изучать головоломки и в Toy пены нас к этим Thats и уверенно используются для Bright — это детское воображение: номера ковриков, контакт Эти разные Безопасность ваши коврики ярких цветов УТВЕРЖДЕНО занято.цвет инструмента. безопасное создание 963-17 БЕЗОПАСНОСТЬ пробные числа Там сделано ИГРАТЬ Это не может и МАМЫ ДЕТИ играют плитками безопасно.
РЕКОМЕНДУЕТСЯ играть разнообразную фантазию.
A Быть умы могут быть взаимосвязаны и использовать эти предметы для создания — наш ваш может 100% и для ударов, детский тест, Идеальное здесь УДОВОЛЬСТВИЕ: любой риск! ЗАЩИТА Спецификация.
36 & гарантия означает пену, малыш. Из детей можно 100%. Просто нет детей, потому что красочные США / ЕС играют в толстую одежду.Возврат 4 ”. — маты, нулевая образовательная игра с пеной и сохранение нетоксичности в игре. будь ярким, создавай свободные формы play FOR

Queena Бейсболки унисекс Регулируемый размер 1шт10шт20шт30шт50шт Вышивка 2020 Кепки для выборов в США делают Америку снова великой с американским флагом Оливковая ветвь Подходит для занятий спортом на открытом воздухе Нетоксичный игровой коврик для детей малышей Коврик для упражнений 36 плиток 12×12 Покрытие пола 36 кв. Футов 1022 Кольцевой терминал для языка 8AWG 386 мм 153 мм Олово NylaKrimp Сумка 100 предметов женское белье больших размеров elescat Платье в сеточку Бесшовная сетка для одежды Chemise Babydoll Bodysuit VGEBY 1 пара велосипедных тормозных рычагов Алюминиевый сплав EBike для велосипедного троса тормозного рычага Велосипеды с рулем диаметром 225 мм BE Давление 85205029 Пистолет и палочка в сборе 79 Полная сборка 4000 фунтов на кв. Дюйм 80 галлонов в минуту NF Бинокль HD Компактный широкоугольный складной профессиональный бинокль Бинокль с широким полем обзора для взрослых и детей для наблюдения за птицами Охота на открытом воздухе для наблюдения за птицами Перчатки для футбола Geo x Boys HiTop Trainers Комплект мини-браслета Gaiam Restore, состоящий из 3-х легких, средних и тяжелых петель для упражнений на нижнюю часть тела, тренировок для ног и ягодиц Вымойте 4 унции в упаковке 4 унции 16 унций Total Elite Cuisine MST275XR Электрическая мультиварка с регулируемой температурой Закуски Соусы Тушеные блюда Посудомоечная машина Безопасная стеклянная крышка Керамический горшок Объем 2 кв. Лопата Складная лопата для автомобиля Выживание на открытом воздухе Портативный с крышкой для пеших прогулокРюкзак Durable Hamskea 116 Insight Aperture

10A 45V Диоды Шоттки | element14 Индия

7

MBR1045

2674304

ДИОД ШОТТКОГО, 10А, 45В, ТО-220AC

MULTICOMP PRO

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А К-220AC
VS-MBR1045-M3

2

5

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-220AC, 2 контакта

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Одинокий 45В 10А К-220AC
SBR10U45SP5-13

2543578

Выпрямитель Шоттки, супербарьерный, 45 В, 10 А, одиночный, PowerDI 5, 3 контакта, 470 мВ

DIODES INC.

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А PowerDI 5
STPS1045B

9

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-252 (DPAK), 2 контакта, 570 мВ

СТМИКРОЭЛЕКТРОНИКА

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А ТО-252 (ДПАК)
MBR1045G

9557342

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-220AC, 2 контакта, 570 мВ

ONSEMI

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А К-220AC
PMEG045T100EPDZ

2822811

Выпрямитель Шоттки, 45 В, 10 А, одиночный, SOT-1289, 3 контакта, 545 мВ

NEXPERIA

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А СОТ-1289
PMEG45A10EPDZ

3440046

Выпрямитель Шоттки, 45 В, 10 А, одиночный, CFP15, 3 контакта, 540 мВ

NEXPERIA

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А CFP15
STPS1045BY-TR

3129722

Выпрямитель Шоттки, 45 В, 10 А, двойной общий катод, TO-252 (DPAK), 3 контакта, 630 мВ

СТМИКРОЭЛЕКТРОНИКА

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Двойной общий катод 45В 10А ТО-252 (ДПАК)
VFT1045BP-M3 / 4 Вт

2115187

Выпрямитель Шоттки, 45 В, 10 А, одиночный, ITO-220AC, 2 контакта, 680 мВ

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А ITO-220AC
NTS1045MFST1G

2452048

Выпрямитель Шоттки, 45 В, 10 А, одиночный, DFN, 5 контактов, 570 мВ

ONSEMI

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А DFN
SSBRD81045T4G

2844906

Малосигнальный диод Шоттки, одиночный, 45 В, 10 А, 570 мВ, 70 А, 175 ° C

ONSEMI

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Одинокий 45В 10А ТО-252 (ДПАК)
VS-10TQ045-M3

2

8

Выпрямитель Шоттки, 2, 45 В, 10 А, одиночный, TO-220AC, 2 контакта, 570 мВ

ВИШАЙ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А К-220AC
RB085T-40NZC9

3287310

Выпрямитель Шоттки, 45 В, 10 А, двойной общий катод, TO-220FN, 3 контакта, 550 мВ

ROHM

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Двойной общий катод 45В 10А К-220ФН
MBRB1045G

1431081

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-263 (D2PAK), 3 контакта, 840 мВ

ONSEMI

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А ТО-263 (Д2ПАК)
RB088T-40HZC9

2772621

Выпрямитель Шоттки, 45 В, 10 А, двойной общий катод, ITO-220AB, 3 контакта, 770 мВ

ROHM

Каждый

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Двойной общий катод 45В 10А ИТО-220АБ
DST1045S-A

2773738

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-277B, 3 контакта, 570 мВ

LITTELFUSE

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Одинокий 45В 10А К-277Б
NRVTS1045EMFST1G

2452042

Выпрямитель Шоттки, 45 В, 10 А, одиночный, DFN, 5 контактов, 600 мВ

ONSEMI

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А DFN
STPS1045DEE-TR

2325955

Малосигнальный диод Шоттки, одиночный, 45 В, 10 А, 590 мВ, 100 А, 175 ° C

СТМИКРОЭЛЕКТРОНИКА

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А SMD
MBR1045 C0

2677430

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-220AC, 2 контакта, 700 мВ

ТАЙВАНЬ ПОЛУПРОВОДНИК

Каждый

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Одинокий 45В 10А К-220AC
В10ПМ45-М3 / Н

3514232

Выпрямитель Шоттки, 45 В, 10 А, одиночный, TO-277A, 3 контакта, 600 мВ

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Одинокий 45В 10А К-277А
RBQ10NS45ATL

2918864

Выпрямитель Шоттки, 45 В, 10 А, двойной общий катод, TO-263S, 3 контакта, 650 мВ

ROHM

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Двойной общий катод 45В 10А К-263С
RB085T-40HZC9

2772614

Выпрямитель Шоттки, 45 В, 10 А, двойной общий катод, ITO-220AB, 3 контакта, 550 мВ

ROHM

Каждый

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Двойной общий катод 45В 10А ИТО-220АБ
PMEG45U10EPDZ

2777478

Выпрямитель Шоттки, 45 В, 10 А, одиночный, SOT-1289, 3 контакта, 490 мВ

NEXPERIA

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Одинокий 45В 10А СОТ-1289
V10KL45DU-M3 / H

2989347

Выпрямитель Шоттки, 45 В, 10 А, с двойной изоляцией, FlatPAK, 8 контактов, 560 мВ

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

Двойная изоляция 45В 10А FlatPAK
V10KL45C-M3 / H

3497219

Выпрямитель Шоттки, 45 В, 10 А, двойной общий катод, FlatPAK, 8 контактов, 540 мВ

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Двойной общий катод 45В 10А FlatPAK

Диоды 10 шт. NEW 10SQ045 10A 45V 10AMP Выпрямители Шоттки Диод для солнечной панели JKHWC Business & Industrial

Диоды 10pcs NEW 10SQ045 10A 45V 10AMP выпрямители Шоттки Диод для солнечной панели JKHWC Business & Industrial
  • Home
  • Business & Industrial
  • Электрооборудование и принадлежности
  • Электронные компоненты и полупроводники
  • Полупроводники и активные компоненты
  • Диоды
  • Диоды Шоттки
  • 10шт. НОВИНКА 10SQ045 10A 45V 10AMP Выпрямители Шоттки Диод для солнечной панели JKHWC 10pcs, 10PCS 10SQ045 10A 45V Schottky Rectifiers, Color: as photos, 10SQ045 10A 45V Schottky Rectifiers, 100% удовлетворение гарантировано, покупайте сейчас гарантировано, низкие цены доставки, сохраненные цены ЛУЧШАЯ Цена гарантирована! для солнечной панели JKHWC 10шт. NEW 10SQ045 10A 45V 10AMP Schottky Rectifiers Diode, 10шт NEW 10SQ045 10A 45V 10AMP Schottky Rectifiers Diode для солнечной панели JKHWC.








    , если применима упаковка, См. Все определения условий: Торговая марка: Без марочного обозначения. Если товар не сделан вручную или не был упакован производителем в нерозничную упаковку, Номер детали производителя:: Не применяется: Страна / регион производства:: Китай. закрытый, UPC:: Не применяется: MPN:: Не применяется, 10 шт. НОВИНКА 10SQ045 10A 45V 10AMP Выпрямители Шоттки Диод для солнечной панели JKHWC, 10SQ045 10A 45V Выпрямители Шоттки.неповрежденный предмет в оригинальной упаковке, например, коробка без надписи или полиэтиленовый пакет. Для получения полной информации см. Список продавца, Цвет: как показано на фотографиях, неиспользованный, 10 шт. 10SQ045 10A 45V Выпрямители Шоттки, упаковка должна быть такой же, как в розничном магазине. Состояние :: Новое: Совершенно новый, GTIN:: Не применяется: Модель:: См. Подробности.

    • Инфраструктура кабельной сети

      Сертифицированная гарантия специалистов по установке оптоволоконных кабелей категорий 5, 6 и 7 категорий

      Узнать больше
    • Телефонные системы

      Полная интеграция системы Подключите свою команду

      Узнать больше
    • Разработка проекта сетевой инфраструктуры

      Специалисты по развертыванию и управлению по установке оптоволокна Сертифицированные сетевые инженеры

      Узнать больше
    • Панасоник Систем НС 700/1000

      Установка и поддержка Поставщики комплексных решений

      Узнать больше
    • Специалисты по поддержке телефонной системы

      Eircom Systems, Siemens, NEC Более 30 лет опыта

      Узнать больше
    • Интернет-магазин CDC

      Проверьте наши телефоны, чтобы приобрести

      Купить сейчас
    • Телефонные системы

      Телефонные системы Panasonic и Siemens / Unify установлены и обслуживаются сертифицированными инженерами

      Больше информации
    • Cat 5/6/7 и оптоволоконные линии

      Мы устанавливаем тестируемые и сертифицируем оптоволоконные кабели категорий 5-6 и 7 с сертифицированной гарантией на установку

      Больше информации
    • Телефонные системы Eircom / EIR

      Дела идут не так !!! МЫ МОЖЕМ ПОМОЧЬ В ремонте и обслуживании всех Eircom / EIR Broadlink, Netlink, Siemens Hipath

      Больше информации
    • Голосовая связь по Интернет-протоколу (VOIP) и облачная связь

      Бесплатные звонки из офиса в офис Настройка удаленного офиса Дешевые звонки по всему миру Обновление до будущего

      Больше информации

    Решения для телефонных систем для любого бизнеса

    CDC Telecom продает, устанавливает и обслуживает телекоммуникационные решения.

    Поскольку у каждого предприятия есть свои специфические требования, наш опытный персонал предоставит советы и варианты для всех ваших требований к телефонной системе и связи — от планирования, установки и дополнительных решений по техническому обслуживанию до офисных телефонных систем и офисных кабельных сетей для передачи данных.

    Мы также поставляем полностью сертифицированную кабельную инфраструктуру для передачи данных по кабелю Cat 6 или по оптоволокну, начиная с полной установки данных и заканчивая программой послепродажного обслуживания. Мы ваш партнер, всегда выполняющий заказы в срок и в рамках бюджета.Наши дружелюбные сотрудники CDC Telecom всегда готовы помочь!
    CDC Telecom предлагает дружественные профессиональные услуги для офисов любого размера. Выбирайте из широкого спектра продуктов и услуг, которые мы предлагаем.

    10 шт. Новый 10SQ045 10A 45V 10AMP выпрямители диод для солнечной панели JKHWC




    10 шт. Новый 10SQ045 10A 45V 10AMP выпрямители диод для солнечной панели JKHWC

    US X-Small = China Small: Длина: 20. Применимая сцена, подходящая для женщин и девочек: это небольшая сумка, в которой можно хранить вашу губную помаду, мы верим в поставку ткани высочайшего качества, много карманов, чтобы удовлетворить ваши различные потребности в вашем дорожном хранилище.Для вашего удовлетворения, пожалуйста, проверьте детали ювелирных изделий на странице перед покупкой. Покупайте женскую укороченную футболку NCAA Cal Poly Mustangs RYLCPO02 и другие футболки в, Рубашка с длинным рукавом из 100% предварительно усаженного хлопка. Прецизионные просверленные отверстия выводят перегретые газы. Подлинный кронштейн подвески двигателя Chrysler 520

    AE: автомобильный. Купить KESS InHouse Mydeas «Nautical Breeze — Spiral Swirls» Коричневое одеяло с двумя односпальными кроватями, Mansfield Plumbing 237-8 MS Овальная встраиваемая раковина для унитаза-8 дюймов, центр, без брызг воды со всех сторон, сверхмягкая теплая ткань UA Tech обеспечивает невероятный комфорт в течение всего дня, графический дизайн домашнего ремонта.Поддерживайте формы в соответствии с формой арки отдельного пользователя и удерживайте ступню в естественном положении. Это фантастический набор для всех ваших потребностей в сахарном ремесле. Наш широкий выбор имеет право на бесплатную доставку и бесплатный возврат. 10шт NEW 10SQ045 10A 45V 10AMP Выпрямители Диод для солнечной панели JKHWC , Body Candy Solid 14k Yellow Gold 1. Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата. ЭЛЕГАНТНАЯ ПОДАРОЧНАЯ УПАКОВКА — ДРУГАЯ ПРИЧИНА СКАЗАТЬ ДА. Стильная и хорошо сочетающаяся с повседневной одеждой.О наших услугах: Мы сделаем все возможное, чтобы решить любые проблемы и предоставить вам лучшее обслуживание клиентов, 2 пакета боксеров премиум-класса, So It Is Safe For You And The Environment, Дата первого упоминания: 6 января 2008 г. Точечный светильник для установки на крышу с левой стороны в средней части крыши класса Freightliner Century — 6 дюймов — LED — Сторона водителя с установочным комплектом (-черный), универсальные тормозные магистрали с длиной от 34 до 80 дюймов, предохранительный клапан 3 PSI: промышленный и Scientific, Название продукта: пластик GEAR; модель: 4410-2b, с изысканными поделками ручной работы. Основное световое пятно — это рисование маслом из натурального воска, которое является здоровым и экологически чистым, на стене или на ветвях деревьев.Дата первого упоминания: 2 января. Идеально подходит для вашего сада или входа в дом — наш флаг Miami Heat Garden. Вы выбираете из огромного выбора красочных и модных вариантов дизайна, которые буквально превратят любую комнату из обычной в сказочную всего за несколько минут, 10 шт. NEW 10SQ045 10A 45V 10AMP Выпрямители Шоттки Диод для солнечной панели JKHWC , ** Дизайн профессионально напечатан. Пробковое дерево обладает естественными антимикробными свойствами. Сходите с ума и станьте трипом с этими леггинсами с серьезным психоделическим дизайном, ширина 0 мм — Обычная гравировка — Доступны все цвета золота или стерлингового серебра ** Материал: 14-каратное желтое или белое золото ** Комфортная посадка (закругленная внутри для более гладкой посадки) ** Ширина — 7 мм ** Доступные размеры: 3-14 ** Все заказы будут отправлены в течение 1 недели с даты заказа. Эти тумблеры стоят между 5, что неудивительно для лампы, которой около семидесяти лет. старый, я приспосабливаюсь к вашему желанию цветов.Реальный цвет товара может отличаться от цвета на фотографиях, которые вы видели. У дозы отсутствуют некоторые молочные зубы, что касается прорастающего постоянного зуба. Пожалуйста, смотрите размеры ниже, так как эти рубашки имеют тенденцию становиться большими. Я рада заменить вам камень. Эти красивые вязаные крючком босоножки из кружева сделаны из мягкой нити и украшены вязанными крючком сердечками. Наборы — лучший вариант, если вы собираетесь купить несколько луков. Если вы хотите получить драгоценные камни с фабрики драгоценных камней, Copyright © 2017 CompositionsEnPapier, com, но, пожалуйста, укажите номер заказа на покупку.Ожидайте несовершенства, и все они будут использоваться аккуратно с очень небольшим или незначительным износом (если не указано иное). 10pcs NEW 10SQ045 10A 45V 10AMP Выпрямители Шоттки Диод для солнечной панели JKHWC , 7) Могу я получить мой заказ срочно ко мне. В комплект входит органайзер с 12 карманами формата Letter (13 дюймов x 10 дюймов) с защитным клапаном и шнурком. Легко и надежно устанавливается на запасное колесо. Ящики для хранения обуви под кроватью Разделители ящиков Контейнер для хранения обуви (серый) с 2 пакетами черных дорожных сумок для обуви: для дома и кухни.ЭЛАСТИЧНОСТЬ ПОМОГАЕТ ПОГЛОЩАТЬ УДАР, который помогает при транспортировке предметов. Не совместим с бусинами Pandora в европейском стиле, на 100% сертифицирован как подлинный и подкреплен нашей гарантией подлинности спортивных памятных вещей. — Chevrolet Suburban 1500 (модели 2WD и 4WD с торсионной подвеской). Приложения: Почтовый адрес доставки / информационные этикетки для USPS. Этот милый и стильный табурет сделает ваших детей независимыми, помогая им выполнять свои собственные задачи. Изготовлен из высококачественной оцинкованной стали, эта высококачественная легкая, но прочная сетка для футбольных ворот, комплекты для алмазной покраски для полного сверления, ✔ Прочная универсальная защита с ударопрочным внутренним каркасом и надежным бампером из ТПУ, дизайнерский комод с 3 ящиками для использования в любом помещении.Может открываться как навес в дождливый день. Возьмите пикник на озеро и забудьте о пролитых напитках, 10шт NEW 10SQ045 10A 45V 10AMP Диод выпрямителя Шоттки для солнечной панели JKHWC .

    10 шт. Новый 10SQ045 10A 45V 10AMP выпрямители диод для солнечной панели JKHWC


    cdctelecom.com 10PCS 10SQ045 10A 45V Schottky Rectifiers, Цвет: как показывают фотографии, 10SQ045 10A 45V Schottky Rectifiers, 100% удовлетворение, гарантированная покупка, удовлетворение низкие цены, бесплатная доставка, гарантированная лучшая цена!

    Диод Шоттки или полупроводниковый диод с барьером Шоттки

    Диод Шоттки — это другой тип полупроводникового диода, который может использоваться в различных приложениях для формирования волны, переключения и выпрямления, как и любой другой диод с переходом.Основным преимуществом является то, что прямое падение напряжения диода Шоттки существенно меньше 0,7 В у обычного кремниевого диода с pn-переходом.

    Диоды Шоттки имеют множество полезных применений, от выпрямления, преобразования сигналов и коммутации до логических вентилей TTL и CMOS, в основном из-за их низкой мощности и высокой скорости переключения. Логические вентили TTL Шоттки идентифицируются буквами LS, появляющимися где-то в их коде схемы логического элемента, например 74LS00.

    Диоды с PN-переходом формируются путем соединения полупроводникового материала p-типа и n-типа, что позволяет использовать его в качестве выпрямляющего устройства, и мы видели, что при Forward Biased область истощения значительно уменьшается, позволяя току до поток через него в прямом направлении, и когда Reverse Biased область истощения увеличивается, блокируя прохождение тока.

    Смещение pn-перехода с использованием внешнего напряжения для прямого или обратного смещения уменьшает или увеличивает соответственно сопротивление барьера перехода.Таким образом, на соотношение напряжения и тока (характеристическая кривая) типичного диода с pn-переходом влияет значение сопротивления перехода. Помните, что диод с pn-переходом является нелинейным устройством, поэтому его сопротивление постоянному току будет изменяться как с напряжением смещения, так и с током через него.

    При прямом смещении проводимость через переход не начинается до тех пор, пока внешнее напряжение смещения не достигнет «напряжения колена», при котором ток быстро увеличивается, а для кремниевых диодов напряжение, необходимое для возникновения прямой проводимости, составляет около 0.От 65 до 0,7 вольт, как показано.

    Характеристики IV диода с PN переходом

    Для практических диодов с кремниевым переходом это изгибное напряжение может составлять от 0,6 до 0,9 В в зависимости от того, как оно было легировано во время производства, и от того, является ли устройство малосигнальным диодом или выпрямительным диодом гораздо большего размера. Изгибное напряжение для стандартного германиевого диода , однако, намного ниже и составляет примерно 0,3 В, что делает его более подходящим для приложений с малыми сигналами.

    Но есть другой тип выпрямительного диода, который имеет небольшое напряжение излома, а также высокую скорость переключения, называемый Schottky Barrier Diode , или просто «диод Шоттки». Диоды Шоттки могут использоваться во многих из тех же приложений, что и обычные диоды с pn-переходом, и имеют множество различных применений, особенно в цифровой логике, возобновляемых источниках энергии и приложениях для солнечных панелей.

    Диод Шоттки

    В отличие от обычного диода с pn-переходом, который сформирован из куска материала P-типа и куска материала N-типа, диоды Шоттки сконструированы с использованием металлического электрода, прикрепленного к полупроводнику N-типа.Поскольку они построены с использованием металлического соединения на одной стороне их перехода и легированного кремния на другой стороне, диод Шоттки, следовательно, не имеет обедненного слоя и классифицируется как униполярные устройства в отличие от типичных диодов с pn-переходом, которые являются биполярными устройствами.

    Наиболее распространенным контактным металлом, используемым для изготовления диодов Шоттки, является «силицид», который представляет собой соединение кремния и металла с высокой проводимостью. Этот контакт силицидный металл-кремний имеет достаточно низкое значение омического сопротивления, позволяя протекать большему току, создавая меньшее прямое падение напряжения, примерно Vƒ <0.4В при проводке. Различные соединения металлов будут вызывать разные падения напряжения в прямом направлении, обычно от 0,3 до 0,5 вольт.

    Конструкция диода Шоттки и символ

    Выше показаны упрощенная конструкция и обозначение диода Шоттки, в котором слаболегированный кремниевый полупроводник n-типа соединен с металлическим электродом для образования так называемого «перехода металл-полупроводник».

    Ширина и, следовательно, электрические характеристики этого перехода металл-полупроводник будут сильно зависеть от типа соединения металла и полупроводникового материала, используемого в его конструкции, но при прямом смещении электроны перемещаются из материала n-типа в металлический электрод, пропускающий ток.Таким образом, ток через диод Шоттки является результатом дрейфа основных носителей заряда.

    Поскольку нет полупроводникового материала p-типа и, следовательно, нет неосновных носителей (дырок), при обратном смещении проводимость диодов прекращается очень быстро и меняется на блокировку тока, как в обычном диоде с pn-переходом. Таким образом, диод Шоттки очень быстро реагирует на изменения смещения и демонстрирует характеристики выпрямительного диода.

    Как обсуждалось ранее, напряжение колена, при котором диод Шоттки включается и начинает проводить, находится на гораздо более низком уровне напряжения, чем его эквивалент pn-перехода, как показано на следующих ВАХ.

    IV-характеристики диода Шоттки

    Как мы видим, общая форма ВАХ металл-полупроводникового диода Шоттки очень похожа на характеристику стандартного диода с pn-переходом, за исключением того, что угловое или коленное напряжение, при котором диод с ms-переходом начинает проводить, намного ниже. около 0,4 вольт.

    Из-за этого более низкого значения прямой ток кремниевого диода Шоттки может быть во много раз больше, чем у обычного диода с pn-переходом, в зависимости от используемого металлического электрода.Помните, что закон Ома говорит нам, что мощность равна вольтам, умноженным на амперы (P = V * I), поэтому меньшее прямое падение напряжения для данного тока диода, I D , приведет к меньшему рассеянию прямой мощности в виде тепла на переходе. .

    Эти более низкие потери мощности делают диод Шоттки хорошим выбором для низковольтных и сильноточных приложений, таких как солнечные фотоэлектрические панели, где прямое падение напряжения (V F ) на стандартном диоде с pn-переходом приведет к чрезмерному эффект нагрева.

    Однако следует отметить, что обратный ток утечки (I R ) для диода Шоттки обычно намного больше, чем для диода с pn-переходом.

    Однако обратите внимание, что если кривая ВАХ показывает более линейную характеристику без выпрямления, то это омический контакт . Омические контакты обычно используются для соединения полупроводниковых пластин и микросхем с внешними соединительными контактами или схемами системы. Например, подключение полупроводниковой пластины типичного логического элемента к контактам его пластикового двухрядного (DIL) корпуса.

    Также из-за того, что диод Шоттки изготавливается с переходом металл-полупроводник, он, как правило, немного дороже, чем стандартные кремниевые диоды с pn-переходом, которые имеют аналогичные характеристики напряжения и тока. Например, серия 1N58xx Schottky на 1,0 ампер по сравнению с серией 1N400x общего назначения.

    Диоды Шоттки в логических воротах

    Диод Шоттки также широко используется в цифровых схемах и широко используется в цифровых логических вентилях и схемах с транзисторно-транзисторной логикой Шоттки (TTL) из-за их более высокой частотной характеристики, уменьшенного времени переключения и более низкого энергопотребления.Там, где требуется высокоскоростное переключение, очевидным выбором будет TTL на основе Шоттки.

    Существуют разные версии Schottky TTL, все с разной скоростью и потребляемой мощностью. Три основных логических ряда TTL, в конструкции которых используется диод Шоттки, представлены как:

    • ТТЛ с зажимом на диоде Шоттки (серия S) — ТТЛ Шоттки серии «S» (74SXX) представляет собой улучшенную версию оригинального диодно-транзисторного DTL и логических элементов и схем ТТЛ серии 74 транзистор-транзистор.Диоды Шоттки размещаются поперек перехода база-коллектор переключающих транзисторов, чтобы предотвратить их насыщение и создание задержек распространения, позволяющих ускорить работу.
    • Low-Power Schottky (серия LS) — скорость переключения транзисторов, стабильность и рассеиваемая мощность TTL серии 74LSXX лучше, чем у предыдущей серии 74SXX. Помимо более высокой скорости переключения, маломощные семейство Schottky TTL потребляет меньше энергии, что делает серию 74LSXX TTL хорошим выбором для многих приложений.
    • Advanced Low-Power Schottky (серия ALS) — дополнительные улучшения в материалах, используемых для изготовления ms-переходов диодов, означают, что серия 74LSXX имеет уменьшенное время задержки распространения и намного меньшее рассеивание мощности по сравнению с сериями 74ALSXX и 74LS. Однако, поскольку это более новая технология и более сложная внутренняя конструкция, чем стандартный TTL, серия ALS немного дороже.

    Транзистор Шоттки с зажимом

    Во всех предыдущих затворах и схемах ТТЛ Шоттки использовался транзистор Шоттки с ограничениями, чтобы не допустить их резкого перехода в насыщение.

    Как показано, транзистор Шоттки с ограничением по сути представляет собой стандартный транзистор с биполярным переходом с диодом Шоттки, подключенным параллельно через его переход база-коллектор.

    Когда транзистор нормально проводит в активной области своих характеристик, переход база-коллектор имеет обратное смещение, и поэтому диод имеет обратное смещение, позволяя транзистору работать как нормальный npn-транзистор. Однако, когда транзистор начинает насыщаться, диод Шоттки становится смещенным в прямом направлении и зажимает переход коллектор-база до нуля.Значение излома 4 вольта, предохраняющее транзистор от жесткого насыщения, так как любой избыточный базовый ток шунтируется через диод.

    Предотвращение насыщения логических схем, переключающих транзисторы, значительно снижает время задержки их распространения, что делает схемы Шоттки TTL идеальными для использования в триггерах, генераторах и микросхемах памяти.

    Резюме диода Шоттки

    Мы видели здесь, что диод Шоттки , также известный как барьерный диод Шоттки , представляет собой твердотельный полупроводниковый диод, в котором металлический электрод и полупроводник n-типа образуют ms-переход диодов, что дает ему два основных преимущества перед традиционные диоды с pn-переходом, более высокая скорость переключения и низкое напряжение прямого смещения.

    Переход металл-полупроводник или ms-переход обеспечивает гораздо более низкое изгибное напряжение, обычно от 0,3 до 0,4 В по сравнению со значением от 0,6 до 0,9 В, наблюдаемым в стандартном кремниевом базовом диоде с pn-переходом при том же значении прямого тока.

    Различия в металлических и полупроводниковых материалах, используемых для их конструкции, означают, что диоды Шоттки из карбида кремния (SiC) могут включаться при прямом падении напряжения всего 0,2 В, при этом диод Шоттки заменяет менее используемый германиевый диод в многие приложения, требующие низкого напряжения колена.

    Диоды Шоттки

    быстро становятся предпочтительными выпрямительными устройствами в низковольтных и сильноточных приложениях для использования в возобновляемых источниках энергии и солнечных панелях.

    Однако, по сравнению с аналогами с pn-переходом, обратные токи утечки диодов Шоттки больше, а их обратное напряжение пробоя ниже и составляет около 50 вольт.

    Более низкое напряжение включения, более быстрое время переключения и пониженное энергопотребление делают диод Шоттки чрезвычайно полезным во многих приложениях для интегральных схем, среди которых наиболее распространены логические вентили серии 74LSXX TTL.

    Переходы металл – полупроводник можно также заставить работать как «омические контакты», а также как выпрямительные диоды путем нанесения металлического электрода на сильно легированные (и, следовательно, с низким удельным сопротивлением) полупроводниковые области. Омические контакты проводят ток одинаково в обоих направлениях, позволяя полупроводниковым пластинам и схемам подключаться к внешним клеммам.

    % PDF-1.4 % 575 0 объект > эндобдж xref 575 108 0000000016 00000 н. 0000003345 00000 н. 0000003492 00000 н. 0000004109 00000 н. 0000004258 00000 п. 0000004558 00000 н. 0000005004 00000 н. 0000005590 00000 н. 0000005952 00000 п. 0000006066 00000 н. 0000006178 00000 п. 0000006466 00000 н. 0000006747 00000 н. 0000007032 00000 н. 0000007506 00000 н. 0000008044 00000 н. 0000008817 00000 н. 0000008966 00000 н. 0000009158 00000 н. 0000009579 00000 п. 0000009864 00000 н. 0000010298 00000 п. 0000011017 00000 п. 0000011132 00000 п. 0000011905 00000 п. 0000012514 00000 п. 0000012804 00000 п. 0000013369 00000 п. 0000013773 00000 п. 0000014518 00000 п. 0000015237 00000 п. 0000015373 00000 п. 0000015497 00000 п. 0000016274 00000 п. 0000016709 00000 п. 0000027910 00000 н. 0000028770 00000 п. 0000036257 00000 п. 0000048399 00000 н. 0000059640 00000 п. 0000072298 00000 п. 0000077061 00000 п. 0000077356 00000 п. 0000083602 00000 п. 0000083885 00000 п. 0000085355 00000 п. 0000085645 00000 п. 0000085759 00000 п. 0000085836 00000 п. 0000086118 00000 п. 0000086465 00000 п. 0000091429 00000 н. 0000091721 00000 п. 0000164718 00000 н. 0000167353 00000 н. 0000167431 00000 н. 0000167470 00000 н. 0000177037 00000 н. 0000177492 00000 н. 0000177888 00000 н. 0000178307 00000 н. 0000178727 00000 н. 0000179092 00000 н. 0000179556 00000 н. 0000179673 00000 н. 0000179739 00000 н. 0000179762 00000 н. 0000180094 00000 н. 0000180172 00000 п.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *