Для чего нужен разрядник в щитке: принцип работы, схема подключения, 1, 2, 3 класса

Содержание

Особенности выбора, эксплуатации и контроля технического состояния устройств защиты от импульсных перенапряжений

В настоящее время на отечественном рынке появился целый ряд компаний-поставщиков, предлагающих широкий ассортимент устройств защиты от импульсных перенапряжений (УЗИП). Это стало явно заметно по результатам прошедших за последние два года выставок.

В большинстве случаев речь идет о фирмах, занимающихся продажей изделий, выпускаемых в Западной Европе, или об иностранных поставщиках, которые осуществляют поставки разнообразных технологических комплексов «под ключ». В результате, очень часто изделия разных производителей при установке на одном и том же объекте комбинируются между собой без какой-либо предварительной проверки их взаимной совместимости по амплитудам пропускаемых импульсных токов и уровням остающихся напряжений (уровней защиты). То есть появляется, так называемая, несогласованность между устройствами защиты и оборудованием.

Ситуацию к тому же частично усложняет то, что большинство видов предлагаемых УЗИП сконструировано в соответствии с немецким стандартом DIN VDE 0675. Данный стандарт имеет много общего со стандартом Международной Электротехнической Комиссии (МЭК) IEC 61643—1:1998 и его более поздними редакциями, но все же, он является национальным стандартом Германии. В России же действует ГОСТ Р 51992—2002 (Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Часть 1. Требования к работоспособности и методы испытаний), который является аутентичным тексту приведенного выше стандарта МЭК 61643—1:1998. И именно он должен приниматься за основу при сертификации данного оборудования. Надо добавить и то, что право выдачи сертификатов соответствия принадлежит техническому комитету ТК 331 «Низковольтная коммутационная аппаратура и комплектные устройства распределения, защиты, управления и сигнализации» при Федеральном агентстве по техническому регулированию и метрологии на основе результатов испытаний в аккредитованных им лабораториях или испытательных центрах. Сейчас уже стали известны факты выдачи подобных сертификатов, не имеющими на это права сертификационными органами. Выявление таких случаев и принятие мер по их исключению так же входит в функции ТК 331.

Что касается отечественных производителей, можно отметить, что в области напряжений свыше 1 кВ ограничители перенапряжений (ОПН) выпускаются в очень широком ассортименте и хорошего качества. Для напряжений менее 1 кВ данная проблема пока остается не решенной в достаточной степени. Устройств защиты от импульсных перенапряжений (УЗИП) отечественного производства, полностью соответствующих требованиям ГОСТ Р 51992—2002 на рынке до недавнего времени найти было невозможно. Сейчас, делаются первые шаги по организации производства устройств II и III классов. Их качество и доступность будут показаны временем. В большинстве же случаев выпускаемые варисторные УЗИП имеют примитивную конструкцию, основу которой составляет дисковый варистор и два приваренных к его боковым плоскостям болта или гайки (или т.п.). Производятся такие устройства на том же оборудовании, что и варисторы для высоковольтных ОПН, и по своей сути являются составными элементами такого высоковольтного ограничителя перенапряжений. Существуют УЗИП, предназначенные для установки на DIN-рейку 35 мм, но и они, и описанные выше конструкции не имеют в своем составе устройства теплового отключения, предназначенного для защиты неисправного варистора от перегрева при возникновении токов утечки и, соответственно, от вероятности возникновения пожара в электроустановке.

И еще необходимо добавить, что большая часть производимых отечественных УЗИП для низковольтных распределительных сетей относится всего лишь к третьему классу защиты согласно ГОСТ Р 51992. Эти устройства способны без разрушения или теплового пробоя варистора пропустить через себя максимальный импульсный ток Imax (волны 8/20 мкс) с амплитудным значением не более 10—15 кА, в то время как форма импульса тока при прямом ударе молнии I

imp описывается волной 10/350 мкс и значительно большими амплитудами тока (согласно [1, 2, 3]: 100, 150 × 200 кА (10/350 мкс) в зависимости от выбранного уровня надежности внешней системы молниезащиты). Таким образом, даже при условии того, что на долю ввода электропитания придется лишь часть тока, вызванного прямым ударом молнии (например 10—20%, с учетом его растекания по другим металлоконструкциям объекта [8]), а амплитудное значение тока Iimp (волны 10/350 мкс) может и не превысить значения Imax (волны 8/20 мкс) = 15 кА, при этом за счет большей почти на порядок длительности импульса тока Iimp, выделенная на варисторе тепловая энергия приведет к его выходу из строя! Этот процесс может сопровождаться взрывным разрушением варистора, что может стать причиной серьезных травм, повреждения изоляции проводников в электроустановке, а также за счет интенсивного искрения привести к возникновению пожара. Вопрос же защиты потребителей электроэнергии при этом может остаться нерешенным, так как часть импульса тока после выхода УЗИП из строя беспрепятственно пройдет непосредственно в защищаемое оборудование и неизбежно повредит его.

Несогласованность терминологии и системы обозначений

Существует очень важное правило: чтобы грамотно и быстро решать любую техническую проблему, необходимо иметь единую терминологию, систему обозначений основных параметров и применяемых сокращений.

Целью данной статьи не является поиск и глубокий анализ всех имеющихся недостатков и ошибок теоретического и конструктивного характера, возникающих при производстве и эксплуатации УЗИП. Но, тем не менее, привлечь внимание потребителей к данной проблеме необходимо. Хотя бы потому, что предусмотренные стандартом IEC 61643—1:1998 термины, определения и обозначения перенесены в ГОСТ Р 51992—2002 и имеют четкие и понятные формулировки, которые и рекомендуется использовать.

Ниже приведены наиболее часто встречающиеся недостатки, касающиеся определений, терминологии и сокращений:

Стандартом для низковольтных распределительных сетей предусмотрен термин «устройство защиты от импульсных перенапряжений», сокращение — УЗИП.

Определение: Устройство защиты от перенапряжений (УЗИП) — это устройство, которое предназначено для ограничения переходных перенапряжений и для отвода импульсов тока. Это устройство содержит, по крайне мере, один нелинейный элемент.

В качестве элементной базы для создания УЗИП, как правило, используют разрядники различных типов, оксидно-цинковые варисторы и полупроводниковые элементы

В рекламной продукции, сопроводительной документации данные устройства могут называться ограничителями перенапряжений (ОПН). Термин используется в высоковольтной технике и обозначает варисторные устройства, предназначенные для защиты оборудования электростанций, подстанций, высоковольтных линий электропередачи и т.д. Он не подразумевает использования искровых или газонаполненных разрядников, а также полупроводниковых приборов (первых — по причине сложности гашения сопровождающих токов больших величин, вторых — по причине маленьких значений выдерживаемых импульсных токов и напряжений). Однако на некоторых типах высоковольтных воздушных линий применяются длинно-искровые разрядники петлевого типа РДИП.

Иногда весь спектр устройств защиты от импульсных перенапряжений (I, II, и III-го классов) называют грозоразрядниками, разрядниками грозового тока и т.п., совершенно не привязываясь к предусмотренной ГОСТ классификации и не учитывая, что данные устройства могут защищать от перенапряжений не только вызванных ударом молнии, но и возникших в результате рабочих переключений оборудования на подстанциях, однофазных коротких замыканиях на высоковольтных линиях или при работе низковольтных нагрузок, имеющих в своем составе ключевые преобразователи (например, тиристорные выпрямители, сварочные аппараты).

И еще, обязательно надо отметить недостаточную корректность термина устройство защиты от перенапряжений (УЗП), который использован в новой «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», СО-153—34.21.122—2003. Приведенный выше термин не раскрывает главную суть и характеристику данного типа устройств. Перенапряжения, согласно ГОСТ-13109—97 «Нормы качества электрической энергии в системах электроснабжения общего назначения», могут быть импульсными и временными. Импульсные перенапряжения данным ГОСТом не нормируются, но в то же время ГОСТ предусматривает нормирование временных перенапряжений, длительность которых превышает 10 мс, а амплитуда превышает значение 1.1 Uном (где Uном — номинальное напряжение сети). Устройства, предназначенные для защиты от импульсных перенапряжений, как правило, сами нуждаются в дополнительной защите от временных перенапряжений, в случае превышения ими максимального длительного рабочего напряжения Uс, предусмотренного производителем. Такие перенапряжения приводят УЗИП к выходу из строя, часто сопровождающемуся большим нагревом и разрушением как самого нелинейного элемента, так и корпуса устройства, а иногда и возгоранием.

Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к однофазной нагрузке может оказаться приложенным межфазное напряжение величиной до 380 В. При этом устройство защиты от импульсных перенапряжений откроется, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер (и более). Практика показывает, что терморасцепитель варисторного УЗИП не успевает отреагировать в подобных ситуациях из-за тепловой инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора. При этом возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств.

На фотографии (рис. 1) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

На рис. 2 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

Сказанное выше относится не только к варисторным устройствам, но и к УЗИП на базе разрядников, которые не имеют в своем составе терморасцепителя. Для того, чтобы предотвратить подобные последствия, рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339.0—92 (МЭК 60269—1—86) или VDE-0636 (Германия) соответственно). На рисунке 3 показан вариант включения предохранителей в схему электроустановки.

Номиналы предохранителей и тип их время токовых характеристик определяются конкретным производителем УЗИП и отражаются в технической документации. Как уже указывалось выше, для этих целей обычно используются предохранители с характеристикой gG или gL (с кратностью 1,2 -: 3), предназначенные для защиты проводников и коммутационного оборудования от перегрузок и коротких замыканий. Они обладают значительно меньшим временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин, соответственно являются более простыми и надежными по конструкции.

Примерный вариант выбора номиналов предохранителей (зависит от требований производителя УЗИП) для схемы, рассмотренной на рисунке 3, показан ниже:

  • при номинале предохранителей FU1-FU3 более 315 А gG (или их отсутствии), номиналы FU4-FU6 выбираются — 315 А gG, номиналы FU7-FU9 выбираются — 160 А gG;
  • при номинале предохранителей FU1-FU3 менее 315 А gG, но более 160 А gG, предохранители FU4-FU6 можно не устанавливать, номиналы FU7-FU9 выбираются — 160 А gG.
  • при номинале предохранителей FU1-FU3 менее 160 А gG, предохранители FU4-FU6 и FU7-FU9 можно не устанавливать.
  • при наличии разделительных дросселей LL1-LL3 номинал предохранителей FU1-FU3 должен соответствовать номинальному току дросселей.

Следует обратить внимание на то, что ведущие и общепризнанные производители УЗИП в своих схемных решениях показывают именно предохранители, а не автоматические выключатели, в том числе и перед точкой установки УЗИП. Здесь можно говорить о непредвзятом выборе технического решения, так как никто из данных производителей не выпускает ни предохранители, ни автоматы.

Практический же опыт и данные экспериментальных испытаний показывают, что автоматические выключатели довольно часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции. Кроме этого, при установке автоматических выключателей последовательно с УЗИП (вместо FU4-FU6 и FU7-FU9 на рис. 3) за счет элементов их внутренней конструкции, имеющих индуктивные свойства, а следовательно, и повышенное индуктивное сопротивление при протекании импульсных токов, в точках подключения данной цепочки к защищаемой линии может повышаться значение остающегося напряжения, приложенного к нагрузке. Более подробно вопросы правильного выбора предохранителей и автоматических выключателей в цепях защиты УЗИП будут рассмотрены в следующих статьях.

Вывод: Безусловно, электроустановка должна быть дополнительно защищена от воздействия временных перенапряжений при помощи специальных устройств, к которым можно отнести, например, реле контроля напряжения с функцией управления контактором или реле контроля фаз и другие подобные им приборы, широко представленные на рынке (рисунок 4).

Требования к обозначениям параметров УЗИП

Для того, чтобы правильно выбрать устройство защиты от импульсных перенапряжений для конкретной цели, проектировщику или потребителю необходима следующая информация, которая обязательно должна быть показана в каталоге и нанесена на лицевой части корпуса УЗИП:

Un — номинальное напряжение сети. В большинстве случаев оно выбирается равным 230 В. Хотя производятся устройства с другими номинальными напряжениями.

Uс — максимальное длительное рабочее напряжение — это максимальное напряжение действующего значения переменного или постоянного тока, которое может длительно подаваться на выходы УЗИП.

Iimp — импульсный ток. Определяется пиковым значением тока Ipeak и зарядом Q (применяется, как правило, испытательный импульс с формой волны 10/350 мкс). Применяется для испытаний защитных устройств класса  I.

Imax — максимальный импульсный разрядный ток. Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

In — номинальный импульсный разрядный ток. Это пиковое значение тока, протекающего через УЗИП, с формой волны 8/20 мкс. Применяется для испытания УЗИП класса II. Ток данной величины защитное устройство может выдерживать многократно. При воздействии данного импульса определяется уровень защиты устройства. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Up — уровень напряжения защиты. Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока (In).

If — сопровождающий ток. (Параметр для УЗИП на базе разрядников). Это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т. е. электроэнергетической системой. Теоретически значение этого тока стремится к расчетному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). На практике же, сам разрядник своим внутренним сопротивлением уже существенно ограничивает этот ток.

Код IP — степень защиты, обеспечиваемая оболочкой. Определяется производителем, согласно ГОСТ 14254.

ν — диапазон рабочих температур УЗИП.

ta — время реагирования защитного устройства на импульсное воздействие.

Класс защитного устройства I, II или III. Указывается в соответствии с ГОСТ Р 51992—2002 (МЭК 61643—98).

Наиболее часто встречающиеся недостатки в обозначении параметров и маркировке УЗИП

Не указывается класс УЗИП (I, II или III, в соответствии с ГОСТ Р 51992—2002 (МЭК 61643—1—98) вообще, или обозначается буквами B, C, D без ссылки на некоторый стандарт. Буквенное обозначение, например, принято в немецком национальном стандарте DIN VDE 0675, который не может быть использован в России как нормативный документ.

Не указывается диапазон рабочих температур прибора ν.

Данные основных параметров УЗИП, приведенные на фирменных табличках и в сопроводительной документации, часто значительно отличаются (завышаются) от данных, получаемых при испытании защитных устройств соответствующими импульсными токами и напряжениями в специальных лабораториях. Это касается, прежде всего, указываемых максимальных значений испытательных импульсных разрядных токов Iimp (10/350), I

max (8/20), In (8/20), а так же данных, определяющих максимальную удельную энергию W/R и максимальный заряд Q для УЗИП I и II классов. Частично этот недостаток можно объяснить разбросом параметров самих нелинейных элементов, которые обязательно существуют при их серийном производстве.

Кроме перечисленного выше, часто не указывается, какие критерии были положены в определение параметра Up (уровень напряжения защиты).

Совершенно ясно, что для УЗИП на базе разрядника параметр Up будет зависеть в первую очередь от крутизны фронта импульса и времени реагирования ta самого разрядника, которое в свою очередь зависит от его конструкции (рисунок 5).

Для варисторного УЗИП уровень напряжения защиты Up будет напрямую зависеть от амплитудного значения импульсного тока, и не будет зависеть от длительности и фронта импульса (падение напряжения на открытом варисторе зависит от его сопротивления и величины протекающего тока). Поэтому некоторые поставщики УЗИП часто показывают более низкое значение U

p, что, конечно же, является более привлекательным для потребителя. При этом они не акцентируют внимание на том, при каком значении импульсного тока оно было измерено (In; Imax или при каком то меньшем — рисунок 6).

Сказанное выше подтверждается осциллограммами, полученными при испытании УЗИП на базе разрядника и варистора комбинированной волной напряжения и тока (формы 1.2/50 мкс и 8/20 мкс соответственно (рисунок 7 а-в).

( Продолжение.)

А. Л. ЗОРИЧЕВ,
заместитель директора ЗАО «Хакель Рос».

Инновационные УЗИП на основе искровых разрядников для систем электроснабжения

К устройствам защиты от импульсных перенапряжений (УЗИП), используемым для защиты силового и информационного оборудования от атмосферных и коммутационных перенапряжений в числе прочих предъявляются требования по отсутствию оказания заметного влияния на режим работы защищаемого оборудования [1]. Например, УЗИП, защищающие высокоскоростные интерфейсы передачи данных, должны быть построены на элементной базе, не снижающей скорость передачи (диоды-супрессоры), а УЗИП, устанавливаемые для защиты силовых цепей, должны иметь минимальные токи утечки.

При использовании в качестве УЗИП класса I, защищающих вводы электропитания от токов молнии (10/350 мкс), а также комбинированных УЗИП, предназначенных для защиты электросетей объекта, включая чувствительные электроприемники, от токов молнии, а также наводок и коммутационных перенапряжений, искровой разрядник является предпочтительным элементом. Он позволяет отводить предельные токи молнии, регламентируемые стандартами (до 100 кА, [2,3]), не имеет токов утечки, отличается высоким ресурсом даже при частом срабатывании с предельными параметрами молнии, а также, по сравнению с варисторами, не чувствителен к перепадам напряжения в сети. Последнее из указанных преимуществ имеет большое практическое значение, учитывая не слишком высокое качество напряжения в отечественных сетях.

Но у обычного искрового разрядника помимо перечисленных достоинств есть и один серьезный недостаток: его срабатывание под действием импульса перенапряжения вызывает устойчивое короткое замыкание в сети за счет горения электрической дуги между электродами разрядника. Этот ток короткого замыкания называется сопровождающим и погасить его дугу обычный искровой разрядник самостоятельно не может. В результате происходит срабатывание коммутационного аппарата на вводе установки, что вызывает отключение электроснабжения всех потребителей, питающихся от щита, в котором установлен разрядник. Последствия такого отключения особенно опасны для систем электроснабжения крупных промышленных предприятий, где даже кратковременный перерыв в электроснабжении может привести к серьезным простоям и крупным экономическим ущербам.

При разработке нового поколения УЗИП компания DEHN + SÖHNE усовершенствовала конструкцию искрового разрядника таким образом, чтобы путем быстрого автоматического гашения дуги сопровождающего тока можно было добиться непрерывности электроснабжения защищаемой установки при срабатывании УЗИП и тем самым существенно повысить надежность защиты. Все УЗИП класса I, а также комбинированные устройства, производимые компанией DEHN + SÖHNE, выполнены на основе искровых разрядников по запатентованной, не имеющей аналогов на электротехническом рынке технологии автоматического гашения дуги сопровождающих токов RADAX-Flow (в названии заложена аббревиатура от слов «Radial» — радиальный и «Axial» — осевой, имеется ввиду радиально-осевое воздействие на дугу сопровождающего тока с целью ее гашения).

Рис. 1 Капсула искрового разрядника с технологией автоматического гашения дуги сопровождающих токов RADAX-Flow в разрезе

Искровой разрядник с технологией автоматического гашения дуги сопровождающих токов RADAX-Flow (рис. 1) имеет трехэлектродную конструкцию. Два основных электрода, как и в случае обычного разрядника, соединяются с фазным (L), нулевым рабочим (нейтральным) (N), нулевым защитным (PE) или совмещенным нулевым рабочим и защитным (PEN) проводниками (в зависимости от схемы сети). Третий (управляющий) электрод подключен к блоку контроля и управления, смонтированному внутри капсулы разрядника. При воздействии на схему импульса перенапряжения происходит пробой вспомогательного промежутка FS1 между управляющим и одним из основных электродов, что в свою очередь приводит к интенсивной ионизации и пробою основного промежутка FS2, в результате чего между двумя основными электродами загорается дуга. При контакте канала дуги со стенками специальной камеры, выполненными из газогенерирующей пластмассы, выделяется большое количество газа и образовавшаяся газовая струя высокого давления вытягивает канал дуги, в результате чего она гаснет. Таким образом можно погасить дугу сопровождающих токов до 100 кА (действующее значение), что делает область применения УЗИП очень широкой, включая мощные промышленные установки с высокими ожидаемыми токами короткого замыкания. Принципиально важно, что процесс дугогашения и ликвидации короткого замыкания в системе занимает не более нескольких миллисекунд, что в несколько раз быстрее того времени, за которое успеет сработать коммутационный аппарат на вводе установки. Таким образом обеспечивается непрерывность электроснабжения потребителей и высочайшая надежность защиты.

Рис. 2 Комбинированное УЗИП DEHNventil®modular для пятипроводной сети с системой заземления TN-S

На рис. 2 в качестве примера показано комбинированное устройство защиты от импульсных перенапряжений семейства DEHNventil®modular, предназначенное для установки в пятипроводных сетях с системой заземления TN-S (в производственной линейке DEHN + SÖHNE имеются аналогичные УЗИП и для других типов трехфазных и однофазных сетей). УЗИП состоит из базового элемента и сменных модулей с искровыми разрядниками с технологией автоматического гашения дуги сопровождающего тока RADAX-Flow. Такое устройство позволяет отводить импульсные токи молнии (10/350 мкс), вызванные прямым ударом в систему молниезащиты здания либо в провода воздушной линии электропередачи до 25 кА/фазу (полный ток 100 кА), а также, разрядные токи, вызванные наводками (8/20 мкс) до 25 кА/фазу (полный ток 100 кА).

Следует также отметить высочайший защитный эффект комбинированных УЗИП на основе искровых разрядников, позволяющий использовать их в т.ч. и для защиты чувствительных электроприемников (специально защищенного оборудования, I категории перенапряжения согласно [4]). Подробное исследование защитного эффекта комбинированных УЗИП освещалось в [5]. Как было показано, УЗИП на основе искровых разрядников ограничивают энергию, выделяющуюся в чувствительном оборудовании, до значения в десятки раз меньшего максимально допустимого в отличие от УЗИП на основе параллельно соединенных варисторов, при использовании которых наблюдалось разрушение чувствительного оборудования из-за недопустимого перегрева. Эти выводы в полной мере справедливы и для УЗИП DEHNventil®, которые при срабатывании «поглощают» более 99% тока молнии, протекающего через ввод электроснабжения установки, и тем самым предотвращают его воздействие на оконечное чувствительное оборудование и обеспечивают высочайшую надежность защиты. Также нужно отметить, что подобный эффект наблюдается во всем диапазоне импульсных токов вплоть до значения Iimp.

С учетом высокой пропускной способности УЗИП DEHNventil®, рассчитанной исходя из одновременного стечения самых неблагоприятных факторов, а также высокой надежности искрового разрядника как элемента защиты, вероятность выхода УЗИП из строя достаточно мала. Однако, принимая во внимание статистический характер параметров тока молнии, теоретически вероятна ситуация, в которой на разрядник будут воздействовать токи молнии более высоких значений, что может привести к его повреждению. В этом случае требуется произвести как можно более быструю замену поврежденного устройства. Двухчастная модульная конструкция УЗИП DEHNventil® позволяет выполнить легкую замену только поврежденного модуля, не производя при этом никаких отключений от базового элемента. Идентифицировать поврежденный модуль можно по визуальному флажковому индикатору, размещенному на лицевой стороне (зеленый цвет флажка соответствует рабочему состоянию, красный — выходу из строя). Также для УЗИП типов DV M… 255 FM возможен дистанционный мониторинг состояния сменных модулей посредством встроенного «сухого» контакта.

Устройства защиты от импульсных перенапряжений класса I и комбинированные УЗИП, построенные на базе искровых разрядников с технологией автоматического гашения дуги сопровождающих токов RADAX-Flow, находят широкое применение на промышленных объектах по всему миру. На рис. 3 в качестве примера показан щиток защиты (ЩУЗИП) с комбинированным УЗИП DVMTNS 255 FM, установленный на компрессорной станции «Ставропольская» (ООО «Газпром трансгаз Ставрополь)» в месте ввода кабелей, питающих прожектора освещения, в здание КТП.

Рис. 3 Щиток с комбинированным УЗИП DVMTNS 255 FM со стороны КТП в цепях освещения прожекторов, установленных на молниеотводных мачтах на КС «Ставропольская»

Разработка внутренней молниезащиты — задача весьма ответственная. Для ее реализации следует применять только высококачественные изделия и компоненты, разработанные специалистами, имеющими большой опыт в данной области. УЗИП на основе искровых разрядников с технологией автоматического гашения дуги сопровождающих токов RADAX-Flowкомпании DEHN + SÖHNE — идеальное решение для применения в системах электроснабжения объектов самого различного назначения, отвечающее этим требованиям и позволяющее построить внутреннюю молниезащиту, обеспечивающую надежность и бесперебойность электропитания потребителей.

Источник: А. И. Федоров, ООО «ДЕН РУС»

Гроза, молния и средства защиты электросети своими силами / Хабр

По итогам майских гроз пришлось провести ревизию сгоревшего оборудования и хотя ущерб был не так велик материально, но выход из строя некоторого оборудования нарушил устоявшийся комфорт проживания в собственном доме. Так я решил обратиться к специалистам в своей области, проконсультироваться и расширить систему защиты.

Исходные данные: дом, 3 фазы (15 кВт на дом), заземление штырем в 3 м длиной, автономная электросистема на базе солнечных батарей

На фото результат короткого замыкания со стороны линии 10 КВ. Защита не отработала на районной подстанции. Так выглядит вводной щит со стороны 0.4КВ. Автомат IEK на 100А не смог разорвать дугу между губками. Далее по линии стоял МАП HYBRID 9кВт 48В. Отделались легким испугом: в инверторе поменяли варистор, после чего МАП ожил, правда, перестал нормально работать порт RS232. То есть серьезная авария на подстанции, которая сожгла автоматический предохранитель на 100 Ампер, отразилась на инверторе только сгоревшим варистором и ошибками на контроллере, а весь прочий функционал устройства сохранился, как и вся техника, подключенная после него – достойная похвалы работа.

А ниже на фото узел учета со стороны 10 КВ

Эта авария случилась не в моем доме, но мне эти фотографии передали специалисты компании МикроАРТ. В свое время я решил переключиться на оборудование российского производителя для своей гибридной солнечно-сетевой электросистемы и описывал эти устройства тут и тут.
У меня же был следующий случай: во время грозы молния ударила в мою подстанцию или рядом, в результате чего отработала защита на вводе в дом. Результатом той грозы явилось сгоревшее зарядное устройство аккумуляторов, подключенное к сети в момент грозы, сгоревшее реле автоматики вентиляции (реле питалось от линии, которую поддерживало то самое ЗУ), а инвертор МАП Hybrid 4.5 кВт начал мигать экраном и перестал генерировать. После грозы перезапуск всех систем вернул дом к электроснабжению, инвертор запустился без проблем, а я задумался о серьезной защите домашней электросети.

Немного теории

Во время грозы в обычной квартире или офисном здании должны отработать защиты, установленные стационарной электросетью. В коттеджном поселке, деревне или на дачах защита, как правило, ограничивается вкопанным заземлением на подстанции и предохранителем, отключающим всю сеть от работы. Причем, по правилам подключения, заземление должно быть смонтировано также на каждом втором столбе и отдельно на конечном, где производится подключение абонентского дома. Пройдя по свой деревне и осмотрев более полусотни столбов, я не нашел ни одного заземления, то есть остается полагаться только на себя.

Вторым «убийственным» фактором является наведенное электричество. Во время молнии происходит довольно мощный всплеск ЭМИ, а проводка дома, по сути, является большой антенной. Чем ближе молния, тем больше вероятность скачка напряжения во внутренней сети. С таким явлением постоянно сталкивались и продолжают сталкиваться монтажники домовых локальных сетей, когда свитчи без заземления, во время грозы, сгорают целыми цепочками.

Итак, нам нужно защититься от внешнего импульса, который может прийти с подстанции и от внутреннего скачка, который может случиться при молнии рядом с домом.

Практика

Молниеотвод

Если Ваш дом находится на возвышении, далеко от любых строений и является высшей точкой на местности, то лучше озаботиться молниеотводом. Устройство это надежное, но необходимо четко высчитать площадь покрытия. На эту тему есть масса материалов в сети. Скажу только, что действие молниеотвода распространяется конусом от высшей точки к земле. Для «прикрытия» всего дома надо ставить либо два молниеотвода с металлическим тросом между ними, либо один, но довольно высоко. Если заземление молниеотвода выполнено отдельно от общего заземления, то необходимо применить систему уравнивания потенциалов.

Выдержки из ИНСТРУКЦИИ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ РД 34.21.122-87:
«В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители
электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ. „

“2.5. Для исключения заноса высокого потенциала в защищаемое здание или сооружение но подземным
металлическим коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители защиты от
прямых ударов молнии должны быть по возможности удалены от этих коммуникаций на максимальные расстояния,
допустимые по технологическим требованиям. „

Ввод сети в дом

Опасность ввода высокого напряжения страшна не только в грозу, но и при перехлестывании проводов на столбах или большом перекосе фаз. Обычное дело для деревенских электросетей, когда напряжение по фазам может составлять 180, 200 и 240 В. ГОСТ допускает подачу питания с отклонением напряжения до 10% (если точно, то +10% и -15%) от нормы в 220 в, то есть от 187 до 242 В. Но не вся поставляемая аппаратура может выдержать такие перепады напряжения. Для обычной защиты лучше всего применять стабилизаторы напряжения. Причем есть трехфазные и однофазные стабилизаторы. Чаще всего три однофазных стабилизатора будут работать лучше одного трехфазного, хотя бы потому, что у простейших устройств отслеживается напряжение по одной фазе и изменение (увеличение или снижение) напряжения происходит по всем трем. Упрощенно: при подъеме напряжения со 180 до 220 В, произойдет рост напряжения на другой фазе с 210 до 250 В, что чревато для оборудования. Поэтому отслеживание каждой из фаз будет надежнее. Кроме того, можно выделить несколько типов стабилизаторов:

  • ЛАТР
  • Релейный
  • Симисторный

Первый обладает высокой точностью установки напряжения, поскольку моторчик скользит водилом по обмоткам и задает нужное напряжение. Плюсы: низкая цена, высокая точность выдаваемого напряжения. Минусы: низкая скорость реакции на скачки напряжения, физический износ механики
Второй обладает повышенной скоростью переключения обмоток трансформатора, но так как мощности могут достигать десятка и более кВт, то контакторы реле изнашиваются и рано или поздно могут залипнуть, что приведет к печальным последствиям. Плюсы: доступная цена, достаточная скорость переключения. Минусы: недостаточная надежность ввиду использования механических реле.
Третий тип наиболее интересный, но и наиболее дорогой. Использование мощных ключей позволяет мгновенно реагировать на изменение входного напряжения и переключать обмотки трансформатора. Физического износа, как и залипания контактов попросту нет. Кроме того, переключение происходит при переходе синуса через ноль, поэтому и скачки также исключены. Плюсы: высокая скорость срабатывания, отсутствие физического износа. Минусы: высокая цена.

Для себя я выбрал более дорогой, но и более надежный вариант, стабилизатор с симисторным управлением СН-LCD “Энергия» на 6 кВт. Так как у меня уже стоит инвертор на 4.5 кВт, который в пике может выдавать до 7 кВт, то решено было выбрать стабилизатор с номинальной мощностью 6 кВт и возможностью выдавать в пике до 7.4 кВт.

Об особенностях работы этих стабилизаторов и какие вообще бывают стабилизаторы можно подробно прочитать здесь.
Ну а мне было интересно его разобрать и посмотреть, что там внутри.

Вскрытие стабилизатора показало

Как видно из фото, стабилизатор использует тороидальный трансформатор, который при тех же размерах, что Ш-образный, имеет больший КПД и меньший вес. Сам трансформатор изготовлен в Туле, а стабилизатор разработан и собран в Москве. Таким образом можно смело заявлять о полностью российском производстве, которое сумели организовать и сохранить в компании МикроАРТ.

Итак, я подстраховался от проседания и роста напряжения в диапазоне 125-275 Вольт, но что делать, если будет резкий скачок напряжения, сильно выходящий за эти пределы? Инвертор как-то показал мне по фазе 287 В, после чего ушел в защиту. Но подай на него 380 В и он попросту сгорит, как и стабилизатор. Хотелось защитить дорогое оборудования. Требовался какой-то расцепитель, который при пороговых значениях напряжения отключал бы внешнюю сеть. Лучше уж остаться без сети, чем потом чинить или менять сгоревшее оборудование. Выход был найден — реле контроля сетевого напряжения УЗМ-51M1.

Этот девайс создан для обеспечения работы одной фазы, при этом можно вручную задавать верхний и нижний пороги напряжения, при которых реле будет срабатывать. Время отключения составляет около 20 мс, что является очень неплохим показателем. При этом, небольшие просадки или некоторое превышение напряжения не вызовут моментального отключения, а запустится таймер отключения. При возврате параметров к норме реле самостоятельно подключит нагрузку к сети. Итак, домашние устройства защищены от перепадов и скачков внешней электросети при помощи реле контроля напряжения и стабилизатора. В случае исчезновения сети начинает работать инвертор. А что делать, если внешняя сеть уже отключена, молния бьет рядом и проводка дома работает, как антенна?

Защита внутренней сети

Будем исходить из того, что все розетки имеют правильную разводку, заземление выполнено должным образом и лишний заряд стекает в землю. Но скачок напряжения во внутренней сети легко губит всю технику, поскольку все защиты стоят для обороны от внешних скачков. А вот от внутренних наводок ничего нет. С этой мыслью я обратился к инженерам МикроАРТ, когда забирал стабилизатор и мне порекомендовали «Устройство защиты от молний и наводок» — УЗИП.

Это своеобразный разрядник, который при появлении критического напряжения между фазой и землей пропускает через себя импульс, отправляя его на заземление. То есть во время грозы, когда молния ударит рядом и напряжение в домашней сети поднимется до нескольких киловольт по фазному проводу относительно земли и превысит определенное значение, этот УЗИП просто пустит весь заряд в землю. Поэтому он ставится перед инвертором, одним концом подключаясь к фазе, а другим к заземлению. Стоит учесть, что разряд может быть существенным, поэтому на сечении заземляющего провода экономить не стоит, иначе сопротивление провода может оказаться критичным и не успеть передать импульс в землю.

Так выполнено подключение к внешней сети и генератору:

Я уже упоминал, что у меня есть автономная система на солнечных батареях. По проводам, идущим от солнечных батарей, также может прийти серьезный импульс, выводя из строя солнечный контроллер, а за ним и инвертор. Поэтому на каждый из проводов от солнечных батарей я также повесил УЗИП.

Защита от генератора

На самый аварийный случай, когда внешней сети нет, солнца не видно, а аккумуляторы уже сели, у всех автономщиков есть резервный вариант — бензо\дизель генератор. Он позволит домашней сети функционировать, самому поработать мощным инструментом, да еще и аккумуляторы подзарядить. Подобную топологию резервирования я описывал в своем материале тут. Проблема такого подключения заключается в том, что большинство генераторов выдают крайне нестабильное и «шумное» питание. Иной раз инверторы или зарядники просто не могут работать с таким питанием. Для подавления помех есть специальный сетевой фильтр. Можно обойтись стандартным «пилотом», но он рассчитан, как правило, на мощность до 2-3 кВт, а от генератора зачастую потребляется больше. Итак, я нашел еще и ЭМИ (электромагнитный импульс) фильтр: Сетевой фильтр подавления ЭМП.

Он выдерживает потребляемую мощность до 11 кВт, чего вполне достаточно для питания целого дома, если имеется мощный генератор. Он имеет сквозное подключение и отдельный контакт для заземления.

Итоги проведенных работ

Результатом одной грозы и малых потерь явилось переосмысление способов защиты, как от внешних энергетических коллизий, так и от внутренних. Кроме того, увеличилась защищенность всех электроприборов в доме, как от перепадов напряжения, так и от резких скачков и импульсов. Дополнительно повысилась автономность за счет подключения генератора через фильтр, что гарантирует стабильный заряд батарей и нормальную работу инвертора.
В итоге, электросистема поменялась. До:

Так стало ПОСЛЕ установки защиты:

Схема подключения генератора довольно проста. Любой из проводов объединяется с имеющейся землей и нулем, заведенным в дом. Второй провод после этого становится фазой. Важно выбрать такой переключатель, который будет исключать одновременное замыкание фазы генератора и фазы с подстанции.

Первый запуск всей системы выглядел так:

схема подключения защиты от импульсных перенапряжений

В любой цепи могут случиться скачки напряжения. При большом значении тока возможен выход оборудования из строя. Чтобы предотвратить это, используется УЗИП.

Что это такое

Приборы для защиты от перенапряжений сетей и электрооборудования с напряжением до 1 кВ называются УЗИП. Они предназначены для предотвращения порчи электрооборудования при скачках напряжения, а также в различных непредвиденных ситуациях. Они используются для ограничения переходных перенапряжений и устранения импульсов тока, чтобы снизить величину перенапряжений до уровня, который безопасен для электрических приборов. УЗИП используются на промышленных предприятиях и
в гражданском строительстве.

УЗИП

Основным российским положением, дающим определение УЗИП, является ГОСТ Р 51992-2002 «Оборудование для предотвращения скачков напряжения в низковольтных распределительных сетях».
SPD стремится обеспечить молниезащиту для систем молниеотводов и заземления зданий (сооружений) или воздушных линий электропередачи (LEP) для защиты высокочувствительного оборудования и устройств от скачков напряжения и скачков импульсного напряжения. Широкий ассортимент УЗИП с возможностью быстрого монтажа, который можно установить на DIN-рейку.

Принцип работы

Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.

Виды

В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.

Коммутирующие защитные аппараты

Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.

УЗИП-разрядник

Ограничители сетевого перенапряжения (ОПН)

Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.

Ограничители

Комбинированные УЗИП

Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.

Классы

Такие устройства которые можно разделить на несколько категорий:

  • Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
  • Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
  • Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.

Как выбрать

При выборе УЗИП с любым рабочим элементом (варистор, искровой разрядник, пробойный диод) следует учитывать следующие факторы:

  • Параметры сети (номинальный ток, напряжение, параметры передачи), эффекты защиты (пропускная способность и уровень напряжения защиты).
  • Факторы, влияющие на установку (конструкция, условия подключения).

Принцип защиты силовой цепи заключается в установке УЗИП в соответствии с концепцией области, и при выборе типа важно надежно оценить его текущую нагрузку. Система защиты цепи управления и измерения основана на типе защищаемого сигнала и выборе УЗИП. Сначала необходимо определить параметры защищаемой цепи. В соответствии с номинальным выдерживаемым напряжением, сеть низкого напряжения 380/220 В подразделяется на 4 категории (I — IV) с нормированными значениями 1,5; 2,5; 4,0 и 6,0 кВ. Класс УЗИП соответствует уровню защиты: уровень I-≤4 кВ; уровень II-1,3 … 2,5 кВ; уровень III-0,8 … 1,5 кВ. Уровень защиты выбранного УЗИП не должен превышать выдерживаемое напряжение электросети.

Помимо этого, устройство имеет следующие параметры:

  • Номинальное напряжение.
  • Максимальное непрерывное рабочее напряжение (рабочее напряжение сети в течение длительного времени).
  • Амплитуда импульсного тока, который может пройти, по крайней мере, один раз без повреждений цепи и устройства защиты (для класса I).
  • Амплитуда импульса составляет 8/20 мкс, SPD, по крайней мере, один раз неразрушающий (для класса II).
  • Амплитуда импульса тока, протекающего через УЗИП, который устройство защиты от перенапряжений может выдерживать многократно.
  • Верхний уровень напряжения защиты — характеризует УЗИП, ограничивая напряжение на клемме при протекании тока.
  • Допустимый сопутствующий ток (для разрядников).
  • Время срабатывания.

Определение системы заземления

Тип системы заземления, используемой в доме, может быть определен тем, как разделены проводники PEN. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из главного распределительного щита дома, а для однофазной цепи только три провода. PEN-проводники разделяются на PE и N компоненты.

На заметку! Если он не разделен, проводка будет работать в соответствии с системой TN-C, с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита.

Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.

Значение защищаемого оборудования

Защищаемые объекты делятся на несколько классов:

  1. Специальные (критические) объекты вредные для окружающей среды, жизни человека и животных. Примеры: химическая и нефтехимическая продукция, биохимические и бактериологические центры, производство взрывчатых веществ, атомные электростанции и др. Надежность защиты от молниевого удара достигает 0,98 (для отдельных предметов в зонах категории A она может быть установлена ​​на более высоком уровне 0,995). Негативные последствия ударов молнии: пожары, взрывы, выбросы токсичных веществ, повышение радиации на больших площадях, экологические катастрофы, повлекшие за собой непоправимые материальные и человеческие жертвы
  2. Виды специальных объектов, которые представляют опасность для окружающей среды. Примеры: нефтепереработка, АЗС, мукомольные заводы, деревообрабатывающие заводы, производство изделий из пластмасс и др.
    Надежность защиты гарантированно будет равна 0,95. Негативное воздействие ударов молнии: пожары, взрывы в районе и вокруг него. Стены и потолки могут рухнуть, получить серьезные травмы и даже смерть сотрудников и посетителей. В этом случае значительные финансовые потери будут зафиксированы.
  3. Объект — специальная критическая инфраструктура. Типы объектов: предприятия связи и ИКТ, трубопроводный транспорт, линии электропередачи, оборудование центрального отопления, транспортная инфраструктура и др. Надежность защиты от удара гарантирована — 0,9. Негативные последствия ударов молнии: нарушение связи, частичная или полная потеря контроля, прерывание воды и отопления, временное снижение качества жизни и потеря материала.
  4. Общие, промышленные и гражданские объекты и связанная с ними инфраструктура. Примеры: жилые дома, промышленные здания (до 60 м высотой), дома и хижины в селах, объекты социально-культурного назначения, учебные заведения, больницы и музеи, храмы, церкви. Гарантия от ударов молнии −0,8. Негативные последствия ударов молнии: сильные пожары, повреждения зданий, нарушение транспорта, нарушение систем связи, возможная потеря исторического и культурного наследия. Значительные материальные и финансовые потери. Может привести к травмам или смерти людей.

На заметку! Из приведенной выше системы классификации видно, что любой тип защищаемого объекта отличается от другого с точки зрения характеристик и цели молниезащиты установки и типа заземляющего устройства, его конструкция определяется назначением и расположением конструкции.

Риск воздействия объекта

Подключение УЗИП различной классности совместно с системой заземления снижает риск поломки оборудования из-за скачка напряжения в сети или удара молнии на 80-99%.

Подключение в частном доме

Подключение в частном доме может производиться в однофазную и трехфазную сеть. При этом могут для УЗИП схема подключения может быть различной.

Однофазная электрическая схема (TN-S)

На рисунке показан прибор серии Easy9 от Schneider Electric. Следующие проводники подключены: фаза, нулевой проводник и нулевой для защиты. Здесь он устанавливается сразу после включения автомата. Все контакты для подключения на любом приборе указаны. Следовательно, легко определить, где «фаза», а где «ноль». Зеленая отметка на корпусе указывает на хорошее состояние, а красная отметка указывает на неисправность.

УЗИП схема включения TN-S

Предоставленное оборудование относится к классу 2. Одно это устройство не может предотвратить прямые удары молнии. Также рекомендуется защитить оборудование с помощью предохранителя.

Схема включения TN-S с общим УЗО

Схема трехфазного сетевого подключения (TN-S)

На этой схеме также показаны устройство серии Easy9, производимые Schneider Electric, но использовавшиеся в трехфазных сетях. На рисунке показано 4-полюсное устройство с нулевым рабочим проводником.

Существует также 3-полюсный прибор той же серии. Используется в системах заземления TN-C. Нет контактов для подключения нейтрального провода.

Защита от импульсных перенапряжений схема подключения TN-S в трехфазную сеть

Схема трехфазного сетевого подключения (TN-C)

На рисунке показан переход от TN-C к системе заземления TN-C-S, что требуется по современным стандартам. На первом рисунке показан 4-полюсный входной автоматический выключатель, а на втором — 3-полюсный вход.

Четырехполюный разрядник для защиты от перенапряжений схема подключения TN-C

УЗИП — устройство необходимое для полноценной защиты электрического оборудования.

Схема подключения трехполюсного прибора

Конструкция может быть собрана на основе резисторов или использовать метод искровых промежутков. Подключение производится по различным схемам к одно- и трехфазной сети.

схема подключения защиты от импульсных перенапряжений

Предназначение и принцип действия ОИН-1

Рисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Рис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Устройство ограничителя импульсных напряжений необходимо для предохранения сети с показателем 380/220 В. Это классическое напряжение для работы электросетей. Резкие перепады напряжения могут образовываться из-за ударов молний. Из-за грозы также образуется контактная разность в почве.

Как выглядит устройство

Также напряжение может меняться из-за всплеска в электросети. Они образуются при подключении или выключении различных приборов в одну сеть. Резкие скачки могут образовываться при присоединении мощных электрических приборов или каких-нибудь систем.

Принцип действия прибора: изнутри ОИН-1 оснащен варистором. По принципу работы они похожи на разрядники, которые применялись раньше.

УЗИП в щитке

В таком случае устройство будет устанавливаться параллельно предохраняемой электроцепи.

Если же по каким-то причинам величина напряжения в сети станет больше разрешенной, прибор просто замкнет проводку, таким образом предупредив угрозу от включенных за ним бытовых приборов.

Чтобы понять, исправен прибор или нет, необходимо обратить внимание на цвет индикатора. Если он зеленый, то модуль будет в исправном состоянии, а если красный, то его необходимо поменять.

Стандартом предусмотрена классификация устройств по следующим параметрам:

  • числу вводов;
  • по способу осуществления защитных функций;
  • по месту расположения;
  • по способу монтажа;
  • по набору защитных функций;
  • по степени защиты наружной оболочки;
  • по роду тока питания.

Так выглядят устройства для защиты от грозовых и коммутационных перенапряжений.

Читайте еще:что такое узо и зачем нужен автоматический выключатель тока?

По признаку количества вводов приборы защиты делятся на одновводные, то есть, имеющие один ввод и двухвводные. Защита может осуществляться различными способами, существуют устройства коммутирующего типа, приборы, осуществляющие ограничение напряжения, а также аппараты комбинированного типа. Место установки защиты зависит от вида защищаемого оборудования.

  • защиты теплового типа;
  • защиты, реагирующей на появление токов утечки;
  • защиты от сверхтока.

Степень защиты по IP должна соответствовать условиям эксплуатации. Приборы могут питаться переменным или постоянным током.

Для защиты внутридомовой электропроводки и бытовой техники от бросков напряжения, имеющих грозовую и переходную природу, многие производители электротехники выпускают компактные приборы модульного исполнения, которые удобно располагаются в распределительных шкафах.

Подобные УЗИП ставят на DIN-рейку.

Монтаж

Подключаются модульные УЗИП между фазным и защитным заземляющим проводом. Присоединение должно осуществляться после автоматического выключателя. При этом в момент возникновения перенапряжения и открывания варистора устройства, повышенный ток варистора протекает через выключатель, вызывая срабатывание защиты. Отключаясь, автоматический выключатель разрывает связь нагрузки с внешней сетью, являющейся источником повышенного напряжения.

Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.

УЗИП: особенности выбора и применения

Ограничитель типа ОИН-1 используется достаточно часто. Его подключают в вводные щитки или для учёта потребителей. Желательно подключать его до счетчика, чтобы обезопасить и его.

Маркировка от производителя

Если необходимо построить дом и подсоединить всю территорию усадьбы к источнику электрической энергии – в техническом плане для такого подключения уже прописана норма установки ОИН-1 для защиты от скачков напряжения. Но это указание выполняется в основном, как прописано в правилах устройства электроустановок – при воздушном вводе провода.

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Рис. 3: пример использования ОПН

Широкое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.

Технические характеристики

Стандартное напряжение220 В
Номинальный разрядный ток6
Максимальный РТ13
Остаточное напряжение2200
Уровень защитыне ниже IР21
Температурный режимот -50 до 55
Параметры устройства (размеры)80 × 17,5 × 66,5
Вес0,12 кг
Срок службы3–3,5 года

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие  параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Схемы подключения прибора

Подключение может быть однофазное и трехфазное. У прибора ОИН-1 есть ряд похожих устройств от различных производителей бытовых приборов, потому все схемы подключения почти похожи. Стандартная схема описана ниже. Ее можно применять под все типы устройств.

ОИН 1 схема подключения

В первом случае подключение выполнено параллельно к цепи, а во втором – последовательно с размыкателем. Проще говоря, в итоге включения ОИН-1 во время скачков напряжения размыкатель будет обрывать цепь питания, чтобы миновать риск возникновения пожара в системе и прохождения тока по электродуге.

Внимание!  Кроме грамотной установки нулевого и фазного проводников, достаточно важную роль играет длина самого кабеля.

От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя.

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Что использовать перед УЗИП — автоматы или предохранители

Для постоянного снабжения помещения энергией рекомендуется подключать автоматический выключатель, который будет выключать УЗИП.

После попадания молнии

Подключение этого автомата определяется также тем, что в период отвода импульса образуется, как говорят, сопровождающий ток.

Но гораздо легче приобрести модульные предохранители. Рекомендуется выбирать устройство типа GG.

Они могут защищать весь диапазон сверхтоков. Даже если ток вырос несильно, то предохранитель такого типа все равно его выключит.

Щит учета частного дома с УЗИП при системе заземления TN-C-S

Чаще всего защиту от импульсных перенапряжений разумнее всего подключать сразу после вводного автомата, параллельно остальной нагрузке.

Мы рассмотрим пошаговую схему сборки такой схемы электрощита, где, для обеспечения максимальной защиты дома, используется и УЗИП и селективное противопожарное Устройство Защитного Отключения.

1. В первую очередь в электрощит устанавливается всё модульное оборудование.

Важно при этом не забыть, что всё, что стоит до счетчика электрической энергии, обязательно необходимо защитить от возможности несанкционированного подсоединения и кражи электроэнергии.

Обычно для этого монтируется пластиковый бокс, который имеет возможность пломбировки.

Именно в него устанавливается и вводной автоматический выключатель и Устройство защиты от импульсных перенапряжений

1) Стальной электрический щит (степень защиты ip54 или выше)

2) Бокс/кожух для установки вводного АВ на 3 модуля

3) Автоматический выключатель трехполюсный 25А

4) Трехфазный счетчик электрической энергии 380В

5) распределительный блок на DIN-рейку

6) Селективное УЗО от 40А, ток утечки 100мА или 300мА

7) Бокс/кожух для установки вводного АВ на 4 модуля (в зависимости от типа УЗИП)

8) Устройство Защиты от Импульсных Перенапряжений – УЗИП

Возникновение ошибок при подключении

Одна из популярных ошибок – это подключение УЗИП в щит с неправильным контуром заземления. Смысла от этой защиты вообще не будет. И при первом попадании молнии щиток сгорит.

Вторая ошибка – это неверная установка, исходя из системы заземления. Необходимо следовать техдокументации УЗИП, а получить консультацию у профессионального мастера или просто вызвать электрика на дом.

Типы ограничителей

Третье заблуждение – применение УЗИП неподходящего типа. Существует всего три типа импульсных защитных приборов, и все они должны использоваться, подключаться в свои щитки.

Схему подключения ОИН-1 (ограничитель импульсных напряжений) можно найти на специализированных сайтах для электриков. Там же мастера могут дать полезный совет и рассказать о пошаговом подключении своими руками.

В заключение необходимо отметить, что ограничители импульсных напряжений должны быть в каждой электрической цепи. Это поможет предотвратить замыкания и риск возникновения пожаров. Если у человека нет опыта работа с проводкой, то желательно вызвать профессионального электрика.

Устройства защиты от перенапряжений

Обычно в любых электрических сетях напряжение находится в пределах, определяемых техническими нормативами, но иногда оно отклоняется от допустимых значений. Предельно допустимое напряжение находится в пределах ±10 % от номинального значения напряжения, т. е. для однофазной сети в диапазоне 198—242 В, а для трехфазной — 342—418 В. Отклонения от указанных значений называются перенапряжениями. Перенапряжения имеют различную природу и в зависимости от этого отличаются длительностью и величиной. Длительные перенапряжения (свыше 0,01 с) обычно возникают из-за неисправности понижающего трансформатора на подстанции или обрыва нулевого провода в питающей сети.

Такие перенапряжения имеют сравнительно небольшие значения (от 230 В до величины междуфазного напряжения — 380 В), но действуют длительное время и представляют вполне реальную угрозу и для человека, и для оборудования. Длительное повышение напряжения может произойти и в случае неравномерного распределения нагрузок по фазам во внешней сети. Тогда возникает перекос фаз, при котором на самой загруженной фазе напряжение становится ниже, а на незагруженной — выше номинального. Кратковременные всплески напряжения могут произойти и в результате переключений в энергосети или во время включения мощных реактивных нагрузок.

Для надежной защиты домашней электропроводки от перенапряжений рекомендуется создание многоуровневой (по крайней мере, трехступенчатой) системы защиты из УЗИП разных классов. УЗИП класса В (тип 1) рассчитано на номинальный разрядный ток 30— 60 кА, УЗИП класса С (тип 2) — на ток 20—40 кА. УЗИП класса D (тип 3) на ток 5—10 кА. При создании многоступенчатой системы защиты от перенапряжений следует обеспечить соответствие мощности каждой ступени, т. е. максимальный ток, протекающий через них, не должен превышать их номинальных характеристик. Но в первую очередь необходимо создать эффективную систему заземления.

Мощные импульсные перенапряжения (с токами до 100 кА) могут возникать при воздействии грозовых разрядов. При этом напряжение может достигать десятков киловольт. Такие импульсы длятся в течение максимум сотни микросекунд, и защитные автоматы не успевают на них среагировать, так как самые современные типы автоматов имеют время срабатывания единицы миллисекунд, что может стать причиной пробоя и повреждения изоляции между фазой и нейтралью или между фазой и землей. Как правило, это не приводит к короткому замыканию и не нарушает работу сети, но в месте повреждения изоляции возникает небольшой ток утечки. И если он проходит между фазой и нейтралью, то не фиксируется УЗО и автоматами защиты, но зато приводит к повышенному нагреву изоляции и ускорению процесса ее старения. С течением времени сопротивление изоляции на этом участке уменьшается, а ток утечки возрастает.

Последствия воздействия этих негативных факторов на электронное оборудование и электропроводку могут быть фатальными, поэтому домашняя сеть требует комплексной защиты от перенапряжений с использованием различных типов устройств (УЗИП, ОП, PH и т. д.).

Возможность использования различных УЗИП для выполнения конкретных защитных функций определяется по техническим характеристикам, отраженным в маркировке прибора.

Уровень напряжения защиты U является важнейшим параметром, характеризующим УЗИП. Он определяет значение остаточного напряжения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока. Для УЗИП 1-го класса Up не должен превышать 4 кВ, для устройств 2-го класса — 2,5 кВ, для 3-го класса УЗИП устанавливается Up не более 1,5 кВ — тот уровень микросекундных импульсных перенапряжений, который должна выдерживать бытовая техника.

Максимальный разрядный ток Imax — величина импульса тока, которую должно выдержать УЗИП однократно, сохранив при этом работоспособность.

Номинальный разрядный ток 1n — величина импульса тока, которую УЗИП должно выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами.

Максимальное длительное рабочее напряжение Uc — действующее значение напряжения переменного или постоянного тока, которое длительно подается на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети. Номинальный ток нагрузки Ii( — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

При необходимости дополнительной защиты конкретных приборов используются устройства, выполненные в виде вставок и удлинителей, — сетевые фильтры. В их конструкцию включены варисторы, подавляющие импульсные скачки напряжения.

Варисторы — это полупроводниковые резисторы, в работе которых используется эффект уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения, за счет чего они являются наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида. Варистор включается параллельно защищаемому оборудованию и при нормальной эксплуатации находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме ток через варистор пренебрежимо мал, и он в этих условиях представляет собой изолятор. При возникновении импульса напряжения сопротивление варистора резко уменьшается до долей ома. В этом случае через него кратковременно может протекать ток, достигающий нескольких тысяч ампер. После гашения импульса напряжения он вновь приобретает очень большое сопротивление.

Выбор УЗИП производится в соответствии с принятой системой защиты. При этом обязательно учитываются технические характеристики устройств, которые должны быть приведены в каталоге и нанесены на лицевой части корпуса прибора.

При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств. Первая ступень защиты класса В монтируется за пределами дома во входном щите.

УЗ-6/220, УЗ-18/380 предназначены для защиты сети от кратковременных (до 12 кВ) и длительных перенапряжений, вызванных коммутационными, индуктивными и грозовыми процессами. Устройства относятся к УЗИП 2-го и 3-го классов и выполнены на варисторах. Для надежной защиты от длительных перенапряжений, вызванных авариями в сети, прибор нужно подключать после УЗО и заземлять. Только при таком подключении создается ток утечки и обеспечивается срабатывание УЗО.

Устройство защиты от импульсных перенапряжений (УЗИП) предназначено для предотвращения возможных повреждений бытовой техники от мощных импульсных перенапряжений, вызванных авариями в питающей сети или грозовыми разрядами. Устройства такого типа могут называться ограничителями перенапряжений (ОП). Они, как правило, изготовлены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе их из строя. Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN-рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

В зависимости от защищаемой зоны ограничители перенапряжений подразделяются на классы или типы. Приборы класса В (тип 1) защищают объекты от атмосферных и коммутационных перенапряжений, прошедших через разрядники класса А внешних сетей. Они устанавливаются на вводном устройстве дома и ограничивают величину перенапряжений до 4,0 кВ, защищая вводные счетчики и электрическое оборудование распределительного щита.

Ограничители класса С (тип 2) защищают электрооборудование от перенапряжений, прошедших через ограничители класса В, и ограничивают величину перенапряжения до 2,5 кВ. Они устанавливаются в распределительных щитках внутри дома или квартиры и осуществляют защиту автоматических и дифференциальных выключателей, внутренней проводки, контакторов, выключателей, розеток и др. Ограничители класса D (тип 3) являются защитой от перенапряжений, прошедших через приборы класса С, и ограничивают их величину до 13 кВ. Такие ограничители устанавливаются в распределительные коробки, розетки и могут встраиваться в само оборудование. Ограничители этого класса осуществляют защиту электрического оборудования с электронными приборами, а также переносных электрических устройств.

Ограничитель перенапряжений серии 0П-101 на основе варистора предназначен для защиты электрооборудования от импульсных перенапряжений, вызванных ударами молнии или коммутационными перенапряжениями. При возникновении скачка перенапряжения варисторы прибора переходят в проводящее состояние, ток возрастает на несколько порядков, достигая сотен и тысяч ампер и ограничивая при этом дальнейшее нарастание напряжения на выводах. После прохождения волны перенапряжения ограничитель возвращается в непроводящее состояние. Время срабатывания прибора составляет около 25 нс.

Ограничители перенапряжений серии 0П-101 бывают однофазными или трехфазными. Трехфазные устройства класса В устанавливаются на трехфазном вводе. Однофазные (класса D) используются для защиты отдельных потребителей или групп.

В распределительном щите внутри дома устанавливаются варисторные УЗИП класса С или D (тип 2 и 3). Недостатком УЗИП на базе варисторов является то, что после срабатывания оно нуждается в охлаждении, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократных разрядах. Безусловно, использование УЗИП снижает вероятность выхода из строя оборудования или поражения людей, но лучше всего во время грозы отключать наиболее важные приборы.

Устройство защиты многофункциональное (УЗМ) предназначено для защиты оборудования (в доме, квартире или офисе и пр.) от разрушающего воздействия мощных импульсных скачков напряжения, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170—270 В) в однофазных сетях. Включение напряжения происходит автоматически при восстановлении его до нормального по истечении задержки повторного включения. Устройство представляет собой реле контроля напряжения с мощным электромагнитным реле на выходе, дополненное защитой на варисторах.

Реле напряжения (PH) — это прибор, сочетающий в себе электронное устройство контроля напряжения и электромагнитный расцепитель, собранные в одном корпусе. Реле напряжения серии PH — весьма эффективное устройство для защиты оборудования при возникновении длительных перенапряжений. Оно предназначено для отключения бытовой и промышленной однофазной нагрузки 220 В, 50 ГЦ при недопустимых колебаниях напряжения в сети с последующим автоматическим включением после восстановления ее параметров. Реле может быть изготовлено на базе микропроцессора или простого компаратора и оснащено устройством регулировки верхнего и нижнего порога срабатывания.

Реле напряжения могут быть как однофазными, так и трехфазными. Трехфазные реле напряжения используются на трехфазном вводе для защиты трехфазного оборудования. Они, как правит, отключают сеть не напрямую, а через электромагнитный контактор. При отсутствии трехфазных потребителей лучше всего будет поставить на каждую фазу по однофазному реле напряжения.

В зависимости от способа подключения реле напряжения могут быть выполнены в виде переносного устройства типа «вилка—розетка» или для установки в распределительном шкафу на DIN-рейку. Обычно такие реле имеют широкий диапазон регулировок и могут работать в нескольких независимых режимах: как реле напряжения, как реле минимального напряжения, как реле максимального напряжения или как реле времени с задержкой на включение.

Реле напряжения работают в диапазоне 100—400 В и делятся на устройства, имеющие свою контактную группу и управляющие нагрузкой самостоятельно, а также реле, которые управляют нагрузкой через более мощные контакторы.

Некоторые типы реле напряжения могут использоваться для самостоятельного отключения электрической сети при возникновении аварийного напряжения. Они обладают большей коммутационной способностью и управляют сетью с нагрузкой до 13 кВт, что вполне достаточно для квартиры или частного дома. Приборы устанавливаются на вводе после электросчетчика и УЗО на DIN-рейку.

Реле напряжения не имеет встроенной защиты от высоких токов, поэтому его нужно устанавливать после автоматического выключателя. При этом номинальный ток реле должен быть на 20—30 % выше номинального тока автомата. Реле напряжения также не защищают от высокого напряжения остаточных токов грозовых разрядов.

Датчик превышения напряжения ДПН 260 предназначен для ограничения максимально допустимого напряжения на нагрузке. Он работает совместно с УЗО или дифференциальным автоматом с током утечки 30—300 мА Напряжение срабатывания ДПН 260 устанавливается в пределах 255—260 В, время срабатывания — 0,01 с. Он выполнен в стандартном модуле на базе обычного варистора и предназначен для установки на DlN-рейку 35 мм. Следует отметить, что датчик создает ток утечки и вызывает срабатывание УЗО, которое не может включиться самостоятельно, что является его основным недостатком.

Контактор — это коммутационный аппарат дистанционного действия, коммутирующий нагрузки переменного или постоянного тока, который предназначен для частых включений и отключений. Они могут управлять осветительными, обогревательными и другими устройствами в силовых цепях постоянного и переменного тока с напряжением до 380 В и частотой 50 Гц.

Контакторы не обладают защитными функциями, но эффективно работают совместно с реле напряжения, обеспечивая своевременное отключение сети. Достоинством этих устройств является надежная контактная группа, способная выдержать большое число включений и отключений при значительной мощности управляемой нагрузки.

Контакторы могут использоваться, например, для управления режимом работы системы обогрева полов, когда мощность нагревательных кабелей превышает допустимую мощность терморегулятора.

Контактор, управляемый выключателем, импульсным реле, таймером или другим датчиком, позволяет включить (выключить) необходимую нагрузку, с которой электронные реле, рассчитанные на сравнительно небольшие токи, самостоятельно справиться не могут. Контакторы являются незаменимым элементом многофункциональной системы типа «Умный дам».

Контакторы могут быть как однофазными, так и трехфазными. Основными параметрами, по которым осуществляют выбор контакторов, являются следующие:

  • Номинальное рабочее напряжение сети
  • Номинальный рабочий ток
  • Напряжение катушки управления
  • Каличество/вид дополнительных контактов

Смотрите также:

4 человека погибли, Конгресс эвакуирован, Национальная гвардия активизирована после штурма Капитолия

протестующих против Трампа

ВАШИНГТОН — Капитолий США погрузился в хаос и насилие в среду, когда сотни протестующих против Трампа заполонили здание, в результате чего четыре человека погибли и Сенат эвакуировать и вице-президента Майка Пенса провести в безопасное место.

Безумная сцена после того, как участники беспорядков прорвались через баррикады, вынудила Конгресс эвакуировать части здания и резко приостановить торжественное мероприятие, подтверждающее, что избранный президент Джо Байден победил на ноябрьских выборах.В один драматический момент полицейские вытащили пистолеты, когда участники беспорядков попытались ворваться в палату Дома.

Пенс, председательствовавший на совместном заседании Конгресса, можно было увидеть, как он выбегает из зала Сената под звуки толпы сторонников президента Дональда Трампа, окружавших Капитолий. Пенс и сенатор Чарльз Грассли, штат Род-Айова, временно исполняющий обязанности президента Сената, были доставлены в безопасное место, сообщил NBC News сенатор.

По словам начальника полиции Вашингтона Роберта Конти, полицейские Капитолия США застрелили женщину, а еще три человека погибли в «неотложной медицинской помощи».

Полиция с оружием наготове наблюдает, как участники беспорядков пытаются ворваться в палату Дома в среду. Скотт Эпплвайт / AP

Двери Сената были закрыты и заперты, и сенаторам было приказано держаться подальше от этого района. Двери в Дом были забаррикадированы, и некоторые законодатели молились. Мэр Вашингтона Мюриэл Баузер распорядилась о введении в городе 12-часового комендантского часа, который начался в среду вечером.

Twitter и другие каналы социальных сетей были наводнены изображениями столкновений протестующих с полицейскими, и было множество сообщений о беспорядках внутри Капитолия, когда некоторые участники беспорядков разбивали окна, выламывали двери и позировали в зале Сената.

Самодельные взрывные устройства были обнаружены на территории Капитолия, сообщили несколько сотрудников правоохранительных органов. Офицеры находились в процессе уничтожения устройств, и было неясно, работают ли они. По крайней мере, один был сделан из небольшого отрезка оцинкованной трубы.

Женщиной, которая была смертельно ранена полицией Капитолия, была 35-летняя Эшли Бэббит из Сан-Диего, сообщили NBC в Сан-Диего члены семьи.

Ее зять, Джастин Джексон, сказал в заявлении для радиостанции: «Эшли была лояльна и чрезвычайно увлечена тем, во что верила.Она любила эту страну и считала за честь служить в наших Вооруженных Силах. Пожалуйста, держите ее семью в своих мыслях и уважайте их частную жизнь в это время ».

Пять единиц оружия были извлечены из комплекса, и было произведено три ареста, сообщила полиция округа Колумбия. Никто из людей не был жителем округа Колумбия. 12 арестов за два дня до среды.

Изображения столкновений изобиловали тревожными символами ненависти: фотография петли, которая была повешена на западной стороне Капитолия, демонстранты, размахивающие флагами Конфедерации или использующие белые силовые жесты .

Трамп направил Национальную гвардию к Капитолию, сказал он в твиттере, а полиция Капитолия США запросила дополнительную поддержку. Было задействовано ФБР, и Служба маршалов США тоже оказала помощь.

Сторонники президента Дональда Трампа собрались на западной стороне Капитолия в среду. Эндрю Кабальеро-Рейнольдс / AFP — Getty Images

Когда 12-часовой комендантский час Баузера вступил в силу, большинство протестующих разошлись, но демонстрантов, поддерживающих Трампа, видели в видеороликах в социальных сетях, бродящих по улицам города в условиях интенсивного присутствия полиции

Вашингтонская полиция объявила о нескольких арестах, связанных с протестами, и о 50 арестах за нарушение комендантского часа по состоянию на 22:30. В управлении полиции заявили, что большинство арестованных были из других штатов и что в нем производятся дополнительные аресты.

Баузер сказал, что город работает с федеральными правоохранительными органами для выявления и судебного преследования людей, штурмовавших палаты Конгресса.

Все четверо ныне живущих бывших президентов осудили беспорядки.

Бывший президент Джордж У.Буш осудил насилие в заявлении, а также косвенно раскритиковал Трампа и его сторонников.

«Это отвратительное и душераздирающее зрелище. Вот как оспариваются результаты выборов в банановой республике, а не в нашей демократической республике», — сказал он. «Я потрясен безрассудным поведением некоторых политических лидеров после выборов, а также отсутствием уважения, проявленным сегодня к нашим институтам, нашим традициям и нашим правоохранительным органам».

Буш сказал, что страсти протестующих «подогреваются ложью и ложными надеждами».

Бывший президент Барак Обама в своем заявлении осудил Трампа и осудил насилие, назвав его «моментом великого позора и позора для нашей нации».

«Прямо сейчас у республиканских лидеров есть выбор, ясно сформулированный в оскверненных камерах демократия. Они могут продолжать идти по этому пути и продолжать разжигать бушующие пожары, — сказал Обама. — Или они могут выбрать реальность и сделать первые шаги к тушению огня. Они могут выбрать Америку ».

Бывший президент Джимми Картер сказал в заявлении:« Это национальная трагедия и не то, кем мы являемся как нация », а Билл Клинтон написал в Твиттере:« Спичку зажгли Дональд Трамп и его большинство. горячие сторонники, в том числе многие в Конгрессе, отменить результаты проигранных им выборов.

Лидер меньшинства Палаты представителей Кевин Маккарти, республика Калифорния, подтвердив на Fox News, что выстрелы были произведены внутри Капитолия, назвал беспредел «антиамериканским» и сказал: «Мы можем не соглашаться, но мы не должны доводить дело до этого. уровень. … Вы не делаете того, что сейчас происходит. Людям больно. Это неприемлемо ».

Байден призвал Трампа выступить по национальному телевидению, чтобы« выполнить свою присягу, защитить Конституцию и потребовать прекращения осады ».

« Это не протест.Это восстание, — сказал он. — Слова президента имеют значение, независимо от того, насколько они хороши или плохи.

Протестующие карабкаются по стене у Капитолия в среду во время митинга в поддержку президента Дональда Трампа. Хосе Луис Магана / AP

Высшие демократы в Конгрессе поддержали послание Байдена: «Мы призываем президента Трампа потребовать, чтобы все протестующие немедленно покинули Капитолий и территорию Капитолия США», — заявил лидер большинства в Сенате Чак Шумер, штат Нью-Йорк, и спикер Палаты представителей Нэнси Пелоси, штат Вашингтон -Калиф., говорится в совместном заявлении.

Пелоси в другом заявлении в среду назвал насилие «позорным нападением» на демократию и пообещал, что обе палаты завершат удостоверение победы Байдена под усиленной защитой.

Конгресс снова собрался поздно вечером в среду, члены обеих партий резко осудили насилие и вандализм палаты. Пенс назвал это «темным днем ​​в истории Капитолия Соединенных Штатов».

«Тем, кто сеял сегодня хаос в нашем Капитолии: вы не победили.Насилие никогда не побеждает. Побеждает свобода. И это по-прежнему дом народа «, — сказал он.

Бывший генеральный прокурор Уильям Барр, который прошлым летом был с Трампом, когда члены Национальной гвардии распыляли слезоточивый газ, чтобы разогнать мирных демонстрантов, чтобы президент мог держать Библию для возможности сфотографироваться, предупредил бунтовщики.

«Насилие у Капитолия возмутительно и подло. Федеральные агентства должны немедленно принять меры для его разгона «, — сказал он.

Протестующие сносят заграждения и в среду вступают в столкновение с полицией у Капитолия.Джон Минчилло / AP

Дэн Эберхарт, видный спонсор Трампа и Республиканской партии, также подверг резкой критике протесты и президента.

«Если президент Трамп хочет иметь какое-либо политическое будущее в рамках Республиканской партии, он должен осудить насилие в Капитолии и перестать утверждать, что выборы были украдены», — сказал Эберхарт NBC News. «У президента Трампа был день в суде. Пора признать поражение и подумать о своем политическом будущем».

Он добавил: «Осквернение Капитолия не будет забыто.Он стоил сенатору [Митчу] МакКоннеллу его руководящего поста, и теперь его —— гость по всему Капитолию ».

Государственный секретарь Майк Помпео осудил насилие в серии твитов и призвал к арестам и судебному преследованию

«Давайте быстро предадим правосудие преступникам, которые участвовали в этих беспорядках», — сказал он в своем твите.

МакКоннелл, Р-Кай, лидер большинства в Сенате, упрекнул участников беспорядков, не указав источника насилия. — и назвал их «головорезами».

«Преступное поведение никогда не будет доминировать в Соединенных Штатах», — сказал он.Он не назвал его источник и не призывал своих членов отказаться от своих возражений против подсчета голосов. «Этот институт устойчив. Наша демократическая республика сильна. Американский народ не заслуживает меньшего».

Шумер, который готов сменить МакКоннелла на посту лидера большинства, резко раскритиковал протесты, но прямо возложил вину на Трампа в пламенной речи до того, как победа Байдена была подтверждена.

«Не ошибитесь. Не ошибитесь, друзья мои. Сегодняшние события не произошли спонтанно», — сказал он.«Эта толпа в значительной степени была делом рук президента Трампа — подстрекаемая его словами, его ложью. Это насилие, в хорошей части, его ответственность, его вечный позор».

Шумер также призвал к тому, чтобы бунтовщики были «привлечены к ответственности в полном объеме закона — надеюсь, этой администрацией. Если нет, то обязательно следующей».

Трамп, который ранее в среду призвал своих сторонников маршем к Капитолию и даже предположил, что он может присоединиться к ним, прежде чем он в конечном итоге вернется в Белый дом, обратился к хаосу и беспорядкам в серии твитов, которые Twitter в конечном итоге отметил для распространения. ложные заявления о выборах и создание «риска насилия».»

Он просил людей разойтись по домам, но не осуждал насилие.

Тысяча вопросов к Паймону — Все ответы | Genshin Impact

Тысяча вопросов с Паймоном — это викторина о Genshin Impact. Руководство включает в себя список правильных ответов для 1-го, 2-го и 3-го дней, шпаргалку, награды, вопросы, базу данных вопросов и ответов.

Ознакомьтесь со всем списком событий здесь!

Тысяча вопросов с Паймоном — Список ответов

Мы смогли подтвердить, что вопросы для каждого игрока не фиксированы — они случайны! Кроме того, порядок ответов полностью случайный.Воспользуйтесь окном поиска в таблице ниже, чтобы найти ответы, которые вы ищете!

Здесь мы разместим вопросы и ответы. Если вы обнаружите недостающие элементы, задавайте вопросы и исправления в комментариях, чтобы помочь дополнить наш список. Благодарим за сотрудничество! (Более 150 ответов! Спасибо!)

Тысяча вопросов — Шпаргалка

↓ Поиск по вопросам

из
В. Что из нижеперечисленного является обычным приветствием Хилихурл? Olah
Q.К каким из следующих элементов не застрахован Борей? Pyro
В. Какое из следующих блюд не является основным продуктом Мондштадта? Mora Meat
В. Что из перечисленного не позволит вам получить ключи от Храма глубин? Завершение сюжетного квеста
В. Удержание Навыка Элементаля Venti позволяет ему генерировать поток ветра, который можно использовать для выполнения атак с погружением. Истинно
Q.Что из перечисленного не является одним из слабых мест Cryo Regisvine? Лепесток
В. Что такое титул Кэцин в Лиюэ Цисин? Yuheng
В. Что означает Lupical? Семья
В. Какой из следующих элементарных резонансов может снизить КД навыков стихий? Стремительные ветры
Q. Дилук раньше был рыцарем Фавония Кавалерийский капитан
Q.Кто написал книгу правил выживания Фавониуса для Клее? Kaeya
Q. Кошку Wanshu Inn зовут Wei
Q. У кого из следующих персонажей не будет заряженных атак Cryo DMG с помощью Призрачного клинка Чонъюна: многослойный иней Чунхуа? Klee
В. Как зовут охранника ночной смены банка Northland? Надя
В. Сколько всего типов гидроимиков может вызвать Океанид? 8 типов
Q.Какие из следующих областей не содержат Violetgrass? Бассейн Цинсю
В. Какое из следующих утверждений неверно Вы можете атаковать Океанида напрямую, чтобы нанести ему урон
В. В каком из этих мест не может быть найден Денди, чтобы попытаться пробный вызов? Самая высокая точка деревни Цинце
В. У кого из следующих персонажей не было черепахи в детстве? Янтарь
Q.Какие из следующих животных не появлялись в «Царевне-кабане»? Кролик
В. Что из нижеперечисленного выпадает из необычного хилихурля? Капуста
В. Кто занимает восьмое место среди Одиннадцати Предвестников Фатуи? Синьора
В. Кто является владельцем лучшей аптеки в Лиюэ? Baizhu
В. В какую точку Маск-Риф можно попасть через Черную дыру? Мыс Клятвы
Q.Сахароза — помощник кого? Альбедо
Q. Pyro regisvine невосприимчив к пироповреждению. Неверно
В. Топография какого места является результатом того, что Архонт бросал гигантские каменные копья во время войны. Каменный лес Гуюнь
В. Как называется Созвездие Дионы? Feles
Q. Взрыв элементаля Кайи может заморозить Ложь
Q.Какой архонт создал Mora Geo Archo
Q. Как называется Anemo Hypostasis Beth
Q. Пассивный талант Xingqui в улучшении True
Q. Борей падает? Все вышеперечисленное.Эмбер — чемпион Планирование
В. Янтарь — единственный рыцарей Фавония Outrider
В. Какой элемент атакует слабое место Pyro regisvine? Hydro
В. Сколько членов в команде приключений Бенни? 1
В. Путеводитель Тевят не включает Wuwang Hill
В. Какой из следующих материалов не выпадает? Аметист
Q.Какие из следующих местных деликатесов можно найти в Лиюэ? Wolfhooks
В. Кому нужен зяблик? Qiqi
В. Кто одиннадцатый предвестник? Childe
Q. Oz Продолжительность призыва в установленное время true
Q. Все (янтарь, люмин, нинггуан) могут активировать нажимную пластину true
Q. Когда путешественник на него действует Поджигатель, удерживание навыка стихийного путешественника можно использовать, чтобы вызвать Поглощение стихий
Q.Какой том Синцю позаимствовал у Чанга 9-го? 6-й
В. Когда Губа Сянлинга дышит огнем, если персонаж находится в области действия огненного дыхания, на него также действует поджигатель. Неверно
В. Что из следующего не относится к региону Лиюэ? Хвощ
В. Какие из следующих региональных деликатесов можно получить в Логове Штормтеррора? Wind Wheel Aster
Q.Какое из следующих утверждений о Синьяне является ложным? Тот, у которого «защищенный персонаж нанес на 15% больше урона»
В. Когда битва Борей обновляется каждую неделю? Понедельник 4:00 утра
Q. Карстовые ползунки на горе. Хулао может заманить в ловушку любого, кто наступит на них, закрыв злоумышленника янтарем. Кто посадил эти растения? Mountain Shaper
В. Какое из следующих утверждений верно относительно битвы с детским боссом? Этого босса можно сделать в кооперативном режиме
Q.Какое положение занимает Фишль в Гильдии искателей приключений? Investigator
В. Как зовут бармена в Angel’s Share? Чарльз
В. Какой монстр не появится из Цветения Откровения? Необычный Hilichurl
В. Какое из следующих утверждений о конструкциях Geo верно? Географические конструкции могут использоваться для блокирования некоторых атак монстров
Q.Что представляют собой Цецилии на языке цветов? Истинные чувства блудного сына
В. Сколько элементов составляет континент Тейват? 7
В. Что из нижеперечисленного не может обеспечить энергией для заряда элементарной вспышки? Взаимодействие со статуей семи
В. Какое максимальное количество Электро-сигилов может создать Элементный навык Бритвы, Коготь и Гром? 3
Q.Где останавливаются дипломаты Fatui? Гранд-отель Goth
В. Что из перечисленного не относится к региону Лиюэ? Brightcrown Canyon
В. Крио-атаки могут разрушить щиты магов из пиропропасти с той же скоростью, что и гидроатаки. Верно ли это утверждение? Ложь
В. К какому навыку неуязвим для щита Cyro Abyss Mage? Элементный навык Каеи
В. Какое растение не является уникальным для Мондштадта? Сладкий цветок
Q.Донна, помощница в цветочном магазине Floral Whisper, увлечена Diluc
В. Кто из предвестников Fatui — Чайльд? Одиннадцатый
Q. Талант Барбары, «Славный сезон», может снизить расход выносливости всех членов группы, когда Барбара находится в группе. Ложь
В. Атака гео-слизи, не наполненной гео-атаками, нанесет урон. Ложь
Q.Как часто происходит Обряд Нисхождения, одна из церемоний Лиюэ? Один раз в год
В. Что означает Lucipal? Семья
В. Какое из следующих утверждений о Xiangling верно? Когда Сянлинг использует свое Умение Стихий, Губа будет наносить АоЕ Урон Поджигателя 4 раза.
Q. Protective Canopy дает 15% RES против всех элементов для всех членов группы. Истинно
Q.Соперничество между двумя знаменитыми стилями кулинарии, Ли и Юэ, насчитывает несколько сотен лет. Из этих двух стиль Юэ популярен среди энтузиастов: Seastile
В. Какое из следующих утверждений об элементарных реакциях верно? Реакция горения сама по себе наносит DMG
Q. Когда на анемо-путешественника действует поджигатель, удерживание навыка элементалей путешественника может быть использовано для поглощения элементалей. Истинно
Q.Некоторые атаки Лизы могут применять к монстрам статус Проводимости. Какое максимальное количество проводящих стеков можно применить? 3
В. К каким из следующих атак неуязвим для щита Cryo Abyss Mage? Элементный навык Каеи
В. Какое из следующих утверждений о реакциях стихий неверно? Анемо может иметь закрученную реакцию с гео
В. Что из следующего не является названием племени хиличурл в ущелье Дадаупа? Ricer
Q.Что из следующего не относится к региону Мондштадт? Snapdragon
В. Соперничество между двумя знаменитыми стилями кулинарии, Ли и Юэ, насчитывает несколько сотен лет. Из двух, стиль Юэ популярен среди энтузиастов: Приморские прелести
В. Какие из следующих предметов можно получить из Необычного Хилихурля? Капуста
Q. Xinqiu — второй сын Liyue Harbour: Торговая гильдия Feiyun
Q.В настоящее время каждое святилище глубин можно открыть только один раз и не может быть сброшено. True
Q. Пронизывающая атака Клее может снизить прочность руды, чтобы ускорить добычу. раз исцелит персонажа стихийный взрыв Дионы? 6
В. Какое из следующих утверждений относительно Elemental Burst Моны, Stellaris Phantasm, неверно? Если Мона не получает Урон в течение 2 секунд после использования «Стихийного взрыва», она восстанавливает 20% своего здоровья.
В. Навык стихий Ноэль, Кираса, может нанести один экземпляр Географического Урона ближайшим врагам. Он не будет генерировать никаких элементарных частиц. Истинный
В. Сколько слабых мест у Стражей Руин? 2
Q. Флот Beidou называется The Crux Fleet
Q. Xinyan — единственный музыкант Liyue Harbour ______ музыкант Rock ‘n’ Roll
Q. Диона работает барменом по адресу: The Cat’s Tail
Q.Питомец, которого Цици хотела бы иметь больше всего, это: Зяблик
Q. Застрельники Фатуи будут усиливать себя в бою, и эти усиления должны быть удалены, чтобы победить их быстро. Какое из следующих взаимодействий наименее эффективно? Electrohammer Vanguard — используйте Pyro DMG
Q. Какой из следующих факторов влияет на урон, наносимый Shatter Elemental Mastery
Q. Сохраняющий удачу талисман, созданный Qiqi’s Positive Talent в Arcanum Glimp , длится 15 секунд после срабатывания. Ложь
В. Какие из следующих утверждений о стихийном навыке Гео-путешественника, Меча Звездного Пада, являются ложными? Мы можем удерживать умение элементалей складывать один метеорит на другой
В. Какое из следующих утверждений о сахарозе неверно? Пассивный талант Сахарозы, нестабильное изобретение, дает шанс 25 вернуть часть материалов, использованных при создании …
В. Какой элемент не снижает HP призм Электрогипостасиса? Hydro
Q.Какие факторы влияют на время Оза на поле? Продолжительность фиксирована
В. Какое из следующих утверждений о способности Двалина Caelestinum Finale Termini является ложным? , есть растение, которое внимательно слушает пение людей. это растение называется Glaze Lily
Q. Элементный взрыв Кейи, Ледяной вальс, способен постоянно замораживать водные поверхности, позволяя бегать по ним. Ложь
В. Что из следующего не является именем, которое люди давали Архонту Мораксу? Бог Вечности
В. Какой из следующих персонажей не принадлежит к рыцарям Фавония? Мона
В. Следующие утверждения относительно Барона Банни ложны? Задержка взрыва Барона Банни зависит от времени его зарядки. Чем дольше удерживается умение элементаль, тем дольше задержка до взрыва Барона Банни
Q.Какой из следующих элементов наиболее эффективен при разрушении щита Мага Бездны? Cryo
В. Какие из следующих предметов нельзя получить из Воспоминаний: Буря ужаса I? Кусок аметиста Ваджрада
В. Люди Лиюэ верят, что адепты обитают в: Карст Джуэйун
В. В каких из следующих областей нет грибов Филанемо? Wolvendom
Q.По геоконструкциям, созданным Чжунли, Нингуан и Люмин, можно подняться, правда или ложь? Неверно
В. Какой из следующих персонажей является наиболее подходящим противодействием Electro Hypostasis? Xiangling
В. При борьбе с Электро-Ипостасией: Алеф, какой из следующих элементов не может уменьшить HP своих призм? Hydro
В. Кто написал Свод правил выживания Фавониуса для Клее? Kaeya
Q.Как называется настольная игра, которую изобрел Нингуан? Liyue Millenial
В. Кто этот красный, пылающий друг, упомянутый Razor? Klee
В. Какая реакция произойдет, если против Anemo Hypostasis: Beth будет применена атака Pyro Elemental Attack? Swirl
В. Какое из следующих утверждений о способности двалина «caelestinum finalale termini» неверно? Использование ветряного планера для скольжения над треснувшими платформами приведет к тому, что игрок получит урон.
В. Какое из следующих утверждений об Эмбер неверно? Талант Эмбер «Точный выстрел» позволяет ей получить дополнительный рейтинг Критического рейтинга на определенный период после попадания в уязвимое место противника
В. Какое из следующих собраний книг было написано матерью Клее, Алисой? Тейват Путеводитель
В. Что из следующего является фирменным блюдом в Wangshu Inn? Миндальный тофу
Q.Чхонъюн использует свое стихийное умение. Духовный клинок. Многослойные атаки ледяного дилука. Чонъюн. Атаки в этом поле будут наполнены циро-уроном. Верно ли это утверждение ложно
В. Что из следующего является наиболее подходящим игроком для Электро Ипостаси: Алеф? Xiangling
В. Навык Барбары «Элементаль» «Пусть шоу начинается» будет периодически применять Hydro к активному персонажу. Это можно использовать, чтобы очистить Электро от персонажа, к которому он был применен. Ложь
В. Кто из следующих персонажей не бард из Мондштадта Цинчжоу
В. Сахароза — помощник гениального алхимика по имени: Альбедо
к следующим атакам иммунен щит Мага Крио Бездны? Элементальное умение Каеи.
В. Какова стоимость энергии «Взрыва элементаля» Дилука «Рассвет»? 40
Q.Какое из следующих племен хиличурлов не появляется в ущелье Дадаупа? Лунное племя
В. В квесте «История Джин», глава Младшего Льва, как зовут потерянную кошку Маргрет Принц
В. Сколько очков выносливости расходует заряженная атака Кецина? НЕ 20
В. Символ Мондштадта можно найти по адресу: Восход ветра
В. В сюжетном квесте Книжный червь-мечник », в каком томе« Легенды о раздробленной алебарде »написано Синцю одолжить у Чанга Девятого? 6
Q.Сколько элементальных резонансов может быть активным в одной группе одновременно? 2
В. Могут ли два персонажа одного элемента активировать элементарный резонанс в режиме совместной игры? Да
В. Какое из следующих утверждений о Кэцин ложно? Кецин может использовать свой стихийный навык, звездное восстановление, находясь в воздухе.
Q. Отель в Монстаде название: Goth Grand Hotel
Q.Какие из следующих предметов не выпадут во время боя с Ур. 40 Electro Hypostasis Vajrada Amethyst Chunk
В. Второй уровень заряда элементарного умения Беннета, перегрузка ионами п ***, запустит его, и это не может быть предотвращено никакими другими операциями, — верно ли это утверждение? Ложь
В. Элементный бюст Кейи, Ледяной вальс, может постоянно замораживать водные поверхности, позволяя бегать по ним. Ложь
Q.Сколько испытаний силовых линий может существовать в Мондштадте и Лиюэ одновременно? 4
В. Какой из следующих предметов не относится к региону Лиюэ? Wolfhook
В. На конструкции, на которые можно подняться на Чжунли, Нингуан и Гео-путешественник, можно подняться — правда ли это утверждение? False
Q. После использования его стихийного взрыва, Lightning Fang, обычные атаки Razor нанесут Electro DMG. Ложь
Q.Сянчиу — молодой хозяин … Гильдия торговцев Фэйюнь
В. В честь кого из следующих архонтов был назван Мора? Geo Archon
В. Какой из следующих элементов может наиболее эффективно атаковать слабые места Regisvine поджигателя? Hydro
Q. Когда Каэя находится в группе, расход выносливости персонажа снижается ». True
Q. Какая из характеристик Ноэль влияет на поглощение урона щитом, созданным навыком стихий Ноэль. , Кираса? DEF

Тысяча вопросов с Paimon — Обзор мероприятия

Викторина с Paimon

Продолжительность 18 декабря, 11:00 2020
~
20 декабря, 23:59 2020
(время сервера)

A Тысяча вопросов с Паймоном — это викторина.Ожидается, что к концу года игроки узнают больше о мире Тейвата. Испытайте себя и свои знания о Геншине в этом мероприятии!

Должен иметь ранг 10 и выше

Чтобы пройти эту викторину, вы должны иметь ранг приключения не ниже 10 (или выше).

Тысяча вопросов с Паймоном — список наград за событие

50 000 мора в день

Награда составляет 5000 мора за правильный ответ. Максимум 50 000 Мора можно заработать в день, при этом 150 000 Мора являются общим пределом для всего события (3 дня).Вы можете повторять каждый вопрос, пока не ответите правильно, так что не бойтесь угадывать!

Чего ожидать после тысячи вопросов о мероприятии Paimon?

Это событие закончится 20 декабря в 23:59 (время сервера) — но что будет дальше?

Обновление 1.2 не за горами

Mihoyo уже объявил, что версия 1.2 выйдет 23 декабря. Подтверждено, что эта версия содержит новую область карты, новых персонажей, оружие, артефакты и многое другое.

Версия 1.2 Обновление — Дата выпуска
Не играйте с Андриусом (Lupus Boreas) до обновления

Боевой пропуск, вероятно, будет обновлен вместе с патчем 1.2. Однако мы обнаружили, что во время предыдущего обновления 1.1 еженедельные миссии боевого пропуска фактически начинались в понедельник в 4:00 утра — это означает, что вы не сможете повторить Андриуса (Lupus Boreas), если победите его до того, как обновление выйдет в эфир. .

1.2 Тизеры и баннерная информация в пути?

Учитывая то, что произошло в обновлении версии 1.1, мы ожидаем, что новый баннер будет объявлен до версии 1.2 обновление. Также могут появиться тизеры о новых персонажах, таких как Ганью!

Genshin Impact — Статьи по теме

Copyright © 2012-2020 miHoYo ВСЕ ПРАВА ЗАЩИЩЕНЫ

Модель Резерфорда

| Определение и факты

Модель Резерфорда , также называемая атомной моделью Резерфорда, ядерным атомом или планетарной моделью атома , описание структуры атомов, предложенное (1911) физиком из Новой Зеландии Эрнестом Резерфордом.Модель описывала атом как крошечное плотное положительно заряженное ядро, называемое ядром, в котором сосредоточена почти вся масса, вокруг которого на некотором расстоянии циркулирует свет, отрицательные составляющие, называемые электронами, подобно планетам, вращающимся вокруг Солнца. .

Модель атома Резерфорда

Физик Эрнест Резерфорд представил атом как миниатюрную солнечную систему с электронами, вращающимися вокруг массивного ядра, и в основном как пустое пространство, причем ядро ​​занимает лишь очень небольшую часть атома.Нейтрон не был открыт, когда Резерфорд предложил свою модель, в которой ядро ​​состояло только из протонов.

Encyclopædia Britannica, Inc.

Популярные вопросы

Какую модель атома предложил Эрнест Резерфорд?

У атома, по описанию Эрнеста Резерфорда, есть крошечное массивное ядро, называемое ядром. Ядро имеет положительный заряд. Электроны — это частицы с отрицательным зарядом. Электроны вращаются вокруг ядра. Пустое пространство между ядром и электронами занимает большую часть объема атома.

Что такое эксперимент Резерфорда с золотой фольгой?

В кусок золотой фольги попали альфа-частицы, имеющие положительный заряд. Большинство альфа-частиц прошли сквозь него. Это показало, что атомы золота в основном были пустым пространством. У некоторых частиц траектория искривилась под большими углами. Некоторые даже отскочили назад. Это могло произойти только в том случае, если бы внутри атома была небольшая тяжелая область положительного заряда.

Каковы были результаты эксперимента Резерфорда?

Предыдущая модель атома, модель атома Томсона или модель «сливового пудинга», в которой отрицательно заряженные электроны были подобны сливам в положительно заряженном пудинге атома, была опровергнута.Модель атома Резерфорда опиралась на классическую физику. Модель атома Бора, основанная на квантовой механике, построена на модели Резерфорда для объяснения орбит электронов.

Что правильно и неправильно в атомной модели Эрнеста Резерфорда?

Модель атома Резерфорда была верна в том смысле, что атом в основном представляет собой пустое пространство. Большая часть массы находится в ядре, и ядро ​​заряжено положительно. Вдали от ядра находятся отрицательно заряженные электроны. Но модель атома Резерфорда использовала классическую физику, а не квантовую механику.Это означало, что электрон, вращающийся вокруг ядра, испускал электромагнитное излучение. Электрон потеряет энергию и упадет в ядро. В модели Бора, которая использует квантовую теорию, электроны существуют только на определенных орбитах и ​​могут перемещаться между этими орбитами.

Какое влияние оказала теория Эрнеста Резерфорда?

Эксперимент с золотой фольгой показал, что атом состоит из небольшого массивного положительно заряженного ядра с отрицательно заряженными электронами, находящимися на большом расстоянии от центра.Нильс Бор основывался на модели Резерфорда, чтобы создать свою собственную. В модели Бора орбиты электронов объяснялись квантовой механикой.

Ядро было постулировано как маленькое и плотное, чтобы объяснить рассеяние альфа-частиц на тонкой золотой фольге, как это наблюдалось в серии экспериментов, проведенных студентом Эрнестом Марсденом под руководством Резерфорда и немецкого физика Ганса Гейгера в 1909 году. Источник, излучающий альфа-частицы (т.е. положительно заряженные частицы, идентичные ядру атома гелия и в 7000 раз более массивные, чем электроны), был заключен в защитный свинцовый экран.Излучение фокусировалось в узкий пучок после прохождения через щель в свинцовом экране. Перед щелью помещали тонкий срез золотой фольги, а экран, покрытый сульфидом цинка для придания ему флуоресценции, служил счетчиком для обнаружения альфа-частиц. Когда каждая альфа-частица попадала на флуоресцентный экран, он производил вспышку света, называемую сцинтилляцией, которую можно было увидеть в обзорный микроскоп, прикрепленный к задней части экрана. Сам экран был подвижным, что позволяло Резерфорду и его коллегам определять, отклоняются ли какие-либо альфа-частицы золотой фольгой.

Эксперимент Резерфорда с золотой фольгой

В 1909 году Резерфорд опроверг сэра Дж. Дж. Модель атома Томсона как равномерно распределенного вещества. Поскольку только очень немногие из альфа-частиц в его луче рассеивались под большими углами после удара о золотую фольгу, в то время как большинство из них проходило полностью, Резерфорд знал, что масса атома золота должна быть сконцентрирована в крошечном плотном ядре.

Encyclopædia Britannica, Inc.

Большинство альфа-частиц проходят прямо через золотую фольгу, что означает, что атомы в основном состоят из открытого пространства.Некоторые альфа-частицы слегка отклонялись, что свидетельствовало о взаимодействии с другими положительно заряженными частицами внутри атома. Еще другие альфа-частицы были рассеяны под большими углами, а очень немногие даже отскочили обратно к источнику. (Позднее Резерфорд сказал: «Это было почти так же невероятно, как если бы вы выстрелили 15-дюймовым снарядом по куску папиросной бумаги, а он вернулся и попал в вас».) Только положительно заряженная и относительно тяжелая частица-мишень, такая как предполагаемое ядро ​​могло объяснить такое сильное отталкивание.Отрицательные электроны, электрически уравновешивающие положительный заряд ядра, считались движущимися по круговым орбитам вокруг ядра. Электростатическая сила притяжения между электронами и ядром сравнивалась с гравитационной силой притяжения между вращающимися планетами и Солнцем. Большая часть этого планетарного атома находилась в открытом космосе и не оказывала сопротивления прохождению альфа-частиц.

Модель Резерфорда вытеснила атомную модель «сливового пудинга» английского физика сэра Дж.Дж. Томсона, в котором электроны были погружены в положительно заряженный атом, как сливы в пудинге. Основанная полностью на классической физике, сама модель Резерфорда через несколько лет была заменена атомной моделью Бора, которая включала некоторую раннюю квантовую теорию.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас Редакторы Encyclopaedia Britannica. Последняя редакция и обновление этой статьи проводились старшим редактором Эриком Грегерсеном.

Узнайте больше в этих связанных статьях Britannica:

канадский щит | Определение, расположение, карта, формы рельефа и факты

Канадский щит , один из крупнейших геологических континентальных щитов в мире, расположенный в Гудзоновом заливе и простирающийся на 8 миллионов квадратных километров (3 миллиона квадратных миль) над восточной, центральной и северо-западной частью Канада от Великих озер до канадской Арктики и Гренландии с небольшими расширениями на север Миннесоты, Висконсина, Мичигана и Нью-Йорка, США.С.

Подробнее по этой теме

Канада: Канадский щит

Безусловно, самый большой из физико-географических регионов Канады, Канадский щит (иногда называемый Докембрийским щитом), занимает …

Канадский щит представляет собой самую большую массу обнаженных докембрийских пород на поверхности Земли. Регион в целом сложен древними кристаллическими породами, сложная структура которых свидетельствует о долгой истории поднятий и депрессий, горообразования (горообразования) и эрозии.Некоторые из древних горных цепей все еще можно распознать как хребет или пояс холмов, но нынешний внешний вид физического ландшафта Канадского щита не столько является результатом складчатости, разломов и сжатия скал миллионы лет назад. поскольку это работа льда в относительно недавнее геологическое время. В эпоху плейстоцена (от 2,6 млн до 11700 лет назад) обширные континентальные ледники, покрывавшие север Северной Америки, имели этот регион в качестве центра. Лед, двигаясь на юг, очистил землю от покрывающей ее мантии выветривания скал.Часть этого материала осаждалась на щите, когда лед таял, но основная его часть была перенесена на юг, чтобы отложиться к югу и юго-западу от Канадского щита.

Канадский щит

Карта, показывающая протяженность Канадского щита в Северной Америке. Канадский щит представляет собой самую большую массу обнаженных докембрийских пород на поверхности Земли.

Encyclopædia Britannica, Inc.

Образовавшаяся поверхность состоит из скалистых, сглаженных льдом холмов со средним рельефом 30 метров (100 футов), а также бассейнов неправильной формы, которые в основном заполнены озерами или болотами.Местами старые горные цепи можно узнать по холмам высотой в несколько сотен метров. Однако северо-восточная часть стала наклонной, так что на севере Лабрадора и острова Баффинова земля поднимается на высоту более 1500 метров (5000 футов) над уровнем моря.

Все древние места резьбы — таблички из драконьего шкура | Genshin Impact

Проверьте весь древний путеводитель по резьбе по локациям на предмет воздействия Геншина. Посмотрите локации Древней резьбы, Скрижали Драконьего Шпиона, где можно найти потайную комнату, и получите Звездное Серебро в Снежных Гробницах!

Содержание

  • Что такое древняя резьба?
  • Все древние места резьбы
Подробнее о Драконьем Шпине!

Что такое древняя резьба?

Каменные таблички по всему Драконьему спину

Вы можете найти 8 древних резных фигурок по всему Драконьему спину.Изучите их, расскажет вам историю и откроет потайную комнату.

открывает потайную комнату

Изучение всей древней резьбы откроет скрытую комнату возле Статуи Семерых в Драконьем спине.

Получите чертеж для усыпанного снегом звездного серебра

Открыв сундук в указанной скрытой комнате, вы получите в награду предмет под названием «Воспоминания о погребенном городе». Используйте этот предмет, чтобы получить рецепт кузницы для снежного звездного серебра, который является одним из ключевых предметов, представленных в версии 1.2 Обновить.

Проверьте детали заснеженного звездного серебра

Все древние места резьбы

Локация 1: Заснеженная тропа

Карта В игре
Нажмите, чтобы увеличить Нажмите, чтобы увеличить

Локация 2: Погребенный город — Древнее место

Карта В игре
Нажмите, чтобы увеличить Нажмите, чтобы увеличить

Местоположение 3: Entombed City — окраины

910 Нажмите, чтобы увеличить Нажмите, чтобы увеличить
Карта In-Game
Растопите ледяные блоки, чтобы раскрыть

Чтобы узнать, где находится эта древняя резьба, вы должны сначала уничтожить ледяную глыбу на пути.Используйте алый кварц поблизости, чтобы растопить лед.

Подробнее Как уничтожить лед здесь!

Местоположение 4: Entombed City — окраины

Карта В игре
Нажмите, чтобы увеличить Нажмите, чтобы увеличить

Местоположение 5: Starglow Cavern

Карта в игре
Нажмите, чтобы увеличить Нажмите, чтобы увеличить
Найдите 3 ящика, чтобы открыть секретную комнату

Чтобы добраться до этой древней резьбы, вам нужно открыть секретную комнату.Чтобы открыть эту комнату, вам нужно найти 3 ящика в Dragonspine.

Узнайте, как открыть ворота секретной комнаты

Местоположение 6: Рядом с доменом

Карта В игре
Нажмите, чтобы увеличить Нажмите, чтобы увеличить
Завершите миссию «В горах» Чтобы разблокировать

Чтобы получить доступ к области, вам нужно сначала завершить миссию «В горах». Ознакомьтесь с руководством ниже для получения более подробной информации!

In The Mountain World Quest Guide

Местоположение 7: Пещера Звездного Покоя

Карта В игре
Нажмите, чтобы увеличить Нажмите, чтобы увеличить

Местоположение 8: Долина Драконьего Покоя

Карта В игре Нажмите, чтобы увеличить Нажмите, чтобы увеличить

Статьи, связанные с событием

Баннеры Current Wish (Gacha)

Banner Boosted
Персонаж / оружие
Знамя Ganyu
12 января — 2 февраля
Ganyu
Xiangling
8 Xingqiome 91
12 января — 2 февраля
— Skyward Pride (Клеймор)
— Лук Амоса (Лук)
Желание новичков
Постоянное
Ноэль
Wanderlust Invocation
Постоянная проверка

Постоянная проверка Баннер, который вы должны извлечь отсюда

Доступны ограниченные события

События Событие
Персонаж / оружие
Утраченные богатства
8 января — 18 января
Ищите сокровища со своим Благим питомцем!
Hypostasic Symphony
16 января — 31 января
Проверьте свои навыки и сразитесь с Hypostasis за награды!

Предстоящие ограниченные события

Событие Подробности
Усиленные персонажи
Чудесные товары Второй чудесный товар уже здесь! Дайте необходимые предметы для получения различных наград.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *