Для чего нужно сопротивление в цепи. Резисторы: виды, принцип работы и применение в электрических цепях

Что такое резистор и для чего он нужен в электрической цепи. Какие бывают виды резисторов. Как работает резистор и где применяется. Как правильно рассчитать и подобрать резистор для схемы.

Содержание

Что такое резистор и его назначение в электрической цепи

Резистор — это пассивный электронный компонент, основное назначение которого — создавать сопротивление электрическому току в цепи. Резисторы широко применяются в электронике и электротехнике для ограничения силы тока, деления напряжения, защиты компонентов и других целей.

Основные функции резисторов в электрических схемах:

  • Ограничение тока в цепи до заданного значения
  • Деление напряжения в схемах
  • Создание нагрузки для других компонентов
  • Задание рабочей точки для активных элементов (транзисторов, микросхем)
  • Фильтрация сигналов в схемах
  • Термокомпенсация в измерительных цепях

Таким образом, резисторы позволяют управлять током и напряжением в электрических схемах, что делает их незаменимыми компонентами электроники.


Виды резисторов и их характеристики

Существует несколько основных типов резисторов, различающихся по конструкции и характеристикам:

1. Постоянные резисторы

Имеют фиксированное значение сопротивления. Основные разновидности:

  • Углеродистые — недорогие, для низкомощных цепей
  • Металлопленочные — более точные и стабильные
  • Проволочные — для больших мощностей

2. Переменные резисторы (потенциометры)

Позволяют плавно изменять сопротивление в заданных пределах. Применяются для регулировки параметров схем.

3. Подстроечные резисторы

Используются для точной настройки и калибровки схем. Регулируются редко, обычно при наладке устройства.

4. Нелинейные резисторы

Сопротивление зависит от приложенного напряжения, температуры или освещенности. К ним относятся варисторы, термисторы, фоторезисторы.

Принцип работы резистора

Принцип действия резистора основан на преобразовании электрической энергии в тепловую за счет столкновения электронов с атомами проводящего материала. Чем выше сопротивление резистора, тем сильнее он препятствует протеканию тока.


Работа резистора описывается законом Ома:

U = I * R

где U — напряжение на резисторе, I — ток через резистор, R — сопротивление.

Этот закон позволяет рассчитать параметры резистора для конкретной схемы.

Применение резисторов в электронных схемах

Резисторы находят широкое применение в различных электронных устройствах:

  • Источники питания — для ограничения токов и деления напряжений
  • Усилители — задание режимов работы транзисторов
  • Генераторы сигналов — формирование колебаний нужной формы
  • Фильтры — частотная селекция сигналов
  • Делители напряжения — получение нужных уровней напряжения
  • Измерительные приборы — создание шунтов и добавочных сопротивлений

Практически ни одно электронное устройство не обходится без резисторов в своей схеме.

Как рассчитать номинал резистора для схемы

Правильный выбор номинала резистора важен для корректной работы схемы. Основные этапы расчета:

  1. Определить требуемый ток в цепи
  2. Рассчитать нужное падение напряжения на резисторе
  3. Используя закон Ома, найти сопротивление: R = U / I
  4. Выбрать ближайший стандартный номинал резистора
  5. Проверить мощность рассеивания: P = U * I

При расчетах важно учитывать допуски резисторов и запас по мощности. Для ответственных узлов рекомендуется проводить моделирование работы схемы.


Маркировка и обозначение резисторов

Резисторы маркируются цветовым кодом или буквенно-цифровым обозначением. Основные способы маркировки:

  • Цветовые полосы — 3-6 полос, кодирующие номинал и допуск
  • Буквенно-цифровой код — например, 10K = 10 кОм
  • Полное цифровое обозначение номинала

На схемах резисторы обозначаются буквой R и порядковым номером. Номинал указывается рядом с обозначением.

Правила монтажа и эксплуатации резисторов

При работе с резисторами следует соблюдать ряд правил:

  • Не превышать максимально допустимую мощность рассеивания
  • Учитывать влияние температуры на параметры резистора
  • Избегать механических нагрузок на выводы
  • Правильно ориентировать полярные резисторы в схеме
  • Использовать изоляцию для высоковольтных резисторов
  • Периодически проверять параметры резисторов в ответственных узлах

Соблюдение этих правил обеспечит надежную работу резисторов в составе электронных устройств.


Что такое резистор [подробная статья]

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

Содержание статьи

Для чего нужен резистор в электрической цепи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:

  • 25 Ом – 25 R;
  • 25 кОм – 25 K;
  • 25 МОм – 25 M.

Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:

  • 0,25 Ом – R 25;
  • 0,25 кОм – K 25;
  • 0,25 МОм – M 25.

Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:

  • 2,5 Ом – 2R5;
  • 2,5 кОм – 2K5;
  • 2,5 МОм – 2M5.

Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Допустимая погрешность, ±%

20

10

5

2

1

0,5

0,2

0,1

Буква

Русская

В

С

И

Л

Р

Д

У

Ж

Латинская

M

K

J

G

F

D

C

B

Цветовая маркировка резисторов с проволочными выводами

Для резисторов применяют цветовую кодировку, которая наносится 3, 4, 5, 6 цветовыми кольцами. Если кольца смещены к одному из выводов, то первым (с него и начинается расшифровка кода) считается кольцо, находящееся к выводу ближе всего. Если кольца расположены приблизительно равномерно, то следует помнить, что первое кольцо не делают серебристым или золотистым. В некоторых моделях чтение кода начинают с той стороны, где находятся парные кольца, отдельно стоящее кольцо обычно находится в конце шифра.

Таблица расшифровки цветовых колец

Цвет

Число

Десятичный множитель

Класс точности, %

Температурный коэффициент сопротивления

% отказов

Черный

0

1*100

-

-

-

Коричневый

1

1*101

1

100

1

Красный

2

1*102

2

50

0,1

Оранжевый

3

1*103

-

15

0,01

Желтый

4

1*104

-

25

0,001

Зеленый

5

1*105

0,5

-

-

Синий

6

1*106

0,25

10

-

Фиолетовый

7

1*107

0,1

5

-

Серый

8

1*108

0,05

-

-

Белый

9

1*109

-

1

-

Серебристый

-

1*10-2

10

-

-

Золотой

-

1*10-1

5

-

-

В четырехполосном коде первые две полосы означают два знака номинала, третья полоска – это десятичный множитель, то есть это степень, в которую нужно возвести число, обозначающее номинал. Четвертая полоска указывает класс точности элемента. В пятиполосном шифре третья полоса обозначает знак номинала, четвертая – десятичный множитель, а пятая – класс точности. Если присутствует шестая полоса, то она обозначает температурный коэффициент. Если же это кольцо шире остальных в полтора раза, то оно характеризует процент отказов.

В расшифровке кодов проволочных резисторов помогут удобные онлайн-программы. Тем более имеет смысл к ним обратиться при расшифровке кода SMD-резистора, поскольку существует несколько вариантов маркировок, с которыми самостоятельно разобраться будет очень непросто.

Виды соединения резисторов в электроцепи

Эффективная работа элементов электроцепи с резистором зависит от правильного выбора не только самого сопротивления, но и способа его соединения в цепи, который может быть последовательным, параллельным или смешанным.

Последовательное соединение

Последовательное соединение резисторов

В такой схеме каждый последующий резистор подсоединяется к предыдущему, образуя неразветвленную цепь. Ток в последовательно соединенных «резюках» одинаковый, напряжение разное. Общее сопротивление нескольких последовательно расположенных «резюков» определяется очень просто – суммированием их номиналов.

Формула: Rобщ. = R1 + R2 +…+ Rn

Чем больше элементов в последовательной схеме, тем больше суммарное сопротивление.

Параллельное соединение

Параллельное соединение резисторов

При параллельном соединении резисторы соединяются между собой вводами и выводами. Напряжение на этих элементах одинаково, а ток между ними распределяется. Чем больше ветвей образуется, тем больше вариантов протекания тока и тем меньше общее сопротивление.

Формула: Rобщ. = 1/R1 + 1/R2 +…+ 1/Rn

Смешанное соединение

Смешанное соединение резисторов

При таком способе варианты соединения элементов комбинируют. Сопротивление каждого участка с определенным типом соединения рассчитывается по указанным выше правилам.

Соединение нескольких резисторов в одной схеме

Если у вас под рукой не оказалось сопротивления нужного номинала, то можно его получить при помощи правильного соединения нескольких резюков. Так, если вам нужно сопротивление 100 кОм, а есть две резистивные детали по 50 кОм, то их можно соединить последовательно и получить нужный результат. Сопротивление в 100 кОм можно получить параллельным соединением элементов по 200 кОм.

Видео: что такое резистор и как он работает


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Что такое сопротивление | Самое простое объяснение

Что такое сопротивление?

Сопротивление (электрическое сопротивление) – это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!

Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока – это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?

Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.

Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?

Разумеется, гофрированный. Вода будет “цепляться” за его стенки, что приведет к тому, что они будут мешать потоку воды.

Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?

Думаю тот, который длиннее. Ответ очевиден.

Сопротивление проводника


Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.

Поэтому, окончательная формула будет принимать вид

формула сопротивления проводника

 

В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м.  Чтобы перевести  в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2

удельное сопротивление веществ

Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.

Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.

Что такое сопротивление 1 Ом?

Проводник обладает сопротивлением 1 Ом, если на его концах напряжение составляет 1 Вольт при силе тока, проходящей через него в 1 Ампер.

сопротивление 1 Ом

Это самое простое объяснение, что такое 1 Ом. В электротехнике и электронике сопротивление обозначается буквой R .

Как найти сопротивление в цепи?

Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле

формула сопротивления через закон Ома

где

R – сопротивление, Ом

U – напряжение на концах проводника, Вольты

I – сила тока, текущая через проводник, Амперы

То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника.  Давайте для закрепления решим простую задачу.

Задача

Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.

Решение

Используем формулу

В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току – резисторы. Более подробно про них можно прочитать в этой статье.

постоянные резисторы

 

Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление

 

Близкие темы к этой статье

Электрический проводник

Напряжение

Сила тока

Резисторы

Закон Ома

Входное и выходное сопротивление

как посчитать и определить формулой

Сопротивление – это физическая электротехническая величина, отражающая противодействие движению электрического тока в проводнике или в цепи. Впервые она была обоснована и закреплена в фундаментальной связи с напряжением и силой тока в законе Ома – немецкого физика, который изучал эту взаимосвязь. В честь него и названа единица измерения сопротивления – Ом. Часто при выполнении монтажа какой-либо электросети необходимо найти общее сопротивление цепи при различных способах подключения. О том, как это правильно сделать и расскажет этот материал.

Что такое общее сопротивление цепи

Если говорить простыми словами, общее сопротивление электрической цепи – это такое R, которое она оказывает на напряжение в ее проводниках и приборах. Существует два типа напряжения (исходя из силы тока) – постоянное и переменное. Так же и сопротивление делится на активное и реактивное, которое, в свою очередь, подразделяется на индуктивное и емкостное. Активный тип не зависит от частот сети. Также для него абсолютно не важно, какой ток протекает по проводникам. Реактивный же, наоборот, зависит от частоты, причем емкостная характеристика в конденсаторах и индуктивная в трансформаторах ведут себя по-разному.

Закон Ома

Помимо сопротивления подключенных в сеть электроприборов, на общее состояние оказывают влияние даже промежуточные провода, также имеющие сопротивляемость напряжению.

Резистор – основной элемент сопротивляемости цепи

Как правильно найти и посчитать формулой сопротивление цепи

Сперва следует разобрать понятия и формулы. Индуктивный тип считается так: XL= ωL, где L – индуктивность цепи, а ω – круговая частота переменного тока, равная 2πf (f – частота переменного тока). Чем больше частота сети, тем большим R для нее становится какая-либо катушка индуктивности.

Емкостный тип можно рассчитать по формуле: Xc = 1/ ωC, где С – емкость радиоэлемента. Здесь все наоборот. Если происходит увеличение частоты, то сопротивляемость конденсатора напряжению уменьшается. Из этого исходит то, что для сети постоянного тока конденсатор – бесконечно большое R.

Высчитать характеристику можно и с помощи других величин

Но не только вид сопротивления и радиоэлементы, обеспечивающие его, влияют на общее значение цепи. Особую роль играет также и способ соединения элементов в электроцепь. Существует два варианта:

  • Последовательный;
  • Параллельный.

В последовательном подключении

Это самый простой тип для практического и теоретического рассмотрения. В нем элементы резисторного типа соединяются, очевидно, последовательно, образуя подобие «змейки» после чего электрическая цепь замыкается. Посчитать общее значение в таком случае довольно просто: требуется последовательно сложить все значения, выдаваемые каждым из резисторов. Например, если подключено 5 резисторов по 5 Ом каждый, то общий параметр будет равен 5 на 5 – 25 Ом.

Формула последовательной сети

В параллельном подключении

Немного сложнее все устроено в параллельных сетях. Если при последовательном способе току нужно пройти все резисторы, то тут он вправе выбрать любой. На самом деле он просто будет разделен между ними. Суть в том, что есть характеристика, схожая для всех радиоэлементов, например, величина в 5 Ом означает, что для нахождения общего R необходимо разделить его на количество всех подключенных резисторов: 5/5 = 1 Ом.

Важно! Из-за того, что напряжение на параллельных участках одинаково, а токи складываются, то есть сумма токов в участках равна неразветвленному току, то Rобщ будет высчитываться формуле: 1/R = 1/R1 + 1/R2 + … + 1/Rn.

Формула параллельной сети

Как определить формулой общее сопротивление цепи

Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.

Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.

Таблица удельной величины для различных проводников

Онлайн-калькулятор расчета сопротивление цепи

Для того чтобы сэкономить свое время и не заниматься скучными пересчетами, рекомендуется пользоваться калькуляторами по расчету сопротивления и многих других величин в режиме онлайн. Большинство из них бесплатные:

  • Сalc.ru (https://www.calc.ru/raschet-elektricheskikh-tsepey.html). Возможен расчет закона Ома для участка цепи, реактивного и активного сопротивления при последовательном и параллельном соединении резисторов;
  • Asutpp.ru (https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-rezistorov.html). Калькулятор для параллельного соединения. Достаточно указать количество элементов и Ом-характеристику каждого из них;
  • Cxem.net (https://cxem.net/calc/calc.php). Обладает таким же количеством калькуляторов, как и первый вариант, что позволяет радиолюбителю выполнить вычисление любых интересующих параметров сети.
Интерфейс одного из калькуляторов

В статье подробно рассказано, как вычислить общее сопротивление цепи. При разных типах подключения элементов она считается по-разному, но благодаря давно выведенным формулам в любом случае нет ничего сложного.

Как уменьшить сопротивление в цепи — MOREREMONTA

Изменение величины тока с помошью резистора

Допустим, вы построили модель игрушечной железной дороги и хотите освещать платформу главного вокзала, но не слишком ярко, чтобы соседи не заметили и не подумали невесть что. Для этого достаточно в схему, составленную выше, дополнительно ввести резистор. Новая схема, с добавленным сопротивлением, изображена на рис.

В главе 4 уже был пояснен термин «резистор»; он происходит от латинского resistio — со-противляться, поскольку сопротивляется движению через него электронов. Появление в схеме резистора уменьшает количество носителей электрического заряда, протекающих в проводниках, а чем меньше их пройдет через нить накалиьания лампы, тем меньше света она даст.

Для расчета тока, текущего через любой элемент схемы до и после введения резистора, можно воспользоваться законом Ома (подробнее об этом замечательном правиле шла речь в главе 1). Пусть собственное сопротивление лампы накаливания составляет 5 Ом, а напряжение на выводах батареи равно 3 В; тогда ток составит

Здесь прописная литера I служит для обозначения тока, U — напряжения, a R — сопротивления.

После же добавления в цепь резистора сопротивлением, скажем, 5 Ом, полное сопротивление схемы станет равным 10 Омам, и ток будет равным уже

Таким образом, резистор отсекает часть тока, протекавшего через нить накаливания лампы ранее. Такое уменьшение тока позволяет «приглушить» освещение лампы и даст, наконец-то, возможность станционному смотрителю железной дороги вздремнуть часик-другой.

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:


Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:


Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Как говорится в среде радиолюбителей: “Если не знаешь закон Ома, то сиди-ка лучше дома”.

Закон Ома с точки зрения гидравлики

Как вы уже знаете, электрический ток имеет аналогию с гидравликой. Напряжение – это уровень воды в башне. Сопротивление – это труба или шланг. Сила тока – это объем воды за какой-то период времени.

Теперь давайте рассмотрим такой случай. Пусть вместо башни у нас будет сосуд с водой, в котором пробиты три одинаковых отверстия на разной высоте сосуда. Так как сосуд у нас наполнен водой, следовательно, на дне сосуда давление будет больше, чем на его поверхности.

Как вы видите, нижняя струя, которая находится ближе ко дну, стреляет дальше, чем средняя струя. А средняя струя стреляет дальше, чем верхняя. Заметьте, что отверстия у нас везде одинакового диаметра. То есть можно сказать, что сопротивление каждого отверстия воде одинаково. За одинаковое время, объем воды, вытекаемый с самого нижнего отверстия намного больше, чем объем воды, вытекаемый со среднего и самого верхнего отверстия. А что у нас такое объем воды за какое-то время? Да это же сила тока!

Итак, какую закономерность мы тут видим? Учитывая, что сопротивление везде одинаковое, получается что с увеличением напряжения увеличивается и сила тока!

Опыт №1

Думаю, у каждого из вас есть садовый участок. Где-то недалеко от вас всегда есть водонапорная башня

Для чего нужна водонапорная башня? Для контроля уровня расхода воды, а также для создания давления в трубах, иначе как вы будете поливать свои огурцы? Вы никогда не замечали, что башню возводят где-нибудь на возвышенности? Для чего это делается? Как раз для того, чтобы создать давление.

Предположим, что ваш садовый участок находится выше, чем верхушка водобашни. Что произойдет в этом случае? Вода просто-напросто не дойдет до вас! Физика… закон сообщающихся сосудов.

У всех на кухне и в ванной есть краник. После очередного трудового дня вы решили помыть руки. Для этого вы на полную катушку включаете воду, и она начинает течь бурным потоком из краника:

Но вас не устраивает такой поток воды, поэтому, покрутив ручку крана, вы уменьшаете поток воды на минимум:

Что только что сейчас произошло?

Поменяв сопротивление потоку с помощью ручки краника, вы добились того, что этот поток воды стал течь очень слабо.

Давайте же проведем аналогию этой ситуации с электрическим током. Итак, что имеем? Напряжение потока мы не меняли. Где-то там вдалеке стоит водобашня и создает давление в трубах. Мы ведь не имеем права трогать водобашню, а тем более ее сносить). Поэтому уровень воды в башне все время полный, так как насос все время подкачивает воду до максимального уровня. Следовательно, напряжение у нас постоянное и не меняется.

Закрутив обратно ручку краника, мы только что поменяли сопротивление трубы, из которой сделан краник. В данном случае мы увеличили сопротивление потоку воды. А что у нас получилось с потоком водички? Она стала бежать медленнее! То есть, можно сказать, что количество молекул воды за какое-то время при полностью открытом и полузакрытом кранике получилось разное. Ну-ка, вспоминаем, что такое сила тока 😉 Кто забыл, напомню – это количество электронов протекающих через поперечное сечение проводника за какой-то период времени. И что у нас стало с этой силой тока? Она уменьшилась!

При увеличении сопротивления, сила тока, проходящая через это сопротивление, уменьшается.

Опыт N2

Итак. Имеем вот такую схему водоснабжения:

Теперь представьте, что вы поливаете огород и вам надо наполнить бочку с водой из шланга за 10 минут. Ни секундой раньше и не позже! У вас в огороде поток воды бежит примерно вот так:

Допустим, с водобашни у нас идет простой резиновый шланг. Сосед случайно припарковал свой автомобиль прямо на шланге и чуть-чуть придавил его

У вас поток воды стал убывать. Идти ругаться с соседом? Он уже ушел по делам, а бочку за 10 минут наполнить не успеете. Потребуется больше времени. Как же быть? А почему бы нам не открыть краник перед водобашней чуток побольше? А это хорошая идея! Открываем краник на полную катушку и добиваемся, чтобы уровень воды в башне стал еще больше, чем был до этого (хотя в башнях стоят защиты от переполнения какого-либо максимального уровня, но для примера упустим этот момент).

Итак, что у нас получается? Сосед придавил шланг, значит увеличил сопротивление. Поэтому сила тока у нас стала меньше. Чтобы восстановить силу тока, мы для этого увеличивали напряжение, то есть уровень воды в башне.

Вывод: при увеличении напряжения увеличивается и сила тока.

Опыт №3

Но беда не приходит одна. На башне сломалось реле контроля водонасоса! Насос качает воду и не отключается! Башня переполняется и поток воды из шланга с каждой секундой становиться все больше и больше! Что же делать? Мы же переполним нашу бочку за отведенное нам время! Спокойствие, только спокойствие… Выход есть! Для этого бежим и чуток перекрываем краник , добиваясь того, чтобы поток воды из шланга тек также, как и раньше 😉

В этом случае уровень воды (напряжение) на водобашне стал увеличиваться из-за того, что насос не отключался и все время качал воду. Поэтому, поток воды (сила тока) у нас тоже стала расти. Чтобы выровнять силу тока, мы увеличили сопротивление краника ;-), тем самым привели в норму уровень воды в водобашне (напряжение) до приемлемого уровня.

Формула Закона Ома

Ну как, увидели закономерность из всего вышеописанного? А вот немецкий физик Георг Ом с помощью простых опытов нашел все-таки связь между этими тремя величинами и с тех пор этот закон носит его имя:

I – это сила тока, выражается в Амперах (А)

U – напряжение, выражается в Вольтах (В)

R – сопротивление, выражается в Омах (Ом)

Заключение

Закон Ома является самым главным законом в электронике. Абсолютно вся теория цепей построена именно на законе Ома. Поэтому, чтобы научиться читать электрические схемы, вам очень важно знать, как связаны напряжение, сила тока и сопротивление на участке цепи. В этой статье мы с вами разобрали закон Ома для участка цепи, но есть еще закон Ома для полной цепи, о котором можно прочитать в этой статье.

Более подробно про закон Ома для участка цепи вы можете также прочитать в этой статье.

Резистор, для чего он нужен, где применяется в автомобилях

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относится к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получится. А в любом автомобиле электрических цепей предостаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это свечи зажигания. Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Читайте также:

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

 

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности. Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

Реостаты. Виды и устройство. Работа и особенности. Применение

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R. Если изменять сопротивление проводника R, тогда будет меняться сила тока.

Сопротивление зависит от длины L, от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Например, цепь, состоящая из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов
Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение
Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:
  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.
Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:
  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

Похожие темы:

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

(1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

(2)

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

(3)

Итак, , и мы приравниваем правые части формул (2) и (3):

После сокращения на получаем:

Вот мы и нашли ток в цепи:

(4)

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

(5)

Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

КПД электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

КПД электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3показан неоднородный участок, содержащий резистор и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

(6)

или, что то же самое:

(7)

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

(8)

или:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Что такое сопротивление? | Fluke

Сопротивление — это мера сопротивления току в электрической цепи.

Сопротивление измеряется в омах и обозначается греческой буквой омега (Ом). Ом назван в честь Георга Симона Ома (1784-1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением. Ему приписывают формулировку закона Ома.

Все материалы в некоторой степени сопротивляются току. Они попадают в одну из двух широких категорий:

  • Проводники: Материалы с очень низким сопротивлением, в которых электроны могут легко перемещаться.Примеры: серебро, медь, золото и алюминий.
  • Изоляторы: Материалы, обладающие высоким сопротивлением и ограничивающие поток электронов. Примеры: резина, бумага, стекло, дерево и пластик.
Золотая проволока служит отличным проводником.

Измерения сопротивления обычно проводятся для определения состояния компонента или цепи.

  • Чем выше сопротивление, тем меньше ток. Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии.Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением.
  • Чем ниже сопротивление, тем выше ток. Возможные причины: повреждение изоляторов из-за влаги или перегрева.

Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления. Эти значения часто печатаются на паспортных табличках компонентов или в руководствах для справки.

Когда указывается допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона сопротивления.Любое значительное изменение значения фиксированного сопротивления обычно указывает на проблему.

«Сопротивление» может звучать отрицательно, но в электричестве его можно использовать с пользой.

Примеры: Ток должен с трудом проходить через маленькие катушки тостера, достаточный для выработки тепла, которое подрумянивает хлеб. Лампы накаливания старого образца заставляют ток течь через такие тонкие нити, что возникает свет.

Невозможно измерить сопротивление в рабочей цепи. Соответственно, специалисты по поиску и устранению неисправностей часто определяют сопротивление, измеряя напряжение и ток и применяя закон Ома:

E = I x R

То есть, вольт = амперы x Ом.R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать в R = E / I (Ом = вольт, деленный на амперы).

Примеры: В цепи электрического нагревателя, как показано на двух рисунках ниже, сопротивление определяется путем измерения напряжения и тока цепи с последующим применением закона Ома.

Пример нормального сопротивления цепи Пример повышенного сопротивления цепи

В первом примере полное нормальное сопротивление цепи, известное опорное значение, составляет 60 Ом (240 ÷ 4 = 60 Ом).Сопротивление 60 Ом может помочь определить состояние цепи.

Во втором примере, если ток в цепи составляет 3 А вместо 4, сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом). Повышение общего сопротивления на 20 Ом может быть вызвано неплотным или грязным соединением или обрывом катушки. Секции с разомкнутой катушкой увеличивают общее сопротивление цепи, что снижает ток.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Закон Ома

: сопротивление и простые цепи

Цели обучения

К концу этого раздела вы сможете:

  • Объясните происхождение закона Ома.
  • Рассчитывайте напряжения, токи или сопротивления по закону Ома.
  • Объясните, что такое омический материал.
  • Опишите простую схему.

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению. :

[латекс] I \ propto {V} \\ [/ латекс].

Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R .Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

.

[латекс] I \ propto \ frac {1} {R} \\ [/ latex].

Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

[латекс] I = \ frac {V} {R} \\ [/ латекс].

Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико.Единица измерения сопротивления — Ом, и обозначается символом Ω (заглавная греческая омега). Перестановка I = V / R дает R = V / I , поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

[латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ latex].

На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

Рис. 1. Простая электрическая цепь, в которой замкнутый путь прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Пример 1. Расчет сопротивления: автомобильная фара

Какое сопротивление проходит у автомобильной фары? 2.50 А течет при подаче на него 12,0 В?

Стратегия

Мы можем изменить закон Ома, как указано в I = V / R , и использовать его для определения сопротивления.

Решение

Перестановка I = V / R и замена известных значений дает

[латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

Обсуждение

Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с температурой, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, тогда как сопротивление человеческого сердца составляет примерно 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительное понимание можно получить, решив I = V / R для V , что дает

В = ИК

Это выражение для В, можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Для этого напряжения часто используется фраза IR drop . Например, фара в Примере 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = q Δ V , и то же самое q протекает через каждую. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Подключение: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним резистором. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

Исследования PhET: закон Ома

Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

Щелкните, чтобы запустить моделирование.

Краткое содержание раздела

  • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
  • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
  • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
  • Существует падение напряжения IR на резисторе, вызванное протекающим через него током, равным V = IR .

Концептуальные вопросы

  1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
  2. Как падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

Задачи и упражнения

1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом, если через него проходит 25,0 мА?

5. (a) Найдите падение напряжения в удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

Глоссарий

Закон Ома:
— эмпирическое соотношение, указывающее, что ток I пропорционален разности потенциалов В, , 900 В, ; его часто записывают как I = V / R , где R — сопротивление
сопротивление:
электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
Ом:
единица сопротивления, равная 1Ω = 1 В / A
омическое:
тип материала, для которого действует закон Ома
простая схема:
схема с одним источником напряжения и одним резистором

Избранные решения проблем и упражнения

1.0,833 А

3. 7,33 × 10 −2 Ом

5. (а) 0,300 В

(б) 1,50 В

(c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечного выхода прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

Сопротивление | Основные понятия электричества

Схема из предыдущего раздела не очень практична. На самом деле, это может быть довольно опасно строить (прямое соединение полюсов источника напряжения с помощью одного куска провода). Причина, по которой это опасно, заключается в том, что величина электрического тока может быть очень большой в таком коротком замыкании , и выделение энергии может быть очень значительным (обычно в виде тепла). Обычно электрические цепи строятся таким образом, чтобы максимально безопасно использовать высвобождаемую энергию на практике.

Ток, протекающий через нить накала лампы

Одним из практических и популярных способов использования электрического тока является электрическое освещение. Самая простая форма электрической лампы — это крошечная металлическая «нить» внутри прозрачной стеклянной колбы, которая накаляется добела («накаляется») тепловой энергией, когда через нее проходит достаточный электрический ток. Как и батарея, он имеет две токопроводящие точки подключения: одна для входа тока, а другая — для выхода. Схема электрической лампы, подключенная к источнику напряжения, выглядит примерно так:

Когда ток проходит через тонкую металлическую нить накала лампы, он встречает большее сопротивление движению, чем обычно в толстом куске провода.Это сопротивление электрическому току зависит от типа материала, его площади поперечного сечения и температуры. Технически он известен как сопротивление . (Можно сказать, что проводники имеют низкое сопротивление, а изоляторы имеют очень высокое сопротивление.) Это сопротивление служит для ограничения количества тока, проходящего через цепь с заданным значением напряжения, подаваемого батареей, по сравнению с «коротким замыканием», когда у нас не было ничего, кроме провода, соединяющего один конец источника напряжения (батареи) с другим.Когда ток движется против сопротивления сопротивления, возникает «трение». Точно так же, как механическое трение, трение, создаваемое током, протекающим против сопротивления, проявляется в виде тепла. Концентрированное сопротивление нити накала лампы приводит к тому, что на нити рассеивается относительно большое количество тепловой энергии. Этой тепловой энергии достаточно, чтобы нить накаливания стала раскаленной добела, производя свет, в то время как провода, соединяющие лампу с батареей (которые имеют гораздо меньшее сопротивление), едва ли нагреваются, проводя такое же количество тока.Как и в случае короткого замыкания, если целостность цепи нарушена в любой точке, ток прекращается по всей цепи. Если лампа установлена, это означает, что она перестанет светиться:

Как и раньше, при отсутствии протекания тока весь потенциал (напряжение) батареи доступен через разрыв, ожидая возможности соединения, чтобы перемыть этот разрыв и позволить току снова течь. Это состояние известно как разомкнутая цепь , когда разрыв цепи предотвращает ток повсюду.Все, что требуется, — это один разрыв цепи, чтобы «разомкнуть» цепь. После повторного подключения любых разрывов и восстановления непрерывности цепи это называется замкнутой цепью .

Основа для коммутации ламп

То, что мы видим здесь, является основой для включения и выключения ламп с помощью дистанционных выключателей. Поскольку любой разрыв непрерывности цепи приводит к остановке тока по всей цепи, мы можем использовать устройство, предназначенное для преднамеренного разрыва этой непрерывности (так называемый переключатель ), установленный в любом удобном месте, к которому мы можем провести провода, для управления током. протекание тока в цепи:

Таким образом выключатель, установленный на стене дома, может управлять лампой, установленной в длинном коридоре или даже в другой комнате, вдали от выключателя.Сам переключатель состоит из пары проводящих контактов (обычно сделанных из какого-то металла), соединенных механическим рычажным приводом или кнопкой. Когда контакты соприкасаются друг с другом, ток может течь от одного к другому, и устанавливается непрерывность цепи. Когда контакты разделены, ток от одного к другому предотвращается воздушной изоляцией между ними, и непрерывность цепи нарушается.

Рубильник

Пожалуй, лучший вид переключателя, который можно показать для иллюстрации основного принципа, — это «ножевой» переключатель:

Рубильник — это не что иное, как токопроводящий рычаг, свободно поворачивающийся на шарнире, вступающий в физический контакт с одной или несколькими неподвижными точками контакта, которые также являются токопроводящими.Переключатель, показанный на иллюстрации выше, построен на фарфоровой основе (отличный изоляционный материал) с использованием меди (отличный проводник) для «лезвий» и точек контакта. Ручка сделана из пластика, чтобы изолировать руку оператора от токопроводящего лезвия переключателя при его открытии или закрытии. Вот еще один тип рубильника, с двумя неподвижными контактами вместо одного:

Конкретный рубильник, показанный здесь, имеет одно «лезвие», но два неподвижных контакта, что означает, что он может замыкать или размыкать более одной цепи.На данный момент это не так важно, чтобы знать, просто базовая концепция того, что такое переключатель и как он работает. Рубильные переключатели отлично подходят для иллюстрации основного принципа работы переключателя, но они представляют определенные проблемы безопасности при использовании в электрических цепях большой мощности. Открытые проводники рубильника делают случайный контакт с цепью, и любая искра, которая может возникнуть между движущимся ножом и неподвижным контактом, может воспламенить любые расположенные поблизости легковоспламеняющиеся материалы.В большинстве современных конструкций переключателей движущиеся проводники и контактные точки закрыты изолирующим кожухом, чтобы уменьшить эти опасности. Фотографии нескольких современных типов переключателей показывают, что механизмы переключения гораздо более скрыты, чем в конструкции ножа:

Открытые и закрытые схемы

В соответствии с терминологией «разомкнутых» и «замкнутых» цепей, переключатель, который устанавливает контакт от одной клеммы подключения к другой (пример: рубильник, лезвие которого полностью касается неподвижной точки контакта), обеспечивает непрерывность подачи тока в протекает и называется переключателем замкнутый .И наоборот, выключатель, который нарушает целостность цепи (пример: рубильник с лезвием , не касающийся неподвижной точки контакта), не пропускает ток, и называется выключателем разомкнутым . Эта терминология часто сбивает с толку новичков, изучающих электронику, потому что слова «открытый» и «закрытый» обычно понимаются в контексте двери, где «открытый» приравнивается к свободному проходу, а «закрытый» — к блокировке. В случае электрических переключателей эти термины имеют противоположное значение: «открытый» означает отсутствие потока, а «закрытый» означает свободное прохождение электрического тока.

ОБЗОР:

  • Сопротивление — это мера сопротивления электрическому току.
  • Короткое замыкание — это электрическая цепь, которая практически не оказывает сопротивления протеканию тока. Короткие замыкания опасны для источников питания высокого напряжения, поскольку возникающие высокие токи могут вызвать выделение большого количества тепловой энергии.
  • Разрыв цепи — это цепь, в которой непрерывность была нарушена из-за прерывания пути прохождения тока.
  • Замкнутая цепь — это замкнутая цепь с хорошей непрерывностью на всем протяжении.
  • Устройство, предназначенное для размыкания или замыкания цепи в контролируемых условиях, называется переключателем .
  • Термины «разомкнут», и «замкнут». относятся как к переключателям, так и ко всем цепям. Открытый переключатель — это переключатель без непрерывности: ток не может течь через него. Замкнутый переключатель — это переключатель, который обеспечивает прямой (с низким сопротивлением) путь для прохождения тока.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Попробуйте наш калькулятор сопротивления в разделе «Инструменты » .

Измерение сопротивления, в цепи и на выходе

Резистор — это основной электронный компонент. Сопротивляясь потоку электронов простым и предсказуемым образом, резистор позволяет разработчику легко управлять токами и напряжениями, а токи и напряжения — вот что такое схемы.

Рекомендуемый уровень

Начинающий

Перед измерением

Сопротивление или просто «значение» резистора определяет, как он будет влиять на цепь, к которой он подключен. Вам нужно знать сопротивление вашего резистора — иногда приблизительное значение подходит, но иногда вам нужна точность. Номинал резистора обычно указывается на самом компоненте либо старомодными цветными полосами, либо напечатанными цифрами. Но это номинальные значения, означающие, что фактическое сопротивление может быть на определенный процент выше или ниже указанного значения.Если допустимое отклонение резистора составляет 10%, например, резистор «1000 Ом» может иметь сопротивление от 900 до 1100 Ом.

Зачем измерять?

Итак, если значение сопротивления указано прямо на резисторе, зачем вам проводить измерения? Есть две причины: во-первых, вы не можете с уверенностью определить сопротивление по этикетке — возможно, компонент старый, а этикетка блеклая, или, может быть, вы не понимаете цветовой код. Во-вторых, вам может потребоваться знать точное значение конкретного резистора, а не его номинальное значение.Для высокоточной схемы требуются высокоточные компоненты. Если опорное напряжение для аналого-цифрового преобразователя определяется внешним резистором, вам необходимо знать точное значение этого резистора, чтобы точно интерпретировать ваши оцифрованные измерения.

Знать закон

Самым основным законом, описывающим протекание электрического тока, является закон Ома, который связывает напряжение (V) и ток (I) с сопротивлением (R):

Другими словами, напряжение, подаваемое в цепь, равно току, протекающему по цепи, умноженному на общее сопротивление цепи.Другой способ выразить это отношение —

.

Это означает, что ток, протекающий по цепи, равен напряжению, подаваемому в цепь, деленному на общее сопротивление цепи.

Закон

Ома применяется не только ко всем цепям, но и к отдельным компонентам. В резисторе энергия рассеивается по мере протекания тока через резистивный материал, и эта потеря энергии проявляется в виде падения напряжения, которое представляет собой разницу между напряжениями на двух выводах резистора.Таким образом, закон Ома обеспечивает основной подход к измерению номинала резистора: если вы знаете падение напряжения на резисторе и ток, протекающий через резистор, вы знаете сопротивление.

Легкий путь

Самый распространенный и простой способ измерить сопротивление — использовать цифровой мультиметр или цифровой мультиметр. Это незаменимое устройство знает все о законе Ома и с радостью сделает всю работу за вас: когда вы подключаете выводы резистора к двум пробникам, оно подает известный ток, измеряет результирующее падение напряжения и вычисляет сопротивление.Проблема в том, что этот подход работает только в том случае, если вы можете вынуть резистор из цепи; Считыванию цифрового мультиметра нельзя доверять, если выводы резистора подключены к другим компонентам. Поэтому, если вам нужно знать номинал резистора, который нельзя изолировать от других компонентов, вам придется проявить больше творчества.

Непростые пути

Независимо от конкретных обстоятельств конкретного измерения сопротивления, основная стратегия остается той же: определить ток и напряжение, а затем рассчитать сопротивление.Таким образом, цель определения номинала резистора, встроенного в схему, состоит в том, чтобы каким-то образом измерить падение напряжения на этом резисторе и ток, протекающий через него.

Падение напряжения можно измерить, просто подключив два щупа цифрового мультиметра к двум клеммам резистора (помните, что цепь должна быть включена, чтобы это работало). Однако измерить ток не так-то просто. Для измерения тока цифровой мультиметр должен быть подключен последовательно с током, протекающим через резистор, другими словами, ток, протекающий через резистор, должен проходить через один датчик цифрового мультиметра, через измерительную схему цифрового мультиметра и выходить из другого датчика.Это означает, что вам нужно найти удобный способ прервать прохождение тока через резистор, а затем подключить два щупа цифрового мультиметра к двум сторонам этой разомкнутой цепи; посмотрите на разъемы, перемычки и легко снимаемые компоненты как на возможные места для вставки цифрового мультиметра в токопроводящую дорожку. В этой задаче часто очень помогают тестовые клипы мини-граббера.

Если вы не можете найти способ использовать цифровой мультиметр для измерения тока, протекающего через резистор, есть еще один несколько более сложный вариант: сначала возьмите другой резистор и измерьте его точное значение с помощью цифрового мультиметра.Затем вам нужно найти способ вставить этот резистор в цепь, чтобы он был включен последовательно с сопротивлением, которое вы пытаетесь измерить. Поскольку два резистора включены последовательно, вы знаете, что через оба протекает одинаковый ток. Измерьте падение напряжения на новом резисторе, затем используйте закон Ома для расчета тока. Этот же ток протекает через исходный резистор, поэтому после измерения падения напряжения на исходном резисторе вы можете использовать закон Ома для расчета его сопротивления.

Что такое сопротивление? — Основы схемотехники

В предыдущих статьях мы обсуждали напряжение и ток. На этот раз мы поговорим о третьем фундаментальном понятии в электронике — сопротивлении. В самом простом определении сопротивление — это мера сопротивления току в электрической цепи. Но давайте подробнее рассмотрим, что это значит!

Немного из истории

В 1827 году Джордж Ом открыл и ввел термин электрическое сопротивление.Эта концепция имеет сходные параллели с механическим термином «трение». После того, как Алессандро Вольта изобрел первую электрохимическую батарею, Ом использовал ее в качестве основы для многих своих экспериментов, которые включали установление взаимосвязи между разностью потенциалов и током. Он обнаружил, что ток и напряжение прямо пропорциональны, и это соотношение было названо законом Ома. Он обнаружил, что сопротивление — это соотношение между напряжением и током, как показано в его уравнении ниже:

Факторы, определяющие сопротивление

Сопротивление возникает, когда электроны не могут свободно перемещаться по проводнику.Обычно это происходит из-за отсутствия свободных валентных электронов во многих структурах. Это приводит к увеличению столкновений между электронами и ионами в материале. Когда происходят эти столкновения, кинетическая энергия электронов преобразуется в тепловую, поэтому, когда большие токи сталкиваются с высоким сопротивлением, выделяется много тепла.

На сопротивление проводника влияют три фактора:

  • Длина проводника (L)
  • Площадь поперечного сечения проводника (A)
  • Удельное сопротивление материала проводника (ρ)

Это уравнение ниже показывает взаимосвязь между этими факторами:

Длина

Длина проводника влияет на значение его сопротивления.Чем длиннее проводник, тем больше сопротивление. Это потому, что электроны сталкиваются с большим количеством ионов по мере прохождения. Следовательно, длина проводника пропорциональна сопротивлению проводника.

Площадь поперечного сечения

Диаметр или площадь поперечного сечения проводника также влияет на значение его сопротивления. Чем больше диаметр провода или CSA проводника, тем меньше сопротивление проводника. Сопротивление возникает из-за столкновения ионов / электронов, и если CSA проводника увеличивается, зазор между электронами также увеличивается.Теперь это уменьшает количество происходящих столкновений, тем самым уменьшая сопротивление проводника.

Удельное сопротивление

Третий фактор, влияющий на сопротивление проводника, — это удельное сопротивление материала при прохождении тока (проводника). У разных материалов разные значения удельного сопротивления. Как показано в приведенном выше уравнении, сопротивление прямо пропорционально удельному сопротивлению.

Резистор с Типичный резистор, используемый в схемах DIY

Резистор — это пассивный электрический компонент, который добавляет определенное значение сопротивления электрической цепи.Резисторы используются, в частности, для уменьшения протекания тока, регулировки напряжений. Резистор преобразует электрическую энергию в тепло и обычно состоит из нескольких медных витков. Толщина и длина этой медной катушки определяют фактическое значение сопротивления. Поэтому резисторы используются почти во всех электронных устройствах и гаджетах, поскольку они служат одним из самых фундаментальных компонентов электрических цепей.

Рассеиваемая мощность

Как упоминалось ранее, резисторы работают за счет рассеивания мощности путем преобразования электрической энергии в тепловую.Используйте следующее уравнение для расчета потерь мощности:

Определение потерь мощности резистора также важно, поскольку разные резисторы имеют разную номинальную мощность. Если расчетная потеря мощности резистора в цепи превышает номинальную мощность резистора, резистор, скорее всего, выйдет из строя из-за перегрева.

Пример задачи

Чтобы рассчитать мощность, рассеиваемую резистором в приведенной выше схеме, нам нужно определить величину тока, протекающего по цепи.Это можно рассчитать с помощью закона Ома, где I = V / R. Следовательно, 9/50 = 0,18 А. Используя уравнение P = IV, мы получаем, что мощность, рассеиваемая указанным выше резистором, составляет 1,62 Вт. Это означает, что номинальная мощность резистора должна быть больше 1,62 Вт, чтобы избежать перегрева.

Резисторы в схемах

Когда дело доходит до установки резисторов в цепи, существует две основные конфигурации: последовательно или параллельно.

Последовательная цепь

В последовательной цепи резисторы выстроены один за другим.В этой конфигурации ток по всей цепи остается постоянным. Однако разность потенциалов между каждым резистором может варьироваться в зависимости от номинала каждого резистора.

Используйте это уравнение, чтобы получить полное сопротивление в последовательной цепи:

Параллельные схемы

В параллельной цепи резисторы выстроены «параллельно» один за другим. В этой конфигурации падение напряжения на каждом резисторе остается постоянным.Однако ток на каждом резисторе может варьироваться в зависимости от номинала каждого резистора.

Используйте это уравнение, чтобы получить полное сопротивление в параллельной цепи:


Резисторы

в комбинации последовательно и параллельно

В предыдущих руководствах мы узнали, как соединить отдельные резисторы вместе, чтобы сформировать либо сеть последовательных резисторов, либо параллельную сеть резисторов, и мы использовали закон Ома, чтобы найти различные протекающие токи и напряжения на каждой комбинации резисторов.

Но что, если мы хотим соединить различные резисторы вместе в «ОБЕИХ» параллельных и последовательных комбинациях в одной цепи для создания более сложных резистивных цепей, как мы рассчитаем объединенное или полное сопротивление цепи, токи и напряжения для этих резистивных комбинаций.

Цепи резисторов

, которые объединяют последовательно и параллельные цепи резисторов вместе, обычно известны как комбинация резисторов или смешанные схемы резисторов. Метод расчета эквивалентного сопротивления цепей такой же, как и для любой отдельной последовательной или параллельной цепи, и, надеюсь, теперь мы знаем, что последовательно подключенные резисторы несут точно такой же ток и что резисторы, подключенные параллельно, имеют точно такое же напряжение на них.

Например, в следующей схеме вычислите полный ток (I T ), снимаемый с источника питания 12 В.

На первый взгляд это может показаться сложной задачей, но если мы присмотримся немного ближе, мы увидим, что два резистора, R 2 и R 3 , фактически оба соединены вместе в комбинацию «СЕРИЯ», поэтому мы можем добавить их вместе, чтобы получить эквивалентное сопротивление, такое же, как мы делали в учебнике по последовательному резистору. Таким образом, результирующее сопротивление для этой комбинации будет:

.

R 2 + R 3 = 8 Ом + 4 Ом = 12 Ом

Таким образом, мы можем заменить оба резистора R 2 и R 3 , указанные выше, на один резистор с сопротивлением 12 Ом

.

Итак, наша схема теперь имеет единственный резистор R A в «ПАРАЛЛЕЛЬНО» с резистором R 4 .Используя наши резисторы в параллельном уравнении, мы можем уменьшить эту параллельную комбинацию до одного эквивалентного резистора номиналом R (комбинация) , используя следующую формулу для двух параллельно соединенных резисторов.

Резистивная цепь теперь выглядит примерно так:

Мы видим, что два оставшихся сопротивления, R 1 и R (гребенчатый) , соединены вместе в комбинации «ПОСЛЕДОВАТЕЛЬНОСТЬ», и снова их можно сложить вместе (резисторы последовательно), так что общее сопротивление цепи между точками Следовательно, A и B даются как:

R (ab) = R comb + R 1 = 6 Ом + 6 Ом = 12 Ом

Таким образом, один резистор всего 12 Ом можно использовать для замены четырех исходных резисторов, соединенных вместе в исходной схеме, приведенной выше.

Используя закон Ома, значение тока (I), протекающего по цепи, рассчитывается как:

Тогда мы можем видеть, что любую сложную резистивную цепь, состоящую из нескольких резисторов, можно свести к простой одиночной схеме с одним эквивалентным резистором, заменив все резисторы, соединенные вместе последовательно или параллельно, используя шаги, описанные выше.

Мы можем сделать еще один шаг вперед, используя закон Ома, чтобы найти два тока ответвления, I 1 и I 2 , как показано.

В (R1) = I * R 1 = 1 * 6 = 6 вольт

В (RA) = В R4 = (12 — В R1 ) = 6 В

Таким образом:

I 1 = 6 В ÷ R A = 6 ÷ 12 = 0,5 A или 500 мА

I 2 = 6 В ÷ R 4 = 6 ÷ 12 = 0,5 А или 500 мА

Поскольку значения сопротивления двух ветвей одинаковы при 12 Ом, токи двух ветвей I 1 и I 2 также равны при 0.5 А (или 500 мА) каждый. Таким образом, общий ток питания I T составляет: 0,5 + 0,5 = 1,0 ампера, как рассчитано выше.

Иногда проще со сложными комбинациями резисторов и резистивными цепями нарисовать или перерисовать новую схему после того, как эти изменения были внесены, поскольку это помогает в качестве наглядного пособия по математике. Затем продолжайте заменять любые последовательные или параллельные комбинации, пока не будет найдено одно эквивалентное сопротивление, R EQ . Давайте попробуем еще одну более сложную схему комбинации резисторов.

Последовательные и параллельные резисторы Пример №2

Найдите эквивалентное сопротивление R EQ для следующей схемы комбинации резисторов.

Опять же, на первый взгляд эта резисторная лестничная схема может показаться сложной задачей, но, как и раньше, это просто комбинация последовательно соединенных и параллельных резисторов. Начиная с правой стороны и используя упрощенное уравнение для двух параллельных резисторов, мы можем найти эквивалентное сопротивление комбинации R 8 — R 10 и назвать его R A .

R A последовательно с R 7 , поэтому общее сопротивление будет R A + R 7 = 4 + 8 = 12 Ом, как показано.

Это значение сопротивления в 12 Ом теперь подключено параллельно с R 6 и может быть рассчитано как R B .

R B последовательно с R 5 , поэтому общее сопротивление будет R B + R 5 = 4 + 4 = 8 Ом, как показано.

Это значение сопротивления 8 Ом теперь параллельно с R 4 и может быть рассчитано как R C , как показано.

R C последовательно с R 3 , поэтому общее сопротивление будет R C + R 3 = 8 Ом, как показано.

Это значение сопротивления 8 Ом теперь параллельно с R 2 , из которого мы можем рассчитать R D как:

R D последовательно с R 1 , поэтому общее сопротивление будет R D + R 1 = 4 + 6 = 10 Ом, как показано.

Тогда сложная комбинационная резистивная цепь, описанная выше, состоящая из десяти отдельных резисторов, соединенных вместе последовательно и параллельных комбинаций, может быть заменена одним единственным эквивалентным сопротивлением (R EQ ) величиной 10 Ом.

При решении любой схемы комбинационного резистора, состоящей из резисторов, включенных последовательно и параллельно, первый шаг, который нам нужно сделать, — это определить простые последовательные и параллельные ветви резисторов и заменить их эквивалентными резисторами.

Этот шаг позволит нам уменьшить сложность схемы и поможет преобразовать сложную комбинационную резистивную схему в единое эквивалентное сопротивление, помня, что последовательные цепи являются делителями напряжения, а параллельные цепи — делителями тока.

Однако расчеты более сложных цепей аттенюаторов с Т-образной площадкой и резистивных мостов, которые не могут быть сведены к простой параллельной или последовательной схеме с использованием эквивалентных сопротивлений, требуют другого подхода. Эти более сложные схемы необходимо решать с помощью закона тока Кирхгофа и закона напряжения Кирхгофа, которые будут рассмотрены в другом руководстве.

В следующем руководстве по резисторам мы рассмотрим разность электрических потенциалов (напряжение) в двух точках, включая резистор.

Что такое сопротивление? Последовательная и параллельная цепь сопротивления

Сопротивление — это свойство материала, благодаря которому он противодействует потоку электронов через материал.Он ограничивает поток электронов через материал. Обозначается буквой (R) и измеряется в омах (Ом).

Когда на резистор подается напряжение, свободные электроны начинают ускоряться. Эти движущиеся электроны сталкиваются друг с другом и, следовательно, противостоят потоку электронов. Противостояние электронов известно как сопротивление. Тепло выделяется, когда атом или молекулы сталкиваются друг с другом.

Состав:


Пояснение:

Прочность любого материала зависит от двух факторов

  • Форма материала
  • Вид материала (из какого материала)

Количественно это получается по закону Ома, как сопротивление, обеспечиваемое материалом, когда через него протекает ток силой 1 ампер с разностью потенциалов (В) вольт через материал.Это дается уравнением, показанным ниже

Где R — сопротивление, V — напряжение, а I — ток в цепи.

Из приведенного выше уравнения (1) ясно, что сопротивление прямо пропорционально напряжению и обратно пропорционально току цепи. Он также обозначается как

.

Где,

  • R — сопротивление любого проводника или материала, измеренное в омах
  • ρ — удельное сопротивление материала, измеряется в омметре
  • l — длина материала или проводника в метрах
  • А — площадь поперечного сечения жилы в квадратных метрах

Сопротивление любого проводящего материала прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.

Удельное сопротивление ( ρ ) определяется как способность проводника или материала противодействовать электрическому току. Сопротивление любого проводника измеряется омметром.

Столкновение атомов со свободными электронами вызывает выделение тепла, когда электрический ток течет через любой проводник или материал. Если по проводнику проходит ток в 1 ампер, а разность потенциалов составляет V вольт по проводнику, то мощность, потребляемая резистором, определяется уравнением (3), показанным ниже

.

Как известно V = IR

Энергия, теряемая в сопротивлении в виде тепла, вычисляется как

.

Подставив значение P из уравнения (3) в уравнение (4), мы получим

Как мы знаем, I = V / R, следовательно, подставив значение I в уравнение (5), мы получим

Приведенное выше уравнение (6) показывает уравнение потерь энергии в виде тепла.

Типы сопротивления

В основном есть два типа сопротивления

Аналогично нормальному сопротивлению цепи, заданному как R = V / I. Он определяет рассеиваемую мощность в электрической цепи. Он также определяется как наклон линии от начала координат через различные точки на кривой.

Это также известно как инкрементное или динамическое сопротивление цепи. Это производная отношения напряжения к току. Дифференциальное сопротивление рассчитывается по формуле, показанной ниже

Последовательное и параллельное сопротивление в цепи

Цепь сопротивления серии

Если различные сопротивления предполагают, что R 1 , R 2 , R 3 , соединенные вместе последовательно, как показано на рисунке ниже, называется последовательной цепью сопротивления
Эквивалентное или полное сопротивление определяется уравнением

Параллельная цепь сопротивления

Различные сопротивления предполагают, что R 1 , R 2 , R 3 подключены параллельно друг другу, как показано в схеме ниже, известной как параллельная цепь сопротивления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *