Для чего предназначен трансформатор: Трансформатор. Что такое? Зачем нужен?

Содержание

Назначение и принцип действия трансформатора напряжения | ТТ и ТН

Трансформаторы напряжения  двух- или трехобмоточные предназначены как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю. Трансформаторы напряжения имеют два назначения: изолировать вторичную обмотку НН и, тем самым, обезопасить обслуживающий персонал; понизить измеряемое напряжение до стандартного значения 100; 100ν3; 100/3 В.
Трансформаторы напряжения различают: по числу фаз - однофазные и трехфазные; по числу обмоток - двухобмоточные и трехобмоточные; по классу точности - 0,2; 0,5; 1,0; 3; по способу охлаждения - с масляным охлаждением, с воздушным охлаждением; по способу установки - для внутренней установки, для наружной установки и для КРУ.
На рис. 1 представлена схема включения трансформаторов напряжения с обозначениями первичной и вторичной обмоток. Однофазный двухобмоточный трансформатор напряжения применяется в установках как однофазного, так и трехфазного тока. В последнем случае он включается на линейное напряжение. Один из выводов вторичной обмотки для обеспечения безопасности при обслуживании заземляется.

Основными параметрами трансформаторов напряжения являются:
номинальные напряжения обмоток, т.е. напряжения первичной и вторичной обмоток, указанные на щитке;
номинальный коэффициент трансформации, т. е. отношение номинального первичного напряжения к номинальному вторичному
погрешность по напряжению %
угловая погрешность, т. е. угол между вектором первичного напряжения и повернутым на 180° вектором вторичного напряжения, выраженный в угловых градусах (минутах).

Рис. 1. Однофазный двухобмоточный трансформатор напряжения: а - присоединение трансформатора напряжения к трехфазной сети без нулевого провода; б - расположение выводов (Л-X - выводы ВН; а-х - выводы НН)
На рис. 2 приведен пример изменения погрешности трансформатора напряжения при изменении мощности Бг вторичной нагрузки. Коррекцией напряжения называется преднамеренное изменение коэффициента трансформации в сторону повышения вторичного напряжения, выраженное в процентах. Это достигается уменьшением числа витков первичной обмотки.

Рис. 2. Погрешность по напряжению и угловая погрешность однофазного трансформатора напряжения (сплошные линии с коррекцией числа витков, штриховые линии - без коррекции)
Особо следует сказать о трансформаторах напряжения высокого и сверхвысокого напряжения. Как было отмечено, трансформаторы напряжения передают очень малую мощность, поэтому практически в таких трансформаторах напряжения определяющим является вопрос обеспечения изоляции между первичной и вторичной цепями. Поэтому при напряжениях выше 500 кВ используются так называемые емкостные трансформаторы напряжения, состоящие из емкостного делителя напряжения (двух последовательно соединенных конденсаторов С1 и С2) и понижающего трансформатора, показанных на рис. 3. В современных РУ устанавливаются колонны конденсаторов высокочастотной связи для цепей автоматики и сигнализации. Поэтому, если использовать эту колонку связи CJ и добавить некоторый конденсатор отбора мощности С2, получим емкостной делитель. К конденсатору подключается трансформатор напряжения обычно на 12-15 кВ первичного напряжения. Для устойчивой работы в первичную цепь включается дополнительный реактор LR и высокочастотный заградитель 3. Таким образом, это устройство имеет существенно меньшую стоимость, чем трансформатор напряжения на полное первичное напряжение.

Рис. 3. Практическая схема емкостного трансформатора напряжения

Для чего нужны трансформаторы тока

Трансформатор тока — электромагнитный аппарат который принадлежит к одному из видов трансформаторов измерительного вида. Одной из задач трансформатора тока является получение переменного тока во вторичной обмотке.

В общем определить одну определенную задачу трансформатора тока сложно, ведь она зависит от многих факторов в том числе и от конкретной ситуации при которой применение трансформатора просто необходимо.

Особенности

Но среди прочего все же выделяются три основных особенности трансформатора тока, а именно: защита, измерение и стабилизация электрического тока.

Трансформатор тока это аппарат который очень важен для использования в области электротехники. Для эффективной, безопасной и стабильной работы различных промышленных приборов и аппаратов, а также бытовых электрических приборов, необходим контроль текущих уровней электрического тока. Специально для этого к трансформатору тока подключаются различные измерительные электрические приборы позволяющие производить контроль всей системы в различных местах.

Трансформатор тока Т-0,66 150/5а

В трансформаторе тока первичный и вторичный ток пропорциональны друг другу. Первичная обмотка трансформатора тока включена последовательно, а вторичная замыкается на нагрузку. За счет этого действия получаются пропорциональные величины.

Пропорциональная величина трансформатора тока это – величина которая имеет одинаковое отношение между собой.

Обмотки

Первичная обмотка включения трансформатора тока бывает в двух типовых исполнениях. Первое — обмотка плоская, второе — обмотка в форме ролика выполненная из толстого провода.

Вторичная обмотка имеет большее число витков катушки которые намотаны на глянцевую основу магнитного материала. Вторичная обмотка трансформатора ток арсчитана на показатель который соответствует стандарту 1 или 5 Ампер.

Трансформаторы тока можно различить по классу точности а именно: 0,2; 0,5; 1; 3; и 10. Эти трансформаторы способны снижать высокие проходные электрические токи, на более низкие. Данное действие обеспечивает безопасный контроль электрической энергии в переменной линии передачи.

Трансформаторы тока делятся также по по номинальной мощности которая имеет следующие значения: 25 кВа, 40 кВа, 63 кВа, 100 кВа и 160 кВа.

При эксплуатации трансформатора тока, возникает необходимость периодического обслуживания и его ремонта. Хочется отметить что обслуживание, ремонт а также замена составляющих запасных частей трансформатора тока, должна проводиться специализированной организацией имеющей допуски к данным видам работ.

Области и сферы назначения

По функциональному назначению трансформаторы тока можно разделить на 4 категории

  • измерение при помощи любого прибора силы электрического тока. В этом случае переменный ток остается переменным, и приемлемым для измерения. Для измерения силы тока подходит вольтметр или другие измерительные электрические приборы кроме амперметра.
  • трансформаторы тока служат для стабилизации работы, в тех случаях когда электрическая система является довольно мощной, это нужно для сохранения целостности изоляции, которая необходима для обеспечения безопасности жизни обслуживающего персонала, который проводит регулярные ремонтные и обслуживающие работы.
  • преобразование трехфазного переменного электрического тока в такой же переменный ток подходящего значения. Это нужно для стабилизации работы и защиты реле, которое подключается к определенной конкретной электрической цепи.
  • при эксплуатации оборудования исключив нарушение изоляции и технологических серьезных ошибок во время установки электрического оборудования, электрический ток все равно способен нанести ущерб здоровью и жизней персонала занимающегося его периодическим обслуживанием и ремонтом.

Измерительные трансформаторы тока для систем автоматики, управления, контроля и защиты

Токовые трансформаторы (измерительные трансформаторы тока) ТТхх предназначены для работы в цепях переменного тока и имеют линейную передаточную характеристику во всем диапазоне входных токов.

Выпускаются в соответствии с техническими требованиями ЮНШИ.671221.004 ТТ.

Для удобства выбора, основные типоразмеры трансформаторов сведены в таблицу 1. Более подробная информация доступна по переходу на соответствующую страницу в «Описании» (см. Таблицу 1).

Таблица 1. Тороидальные токовые трансформаторы (измерительные трансформаторы тока) на магнитопроводах их электротехнической стали для устройств измерения, управления, защиты и контроля.
типоразмерток применения, Аточность, %исполнениямин. отв. под шину, ммцена опт.описание
на п.п.на шинус шиной
ТТ80до 25000,1; 0,2; 0,5нетданет54...62от 225 смотреть
ТТ48до 8000,2; 0,5нетданет32...35от 143 смотреть
ТТ40до 2500,5; 1нетданет23...25от 120 смотреть
ТТ30до 1600,5; 1даданет16от 105 смотреть
ТТ26до 1001даданет11,3от 85 смотреть

Для всех трансформаторов выполняются общие требования:

  • Начало обмотки выполняется белым проводом или маркируется (фото 2).
  • Коэффициент передачи трансформаторов может быть от 1:110 до 1:31500.
  • Для небольших входных токов можно первичную обмотку выполнить в 2, 3 (количество проводников внутри центрального отверстия трансформатора) и более витков. При этом коэффициент трансформации снизится соответственно в 2, 3 и более раз без существенных изменений точностных параметров трансформатора, при этом расположение проводника внутри окна трансформатора роли не играет. (см. фото 3).
  • При выборе трансформатора следует в первую очередь оценить необходимое внутреннее отверстие, позволяющее свободно пропустить токосъемную шину через трансформатор (см. фото 1, 2, 4), а уже затем решать вопрос по току и точности.

Фото 1
Трансформаторы ТТ26-100А-00 (1:1000) и ТТ26-100А-120 (1:1000)

Фото 2
Трансформатор ТТ48-400А-300 (1:2000)

Фото 3
Пример выполнения трансформатора с коэффициентом трансформации 10:400

Фото 4
Трансформатор ТТ80-600А-400 (1:3000)

Следует отметить, что трансформаторы на сердечниках их электротехнической стали существенно уступают по точности и частотам применения трансформаторам на нанокристаллических и аморфных сплавах (см раздел «Малогабаритные измерительные трансформаторы тока для счетчиков эл.

энергии и систем контроля качества»), но обладают существенным преимуществом — достаточно большим отверстием для установки токоведущей шины при сравнительно низкой стоимости трансформатора.

Токовые трансформаторы данной серии могут применяться в составе устройствах измерения, контроля, защиты и управления на частотах до 100 Гц. Температурный диапазон применения трансформаторов составляет –40...+85°С.

Возможен выпуск трансформаторов в герметичном исполнении (см. фото 5) и нестандартных (см. фото 6). В настоящий момент просьба уточнять возможность заказа герметичных исполнений применительно к конкретному трансформатору, т.к. пока не все типоразмеры обеспечены соответствующими заливочными формами.


Фото 5
Измерительный трансформатор в герметичном исполнении

Фото 6
Нестандартный (заказной) трансформатор тока

При применении трансформаторов в устройствах защиты, следует учитывать, что по мере увеличения входного тока, ЭДС (действующее значение), развиваемая трансформатором, будет сначала подниматься до макс.

значения, указанного в технических характеристиках, а затем снижаться. Это связано с достижением максимальной магнитной индукции в магнитопроводе, в результате чего трансформатор входит в режим насыщения. Токи насыщения не приводят к выходу трансформатора из строя, если они действуют непродолжительное время, указанное в технических характеристиках трансформатора. При длительном воздействии таких токов наблюдается перегрев выходной обмотки трансформатора сверх допустимого, с последующим выходом трансформатора из строя.

Обрыв нагрузки трансформатора не является аварийным режимом для токовых трансформаторов серии ТТ26-ТТ80 со стандартными коэффициентами трансформации и не выводит его из строя.

Следует обратить внимание на то, что особое неудобство при работе с измерительными трансформаторами вызывает однополярное приращение входных токов (режим подмагничивания), при котором происходит однополярное намагничивание магнитопровода трансформатора, которое впоследствии приводит к искажению выходного сигнала. Работоспособность трансформатора восстановится после такого воздействия спустя некоторое время, напрямую зависящее от величины тока и необходимое для размагничивания магнитопровода трансформатора. Кроме того, при работе трансформатора в режиме насыщения, форма выходного сигнала не повторяет входную, а имеет четко выраженные всплески напряжения при смене направления входного тока. Величина нерабочей зоны трансформатора напрямую зависит от амплитуды входного тока. Если возможен режим подмагничивания — рекомендуем выбирать трансформатор с очень хорошим запасом по току насыщения, отметим, что однополярное намагничивание магнитопровода не приводит к выходу трансформатора из строя.

Если возникают затруднения при выборе трансформатораили, или Вы не нашли нужный трансформатор — рекомендуем обратиться к нам с запросом по электронной почте . В запросе обязательно укажите требуемое отверстие трансформатора для токоведущей шины, номинальный и максимальный измеряемый ток, измерительное напряжение и входное сопротивление устройства измерения, габариты (если важно), другие параметры которые для Вас важны. Можете просто объяснить задачу, которая перед Вами стоит. В этом случае мы обеспечим Вас бесплатной консультацией с расчетом характеристик трансформатора, моделированием передаточной и точностной характеристик трансформатора применительно к Вашим условиям эксплуатации. Обратите внимание — цена таких заказных трансформаторов не отличается от цен стандартных трансформаторов и зависит только от объема закупки, т.е. денег за разработку измерительного токового трансформатора мы не берем! Основное ограничение по заказным трансформаторам — максимальный диаметр не может превышать 350 мм и высота не более 50 мм. (см. фото 6).

СЗТТ :: Трансформатор тока ТЛЛ-35

Образец заполнения заявки на продукцию завода

Требования к оформлению заказов трансформаторов предназначенных на экспорт

Скачать каталог на трансформаторы (pdf; 32 Мб)

Скачать каталог на трансформаторы ТВ (pdf; 3,5 Мб)

Скачать каталог "Трансформаторы для железных дорог" (pdf; 4,8 Мб)

Трансформаторы тока ТЛЛ-35

ТУ16 - 2003 ОГГ. 671 213.023ТУ

Руководство по эксплуатации

Версия для печати (pdf)

Требования к оформлению заказов трансформаторов предназначенных на экспорт

Назначение

Трансформатор предназначен для питания цепей измерения тока, мощности и энергии, для изолирования цепей вторичных соединений от высокого напряжения в электрических установках переменного тока частоты 50 или 60 Гц на класс напряжения до 35 кВ в лабораториях и на испытательных станциях промышленных предприятий.

Трансформатор изготавливается в исполнении "УХЛ" и "Т" категории размещения 4.2 по ГОСТ 15150.

Рабочее положение - вертикальное.

Таблица 1. Технические данные

Наименование параметра

Норма
Номинальное напряжение, кВ 35
Номинальная частота переменного тока, Гц 50 или 60
Номинальный первичный ток, А 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 2000, 3000
Номинальный вторичный ток, А 5
Номинальная вторичная нагрузка при коэффициенте мощности cos φ = 0,8, ВА 15
Номинальный класс точности 0,05 или 0,1
Кратность трехсекундного тока термической стойкости 4
Кратность тока электродинамической стойкости 10
Продолжительность непрерывной работы, ч 4
Длительность нерабочего интервала, ч, не менее 4
Одноминутное испытательное напряжение
промышленной частоты, кВ
54
Масса, кг 102

 Таблица 2. Подсоединения вторичных выводов

Выводы вторичной обмотки

Номинальный первичный ток,А
И1 - И2 5, 10, 20, 40, 50, 100, 200, 500, 1000
И1 - И3 15, 30, 600, 1200
И1 - И4 75, 150, 300, 750, 1500
И1 - И5 800
И1 - И6 400, 2000
И1 - И7 3000

Общий вид трансформатора (чертеж)

Версия для печати (pdf)

Трехфазный силовой трансформатор, назначение трехфазного трансформатора

Трехфазный трансформатор – статический аппарат с тремя парами обмоток, предназначенный для преобразования напряжения при передаче электрического тока на дальние дистанции. Такое преобразование можно осуществить с помощью трех однофазных трансформаторов. Но комплексный аппарат имеет значительные габариты и массу. Трехфазный трансформатор свободен от этих недостатков, благодаря тому, что три обмотки расположены на общем магнитопроводе. Трехфазные аппараты успешно применяют в сетях мощностью до 60 кВА.

Назначение трехфазного трансформатора

Главная задача такого аппарата – преобразовать параметры электрического тока таким образом, чтобы потери при нагреве проводов были минимальными. Для решения этой проблемы необходимо снизить силу тока и увеличить значение напряжения до 6-500 кВ, чтобы значение мощности осталось постоянным. После доставки электрического тока потребителю напряжение необходимо снизить до требуемой величины – 380 В. И эту проблему тоже решают трехфазные аппараты.

Также эти устройства применяют для присоединения измерительных приборов, изменения напряжения при проведении испытаний или подключении силовой нагрузки.

Принцип действия и устройство силового трехфазного трансформатора

В конструкцию этого аппарата входят:

  • Магнитопровод. К нему крепятся все части аппарата. Также он служит для создания основного магнитного потока. Магнитопровод может быть стержневым, бронестержневым, броневым.
  • Обмотки. В каждой фазе присутствуют две обмотки – понижающая и повышающая. Обмотки могут соединяться «звездой» или «треугольником» В первом случае линейное напряжение (между началами фаз) в 1,73 раза выше фазного (между началом и концом фазы). При соединении «треугольником» линейное и фазное напряжения одинаковы. Соединение «звездой» эффективно при значительных напряжениях, «треугольником» – при высоких токах.
  • Вводы и выводы. Необходимы для присоединения концов обмоток к ЛЭП. Ввод соединяется с первичной обмоткой, вывод – со вторичной.

В каталоге силовых трансформаторов представлены «сухие» и «масляные» модели. В маломощных трансформаторах охлаждение осуществляется воздушным способом. Такие аппараты называют «сухими». Высокомощные устройства имеют масляное охлаждение, благодаря чему их называют «масляными». Масло не только охлаждает обмотки, которые нагреваются из-за протекания по ним электрического тока, но и повышает изоляционные характеристики.

Принцип действия:

  • При подключении первичной обмотки в сеть в ней начинает протекать переменный .
  • В сердечнике магнитопровода появляется магнитный поток, охватывающий обмотки всех фаз. В каждом витке присутствует ЭДС, равная по направлению и величине.
  • Если количество витков в первичной обмотке больше, чем число витков во вторичной обмотке, то выходное напряжение больше входного. И наоборот.

Силовые сухие трехфазные трансформаторы - особенности эксплуатации и характеристики

В сухих трансформаторах тепло от нагревающихся токоведущих частей отводится воздушным потоком. Такая охлаждающая система эффективна для аппаратов мощностью не выше 4000 кВА и напряжением обмоток высшего напряжения не более 35 кВ. Эти устройства применяются в местах, в которых предъявляются повышенные требования к безопасности обслуживающего персонала и оборудования. Они востребованы на металлургических предприятиях, в нефтяной индустрии, машиностроении, при организации электроснабжения объектов жилого, административного и производственного назначения.

Преимущества сухих трехфазных трансформаторов с выходным напряжением 380 В:

  • Возможность установки в непосредственной близости от людей и оборудования, в любом помещении. Необходимо только предусмотреть защитное ограждение, вентиляционную систему, средства мониторинга.
  • Безопасность. Эти аппараты взрывобезопасны, поскольку элегаз и жидкий диэлектрик отсутствуют.
  • Экологичность. Масляные испарения отсутствуют. Поэтому такие модели разрешены для установки возле дошкольных, учебных, медицинских учреждений.
  • Простота эксплуатации. Необходимо контролировать только основные параметры – температуру обмоток, отсутствие или наличие КЗ.
  • Современные комплектующие. Благодаря им удалось уменьшить габариты и массу аппаратов.

Недостатки моделей «сухого» типа:

  • Чувствительность к условиям окружающей среды – температуре, влажности, запыленности, сейсмическим воздействиям.
  • Отсутствие моделей, рассчитанных на напряжение более 35 кВ и мощность выше 4000 кВА.
  • Вероятность появления микротрещин в обмотке, которые развиваются и становятся причиной выхода устройства из строя и даже его возгорания.

Цены на сухие трансформаторы зависят от мощности аппарата и материала (медь, алюминий), из которого изготовлены обмотки. Также на стоимость влияет исполнение: открытое, защищенное, герметичное.

Трехфазные силовые трансформаторы масляного типа – плюсы и минусы конструкции

Эти аппараты более опасны в эксплуатации, по сравнению с «сухими» аналогами. Отказ от софтолового масла сделал устройства более безопасными и экологичными, но полностью предотвратить возгорания и взрывы этого оборудования пока не удалось. При использовании масляных устройств необходимо специальное обслуживание и постоянный контроль комплекса рабочих параметров, что повышает эксплуатационные расходы. Оборудование сложно транспортировать к месту назначения, поскольку для доставки масла необходима специальная станция.

Преимущества масляных силовых трехфазных трансформаторов:

  • Неприхотливость к условиям окружающей среды.
  • Привычная конструкция для электриков старшего поколения.
  • Отсутствие межвитковых и межслойных замыканий, благодаря теплопроводности масла.
  • Отсутствие вероятности появления микроскопических трещин в обмотках.
  • Наличие моделей, рассчитанных на значительные напряжение (375 кВ и выше) и мощность (40000 кВА и выше).

У обоих видов трансформаторов имеются собственные достоинства и недостатки. Поэтому при выборе конкретного типа оборудования инженеры-электрики учитывают запланированные эксплуатационные условия, требования СНиПов, ГОСТов, ПУЭ, рекомендации изготовителя.

Трансформатор

Нередко один и тот же источник переменного тока должен питать приборы, рассчитанные на разные напряжения.

Трансформатором называется электротехническое устройство, служащее для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы делятся по назначению: силовые, специальные, измерительные и радиотехнические. К силовым относятся трансформаторы, преобразующие электрическую энергию для потребителей (35/6, 110/6, 6/0,4 кВ и т.д.), к специальным — сварочные и выпрямительные, к измерительным — трансформаторы тока и напряжения, служащие для подключения электроизмерительных приборов, к радиотехническим — маломощные трансформаторы и трансформаторы, работающие на повышенной частоте. Кроме этого, они делятся по роду тока на однофазные и трехфазные и по способу охлаждения — на масляные, сухие и с твердым наполнителем.

Трансформатор состоит из двух основных частей — магнитопровода и обмоток. Магнитопровод набирается из тонких листов электротехнической стали с малой коэрцитивной силой, изолированных друг от друга. Часть магнитопровода, на котором располагается обмотка, называется стержнем, а часть, замыкающая стержни, ярмом. По своему устройству магнитопровод подразделяется на П-образный и Ш-образный.
Обмотка трансформатора наматывается изолированным проводом с дополнительной изоляцией между слоями. Обмотка трансформатора с большим числом витков называется обмоткой высшего напряжения (ВН), а с меньшим — низшего напряжения (НН).

Работа трансформатора

Принцип работы трансформатора рассмотрим на примере однофазного трансформатора, схематически представляющего собой магнитопровод с двумя обмотками W1 и W2.
При подключении первичной обмотки к источнику синусоидального напряжения
по обмотке течет ток , создающий намагничивающую силу под действием которой возникает магнитный поток .
По закону электромагнитной индукции во вторичной цепи индуцируется электродвижущая сила:



ЭДС отстает от магнитного потока на угол 90°, а

Действующее значение
где
f — частота сети;



Аналогичная ЭДС возникает и в первичной обмотке, так как магнитный поток пронизывает витки и первичной обмотки. Поэтому отношение Е1/Е2 будет определять коэффициент трансформации по напряжению: если Ктр>1, Е12 — трансформатор понижающий; Ктр<1, Е12 — повышающий; Ктр=1, Е12 — разделительный.
Из выше сказанного следует, что индуцированные э. д. с. пропорциональны числу витков в обмотках:

Режим работы трансформатора

В работе трансформатора можно выделить три режима: холостого хода, когда вторичная обмотка разомкнута, короткого замыкания, когда вторичная обмотка замкнута накоротко, и рабочий режим под нагрузкой.
В режиме холостого хода I2=0, U2хх2, ток в первичной обмотке I10=U1/Z10, сопротивление Z10= R10+jX10. Ток I10 составляет 3-10% номинального (рабочего) тока трансформатора I.
Ввиду малости первичного тока потери мощности в первичной катушке составляют не более одного процента от номинальной мощности трансформатора и их можно принять равными нулю так же, как и во вторичной P10 -> 0, Р2=0. В режиме холостого хода потери мощности наблюдаются только в магнитопроводе и связаны с перемагничиванием и вихревыми токами, определяемыми магнитным материалом P10= Pст.
Если первичное напряжение не изменяется, то потери в стали постоянны и пропорциональны значению магнитной индукции В в степени угла магнитного запаздывания —. Значение угла составляет 5-10 электрических градусов.
В этом случае ; I10R1 и I10X1 <<E1 тогда параметры холостого хода определяют параметры магнитной системы:



Векторная диаграмма в режиме холостого хода может быть построена на основании уравнения для первичной обмотки:


Режим короткого замыкания для трансформатора является аварийным, так как при U2=0 и Zн=0 ток в первичной обмотке будет в 15-20 раз больше тока номинального рабочего режима. Поэтому опыт короткого замыкания производят только с целью определения параметров первичной и вторичной обмоток при U <<U. Опыт производят при условии I =I тогда I =I и U <<U. Напряжение короткого замыкания для первичной обмотки задается в паспортных данных трансформатора в процентах от номинального напряжения U=(U U)100% и составляет примерно 5% для трансформаторов с масляным охлаждением и 2-2,5 % для трансформаторов с воздушным охлаждением.
Так как напряжение короткого замыкания в первичной обмотке во много раз меньше номинального, то
и
Потери в стали будут стремиться к нулю.
Мощность при коротком замыкании рассеивается только в обмотках трансформатора и идет на нагрев меди в них т. е. мощность потерь на джоулеву теплоту в обмотках,

Общее сопротивление короткого замыкания Zк.з. определится из отношения U=IRк.з.=Pк.з./I;


Векторная диаграмма трансформатора в режиме короткого замыкания имеет вид в соответствии с уравнением:

Для составления схемы замещения и удобства расчета рабочих режимов используют метод приведения параметров вторичной обмотки трансформатора к первичной. Тогда W1=W’2, где W’2 — число витков обмотки приведенного трансформатора; W’2= KтрW2; Е’22Ктр; U’2=U2Ктр.
Условием приведения является постоянство энергетических характеристик (мощности и потерь) S2=S’2и Рм2=Р’м2. Тогда I’2=I2(1/Ктр);

.
При замыкании вторичной обмотки на активную нагрузку в этой обмотке возникнет ток; обозначим I2 его действующее значение; напряжение на зажимах обмотки станет равным U2, а сдвиг фаз — cosφ. По закону Ленца ток во вторичной обмотке противодействует изменению магнитного потока в сердечнике. В результате этого индуктивное сопротивление первичной обмотки уменьшится, а ток в первичной обмотке будет возрастать до тех пор, пока не восстановится начальное значение магнитного потока. Действующее значение тока в первичной обмотке нагруженного трансформатора больше тока холостого хода: I1>Iхх
По закону сохранения энергии



P2—мощность, потребляемая со вторичной обмотки;
P1-мощность, потребляемая из сети первичной обмоткой.

Для расчетов режимов работы трансформатора используют Т-образную (рис. а) и Г-образную (рис. б) схемы замещения.

Уравнения цепи для Т-схемы имеют вид:

Схемы замещения трансформатора

Рабочие свойства трансформатора в нагрузочном режиме характеризуются зависимостями вторичного напряжения U2 от тока во вторичной обмотке I2 и КПД от коэффициента загрузки β.
Зависимость напряжения от тока называется нагрузочной или внешней характеристикой. Кривая 1 соответствует режиму емкостной нагрузки, cosφ < 1, кривая 2 — активной нагрузке, cosφ=0, кривая 3 -индуктивной нагрузке, cosφ < 1. Максимальный коэффициент полезного действия трансформатора составляет 0,98 и находится из соотношения полезной мощности на нагрузке к мощности, потребляемой из сети (смотри выше):



где β=I2/I — коэффициент загрузки трансформатора; S -полная мощность трансформатора.
Из рабочих характеристик трансформатора видно, что потери в стали Рст не зависят от нагрузки и являются постоянными. Потери в меди Рм обмоток растут и изменяются по нелинейному закону. Коэффициент полезного действия имеет максимальное значение при равенстве указанных потерь и коэффициенте загрузки, равном 0,6.
На практике часто применяют автотрансформатор, у которого часть обмотки принадлежит одновременно двум цепям: первичной и вторичной. Он предназначен для плавного изменения вторичного напряжения.

Электрический трансформатор. Основное оборудование электрических станций и подстанций.

Основное оборудование электрических станций и подстанций

Трансформатор

Трансформатор - это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения - электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Базовые принципы действия трансформатора

Работа трансформатора основана на двух базовых принципах:

  • Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
  • Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д.

Исключение - силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении.

Основные части конструкции трансформатора

Основными частями конструкции трансформатора являются:

  • магнитопровод
  • обмотки
  • каркас для обмоток
  • изоляция
  • система охлаждения
  • прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т. п.)

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

  • Стержневой
  • Броневой
  • Тороидальный

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

Режимы работы трансформатора

Режим холостого хода

Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т.н. «потери в стали»).

Режим нагрузки

Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной - ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора.

Режим короткого замыкания

Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Режим холостого хода

При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим нагрузки

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

Виды трансформаторов

Силовой трансформатор

Силовой трансформатор переменного тока - трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).

Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».

Автотрансформатор

Автотрансформатор - вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию - это особенно существенно, когда входное и выходное напряжения отличаются незначительно.

Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге - меньшая стоимость.

Трансформатор тока

Трансформатор тока - трансформатор, питающийся от источника тока. Типичное применение - для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.

Трансформатор напряжения

Трансформатор напряжения - трансформатор, питающийся от источника напряжения. Типичное применение - преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор

Импульсный трансформатор - это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Разделительный трансформатор

Разделительный трансформатор - трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

Согласующий трансформатор

Согласующий трансформатор - трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.

Пик-трансформатор

Пик-трансформатор - трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Сдвоенный дроссель

Сдвоенный дроссель (встречный индуктивный фильтр) - конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Трансфлюксор

Трансфлюксор - разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора - это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.

История создания трансформаторов

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении - обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).

Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.

Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии - Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.



Для чего нужен трансформатор?

Трансформаторы можно найти везде, где используется электрическая энергия переменного тока. Трансформатор - это электрическое устройство, которое меняет напряжение на ток в цепи, не влияя при этом на общую электрическую мощность. Это означает, что он принимает электричество высокого напряжения с небольшим током и преобразует его в электричество низкого напряжения с большим током, или наоборот. Одна вещь, которую нужно знать о трансформаторах, заключается в том, что они работают только с переменным током (AC), который вы получаете от розеток, а не с постоянным током (DC).

Трансформаторы

могут использоваться либо для увеличения напряжения, также известного как повышение напряжения, либо они могут уменьшать напряжение, также известное как понижение напряжения. В трансформаторах используются две катушки с проводами, каждая с сотнями или тысячами витков, намотанных на металлический сердечник. Одна катушка предназначена для входящего электричества, а другая - для исходящего электричества. Переменный ток во входящей катушке создает переменное магнитное поле в сердечнике, которое затем генерирует переменный ток в исходящей катушке.

Энергия теряется в процессе передачи электричества на большие расстояния, например, во время поездки от электростанции к вашему дому. При очень высоком напряжении теряется меньше энергии. Обычно электрические компании используют высокое напряжение в проводах для передачи на большие расстояния. Однако такое высокое напряжение слишком опасно для домашнего использования. В случае с электрическими сетями в домах они используют трансформаторы для изменения напряжения электричества, когда оно движется от электростанции к вашему дому.

Сначала с помощью трансформатора напряжение электричества, поступающего от электростанции, «повышается» до нужного уровня для передачи на большие расстояния.Поскольку ток высокого напряжения может вызвать дугу, повышающие трансформаторы, называемые катушками зажигания, используются для питания свечей зажигания. Динамо на электростанциях генерируют большие токи, но не большое напряжение. Это электричество повышается до высокого напряжения для передачи по проводам, поскольку электричество более эффективно распространяется при высоком напряжении.

Позже напряжение понижается, прежде чем оно попадет в ваш дом - снова с помощью трансформаторов. «Понижающий» трансформатор преобразует 440-вольтовое электричество в линиях электропередачи на 120-вольтовое электричество, которое вы используете в своем доме.Затем ток либо используется на этом уровне для таких устройств, как лампочки, либо преобразуется в постоянный ток с помощью адаптера переменного / постоянного тока для таких устройств, как портативные компьютеры.

С момента появления первых трансформаторов постоянного напряжения в 1885 году трансформаторы стали незаменимыми для передачи, распределения и использования электрической энергии переменного тока во всех сферах применения энергии. В Power Temp Systems мы специализируемся на производстве инновационного оборудования, которое эффективно и безопасно распределяет и использует энергию для любого проекта.

Трансформатор

- Energy Education

Рис. 1. Трансформатор, устанавливаемый на площадку для распределения электроэнергии. [1]

Трансформатор - это электрическое устройство, которое использует электромагнитную индукцию для передачи сигнала переменного тока от одной электрической цепи к другой, часто изменяя (или «преобразуя») напряжение и электрический ток. Трансформаторы не пропускают постоянный ток (DC) и могут использоваться для снятия постоянного напряжения (постоянного напряжения) из сигнала, сохраняя при этом изменяющуюся часть (переменное напряжение).В электрической сети трансформаторы играют ключевую роль в изменении напряжения, чтобы уменьшить потери энергии при передаче электроэнергии.

Трансформаторы изменяют напряжение электрического сигнала, выходящего из электростанции, обычно увеличивая (также известное как «повышение») напряжение. Трансформаторы также снижают («понижают») напряжение на подстанциях, а также в распределительных трансформаторах. [2] Трансформаторы также используются в составе устройств, например трансформаторы тока.

Как работают трансформаторы

Часто кажется удивительным, что трансформатор сохраняет общую мощность неизменной при повышении или понижении напряжения.Следует иметь в виду, что при повышении напряжения ток падает:

[математика] P = I_1 V_1 = I_2 V_2 [/ математика]

Трансформаторы используют электромагнитную индукцию для изменения напряжения и тока. Это изменение называется действием трансформатора и описывает, как трансформатор изменяет сигнал переменного тока с его первичного на вторичный компонент (как в приведенном выше уравнении). Когда на первичную катушку подается сигнал переменного тока, изменяющийся ток вызывает изменение магнитного поля (становится больше или меньше).Это изменяющееся магнитное поле (и связанный с ним магнитный поток) будет проходить через вторичную катушку, индуцируя напряжение на вторичной катушке, тем самым эффективно связывая вход переменного тока от первичного ко вторичному компоненту трансформатора. Напряжение, приложенное к первичному компоненту, также будет присутствовать во вторичном компоненте.

Как упоминалось ранее, трансформаторы не пропускают вход постоянного тока. Это известно как изоляция постоянного тока. [2] Это потому, что изменение тока не может быть произведено постоянным током; Это означает, что нет изменяющегося магнитного поля, индуцирующего напряжение на вторичном компоненте.

Рисунок 1. Простой рабочий трансформатор. [3] Ток [math] I_p [/ math] поступает с напряжением [math] V_p [/ math]. Ток проходит через [math] N_p [/ math] обмотки, создавая магнитный поток в железном сердечнике. Этот поток проходит через [math] N_s [/ math] витков провода на другом контуре. Это создает ток [math] I_s [/ math] и разность напряжений во второй цепи [math] V_s [/ math]. Электроэнергия ([математика] V \ умноженная на I [/ математика]) остается прежней.

Основным принципом, который позволяет трансформаторам изменять напряжение переменного тока, является прямая зависимость между соотношением витков провода в первичной обмотке и вторичной обмотке и отношением первичного напряжения к выходному напряжению.Отношение числа витков (или петель) первичной обмотки к числу витков вторичной обмотки известно как отношение витков . Соотношение витков устанавливает следующее соотношение с напряжением:

[математика] \ frac {N_p} {N_s} = \ frac {V_p} {V_s} = \ frac {I_s} {I_p} [/ math]
  • [math] N_p [/ math] = Количество витков в первичной катушке
  • [math] N_s [/ math] = Количество витков вторичной катушки
  • [math] V_p [/ math] = напряжение на первичной обмотке
  • [math] V_s [/ math] = Напряжение на вторичной обмотке
  • [math] I_p [/ math] = Ток через первичный
  • [math] I_s [/ math] = Ток через вторичную обмотку

Из этого уравнения, если количество витков в первичной обмотке больше, чем количество витков во вторичной обмотке ([math] N_p \ gt N_s [/ math]), то напряжение на вторичной обмотке будет на меньше, чем на первичной обмотке.Это известно как понижающий трансформатор, потому что он понижает или понижает напряжение. В таблице ниже показаны распространенные типы трансформаторов, используемых в электрической сети.

Тип трансформатора Напряжение Передаточное число Текущий Мощность
Понижение входное (первичное) напряжение> выходное (вторичное) напряжение [math] N [/ math] p > [math] N [/ math] s [math] I [/ math] p <[math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
Шаг вверх входное (первичное) напряжение <выходное (вторичное) напряжение [math] N [/ math] p <[math] N [/ math] s [math] I [/ math] p > [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
Один к одному входное (первичное) напряжение = выходное (вторичное) напряжение [math] N [/ math] p = [math] N [/ math] s [math] I [/ math] p = [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s

Трансформатор один к одному будет иметь одинаковых значений для всего и используется в основном для цель обеспечения изоляции постоянного тока.

Понижающий трансформатор будет иметь первичное напряжение на выше, , чем вторичное напряжение, но на ниже значение первичного тока, чем на его вторичный компонент.

В случае повышающего трансформатора , первичное напряжение будет ниже на , чем вторичное напряжение, что означает, что первичный ток на больше, чем на вторичном компоненте.

КПД

В идеальных условиях напряжение и ток изменяются с одинаковым коэффициентом для любого трансформатора, что объясняет, почему значение первичной мощности равно значению вторичной мощности для каждого случая в приведенной выше таблице.По мере того, как одно значение уменьшается, другое увеличивается, чтобы поддерживать постоянный равновесный уровень мощности. [2]

Трансформаторы могут быть чрезвычайно эффективными. Эффективность мощных трансформаторов может достигать отметки 99% благодаря успехам в минимизации потерь в трансформаторе. Однако трансформатор всегда будет выдавать немного меньшую мощность, чем его входная мощность, поскольку полностью исключить потери невозможно. Есть некоторое сопротивление трансформатора.

Чтобы узнать больше о трансформаторах, см. Гиперфизику.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Что такое трансформатор? | Вондрополис

Что вы считаете величайшим научным открытием или изобретением всех времен? Для некоторых открытие электричества Бенджамином Франклином, вероятно, окажется в верхней части списка. В конце концов, без электричества наша жизнь была бы совсем другой, чем сегодня.

Задумывались ли вы когда-нибудь о том, как электричество поступает от электростанции в ваш дом? Просто подключить электронное устройство к ближайшей розетке - это удобство, которое мы часто принимаем как должное. Однако путь электричества к этим маленьким розеткам в стене - увлекательное путешествие.

Если вы когда-либо видели предметы, свисающие с верхних столбов электроснабжения или большие ящики, стоящие рядом со зданиями, то вы знакомы с некоторыми из наиболее важных частей оборудования в системе, которая поставляет энергию в ваш дом.Эти машины называются трансформаторами. Нет, они не превращаются в машины супергероев, когда вы не смотрите, но все они о переменах!

Трансформаторы - это электрические машины, которые переводят электричество с одного напряжения на другое. Напряжение - это мера электрической силы, которая толкает электроны по цепи. В некоторых случаях трансформаторы могут брать электричество с более низким напряжением и переключать его на более высокое напряжение. Такие трансформаторы называются повышающими трансформаторами.

Однако большинство трансформаторов являются понижающими трансформаторами.Они берут электричество с высоким напряжением и меняют его на более низкое напряжение. Это критический шаг в процессе доставки энергии, поскольку электричество, поступающее от электростанции, находится под чрезвычайно высоким напряжением, которое слишком велико для использования в вашем доме.

Например, линия электропередачи электростанции может передавать электричество напряжением от 400 000 до 750 000 вольт. Электричество отправляется с таким высоким напряжением, потому что ему часто приходится преодолевать большие расстояния. Использование более высоких напряжений помогает минимизировать потери энергии при перемещении.

В определенных областях, называемых электрическими подстанциями, огромные трансформаторы снижают это высокое напряжение до более низкого напряжения, которое направляется в определенные области. Вы когда-нибудь видели электрическую подстанцию ​​возле своего дома? Обычно по ним можно узнать по наличию большого количества электрических линий и оборудования, в том числе многочисленных трансформаторов.

Понижающие трансформаторы на подстанциях понижают высокое напряжение до более низкого в диапазоне 7200 вольт. Когда электричество достигает вашего района, трансформаторы на опорах или заземляющих коробках, подключенных к подземным проводам, снижают напряжение электричества до 220–240 вольт для использования в вашем доме.Некоторые основные электроприборы, такие как водонагреватели, плиты и кондиционеры, будут использовать 220–240 вольт, в то время как большинство других небольших электроприборов будут использовать 110–120 вольт.

Так как же трансформаторы творит эту электрическую магию? Все это происходит из-за пары простых фактов об электричестве. Трансформаторы работают, потому что колеблющийся электрический ток (известный как переменный ток или AC), протекающий по проводам, входящим в трансформатор (первичный ток), создает магнитное поле.Это флуктуирующее магнитное поле создает ток (вторичный ток) во втором наборе проводов, покидающих трансформатор, в результате процесса, называемого электромагнитной индукцией.

Чтобы сделать этот процесс более эффективным, провода, входящие в трансформатор и выходящие из него, скручены в петли или витки вокруг железного стержня, называемого сердечником. Если первичная и вторичная катушки имеют одинаковое количество витков или витков, напряжение будет одинаковым в каждой. Однако, если вторичная катушка имеет больше или меньше петель или витков, тогда напряжение вторичного тока будет больше или меньше первичного тока.

Например, если первичная обмотка имеет 10 витков, а вторичная обмотка - один виток, то трансформатор снизит первичное напряжение в 10 раз. Таким образом, ток, входящий в трансформатор при 1000 вольт, покинет трансформатор при 100 вольт. .

Что такое трансформатор? - Основы схемотехники

Трансформатор представляет собой электрическое устройство, предназначенное для передачи электрической энергии от одной цепи к другой с той же частотой. Его также называют статическим механизмом, поскольку он не имеет движущихся частей.Он используется для управления уровнями напряжения между цепями. Он состоит из трех основных частей, которые состоят из двух обмоток и металлического сердечника, на который намотаны обмотки. Эти обмотки имеют форму катушек, изготовленных из хороших токопроводящих материалов. Обмотки трансформатора играют главную роль в машине, поскольку эти обмотки служат в качестве индукторов.

Анатомия трансформера Т

Трансформатор состоит из следующих частей:

  • Первичная обмотка
  • Вторичная обмотка
  • Сердечник
  • Изоляционные материалы
  • Трансформаторное масло
  • Консерватор
  • Сапун
  • Устройство РПН
  • Охлаждающие трубки
  • Реле Бухгольца
  • Взрывоотводчик

Как работают трансформаторы

Первичная обмотка, вторичная обмотка и сердечник являются основными частями силового трансформатора.Эти детали очень важны для работы трансформатора.

Первичная обмотка обычно изготавливается из меди из-за ее высокой проводимости и пластичности. Количество витков катушки должно быть кратно количеству витков вторичной катушки. Он также отвечает за производство магнитного потока. Магнитный поток создается, когда первичная катушка подключена к источнику электричества. Медный провод, используемый в первичной катушке, должен быть тоньше, чем у вторичной катушки, чтобы ток во вторичной катушке был выше, чем в первичной катушке.

Вторичная катушка, также сделанная из меди, принимает магнитный поток, создаваемый первичной катушкой. Поток проходит через сердечник и соединяется со вторичной обмоткой. Вторичная обмотка подает энергию на нагрузку при измененном напряжении. В этой катушке будет индуцироваться напряжение, поэтому обмотка должна иметь большее количество витков по сравнению с первичной обмоткой. Ток, идущий от первичной катушки, будет генерировать переменный магнитный поток в сердечнике, чтобы вызвать электромагнитное соединение между первичной и вторичной катушками.Магнитный поток, который проходит через две катушки, индуцирует электродвижущую силу, величина которой пропорциональна количеству витков катушки.

Обмотка проводов катушки и выходное напряжение и ток

Величина наведенного напряжения, вызванного наведенным током во вторичной катушке, зависит от количества витков катушки во вторичной катушке. Связь между витками проводов и напряжением в каждой катушке задается уравнением трансформатора :

Уравнение трансформатора показывает, что отношение входного и выходного напряжений трансформатора равно отношению количества витков на первичной и вторичной обмотках.

Расчет входного и выходного напряжения / тока в зависимости от первичной и вторичной обмоток проводов

Соотношение входного и выходного тока и витков катушки трансформатора определяется выражением:

Данное уравнение показывает, что отношение входного и выходного тока трансформатора равно отношению количества витков двух катушек.

Оценивая два приведенных выше уравнения, мы можем сделать вывод, что если напряжение увеличивается, ток уменьшается.Таким же образом, если напряжение уменьшается, ток увеличивается.

Что такое рейтинг VA?

ВА или вольт-ампер. обычно используется для определения силы тока при заданном напряжении в трансформаторе. Вольт-ампер также используется в качестве полной мощности в электрической цепи. Этот рейтинг определяет, сколько вольт-ампер способен выдать трансформатор.

Определение ВА и расчет максимального тока для первичной и вторичной обмоток

Чтобы рассчитать ток первичной и вторичной обмоток трансформатора с заданной номинальной мощностью, мы используем следующее:

Для отношения количества витков, напряжения и тока:

Для максимального первичного тока

Для максимального вторичного тока,

Обозначение выходного напряжения трансформаторов с центральным отводом

Трансформатор с центральным отводом также известен как «двухфазный трехпроводной трансформатор».Это тип трансформатора, который имеет дополнительный провод, подключенный к середине вторичной обмотки трансформатора. Он обеспечивает два вторичных напряжения: V A и V B, с общим подключением. Эти вторичные напряжения равны подаваемому напряжению, что дает равную мощность каждой обмотке.


12-0-12 Трансформатор

A 12-0-12 трансформатор - это понижающий трансформатор с центральным ответвлением с входным напряжением 220 В переменного тока при 50 Гц и выходным напряжением 24 В или 12 В (среднеквадратичное значение).Он назван трансформатором 12-0-12 из-за выходных потенциалов трех клемм, как показано на рисунке выше. Вторичная обмотка состоит из трех выводов: двух выводов от конца до конца и третьего вывода в качестве центрального отвода. На рисунке выше напряжение будет 24 В на всем протяжении (T 1 и T 3 ). Напряжение на T 1 и T 2 будет 12 В. 0 в 12-0-12 представляет контрольную точку с нулевым напряжением.


трансформаторов | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как работает трансформатор.
  • Рассчитайте напряжение, ток и / или количество витков с учетом других величин.

Трансформаторы делают то, что подразумевает их название - они преобразуют напряжения из одного значения в другое (используется термин напряжение, а не ЭДС, потому что трансформаторы имеют внутреннее сопротивление). Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие приборы имеют встроенный трансформатор (как на рис. 1), который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством.Трансформаторы также используются в нескольких точках систем распределения электроэнергии, например, как показано на рисунке 2. Мощность передается на большие расстояния при высоком напряжении, потому что для данного количества мощности требуется меньший ток, а это означает меньшие потери в линии, как это было раньше. обсуждалось ранее. Но высокое напряжение представляет большую опасность, поэтому трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.

Рис. 1. Подключаемый трансформатор становится все более знакомым с ростом количества электронных устройств, которые работают от напряжения, отличного от обычных 120 В переменного тока.Большинство из них находятся в диапазоне от 3 до 12 В. (кредит: Shop Xtreme)

Рисунок 2. Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже до 700 кВ, для ограничения потерь энергии. Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

Тип трансформатора, рассматриваемый в этом тексте (см. Рисунок 3), основан на законе индукции Фарадея и очень похож по конструкции на устройство Фарадея, которое использовалось для демонстрации того, что магнитные поля могут вызывать токи. Две катушки называются первичной обмоткой и вторичной обмоткой . При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля.Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.

Рис. 3. Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов. Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке.

Для простого трансформатора, показанного на рисунке 3, выходное напряжение В с почти полностью зависит от входного напряжения В p и соотношения количества витков в первичной и вторичной обмотках.Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение В с равным

[латекс] {V} _ {\ text {s}} = - {N} _ {\ text {s}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex],

, где N s - количество витков во вторичной катушке, а Δ Φ / Δ t - скорость изменения магнитного потока. Обратите внимание, что выходное напряжение равно индуцированной ЭДС ( В с = ЭДС с ), при условии, что сопротивление катушки невелико (разумное предположение для трансформаторов).Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому Δ Φ / Δ t одинаковы с обеих сторон. Входное первичное напряжение В p также связано с изменением магнитного потока на

[латекс] {V} _ {p} = - {N} _ {\ text {p}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].

Причина этого немного более тонкая. Закон Ленца говорит нам, что первичная катушка противодействует изменению магнитного потока, вызванному входным напряжением В p , отсюда знак минус (это пример самоиндукции , тема, которая будет исследована в некоторых подробнее в следующих разделах).Предполагая пренебрежимо малое сопротивление катушки, правило петли Кирхгофа говорит нам, что наведенная ЭДС в точности равна входному напряжению. Соотношение этих двух последних уравнений дает полезное соотношение:

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex]

Это известно как уравнение трансформатора , и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках.Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки. Повышающий трансформатор - это трансформатор, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение. Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной.На практике это почти верно - КПД трансформатора часто превышает 99%. Уравнивание входной и выходной мощности,

P p = I p V p = I s V s = P s .

Перестановка терминов дает

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{I} _ {\ text {p}}} {{ I} _ {\ text {s}}} \\ [/ latex].

В сочетании с [латексом] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}} } {{N} _ {\ text {p}}} \\ [/ latex], мы находим, что

[латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{ N} _ {\ text {s}}} \\ [/ latex]

- это соотношение между выходным и входным токами трансформатора.Таким образом, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

Пример 1. Расчет характеристик повышающего трансформатора

Портативный рентгеновский аппарат имеет повышающий трансформатор, входное напряжение которого 120 В преобразуется в выходное напряжение 100 кВ, необходимое для рентгеновской трубки. Первичная обмотка имеет 50 петель и потребляет ток 10,00 А. а) Какое количество петель во вторичной обмотке? (b) Найдите текущий выходной сигнал вторичной обмотки.

Стратегия и решение для (а)

Решаем [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s , номер петель во вторичной обмотке и введите известные значения.{4} \ end {array} \\ [/ latex].

Обсуждение для (а)

Для создания такого большого напряжения требуется большое количество контуров во вторичной обмотке (по сравнению с первичной). Это справедливо для трансформаторов с неоновой вывеской и трансформаторов, подающих высокое напряжение внутри телевизоров и ЭЛТ.

Стратегия и решение для (b)

Аналогичным образом мы можем найти выходной ток вторичной обмотки, решив [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N } _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для [латекса] {I} _ {\ text {s}} \\ [/ latex] для I с и ввод известных значений.{4}} = 12,0 \ text {mA} \ end {array} \\ [/ latex].

Обсуждение для (б)

Как и ожидалось, текущий выход значительно меньше входного. В некоторых зрелищных демонстрациях используются очень большие напряжения для получения длинных дуг, но они относительно безопасны, поскольку выход трансформатора не обеспечивает большой ток. Обратите внимание, что потребляемая мощность здесь составляет P p = I p V p = (10,00 A) (120 В) = 1.20 кВт. Это равно выходной мощности P p = I s V s = (12,0 мА) (100 кВ) = 1,20 кВт, как мы предполагали при выводе используемых уравнений.

Тот факт, что трансформаторы основаны на законе индукции Фарадея, проясняет, почему мы не можем использовать трансформаторы для изменения постоянного напряжения. Если нет изменений в первичном напряжении, значит, во вторичной обмотке нет напряжения. Одна из возможностей - подключить постоянный ток к первичной катушке через переключатель.Когда переключатель размыкается и замыкается, вторичная обмотка вырабатывает напряжение, подобное показанному на рисунке 4. На самом деле это не практичная альтернатива, и переменный ток обычно используется везде, где необходимо увеличивать или уменьшать напряжения.

Рис. 4. Трансформаторы не работают для входа чистого постоянного напряжения, но если он включается и выключается, как показано на верхнем графике, выход будет выглядеть примерно так, как показано на нижнем графике. Это не тот синусоидальный переменный ток, который нужен большинству устройств переменного тока.

Пример 2. Расчет характеристик понижающего трансформатора

Зарядное устройство, предназначенное для последовательного подключения десяти никель-кадмиевых аккумуляторов (суммарная ЭДС 12.5 В постоянного тока) должен иметь выход 15,0 В для зарядки аккумуляторов. В нем используется понижающий трансформатор с первичной обмоткой на 200 контуров и входным напряжением 120 В. а) Сколько витков должно быть во вторичной катушке? (б) Если ток зарядки составляет 16,0 А, каков ток на входе?

Стратегия и решение для (а)

Можно ожидать, что вторичный узел будет иметь небольшое количество петель. Решение [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s и ввод известных значений дает

[латекс] \ begin {array} {lll} {N} _ {\ text {s}} & = & {N} _ {\ text {p}} \ frac {{V} _ {\ text {s} }} {{V} _ {\ text {p}}} \\ & = & \ left (\ text {200} \ right) \ frac {15.0 \ text {V}} {120 \ text {V}} = 25 \ end {array} \\ [/ latex]

Стратегия и решение для (b)

Текущий ввод может быть получен путем решения [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для I p и ввод известных значений. Это дает

[латекс] \ begin {array} {lll} {I} _ {\ text {p}} & = & {I} _ {\ text {s}} \ frac {{N} _ {\ text {s} }} {{N} _ {\ text {p}}} \\ & = & \ left (16.0 \ text {A} \ right) \ frac {25} {200} = 2.00 \ text {A} \ end {array} \\ [/ latex]

Обсуждение

Количество петель во вторичной обмотке невелико, как и ожидалось для понижающего трансформатора. Мы также видим, что небольшой входной ток дает больший выходной ток в понижающем трансформаторе. Когда трансформаторы используются для управления большими магнитами, они иногда имеют небольшое количество очень тяжелых контуров во вторичной обмотке. Это позволяет вторичной обмотке иметь низкое внутреннее сопротивление и производить большие токи. Заметим еще раз, что это решение основано на предположении о 100% эффективности - или выходная мощность равна мощности ( P p = P s ), что является разумным для хороших трансформаторов.В этом случае первичная и вторичная мощность составляют 240 Вт. (Убедитесь в этом сами для проверки согласованности.) Обратите внимание, что никель-кадмиевые батареи необходимо заряжать от источника постоянного тока (как и аккумулятор на 12 В). Таким образом, выход переменного тока вторичной катушки необходимо преобразовать в постоянный ток. Это делается с помощью так называемого выпрямителя, в котором используются устройства, называемые диодами, которые пропускают только односторонний ток.

Трансформаторы

находят множество применений в системах электробезопасности, которые обсуждаются в разделе «Электробезопасность: системы и устройства».

Исследования PhET: Генератор

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этих явлений, исследуя магниты и узнавая, как с их помощью загорается лампочка.

Щелкните, чтобы загрузить симуляцию. Запускать на Java.

Сводка раздела

  • Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
  • Для трансформатора напряжения на первичной и вторичной обмотках связаны соотношением

    [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex],

    , где V p и V s - напряжения на первичной и вторичной катушках, имеющих N p и N s витков.

  • Токи I p и I s в первичной и вторичной обмотках связаны соотношением [латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ текст {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex].
  • Повышающий трансформатор увеличивает напряжение и снижает ток, тогда как понижающий трансформатор снижает напряжение и увеличивает ток.

Концептуальные вопросы

1. Объясните, что вызывает физические вибрации в трансформаторах при частоте, в два раза превышающей используемую мощность переменного тока.

Задачи и упражнения

1. Подключаемый трансформатор, показанный на рисунке 4, подает 9,00 В в систему видеоигр. (a) Сколько витков во вторичной обмотке, если ее входное напряжение составляет 120 В, а первичная обмотка имеет 400 витков? (б) Какой у него входной ток, когда его выход 1,30 А?

2. Американская путешественница в Новой Зеландии несет трансформатор для преобразования стандартных 240 В в Новой Зеландии в 120 В, чтобы она могла использовать в поездке небольшие электроприборы.а) Каково соотношение витков первичной и вторичной обмоток ее трансформатора? (б) Каково отношение входного тока к выходному? (c) Как новозеландец, путешествующий по Соединенным Штатам, мог использовать этот же трансформатор для питания своих устройств на 240 В от 120 В?

3. В кассетном магнитофоне используется подключаемый трансформатор для преобразования 120 В в 12,0 В с максимальным выходным током 200 мА. (а) Каков текущий ввод? б) Какая потребляемая мощность? (c) Является ли такое количество мощности приемлемым для небольшого прибора?

4.(а) Каково выходное напряжение трансформатора, используемого для аккумуляторных батарей фонарика, если его первичная обмотка имеет 500 витков, вторичная - 4 витка, а входное напряжение составляет 120 В? (b) Какой входной ток требуется для получения выходного сигнала 4,00 А? (c) Какая потребляемая мощность?

5. (a) Подключаемый трансформатор для портативного компьютера выдает 7,50 В и может обеспечивать максимальный ток 2,00 А. Каков максимальный входной ток, если входное напряжение составляет 240 В? Предположим 100% эффективность. (b) Если фактический КПД меньше 100%, потребуется ли входной ток больше или меньше? Объяснять.

6. Многоцелевой трансформатор имеет вторичную катушку с несколькими точками, в которых может быть снято напряжение, давая на выходе 5,60, 12,0 и 480 В. (a) Входное напряжение составляет 240 В на первичную катушку с 280 витками. Какое количество витков в частях вторичной обмотки используется для создания выходного напряжения? (b) Если максимальный входной ток составляет 5,00 А, каковы максимальные выходные токи (каждый из которых используется отдельно)?

7. Крупная электростанция вырабатывает электроэнергию напряжением 12,0 кВ.Его старый трансформатор когда-то преобразовывал напряжение до 335 кВ. Вторичная обмотка этого трансформатора заменяется, так что его выходная мощность может составлять 750 кВ для более эффективной передачи по пересеченной местности на модернизированных линиях электропередачи. (а) Каково соотношение оборотов в новой вторичной системе по сравнению со старой? (b) Каково отношение нового текущего выхода к старому выходу (при 335 кВ) при той же мощности? (c) Если модернизированные линии передачи имеют одинаковое сопротивление, каково отношение потерь мощности в новых линиях к старым?

8.Если выходная мощность в предыдущей задаче составляет 1000 МВт, а сопротивление линии составляет 2,00 Ом, каковы были потери в старой и новой линии?

9. Необоснованные результаты Электроэнергия на 335 кВ переменного тока от линии электропередачи подается в первичную обмотку трансформатора. Отношение числа витков вторичной обмотки к числу витков первичной обмотки составляет N s / N p = 1000. (a) Какое напряжение индуцируется во вторичной обмотке? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка ответственны?

10. Создайте свою проблему Рассмотрим двойной трансформатор, который будет использоваться для создания очень больших напряжений. Устройство состоит из двух этапов. Первый - это трансформатор, который выдает намного большее выходное напряжение, чем его входное. Выход первого трансформатора используется как вход для второго трансформатора, который дополнительно увеличивает напряжение. Постройте задачу, в которой вы вычисляете выходное напряжение последней ступени на основе входного напряжения первой ступени и количества витков или петель в обеих частях обоих трансформаторов (всего четыре катушки).Также рассчитайте максимальный выходной ток последней ступени на основе входного тока. Обсудите возможность потерь мощности в устройствах и их влияние на выходной ток и мощность.

Глоссарий

трансформатор:
устройство, которое преобразует напряжения из одного значения в другое с помощью индукции
уравнение трансформатора:
уравнение, показывающее, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках; [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex]
повышающий трансформатор:
трансформатор, повышающий напряжение
понижающий трансформатор:
трансформатор, понижающий напряжение

Избранные решения проблем и упражнения

1.(а) 30.0 (б) 9.75 × 10 −2 A

3. (а) 20,0 мА (б) 2,40 Вт (в) Да, такая мощность вполне разумна для небольшого прибора.

5. (a) 0,063 A (b) Требуется больший входной ток.

7. (а) 2,2 (б) 0,45 (в) 0,20, или 20,0%

9. (a) 335 МВ (b) слишком высокое, намного выше напряжения пробоя воздуха на разумных расстояниях (c) входное напряжение слишком высокое

▷ Что такое трансформатор?

Вот статья Насира, одного из членов сообщества.Если вы также хотите отправить статью, пришлите нам по электронной почте.

Трансформатор - это устройство, которое передает электрический ток из одной цепи в другую, обычно по принципу взаимной индукции. Во время этого процесса частота остается постоянной, а напряжение можно увеличивать или уменьшать в зависимости от необходимости.

Эта передача электричества происходит с помощью двух катушек. Одна из них, известная как первичная катушка, подключена к источнику переменного тока.Другой известен как вторичная катушка, и он подключен к внешней цепи. Это составляет базовую структуру трансформатора и показано ниже:


Принцип работы трансформатора

Трансформатор работает по принципу закона взаимной индукции Фарадея. Этот принцип гласит, что скорость изменения потока прямо пропорциональна индуцированному электромагнитному потоку.

Точно так же в трансформаторе, когда переменный ток течет через одну из катушек, он создает вокруг нее магнитное поле, которое постоянно создает изменяющийся магнитный поток, и поэтому, когда другая катушка приближается к ней, часть ЭДС также оказывается индуцируется и во вторичной катушке.Поскольку вторичная обмотка образует замкнутый контур, ЭДС также создает в нем ток.

Короче говоря, эта взаимная индукция между катушками отвечает за передачу электроэнергии.


Эти обмотки обычно делаются на железном сердечнике, чтобы усилить магнитное поле, а затем ламинируются, чтобы поток не ослабевал из-за воздуха, который является идеальным изолятором. Но все же наблюдаются некоторые потери мощности, такие как потери на вихревые токи и потери на гистерезис.

Типы трансформаторов

Классифицируемые по возрастанию напряжения, мы в первую очередь классифицируем трансформаторы на две основные категории:

    1) Повышающий трансформатор
    2) Понижающий трансформатор

Если мы увеличим количество витков во вторичной катушке, так что они станут больше, чем количество витков в первичной обмотке, индуцированное напряжение может быть увеличено в прямом связь. то есть, если количество витков во вторичной обмотке в десять раз превышает количество витков в первичной обмотке, то индуцированное напряжение также будет в десять раз больше, чем в первичной обмотке.

Точно так же, если количество витков в первичной катушке больше, чем количество витков во вторичной катушке, индуцированное напряжение будет меньше исходного напряжения.

Это свойство трансформатора действительно полезно при передаче электроэнергии, особенно на большие расстояния. Чтобы избежать потерь мощности, сначала используется понижающий трансформатор, а на приемном конце используется повышающий трансформатор, который повышает напряжение до необходимого уровня. Такие типы трансформаторов известны как однофазные, двухобмоточные трансформаторы напряжения.

Но также могут быть созданы двухфазные, трехфазные или более высокие трансформаторы, особенно для коммерческих и промышленных целей, где нагрузка довольно велика, в основном используются три фазы. Подключения трансформатора в 3 фазе показаны ниже:


Как видно из рисунка, трехфазный трансформатор будет иметь три первичные обмотки и три вторичные обмотки. Способ, которым три обмотки соединены друг с другом, может быть соединением треугольником или соединением Y.Оба они показаны ниже:


Если катушки соединены последовательно, образуя замкнутый контур, то соединение известно как соединение треугольником, но если три обмотки соединены так, что все они имеют общую точку, то образуется соединение Y-типа. Он имеет нейтральный провод в общей конечной точке. Обе эти связи эквивалентны и взаимообразуемы из одной формы в другую.

В следующей части этого руководства мы рассмотрим конструкцию трансформатора, который, я думаю, очень важен для инженера-электрика.Я объясню основы конструкции трансформатора, такие как обмотки и т. Д., И проверю, как спроектировать трансформатор.

Так что следите за обновлениями и подпишитесь на нашу рассылку по электронной почте, чтобы получить эти удивительные обучающие программы в своем почтовом ящике. Заботиться.

Для чего нужен электрический трансформатор?

Трансформатор - это электрическое устройство, разработанное и изготовленное для повышения или понижения напряжения. Электрические трансформаторы работают по принципу магнитной индукции и не имеют движущихся частей.Поскольку трансформатор преобразует напряжение на входе в напряжение, необходимое для устройства или оборудования, подключенного к выходу, он обратно увеличивает или уменьшает ток, протекающий между различными уровнями напряжения. Электрический трансформатор иллюстрирует закон сохранения энергии, который гласит, что энергия не может быть ни создана, ни разрушена, а только преобразована!

Основная конструкция электрического трансформатора

Электрические трансформаторы, не имеющие движущихся частей или высокочувствительных основных компонентов или материалов, по своей природе являются исключительно надежными и долговечными элементами оборудования.От хорошо спроектированного и качественно изготовленного трансформатора можно ожидать, что он будет работать непрерывно и без сбоев в течение многих лет при номинальных условиях эксплуатации. В своей основной форме электрический трансформатор состоит из двух катушек или обмоток - входной и выходной - из электропроводящего провода, намотанного на сердечник из электротехнической стали.

Основная функция электрического трансформатора

Когда первичная катушка, принимающая напряжение (вход), находится под напряжением, сердечник намагничивается, и напряжение впоследствии индуцируется или стимулируется в выходной или вторичной катушке.Изменение напряжения (отношения напряжений) между первичной и вторичной обмотками зависит от соотношения витков катушек. Когда трансформатор нагружен, то есть когда устройство или оборудование, для питания которого предназначен трансформатор, подключено и трансформатор находится под напряжением, «нагрузка» начинает потреблять ток (выраженный в амперах или амперах) при напряжении, при котором трансформатор был разработан, чтобы доставить.

Компания Johnson Electric Coil Company предлагает комплексные услуги по проектированию, проектированию и производству высокоэффективных электрических трансформаторов и индукторов на заказ.Предлагаемые нами услуги по проектированию и производству являются одними из самых разнообразных в отрасли.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *