Для постоянного тока напряжение измеряется в: Измерение напряжения постоянного и переменного тока: способы

AIM728 — Четырёхканальный модуль аналогового ввода сигналов напряжения постоянного тока — 20

консультация по продукту

Описание

Публикации

Заказать

Руководство по эксплуатации

Руководство по программированию (модули ввода-вывода)

Модуль имеет четыре канала для измерения напряжения постоянного тока в диапазоне от минус 20 до плюс 20 В.

Режим измерения – однопроводный.

Все  каналы имеют общую «землю» и гальванически изолированы от шины FBUS.

Число каналов измерения напряжения 4
Входное сопротивление каналов измерения напряжения 300  кОм
Разрядность АЦП 22 разряда
Тип входа однопроводный
Полное время преобразования входного сигнала по одному каналу (выбирается установкой частоты режекторного фильтра в конфигурации модуля)

1000:         8,4 мс

500:            16,4 мс

50:              160,3 мс

Основная приведённая погрешность измерения постоянного напряжения, 25 °С

AIM72801 для напряжения от минус 10 до +10 В при скорости преобразования до 50 Гц – не более 0,01 %, для напряжения от минус 10 до +10 В при скорости преобразования до 1000 Гц  — не более 0,015%. Для напряжения от минус 20 до +20 В при скорости преобразования 50 Гц – 0,0075%; для напряжения от минус 20 до +20 В при скорости преобразования 1000 Гц – 0,01%.

AIM72802

для напряжения от минус 10 до +10 В — не более 0,03%, для напряжения от минус 20 до +20 В – 0,02%

Напряжение изоляции система / питание 500 В
Потребляемый ток по внутренней шине До 75 мА
Среднее время наработки на отказ 1 000 000 ч
Масса 0,06 кг

  • DNP3 по-русски.pdf / PDF 1.42 МБ
  • FASTWEL IO — развитие продуктовой линейки. Часть 1.pdf / PDF 0.9 МБ
  • FASTWEL IO — развитие продуктовой линейки. Часть 2.pdf / PDF 7.87 МБ
  • FASTWEL IO — развитие продуктовой линейки. Часть 3.pdf / PDF 2.37 МБ
  • Объектно-ориентированное программирование в стандарте МЭК 61131-3.pdf / PDF 1.1 МБ
  • Отечественный контроллер — лучше.pdf / PDF 2.56 МБ
  • Реализация TCP- и UDP-сокетов на контроллере FASTWEL CPM723-01 в среде разработки CODESYS V3.pdf / PDF 0.96 МБ
  • Реализация сервера Modbus RTU с помощью интерфейсного модуля Fastwel и ПО CoDeSys.pdf / PDF 1.36 МБ
Номер для заказа Наименование Наличие на складе

Номер для заказа

AIM72801

Наименование

Прецизионный 4-канальный модуль аналогового ввода напряжения от минус 20 до плюс 20 В пост. тока; режим измерения-однопроводный; погрешность при 25° С:- 20 +20В (50 Гц)–0.0075%;- 20 +20В (1000 Гц)–0.01%.

Наличие на складе

Под заказ

заказать

Количество

Номер для заказа

AIM72802

Наименование

4-канальный модуль аналогового ввода напряжения от минус 20 до плюс 20 В постоянного тока; режим измерения-однопроводный; погрешность при. 25° С -не более 0.03% (для минус 10 до плюс 10 В) / не более 0.02%.( от минус 20 до плюс 20 В)

Наличие на складе

Под заказ

заказать

Количество

Смотрите также

НОВИНКА

CPC314 — Одноплатный компьютер на базе Vortex86DX3

НОВИНКА

CPС316 — Одноплатный компьютер на базе Vortex86DX3

В РАЗРАБОТКЕ

MK150-02 — Компьютер модульный на базе «Baikal-T1»

CPC310 — Одноплатный компьютер на базе процессоров Intel Atom E38xx

НОВИНКА

KIC506 — Модуль интерфейсный

НОВИНКА

KIC500 — Модуль интерфейсный

NIM552 — Модуль интерфейсный

НОВИНКА

SW554 — Модуль коммутатора

В РАЗРАБОТКЕ

NM800 — Коммутатор сетевой управляемый (NM800)

НЕ РЕКОМЕНДУЕТСЯ ДЛЯ НОВЫХ ПРОЕКТОВ

MK150-01 — Модульный компьютер с интерфейсом FBUS

ПОД ЗАКАЗ

ОНИКС12-03 — Планшетный модуль

НОВИНКА

CPC505 — Новый процессорный модуль Fastwel на Intel Coffee Lake

НОВИНКА

CPC507 — Новый процессорный модуль Fastwel на AMD Ryzen

В РАЗРАБОТКЕ

MK303 — Компьютерная платформа

В РАЗРАБОТКЕ

PS354 — Модуль питания

НОВИНКА

ПОД ЗАКАЗ

CPC507-10 — Модуль процессора

OM753 — Источник питания для внутренней шины

Аксессуары

CPC512 — Процессорная плата CompactPCI 3U (CPCI-S. 0 D0.70) на базе процессоров семейства Intel Ivy Bridge

НОВИНКА

В РАЗРАБОТКЕ

Компьютерная платформа формата Box PC на базе COM‐модуля CPC1304


Общий вопрос Технический вопрос

Выберите Категорию Встраиваемые системы Программируемые логические контроллеры Программное обеспечение Промышленные компьютеры Заказные разработки Консультация по продукту

Сообщение:

Компания:

Должность:

Телефон:

E-mail*:

Нажимая «Отправить» Вы даете разрешение на обработку персональных данных. Все поля обязательные для заполнения.

Источники постоянного тока: виды, характеристики, сферы применения

Напряжение, этим термином обозначают разность электрических потенциалов между двумя точками электрической цепи. Некоторые неправильно полагают, что напряжение — это что-то такое, что движется в цепи. Но это не так. Напряжение — это та сила, под действием которой в электрической цепи движутся электрические заряды, т.е. протекает электрический ток. Напряжение можно сравнить с ударом клюшки по шайбе. Полёт шайбы сравним с протеканием тока, но удар клюшки — это потенциальная сила, вызвавшая движение шайбы. Ток и напряжение взаимосвязаны, так как важна не только разность потенциалов сама по себе, а важен и электрический ток, обусловленный этой разностью потенциалов. Поэтому при описании работы электрических цепей ток и напряжение, как правило, фигурируют вместе.

Можно выделить две группы источников электрической энергии: источники напряжения и источники тока. Напряжение между выходными полюсами источника напряжения не зависит или слабо зависит от тока, отдаваемого источником во внешнюю цепь (нагрузку). В источниках тока, напротив, выходной ток почти не зависит от напряжения на его полюсах, которое определяется нагрузкой.

Основной единицей измерения разности потенциалов является вольт (В). На практике часто применяются производные от основной единицы измерения напряжения. Единица измерения милливольт (мВ) используется для обозначения разности потенциалов, эквивалентной 1/1000 В. Микровольт (мкВ) составляет 1/1000 мВ или 1/1000 000 В. Один киловольт (КВ) равен 1000 В, а один мегавольт (МВ) — 1 000 000 В.

Различают переменное напряжение и постоянное напряжение.

Источник постоянного напряжения

Аккумуляторная батарея — это типичный источник постоянного напряжения. Для питания электронных схем применяются преимущественно источники постоянного напряжения. Напряжение измеряется между положительным и отрицательным выводами (полюсами) источника. Для того, чтобы образовать замкнутую электрическую цепь, в которой протекает постоянный ток, полюсы источника питания должны быть соединены с выводами схемы (нагрузки), потребляющей энергию от источника, или с выводами измерительного прибора. Считается, что в нагрузке, подключённой к источнику питания, ток течёт в направлении от положительного потенциала к отрицательному.

Действие источника электрического тока

Если создать в проводнике электрическое поле, например, поместив на одном из его концов избыток положительных ионов, то свободные электроны в проводнике придут в движение. Заряд электронов отрицательный, и, следовательно, они начнут перемещаться к созданному положительному заряду. Это приведет к тому, что положительный заряд избыточных ионов будет нейтрализован сместившимися отрицательными электронами. Поле в проводнике исчезнет, ток прекратится.

Для того, чтобы ток в проводнике продолжал существовать, необходим специальный элемент, который бы непрерывно поддерживал заряд на концах электрической цепи. Такой элемент должен непрерывно совершать работу по восполнению недостатка зарядов на одном конце цепи, и удалению избытка зарядов на другом. Все эти действия совершаются источником постоянного электрического тока.

Источник переменного напряжения

Промышленная электросеть — типичный источник переменного напряжения. Если в цепях постоянного напряжения полярность полюсов фиксирована и один из полюсов всегда положителен, а другой отрицателен, то в источниках переменного напряжения полярность постоянно меняется. В первой половине периода один из полюсов имеет отрицательную полярность, а другой — положительную. Во второй половине полярности полюсов меняются. Быстрота смены полярности в цепях переменного тока измеряется в герцах (Гц). В нашей сети напряжение является переменным и в течение одной секунды происходит 50 циклов (периодов) смены полярности напряжения. Частота сети переменного тока (в РФ) равна 50 Гц. Для примера, в США она равна 60 Гц.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток – alternating current (AC). Постоянный ток – direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.


Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе – отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 – это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Виды источников электрического тока

Существует много видов источников электрического тока, однако в любом источнике производится работа по переносу зарядов между специальными клеммами, называемыми полюсами. Теперь, если к полюсам подключить электрическую цепь, то в ней возникнет непрекращающееся движение зарядов – возникнет электрический ток.

Силы, которые перемещают заряды между полюсами внутри источника, имеют природу отличную от электрической, и называются сторонними. В зависимости от природы этих сторонних сил существуют различные источники электрического тока.

Химические источники

Сторонние силы химической природы используются в гальванических элементах – батарейках и аккумуляторах. Химическое взаимодействие определяется поведением электронов внешних оболочек атомов, его энергетический порядок невелик, поэтому и электрическое поле (и напряжение), получаемое с помощью одного химического элемента невысоко. Для получения высоких напряжений химические элементы соединяются последовательно. Но получаемая энергия все равно будет относительно небольшой. Химические источники удобны там, где при не очень высоких требованиях к энергетическим параметрам требуется автономность.

Рис. 1. Химические источники тока батареи аккумуляторы.

Электромеханические источники

Сторонние силы механической природы используются в генераторах различных конструкций. Например, в лабораторной электрической машине заряды создаются с помощью трения. В промышленных генераторах заряды создаются с помощью перемещения взаимодействующих магнитных полей (здесь используется явление электромагнитной индукции). При этом можно получить очень высокие энергетические показатели. Это наиболее широко используемые источники электрического тока для промышленных целей.

Рис. 2. Электромеханические источники тока.

Тепловые источники

Сторонние силы тепловой природы используются в термоэлементах – при нагревании спаянных разнородных проводников на концах спая возникает небольшая разность потенциалов, которую можно использовать. Однако, энергия при этом получается очень небольшой. Поэтому термоэлементы используются в основном как датчики температуры в составе специальных измерительных схем.

Рис. 3. Термоэлектрические источники тока.

Фотоэлектрические источники

Сторонние силы световой природы используются в солнечных батареях. Здесь используется явление фотоэффекта – при освещении некоторых веществ световая энергия начинает выбивать из атомов электроны, тем самым, создавая электрическое поле, которое может быть использовано. Солнечные батареи способны давать относительно небольшую энергию, однако, они очень удобны там, где кроме солнечного света очень мало других видов энергии – например, в удаленных уголках Земли или в космосе.

Рис. 4. Солнечные батареи.

Преобразователи

Преобразователь — устройство, механическим способом превращающее переменный ток в постоянный. По сути своей это электродвигатель, который вращает вал генератора постоянного тока. Когда-то это были первые устройства, способные производить сварку постоянным током.

По похожему принципу работают и генераторы, питающиеся от бензинового или дизельного мотора.

Несмотря на кажущуюся нелогичность конструкции, преобразователи также имеют свои плюсы и минусы. Основное их достоинство в том, что эти аппараты нечувствительны к перепадам напряжения — ток на выходе всегда имеет стабильную характеристику.

Кроме того, они могут выдавать очень большой ток — 300, 500, некоторые модели 1000 А. В некоторых видах работ, например, при сварке толстых металлических плит, это принципиально.

Их недостатки заключаются в большой массе (до 500 кг), а также в необходимости регулярного ТО из-за наличия вращающихся с высокой скоростью деталей. КПД преобразователей невысок из-за трат энергии на раскрутку вала двигателя.

Измерение сильного постоянного тока

Постоянные токи большой величины измеряются с помощью резистивного шунта с низким омическим сопротивлением. Падение напряжения на сопротивлении измеряют милливольтметром. Значение сопротивления колеблется обычно между 10 мкОм и 10 мОм. Это зависит от нагревательного эффекта и допустимой нагрузки в контуре. Резисторы для измерения сильного постоянного тока обычно погружены в масло и выполнены в виде сопротивления с тремя или четырьмя выводами. Падение напряжения на шунте ограничено несколькими милливольтами (< 1 вольта) в силовых цепях.

Генераторы Холла для измерения постоянного тока:

Принцип «эффекта Холла» используется при измерении сильного постоянного тока. Если через металлическую пластину, расположенную в перпендикулярном к ней магнитном поле, протекает электрический ток, то силы Лоренца будут отклонять электроны в магнитном поле металла. Смещение заряда создает ЭДС в нормальном направлении, называемую «напряжение Холла ». Напряжение Холла пропорционально току i, плотности магнитного потока B и обратной величине толщины пластины d; константа пропорциональности R называется « Коэффициент Холла

Для металлов коэффициент Холла очень мал, поэтому используются полупроводниковые материалы, для которых коэффициент Холла высок.

При измерении больших токов проводник с током окружен магнитной цепью с железным сердечником, так что напряженность магнитного поля H—(1/δ) создается в небольшом воздушном зазоре в сердечнике. Элементы Холла помещаются в воздушный зазор (толщиной d), и малая постоянная d. c. через элемент проходит ток. Схематичное расположение показано на рис. 7.44. Напряжение, развиваемое на элементе Холла в нормальном направлении, пропорционально постоянному току. ток I. Следует отметить, что коэффициент Холла R зависит от температуры и высокой напряженности магнитного поля, и при его использовании для измерения сильного постоянного тока необходимо обеспечить соответствующую компенсацию.

Генераторы Холла могут использоваться для измерения однонаправленного переменного тока. а также импульсные токи. При правильном расчете размеров элемента Холла и добавлении компенсационных цепей полоса пропускания генератора Холла может быть увеличена примерно до 50 МГц. Как таковые, эти генераторы могут использоваться для измерения постдуговых токов и однонаправленных импульсных токов.

Измерение переменного тока большой частоты:

Измерение тока промышленной частоты обычно выполняется только с использованием трансформаторов тока, поскольку использование токовых шунтов приводит к ненужным потерям мощности. Также трансформаторы тока обеспечивают электрическую изоляцию от цепей высокого напряжения в энергосистемах. Трансформаторы тока, используемые для систем сверхвысокого напряжения (СВН), сильно отличаются от обычных конструкций, поскольку они должны поддерживать очень высокое напряжение от земли. На рис. 7.45 описана новая схема измерения трансформаторов тока, использующая электронно-оптический метод. Генерируется сигнал напряжения, пропорциональный измеряемому току, который передается на землю через электрооптическое устройство. Световые импульсы, пропорциональные сигналу напряжения, передаются по пучку стекловолокна на фотодетектор и преобразуются обратно в аналоговый сигнал напряжения. При номинальном токе, а также при высоких токах короткого замыкания были получены точности лучше ±0,5%. Требуемая мощность для преобразователя сигналов и оптического устройства обеспечивается за счет подходящих трансформаторов тока и напряжения, как показано на рис. 7.45.

Измерение высокочастотных и импульсных токов:

В системах энергоснабжения, а также в других областях науки и техники часто необходимо определять амплитуду и форму волны быстро меняющихся больших токов. Измерение сильного постоянного тока происходит при изучении грозовых разрядов, электрических дуг и последуговых явлений с помощью автоматических выключателей, а также при исследованиях электрических разрядов в физике плазмы. Амплитуда тока может варьироваться от нескольких ампер до нескольких сотен килоампер. Скорость нарастания таких токов может достигать 10 9от 0037 6 до 10 12 A/с, а время нарастания может варьироваться от нескольких микросекунд до измерения сигнала в широкой полосе частот. Часто используются следующие методы:

(i) резистивные шунты,

(ii) магнитные потенциометры или датчики и

(iii) устройства на эффекте Фарадея и Холла.

Точность измерения варьируется от 1 до 10%. В приложениях, где требуется измерение только пиковых значений, вольтметры с пиковыми показаниями.

Основы измерения электрической мощности

Основные измерения электрической мощности

Понимание производства электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим. Ниже приведен обзор основных измерений электрической и механической мощности.

Электрический ток, напряжение и сопротивление

Любое обсуждение электричества неизбежно приводит к электрическому току, напряжению и сопротивлению. Эти концепции показаны ниже на рисунке 1. Электрический ток представляет собой поток самого электричества и измеряется в единицах, называемых амперами (А). Напряжение — это сила, которая заставляет электричество течь, и измеряется в единицах, называемых вольтами (V или U). Сопротивление выражает сложность, с которой протекает электричество, и измеряется в единицах, называемых омами (Ом).

На рисунке ниже эти отношения показаны в виде электрических цепей. В электрической цепи электрический ток проходит через различные типы нагрузки, включая сопротивление, индуктивность и емкость, от положительной полярности источников питания, таких как батареи, а затем возвращается к отрицательной полярности источника питания. Термин «нагрузка» обычно используется для обозначения чего-то, что получает электричество от источника питания и работает (обеспечивает свет, в случае лампочки).


Рисунок 1 – Основные компоненты электрической цепи
Мощность

Электрическая энергия может быть преобразована в другие формы энергии и использована. Например, его можно преобразовать в тепло в электронагревателе, в крутящий момент в двигателе или в свет в люминесцентной или ртутной лампе. В подобных примерах работа, совершаемая электричеством за определенный период времени (или затрачиваемая электрическая энергия), называется электрической мощностью. Единицей электрической мощности является ватт (Вт). 1 ватт эквивалентен работе в 1 джоуль, выполненной за 1 секунду.

В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Взяв напряжение и умножив его на соответствующий ток, можно определить мощность.

Мощность постоянного тока (постоянного тока)

Постоянный ток или постоянный ток относится к системам питания, в которых используется одна полярность напряжения и тока, однако амплитуда может изменяться (циклически или случайным образом).


Рисунок 2. Базовая схема, показывающая напряжение и ток с источником постоянного напряжения электрический ток, напряжение и сопротивление. Закон Ома гласит, что электрический ток течет пропорционально напряжению. Ниже показана формула для выражения отношения между током (I) и напряжением (U).

По этой формуле ток (I) уменьшается с увеличением значения R и, наоборот, ток (I) увеличивается с уменьшением значения R. R здесь представляет собой сопротивление (или электрическое сопротивление). Другими словами, мы видим, что по мере увеличения или уменьшения сопротивления (R) ток течет с меньшей или большей легкостью. Эту формулу можно переписать, как показано ниже. Если известны два значения тока, напряжения и сопротивления, можно получить оставшееся значение.

Мощность постоянного тока (DC) P (Вт) определяется путем умножения приложенного напряжения (U) на ток I (А), как показано выше. В приведенном ниже примере количество электроэнергии, определяемое предыдущим уравнением, извлекается из источника питания и потребляется сопротивлением R (в омах) каждую секунду. По закону Ома мы можем переписать формулу следующим образом:

Электрические цепи постоянного тока поддерживают постоянный ток и напряжение без циклических изменений. Таким образом, очень просто получить мощность постоянного тока (P) с результирующей формой волны, показанной ниже.

Электропитание переменного тока (AC)

Электропитание, обычно используемое в Японии, работает при напряжении 100 В переменного тока. Эти 100 В представляют собой напряжение, выраженное как среднеквадратичное значение (среднеквадратичное значение).

Напряжение 100 В от настенных розеток выглядит как чистые синусоидальные волны, как показано на рисунке ниже. Мы можем видеть, что полярность меняется циклами, и что напряжения постоянно колеблются. Формы сигналов напряжения переменного тока имеют чистые синусоидальные волны, такие как график на рис. 3, а также множество других волн, таких как искаженные волны, такие как обычные формы, такие как треугольная и прямоугольная волна. Чтобы установить размер этих волн переменного тока и напряжения, нам нужны значения, которые используют тот же стандарт. Поэтому используется среднеквадратичное значение (rms), которое было установлено на основе постоянного тока и напряжения.


Рисунок 3. Изменение полярности переменного напряжения в синусоидальных, треугольных и прямоугольных волнах
Среднеквадратичное значение (среднеквадратичное значение)

Среднеквадратичное значение чаще всего используется при выражении значений переменного тока и напряжения, и измеряется в Arms и Urms. В приведенном выше примере 100 В — это напряжение, выраженное как среднеквадратичное значение (среднеквадратичное значение).

Простое среднее значение синусоиды равно нулю, поэтому требуется другое уравнение. Вот почему используется среднеквадратичное значение (rms), которое было установлено на основе постоянного тока и напряжения. Он основан на количестве работы, выполняемой определенным количеством постоянного тока и напряжения, и выражает, используя те же значения, что и для постоянного тока и напряжения, величину переменного тока и напряжения, которые выполняют ту же работу.

Если теплотворная способность при подаче напряжения постоянного тока на резистор такая же, как теплотворная способность при подаче переменного тока другой формы волны, то среднеквадратичное значение напряжения переменного тока равно значению напряжения постоянного тока.

Например, теплотворная способность при подаче постоянного напряжения 100 В на резистор 10 Ом такая же, как теплотворная способность при подаче на тот же резистор переменного тока 100 В. Понятие среднеквадратичного значения то же самое для электрического тока.


Рисунок 4. Равная теплотворная способность сигналов постоянного и переменного тока

 

Теплотворная способность относится к количеству выполненной работы, поэтому следующая формула рассчитывает мощность как теплотворную способность.

В качестве примера на следующей диаграмме показаны колебания мощности в зависимости от времени при подаче постоянного тока 1 А и переменного тока 1 А на резистор 10 Ом.


Рис. 5. Зависимость мощности от времени при постоянном и переменном токе

 

Поскольку при постоянном токе нет колебаний значения тока, значение мощности остается постоянным и составляет 10 Вт. Однако, поскольку значение тока постоянно колеблется при переменном токе, значение мощности колеблется со временем. То, что эти два типа мощности (теплотворная способность) равны, равнозначно утверждению, что средние значения Pdc и P1 – Pn равны. Это выражается в виде формулы ниже.


 

Здесь резистор (R) постоянный, поэтому им можно пренебречь. Следующее выражает результирующую связь между постоянным током и переменным током.

Максимально уменьшая интервал между I1 и In в этой формуле, в конечном итоге Irms дает квадратный корень из площади части, заключенной в сигнале, деленный на время. Это выражается в виде формулы ниже.

Важно знать, что постоянный ток силой 1 А выполняет такую ​​же работу, что и переменный среднеквадратичный ток силой 1 ампер. При постоянном и устойчивом постоянном токе вы можете получить значение мощности, просто умножив ток на напряжение.

Однако переменный ток не так прост, как постоянный, из-за разности фаз между током и напряжением. Ниже приведены три типа переменного тока. Как правило, мощность и потребляемая мощность относятся к активной мощности.

Мощность в системах переменного тока

Как и в случае с постоянным током, значение мощности (мгновенное значение мощности) в определенный момент времени для переменного тока можно получить путем умножения напряжения и тока для этого момента времени.

При переменном токе, поскольку и ток, и напряжение циклически колеблются, значения мощности также постоянно колеблются. Это показано на следующей диаграмме.

В качестве энергии в секунду мощность может быть получена из среднего значения мгновенной энергии, т. е. площади части, заключенной в форме волны, по времени. Формула выглядит следующим образом:

Например, если к резистору приложен ток 1 ампер и напряжение 100 ампер, как показано ниже, мощность становится равной 100 Вт при расчете по приведенной выше формуле.

 

При подаче тока и напряжения на резистор результирующие формы сигналов показаны на рис. 6 ниже.


Рис. 6. Отсутствие разности фаз при чисто резистивной нагрузке

 

Говорят, что ток и напряжение находятся «в фазе» по полярности и времени, когда кривые тока и напряжения проходят через нуль. Ток и напряжение всегда совпадают по фазе, когда нагрузка состоит только из сопротивления.

Когда в нагрузке помимо сопротивления есть катушка, возникает фазовый сдвиг между сигналами напряжения и тока. Это отставание называется разностью фаз и показано на рис. 7.9.0003


Рисунок 7. Разность фаз, характерная для индуктивной и емкостной нагрузки

 

Разность фаз обычно выражается как Φ (фи), а единицей измерения являются радианы, но часто указывается в градусах. В приведенном ниже примере точка A начинается с точки P и совершает один оборот по окружности O. Расстояние между точкой A и прямой линией, проходящей через центр O и точку P (красная линия) в качестве оси Y и ∠AOP (φ), так как ось X приводит к синусоидальной волне ниже.


Рис. 8. Синусоидальная волна с фазой

   

На рис. 9 показаны кривые тока и напряжения, сдвинутые по фазе на 60°. При рассмотрении положения на окружности напряжения (u) и тока (i) в соответствии с приведенным выше примером ∠uoi постоянна в каждый момент времени. Угол этого ∠uoi указывает размер разности фаз между напряжением (u) и током (i).


Рис. 9. Синусоиды напряжения и тока с разностью фаз

 

Три типа нагрузки цепи переменного тока показаны на рис. 10. Как показано ниже, разность фаз между током и напряжением возникает в зависимости от типа нагрузки.


Рисунок 10. Фазное и векторное представление цепей переменного тока с резистивной, индуктивной или емкостной нагрузкой
 

С фазами ток может отставать по отношению к напряжению или опережать его. Ток отстает на 90⁰, когда нагрузка состоит только из индуктивности, и опережает на 90⁰, когда только емкость. Когда существуют все три типа, разность фаз колеблется в соответствии с соотношением размеров каждого компонента. Далее, давайте посмотрим на мощность, когда есть разность фаз между током и напряжением.

Мощность переменного тока с разностью фаз

При наличии разности фаз между током и напряжением происходит мгновенное изменение энергии, как показано на рисунке 11. полярность напряжения меняется в промежутках между ними, мгновенная мощность становится отрицательной. Мощность представляет собой среднее значение мгновенной энергии, поэтому мощность становится меньше, чем когда ток и напряжение совпадают по фазе (пунктирная линия).


Рисунок 11. Мгновенная энергия, когда напряжение и ток имеют разность фаз. Треугольник мощности, показанный на рис. 12, помогает проиллюстрировать энергопотребление в индуктивной или емкостной цепи. Треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение четырех основных элементов: активной мощности, реактивной мощности, полной мощности и коэффициента мощности.


Рис. 12. Треугольник мощности показывает соотношение активной и реактивной мощности.

 

Активная мощность

Активная мощность (P) — это реальная мощность, которую устройство потребляет и выполняет реальную работу в электрической цепи. Активная мощность рассчитывается ниже в ваттах (Вт).

Реактивная мощность

Реактивная мощность (Q) — это мощность, которая не потребляется устройством и передается туда и обратно между источником питания и нагрузкой. Иногда называемая безваттной мощностью, реактивная мощность забирает мощность из цепи из-за фазового сдвига, создаваемого емкостными и/или индуктивными компонентами. Этот фазовый сдвиг уменьшает количество активной мощности для выполнения работы и усложняет расчет мощности. Реактивная мощность рассчитывается ниже и выражается в реактивных вольт-амперах (ВАр). В цепи постоянного тока нет реактивной мощности.

Полная мощность

Полная мощность (S) представляет собой гипотенузу треугольника мощности, состоящего из сложения векторов активной мощности (P) и реактивной мощности (Q). Расчет полной мощности представляет собой произведение среднеквадратичного значения напряжения на среднеквадратичное значение тока в вольт-амперах (ВА).

Коэффициент мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Φ). Он определяется как коэффициент мощности «смещения» и верен только для синусоидальных волн. Для всех других форм сигналов (не синусоидальных волн) коэффициент мощности определяется как мощность в ваттах, деленная на полную мощность в амперах напряжения. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных, с использованием квалификатора λ (лямбда).

Коэффициент мощности (λ) увеличивается или уменьшается в зависимости от величины разности фаз (φ). Рисунок 13 иллюстрирует это явление. Рис. 13. Коэффициент мощности с различной разностью фаз разность фаз увеличивается; коэффициент мощности равен 0,5 (активная мощность составляет 1/2 полной мощности) при разности фаз 60⁰ и 0 при разнице фаз 90⁰. Коэффициент мощности 0 означает, что ток течет к нагрузке, но она не совершает никакой работы.

 

Векторное отображение переменного тока

Смещение по времени между напряжением и током называется разностью фаз, а Φ — фазовым углом. Смещение по времени в основном вызвано нагрузкой, на которую подается питание. В общем, разность фаз равна нулю, когда нагрузка является чисто резистивной. Ток отстает от напряжения, когда нагрузка индуктивная. Ток опережает напряжение, когда нагрузка емкостная.


Рис. 14. Смещение фаз между напряжением и током при чисто индуктивной или емкостной нагрузке

 

Векторное отображение используется для четкой передачи зависимости величины и фазы между напряжением и током. Положительный фазовый угол представлен углом против часовой стрелки относительно вертикальной оси.


Рис. 15. Векторная диаграмма отображает зависимость величины и фазы между напряжением и током

 

Системы питания переменного тока

Электропитание переменного тока может быть однофазным или многофазным. Однофазное электричество используется для питания обычных бытовых и офисных электроприборов, но для распределения электроэнергии и подачи электроэнергии непосредственно на оборудование большей мощности почти повсеместно используются трехфазные системы переменного тока.

Схемы однофазной проводки

Для однофазных цепей существуют две распространенные конфигурации проводки. Наиболее распространена однофазная двухпроводная схема. Другая — однофазная трехпроводная схема, обычно встречающаяся в бытовых приборах.

Однофазная 2-проводная система (1P2W)

Обеспечивает подачу однофазного переменного тока с использованием двух проводников. Самая простая система, она используется при подключении источников питания ко многим электрическим устройствам, таким как бытовая электроника. При подключении ваттметра к однофазной двухпроводной системе перед подключением необходимо учитывать несколько моментов.


Рисунок 16 – Различные схемы подключения однофазной двухпроводной системы

 

Влияние паразитной емкости

При измерении однофазного устройства влияние паразитной емкости на точность измерения можно свести к минимуму, подключив клемму токового входа прибора к стороне, ближайшей к потенциалу земли источника питания. Рисунок 17. Схема подключения для минимизации паразитной емкости Когда измеренный ток относительно мал, подключите клемму измерения тока между клеммой измерения напряжения и нагрузкой.


Рис. 18. Схема подключения при относительно большом измеряемом токе

 

Двухфазная трехпроводная система (1P3W)

Обеспечивает подачу однофазного переменного тока с использованием трех проводников. Однофазная трехпроводная система является наиболее распространенной системой распределения электроэнергии. Электричество, поставляемое большинству домохозяйств, подается с помощью этой системы. Следующее требует двух ваттметров для измерения двух напряжений (U1, U2) и двух токов (I1, I2).


Рисунок 19. Двухфазная трехпроводная система

 

Схемы подключения трехфазной сети

В отличие от однофазных систем, по проводникам трехфазного источника питания течет переменный ток одинаковой частоты. и амплитуда напряжения относительно общего эталона, но с разницей фаз в одну треть периода. Трехфазные системы имеют преимущества перед однофазными, которые делают их пригодными для передачи энергии и в таких приложениях, как асинхронные двигатели.

Характеристики трехфазных систем
  • Ток и напряжение на каждой фазе имеют разность фаз 120° в сбалансированной системе.
  • Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на нагрузке в фазе
  • Линейный ток — это ток в любой одной линии между трехфазным источником и нагрузкой.
  • Фазный ток – это ток через любой компонент, состоящий из трехфазного источника или нагрузки.
  • При соединении треугольником линейное напряжение совпадает с фазным напряжением. Для синусоидальных волн линейный ток в √3 раза превышает фазный ток.
  • При соединении звездой линейное напряжение в √3 раза превышает фазное напряжение, а токи одинаковы.
  • Трехфазные источники питания могут передавать в три раза больше энергии, используя всего в 1,5 раза больше проводов, чем однофазные источники питания (т. е. три вместо двух). Таким образом, отношение емкости к материалу проводника удваивается.
  • Трехфазные системы также могут создавать вращающееся магнитное поле с заданным направлением и постоянной величиной, что упрощает конструкцию электродвигателей.

До сих пор в обсуждении источник питания и нагрузка были соединены двумя проводниками. Это известно как однофазная двухпроводная система. При питании переменным током существует однофазное и трехфазное питание со следующими доступными системами электропитания. Трехфазное питание можно использовать в трехпроводной или четырехпроводной конфигурации в режиме звезды или треугольника.

На диаграммах на рис. 20 показаны источник и нагрузка в конфигурации «треугольник» или «звезда» (звезда).


Рисунок 20. Трехфазные конфигурации треугольник и звезда (WYE)

 

Теорема Блонделя

необходимы для наиболее точного измерения. Теорема утверждает, что мощность, подводимая к системе из N проводников, равна алгебраической сумме мощностей, измеренных N ваттметрами. Кроме того, если общая точка расположена на одном из проводников, то счетчик этого проводника может быть удален и требуется только N-1 счетчиков.

Трехфазное соединение звездой (3P4W)

Измерение относительно простое, если объектом измерения является трехфазная 4-проводная система. Как показано на схеме ниже, трехфазная четырехпроводная схема предполагает подключение ваттметров к каждой фазе на основе нейтрального проводника. Получите мощность для каждой фазы, измеряя напряжение (фазное напряжение) и ток (фазный ток) для каждой фазы с помощью разных ваттметров. В сумме это даст значение трехфазной мощности переменного тока. Для измерения трехфазной четырехпроводной мощности требуются три ваттметра.


Рис. 21. Трехфазное соединение звездой (3P4W)

 

Полная мощность, активная мощность и реактивная мощность для трехфазной мощности представляют собой сумму каждой фазы.

Трехфазный ваттметр Delta Two (3P3W)

Измерение в трехфазной 3-проводной системе немного сложнее, поскольку нейтральный проводник использовался в качестве основы для трехфазной 4-проводной системы. система отсутствует и фазное напряжение не может быть измерено. Измерение в трехфазной трехпроводной системе включает получение значения трехфазной мощности переменного тока с использованием метода, называемого методом двух ваттметров.

Применяя теорему Блонделя и используя метод двух ваттметров, мы можем получить значения трехфазной мощности переменного тока. Схема подключения для метода двух ваттметров и векторная карта приведены ниже.

 

Вывод теоремы Блонделя приведен ниже.

 

Вышеприведенный расчет показывает, что мы можем получить значения трехфазной мощности переменного тока из двухлинейных значений мощности и двухфазных значений тока. Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, упрощается установка и конфигурация проводки. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и недорогая установка делают его подходящим для производственных испытаний, в которых требуется измерение только мощности или нескольких других параметров.

Другими словами, для трехфазного измерения мощности мощность может быть получена путем измерения мощности для каждой фазы и расчета суммы. Для метода двух ваттметров уравнение показано ниже.

Трехфазное соединение треугольником (3V3A)

Существует еще один метод измерения в трехфазной трехпроводной системе: трехфазное трехфазное измерение (3V3A). Как и метод двух ваттметров, этот метод измеряет ток фазы T и линейное напряжение между R и S. Ниже представлена ​​схема подключения.


Рисунок 22. Трехфазное соединение треугольником (3V3A)

 

Поскольку метод трехфазного трехтока (3V3A) измеряет ток фазы T, он позволяет увидеть баланс токов между фазами, что было невозможно при использовании метод двух ваттметров. Для инженерных и научно-исследовательских и опытно-конструкторских работ лучше всего подходит трехфазный

трехпроводный с трехваттметровым методом, так как он дает дополнительную информацию, которую можно использовать для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (от R до T, от S до T, от R до S).

Векторное отображение измерений трехфазного переменного тока

Мы будем использовать трехфазную систему Y «звезда», чтобы проиллюстрировать концепцию трехфазного векторного отображения. В звездной системе напряжения и токи каждой фазы смещены на 120°. Нейтральная точка Y-системы находится в центре, где теоретически сумма всех напряжений и токов равна нулю.

При проведении измерений в звездной системе, где присутствует физический нейтральный провод; напряжения будут измеряться относительно этой нейтральной точки, это называется «фазным напряжением». При проведении измерений в звездной системе, где отсутствует физический нейтральный провод; напряжения будут измеряться относительно друг друга, это называется «линейное напряжение» или «соединение треугольником». Схема соединения треугольником образует равносторонний треугольник с интервалом между напряжениями 60 градусов, в отличие от соединения звезды, где напряжение изменяется на 120 градусов. Величина линейного напряжения измеряется выше, чем фазное напряжение в √3 раза. Токи в звездной системе всегда измеряются последовательно относительно нейтральной точки, при этом угловое измерение относительно векторов напряжения обозначается Φ. Рисунок 23 иллюстрирует взаимосвязь между измерением напряжения по схеме треугольника и по схеме звезда с помощью векторной диаграммы.


Рисунок 23 – Векторная диаграмма трехфазных дельта- и звездных измерений.

 

Измерение трехфазного коэффициента мощности

Общий коэффициент мощности для трехфазной цепи определяется путем суммирования общей мощности в ваттах, деленной на общее значение ВА.

При использовании метода двух ваттметров сумма общей мощности (W1 + W2) делится на измерения ВА. Однако, если нагрузка несбалансированная (фазные токи разные), это может привести к ошибке при расчете коэффициента мощности, поскольку при расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, получается ошибочный результат. Поэтому лучше всего использовать метод трех ваттметров для несбалансированных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несбалансированных нагрузок.

При использовании метода трех ваттметров все три измерения ВА используются при расчете приведенного выше коэффициента мощности.

Гармоники

Гармоники относятся ко всем синусоидальным волнам, частота которых является целым кратным основной волны (обычно синусоидальный сигнал линии электропередачи 50 Гц или 60 Гц или от 0 до 2 кГц для вращающихся машин). Гармоники — это искажение формы волны нормального электрического тока, обычно передаваемое нелинейными нагрузками. В отличие от линейных нагрузок, где потребляемый ток пропорционален входному напряжению и соответствует форме волны, нелинейные нагрузки, такие как двигатели с регулируемой скоростью, потребляют ток короткими прерывистыми импульсами. Когда основная волна и последующие гармонические компоненты объединяются, формы сигналов искажаются, и возникает интерференция.


Рис. 24. Искаженные формы сигналов состоят из нескольких гармонических составляющих

 

Гармоники необходимо контролировать, поскольку они могут вызывать ненормальный шум, вибрацию, нагрев или неправильную работу устройств и сокращать срок их службы. Для контроля гармоник существуют национальные и международные стандарты, такие как IEC61000-3. Поэтому инженерам необходимо обнаруживать гармоники и оценивать их влияние на компоненты, системы и подсистемы в приложении. Размер и разность фаз следует измерять не только для основной частоты, но и для каждой более высокочастотной составляющей. Высокоточные анализаторы мощности могут измерять гармоники выше 500-го порядка.

Для вращающихся машин основные амплитуды являются единственными компонентами, которые эффективно способствуют вращению оси. Все остальные гармонические компоненты приводят к потерям в виде тепла и вибрации.

Измерение гармоник

Используя режим измерения гармоник, можно измерить размер и разность фаз для каждой основной частоты, а также гармоники для каждой степени, включенной в ток, напряжение и мощность. В случае основной частоты (первичной составляющей) 50 Гц, например, третья составляющая составляет 150 Гц, пятая составляющая — 250 Гц и т. д., и возможно измерение до 500-й составляющей на частоте 2,5 кГц.


Рис. 25. Сумма нечетных гармонических составляющих в искаженном сигнале соотношение содержания и фазы в списке.


Рис. 26. Гистограмма, показывающая энергию гармоник в зависимости от порядка. Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *