Дроссель катушка индуктивности. Катушки индуктивности: виды, применение и принцип работы

Что такое катушка индуктивности. Как устроена катушка индуктивности. Какие бывают виды катушек индуктивности. Где применяются катушки индуктивности. Как работает катушка индуктивности. Какие основные характеристики катушек индуктивности.

Содержание

Что такое катушка индуктивности и как она устроена

Катушка индуктивности — это пассивный электронный компонент, который накапливает энергию в магнитном поле при протекании через него электрического тока. Конструктивно катушка индуктивности представляет собой провод, намотанный в виде спирали на каркас.

Основные элементы конструкции катушки индуктивности:

  • Обмотка из изолированного провода
  • Каркас, на который наматывается провод
  • Выводы для подключения
  • Магнитопровод (сердечник) — не обязательный элемент

Принцип работы катушки индуктивности основан на явлении электромагнитной индукции. При протекании через обмотку переменного тока вокруг нее возникает переменное магнитное поле. Изменение магнитного поля приводит к возникновению ЭДС самоиндукции, которая препятствует изменению тока в цепи.


Основные виды катушек индуктивности

Существует несколько основных видов катушек индуктивности, различающихся по конструкции и назначению:

1. По типу намотки:

  • Однослойные — с одним слоем витков
  • Многослойные — с несколькими слоями витков
  • Тороидальные — намотка на кольцевой сердечник

2. По наличию сердечника:

  • Без сердечника (воздушные)
  • С ферромагнитным сердечником
  • С ферритовым сердечником

3. По назначению:

  • Дроссели — для подавления помех
  • Контурные катушки — для колебательных контуров
  • Трансформаторные обмотки
  • Катушки фильтров

Выбор типа катушки зависит от конкретного применения и требуемых характеристик.

Основные характеристики катушек индуктивности

Ключевыми параметрами, характеризующими свойства катушек индуктивности, являются:

Индуктивность

Индуктивность — это основной параметр катушки, характеризующий ее способность накапливать энергию магнитного поля. Измеряется в генри (Гн). Типичные значения индуктивности катушек — от долей микрогенри до единиц генри.


Индуктивность катушки зависит от:

  • Числа витков обмотки
  • Геометрических размеров катушки
  • Магнитной проницаемости сердечника

Добротность

Добротность характеризует качество катушки и определяется как отношение реактивного сопротивления к активному. Чем выше добротность, тем меньше потери энергии в катушке. Типичные значения добротности — от 30 до 200.

Собственная резонансная частота

Это частота, на которой катушка проявляет свойства колебательного контура из-за наличия паразитной межвитковой емкости. На частотах выше резонансной катушка теряет индуктивные свойства.

Максимальный ток

Определяет предельно допустимый ток через обмотку катушки. Превышение этого тока может привести к перегреву и повреждению изоляции.

Применение катушек индуктивности

Катушки индуктивности широко используются в различных областях электроники и электротехники:

1. Фильтры

Катушки применяются в составе фильтров для выделения или подавления определенных частот сигнала. Наиболее распространены:

  • Фильтры низких частот
  • Фильтры высоких частот
  • Полосовые фильтры

2. Колебательные контуры

Катушки индуктивности вместе с конденсаторами образуют колебательные контуры, которые используются в:


  • Радиоприемниках
  • Передатчиках
  • Генераторах сигналов

3. Дроссели

Дроссели на основе катушек индуктивности применяются для:

  • Подавления высокочастотных помех
  • Сглаживания пульсаций в источниках питания
  • Ограничения пусковых токов

4. Трансформаторы

Катушки индуктивности являются основой для создания различных типов трансформаторов:

  • Силовых трансформаторов
  • Импульсных трансформаторов
  • Высокочастотных трансформаторов

Как выбрать катушку индуктивности

При выборе катушки индуктивности для конкретного применения необходимо учитывать следующие факторы:

  • Требуемое значение индуктивности
  • Рабочая частота
  • Максимальный рабочий ток
  • Допустимые размеры
  • Требуемая добротность
  • Температурная стабильность
  • Стоимость

Правильный выбор катушки индуктивности обеспечит оптимальную работу электронного устройства и позволит избежать проблем с электромагнитной совместимостью.

Преимущества и недостатки катушек индуктивности

Катушки индуктивности имеют ряд преимуществ и недостатков, которые необходимо учитывать при их применении:


Преимущества:

  • Простота конструкции
  • Высокая надежность
  • Способность накапливать энергию
  • Широкий диапазон номиналов
  • Возможность работы с большими токами

Недостатки:

  • Наличие паразитных параметров (емкость, сопротивление)
  • Ограниченный частотный диапазон
  • Чувствительность к внешним магнитным полям
  • Возможность насыщения сердечника
  • Относительно большие габариты

Несмотря на недостатки, катушки индуктивности остаются незаменимыми компонентами во многих областях электроники и электротехники благодаря своим уникальным свойствам.

Заключение

Катушки индуктивности являются важнейшими компонентами электронных устройств, обеспечивающими накопление энергии в магнитном поле и фильтрацию сигналов. Разнообразие конструкций и характеристик катушек позволяет подобрать оптимальный вариант для решения различных технических задач.

Понимание принципов работы и основных параметров катушек индуктивности необходимо для грамотного проектирования электронных схем и систем. Правильный выбор и применение катушек индуктивности позволяет создавать эффективные и надежные устройства в различных областях электроники и электротехники.



Типы катушек индуктивности

Катушкой индуктивности называется пассивный компонент, представляющий собой деталь имеющую обмотку в виде изолированной спирали, которая обладает свойством способным концентрировать переменное магнитное поле. Катушки индуктивности, в отличие от унифицированных резисторов и конденсаторов, являются нестандартными изделиями, а их конфигурация определяется из расчёта на определённое устройство.

Катушки индуктивности

обладают характерными параметрами такими как: собственная емкость, добротность, индуктивность и температурная стабильность.

Величина индуктивности катушки прямо пропорциональна габаритным размерам и числу её витков. Индуктивность также зависит от материала сердечника устанавливаемого в катушку и применяемого экрана.

Катушка индуктивности без отводов

Катушка индуктивности с отводами

Вводя в катушку индуктивности стержень, который может быть изготовлен из, феррита, магнетита, железа и т.д. ее индуктивность заметно увеличивается. Подобное свойство позволяет уменьшить общее количество витков катушки и получить требуемую индуктивность. Индуктивность катушки можно регулировать поворотом резьбового сердечника.

В диапазоне коротких волн ( KB ) и ультра коротких волн ( УКВ ) используются катушки с относительно малой индуктивностью. В таких катушках монтируются латунные или алюминиевые сердечники, которые позволяют регулировать индуктивность в пределах плюс минус пяти процентов.

На величину активного сопротивления влияет сопротивление самой обмотки катушки и сопротивлением, из-за потерь электрической энергии в каркасе, сердечнике, экране. Чем меньше величина активного сопротивление, тем выше добротность катушки, а следовательно и ее качество.

Катушка индуктивности магнитодиэлектрическим сердечником

Катушка индуктивности с ферритовым и ферромагнитным сердечником

Индуктивность с диамагнитным сердечником (медь, алюминий, латунь)

Витки катушки, зачастую разделяются слоем изоляции, и тем самым образуют элементарный конденсатор, обладающий некоторой емкостью. Между отдельными слоями многослойных катушек индуктивности неизбежно образуется ёмкость. Из этого следует, что помимо индуктивности, катушки обладают некоторой емкостной величиной. Наличие собственной емкости катушки является нежелательным фактором, и ее, как правило, стараются уменьшить. Для этих целей используются различные конструкции форм каркасов катушек и специальные технологии намотки провода.

Катушки индуктивности, как правило, наматываются медным проводником, покрытым эмалевой или эмалево-шелковой изоляцией. В случае если требуется намотать катушки для ( ДВ ) длинноволнового и ( СВ ) средневолнового диапазонов используют одножильные проводники типов ПЭЛШО, ПЭЛШД, ПЭЛ, ПЭТ и др. а для ( KB ) коротковолнового и ( УКВ ) ультракоротковолнового диапазонов обычно наматывают проводники одножильного сечения типов ПЭЛ, ПЭЛУ, ПЭТ и др.

Технология намотки катушек индуктивности может быть различного исполнения. Имеется несколько наиболее распространённых способов укладки провода, это может быть сплошная намотка или с шагом, намотка навалом, а так же типа «универсаль».

Намотка в один слой применяется для изготовления катушек, которые работают в диапазоне коротких и ультракоротких волн. Как правило, индуктивность подобных катушек составляет от нескольких десятков до 500 мкГ. Каркас однослойных катушек имеет цилиндрическую форму и изготовляется из разнообразных материалов с диэлектрическими свойствами.

В случае если требуется получить достаточно большую индуктивность катушки( свыше 500 мкГ), оставляя её минимальные размерные параметры, применяют намотку несколькими слоями. Подобные катушки имеют большую внутреннюю емкость и для ее уменьшения провод укладывают в навал или типа «универсаль».

Катушка с изменяющейся индуктивностью

Катушка с подстройкой

Экранированная индуктивность

Дроссель

Дроссель, это та же катушка индуктивности, которая обладает большим сопротивлением переменному и малым сопротивлением постоянному току. Дроссели используются в качестве электронных компонентов в различных электротехнических и радиотехнических приборах и устройствах.

В радиоэлектронной аппаратуре применяются высокочастотные и низкочастотные дроссели. Дроссели изготовляют с однослойной навивкой, или укладкой проволоки типа «универсаль». Дроссели так же наматываются по секциям, чтобы уменьшить собственную емкость.

Обозначение дросселей на принципиальных схемах производится аналогично катушкам индуктивности и выглядит в виде четырех полуокружностей соединенных между собой.

Что такое катушка индуктивности, дроссель

К числу элементов, без которых невозможно построить радиоприемник, телевизор, магнитофон и многие другие радиоприборы, относятся катушки и дроссели. Их важнейшей характеристикой является индуктивность. В цепях переменного тока катушки и дроссели ведут себя как резисторы, сопротивление которых растет с увеличением частоты.

Индуктивность измеряют в Генри (Гн), миллигенри (1 мГн=10-3 Гн), микрогенри (1 мкГн=10-6 Гн) и наногенри (1 нГн=10г9 Гн).

Одно из первых условных обозначений катушки напоминало рисунок спирали из провода, которым намотана катушка. Позже витки катушек стали изображать в виде пересекающихся дуг окружностей. ГОСТ 7624—62 установил новое обозначение, построенное из нескольких полуокружностей, соприкасающихся концами (рис. 1).

Рис. 1. Обозначение катушки.

В ГОСТ 2.723—68, входящем в ЕСКД, это обозначение сохранено, однако для обеспечения соотаетствующих пропорций в размерах символа и большей выразительности его в сочетании с другими обозначениями установлено определенное число полуокружностей, равное четырем.

Индуктивность катушек, используемых в колебательных контурах радиовещательных приемников, в зависимости от диапазона частот составляет от долей и единиц микрогенри (УКВ и KB) до нескольких миллигенри (ДВ).

Катушки с регулируемой индуктивностью

В радиоприемной и радиопередающей аппаратуре нередко применяют катушки с регулируемой индуктивностью, являющиеся основным органом настройки колебательного контура в широком диапазоне частот.

Часть витков такой катушки наматывают на каркасе большего диаметра, а другую часть — на каркасе меньшего диаметра. Малую катушку помещают внутрь большой и закрепляют на валике, ось которого перпендикулярна оси большой катушки, а выводы обмоток соединяют последовательно.

При повороте валика взаимное влияние катушек изменяется, а в результате изменяется и индуктивность. Такие устройства получили название вариометров. На схемах их изображают двумя символами катушек, расположенными параллельно или перпендикулярно один другому. Изменение индуктивности показывают знаком регулирования, пересекающим оба символа (рис. 2).

 

Рис. 2. Катушка с переменной индуктивностью и ее обозначение на принципиальных схемах.

Вариометры

В антенных контурах коротковолновых передатчиков и специальных приемников УКВ применяют вариометры с переменным числом витков. Такой вариометр состоит из цилиндрического или конического каркаса со спиральной канавкой, в которую уложен провод катушки.

К выступающей над каркасом части провода прижимается контактный ролик или пружинящая щетка, которые при вращении катушки скользят по виткам и перемещаются в плоскости, параллельной образующей цилиндра или конуса. Таким образом, в контур оказывается возможным ввести необходимое число витков, т. е. получить нужную индуктивность.

В условном обозначении вариометра подобной конструкции ролик или щетку изображают в виде стрелки, острие которой касается выпуклой части полуокружности основного символа (рис. 3).

   Рис. 3. Обозначение вариоиетра.

Вариометры характеризуются плавным изменением индуктивности. Для ее ступенчатого изменения, а также в некоторых других случаях у катушек делают отводы. Условные обозначения катушек с отводами показаны на рис. 4.

   Рис. 4. Обозначение катушек индуктивности с отводами от витков.

Магнитопроводы для катушек

Важным параметром, характеризующим качество катушек, является добротность, численно равная отношению ее индуктивного сопротивления переменному току данной частоты к сопротивлению постоянному току. Чтобы увеличить добротность, пользуются разными конструктивными приемами, но наибольший эффект дает введение в катушку магнитопровода (сердечника) из специального магнитного материала.

При внесении магнитопровода в катушку силовые линии магнитного поля концентрируются в магнитопроводе, так как его сопротивление магнитному потоку значительно меньше, чем воздуха.

В результате магнитный поток, а следовательно, и индуктивность катушки увеличиваются в несколько раз, что позволяет уменьшить число витков, а значит, и сопротивление катушки постоянному току. Кроме того, используя магнитолроводы, удается значительно уменьшить размеры катушек и очень простым способом (перемещением магнитопровода) осуществить регулировку их индуктивности.

Поскольку катушки с магнитопроводами обычно работают в цепях переменного тока (исключение — катушки электромагнитных реле и некоторые другие), применять оплошные магнитопроводы из обычных магнитных материалов нельзя.

Под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, возникают так называемые вихревые токи, которые нагревают магнитапровол, бесполезно потребляя часть энергии магнитного поля.

Чтобы уменьшить эти потери, магнитопроводы катушек, работающих в диапазоне звуковых частот, набирают из отдельных тонких изолированных пластин, изготовленных из специальных электромеханических сталей или пермаллоя.

В области радиочастот стальные магнитопроводы, даже набранные из очень тонких пластин, неприменимы, так как потери на вихревые тоКи в них недопустимо велики. Магнитопроводы для катушек, предназначенных для работы на радиочастотах, изготовляют из специальных материалов: маг-нитодиэлектриков и ферритов.

В магнитодиэлектриках мельчайшие частички вещества, содержащего в своем составе железо, равномерно распределены в массе какого-либо диэлектрика (бакелита, стирола, амино-пласта). Наиболее широко применяют магнитопроводы из альсифера (сплав алюминия, кремния и железа) и карбонильного железа.

Ферритовые магнитопроводы, катушки с ферритовыми сердечниками

Ферриты, получившие широкое распространение в последние три десятилетия, представляют собой твердые растворы окислов металлов или их солей, прошедшие специальную термическую обработку (обжиг). Получающееся при этом вещество — полупроводниковая керамика — обладает очень хорошими магнитными свойствами и малыми потерями даже на очень высоких частотах.

До введения ГОСТ 2.723—68 магнитопроводы из магнитодиэлектриков и ферритов обозначали на схемах одинаково—утолщенной штриховой линией (рис. 5,а).

Стандарт ЕСКД оставил этот символ для магнитопроводов из магнито-диэлектрика, а для ферритовых ввел обозначение, применявшееся ранее только для магнитопроводов низкочастотных дросселей и трансформаторов — сплошную жирную линию (рис. 5,б).

Рис. 5. Обозначение катушки с магнитопроводом.

Опасения некоторых специалистов, что одинаковые обозначения катушек с магнитопроводами из стали и феррита затруднят чтение схем не подтвердились. Дело в том, что при изучении схем обращают внимание не только на символы отдельных элементов, но и на то, как они соединены между собой в той или иной функциональной группе, какое место в цепи преобразования сигнала эти группы занимают.

И если, например, каскад радиочастотный, то катушку со сплошным магнитопроводом нельзя спутать с низкочастотным дросселем. Согласно последней редакции ГОСТ 2.723—68 (март 1983 г.) магнитопроводы катушек изображают линиями нормальной толщины (рис. 5,в).

Желая показать на схеме катушку, индуктивность которой можно изменять с помощью магнитопровода, в ее условное обозначение вводят знак под-строечного регулирования.

Сделать это можно двумя способами: либо пересекая этим знаком обозначения катушки и магнитопровода (если он изображен сбоку от символа катушки — см. рис. 6,а), либо только магнитопровода (если он изображен над символом катушки — см. рис. 6,6).

 

   Рис. 6. Катушки, индуктивность которой можно изменять с помощью сердечника-магнитопровода.

Для подстройку катушек на частотах выше 15… 20 МГц часто применяют магнитопроводы из так называемых немагнитных материалов (меди, алюминия и т. п.).

Возникающие в таком магнитопроводе под действием магнитного .поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен (в обозначении катушки, показанном на рис. 6,в, изображен подстроечник, изготовленный из меди).

Литература:  В.В. Фролов, Язык радиосхем, Москва, 1998.

Катушка индуктивности — это… Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,
 — текущее время,
 — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где
↔ ↔  ; ↔  ; ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная
 — относительная магнитная проницаемость материала сердечника (зависит от частоты)
 — площадь сечения сердечника
 — длина средней линии сердечника
 — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Катушки индуктивности, как их применять

Катушка индуктивности (иногда дроссель) — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока наблюдается её значительная инерционность.

Если хорошо подумать, то всевозможных применений для такой простой на первый взгляд вещи как катушка индуктивности просто не счесть. В рамках одной статьи мы вспомним лишь некоторые из них. А между тем, человеческие изобретательность и талант не устают творчески проявлять себя, придумывая и разрабатывая все новые и новые устройства и механизмы на базе катушки индуктивности.

Казалось бы, что тут можно соорудить? Бесхитростный моток проволоки, может быть сердечник определенной формы, и ток, проходящий по проводу в постоянной, переменной или импульсной форме. А между тем, без катушек индуктивности вся современная электротехника просто не могла бы существовать. Давайте внимательно приглядимся.

Грузоподъемный электромагнит

Грузоподъемники в форме шайб-элекромагнитов применяют по всему миру на протяжении многих лет для погрузки ферромагнитных отходов. Подав в рабочую обмотку электрическую мощность в 18кВт, можно удержать и погрузить за раз более 2 тонн железа, тогда как развиваемое при данной мощности отрывное усилие превышает 25 тонн.

Электромагнит диаметром примерно 1,5 метра просто цепляется крюком подъемного крана, запитывается, как правило, трехфазным переменным напряжением, и можно оперативно вести погрузку ферромагнитных материалов или каких-нибудь железных изделий. Секционированные обмотки нескольких катушек индуктивности получают ток, намагничивая сердечник из специального сплава, а он в свою очередь притягивает, допустим, металлолом, который требуется погрузить в вагоны.

Электромагнитное реле

Что если вам понадобилось периодически включать и выключать питание какой-нибудь электрической цепи, как-будто вы нажимаете на кнопку механического выключателя, при этом ставить полупроводниковый ключ не целесообразно, а механический выключатель или тумблер — не удобно и не эстетично?

Допустим, вам необходимо просто прикоснуться пальцем к сенсору, а результатом должен стать процесс подключения к (или отключения от) сети мощной нагрузки, например лампы или двигателя. На помощь приходят электромагнитные реле. Благодаря реле вы можете отказаться от огромных кнопок выключателей, вместо этого теперь можно просто дотрагиваться до микрокнопок, на которые будет реагировать электронная схема, функция которой — подавать питание на обмотку реле или снимать с нее питание. Обмотка реле — это обмотка электромагнита (опять же катушка индуктивности), который притягивает подпружиненный контакт, выполняющий роль механического выключателя.

Трансформатор

Для преобразования переменного напряжения и тока одной величины в переменное напряжение и ток другой величины, используют трансформаторы. Первичная и вторичная обмотки трансформатора, установленные на ферромагнитном сердечнике, — это катушки индуктивности.

Первичная обмотка при прохождении по ее проводу переменного тока, создает в объеме сердечника переменный магнитный поток, который пронизывает витки вторичной обмотки, и наводит в ней ЭДС, создает напряжение вторичной обмотки. Трансформаторы повышают напряжение электростанций и подают их на ЛЭП, а затем понижают напряжение от ЛЭП, и подают его в наши дома.

Не было бы трансформаторов (катушек индуктивности в роли первичной и вторичной обмоток) — не было бы ни передачи, ни распределения электроэнергии. Не говоря уже о лабораторных автотрансформаторах, сварочных трансформаторах, трансформаторах на феррите в импульсных блоках питания, и конечно ни о каких катушках зажигания в автомобилях речи бы не шло, а ведь катушки зажигания — это тоже особые, но трансформаторы, то есть снова катушки индуктивности.

Дроссель

Для преобразования электроэнергии в импульсных источниках питания используются специальные катушки индуктивности — дроссели. Функция такой катушки — сначала накопить энергию в форме магнитного поля в сердечнике, запасти ее там, потом — отдать нагрузке. Если трансформатор в одно и то же время преобразует электроэнергию, то дроссель — сначала энергию принимает, потом — отдает.

Процесс преобразования электроэнергии у дросселя разделен во времени. Тем не менее, вот вам снова применение катушки индуктивности, главного ее свойства. Импульс тока подается на обмотку дросселя, дроссель запасает энергию в магнитном поле. Затем импульс тока уже не действует, но к дросселю подключена нагрузка, и ток дросселя устремляется через нагрузку, но уже при другом напряжении, зависящем от временных характеристик схемы управления преобразователем. Так катушка индуктивности сплошь и рядом, например в энергосберегающих лампах, работает совместно с полупроводниковыми ключами.

Индукционные печи и индукционные плиты

Катушка индуктивности — это катушка с сердечником. А что если в качестве сердечника внутрь катушки, в ее поле действия, ввести какую-нибудь заготовку из ферромагнитного материала, который требуется нагреть вихревыми токами? Именно так работают индукционные печи и индукционные плиты. Катушка индукционного нагревателя выступает для ферромагнитной заготовки индуктором, наводя в ней вихревые токи высокой частоты, приводящие к разогреву заготовки вплоть до плавления.

Похожим образом действует и индукционная плита. Дно посуды разогревается вихревым током, словно сердечник катушки индуктивности, обмотка которой скрыта внутри панели индукционной плиты. Кстати, в схемах питания индукционных плит тоже используются катушки индуктивности — в роли импульсных трансформаторов и дросселей.

Фильтр ВЧ-помех

Катушка индуктивности обладает свойством препятствовать изменению тока, она проявляет своего рода электромагнитную инерционность, заставляя ток как-бы просачиваться сквозь себя, потому что пока ток нарастает через катушку, создаваемое им магнитное поле не может изменяться мгновенно, изменение требует времени, катушка индуктивности словно тормозит своим магнитным полем изменение тока в собственном проводе.

Данное свойство — препятствовать изменению тока — используется в индуктивных фильтрах ВЧ-помех. Для постоянного тока катушка не является сопротивлением, разве что сопротивление ее провода выступает активным сопротивлением, а вот для тока переменного, да высокочастотного (коим являются например коммутационные помехи) — катушка станет препятствием. Так фильтры на базе катушек индуктивности защищают сети и схемы от помех.

В составе колебательного контура

Колебательный контур — это катушка, в частности — катушка индуктивности (с сердечником), соединенная с конденсатором. Колебательный контур как таковой служит обычно осциллирующей системой. Он имеет собственную резонансную частоту, и может поэтому выступать задающим звеном для получения или приема колебаний определенной частоты, например в радиосвязи.

Кстати, индукционные нагреватели зачастую имеют индуктор, соединенный параллельно с конденсатором, в таких условиях катушка индуктора тоже является составной частью колебательного контура. Кроме того, сам резонансный контур может выступать в качестве фильтра — пропускать и усиливать токи частот близких к собственной резонансной частоте, и подавлять частоты далекие от нее. В радиоприемниках антенны на феррите — тоже являются частью перестраиваемого колебательного контура.

Роторы и статоры двигателей и генераторов

В двигателях и генераторах статор и ротор — это модифицированные катушки индуктивности. Ротор автомобильного генератора с обмоткой возбуждения и полюсными наконечниками — чем не катушка индуктивности?

Статор этого же генератора имеет трехфазную обмотку — это своего рода модификация катушки индуктивности. Даже асинхронный двигатель — и тот имеет обмотку статора, которую можно тоже назвать катушкой индуктивности. Мало того, индуктивности этих статорных катушек учитываются как таковые при подборе рабочих конденсаторов, например когда трехфазный двигатель необходимо адаптировать к питанию от однофазной цепи.

Датчики перемещения и положения

Индуктивные датчики перемещения и положения — это катушки индуктивности с модифицированными сердечниками. Часть сердечника катушки в форме пластины, перемещаясь изменяет индуктивность катушки, и частотные параметры схемы изменяются из-за изменения индуктивности. Так фиксируется наличие объекта в поле действия датчика. Или цилиндрический сердечник в форме штока может смещаться по мере движения связанного с ним объекта, и по частотным параметрам, связанным с изменяемой индуктивностью катушки, сердечник которой двигается, считывается информация о положении объекта.

Направление луча в ЭЛТ

В некоторых мониторах с электронно-лучевыми трубками поток заряженных частиц фокусируется и отклоняется специальными катушками отклоняющей системы. Катушки индуктивности отклоняющей системы установлены на ферритовом сердечнике особой формы, в который вставляется электронно-лучевая трубка. Регулируя ток в обмотках, схема изменяет параметры суммарного магнитного поля всех катушек системы, в результате лучу создается определенный путь для попадания в точно рассчитанное место на экране.

Электроклапан, электрозамок, втягивающее реле

Подобно магниту, который притягивает железные предметы, катушка способна втянуть в себя ферромагнитный сердечник той или иной формы. Приблизительно по такому принципу работают некоторые электрические замки, электромагнитные клапана и, как пример, втягивающее реле автомобильного стартера, перемещающее бендикс, и удерживающее его некоторое время в рабочем положении, пока двигатель не будет пущен. Мощная катушка сначала втягивает якорь, затем удерживает его. По выключении тока, бендикс возвращается на место пружиной.

Катушки магнитного удержания плазмы

Токамаки — установки термоядерного синтеза, в которых удержание плазмы осуществляется путем создания вокруг нее магнитного поля, чтобы плазма двигалась бы только вдоль силовых линий, но не могла бы вырваться поперек них и нарушить процесс. Внутри определенной конфигурации сверхпроводящих катушек, в самом простом случае — нанизанных по кругу на тор, плазма могла бы гипотетически кружить практически вечно. Как видно, катушки индуктивности нашли себя и в токамаках — тороидальных камерах с магнитными катушками. Название установки говорит само за себя.

Катушка Тесла

Говоря о катушках индуктивности, нельзя не вспомнить о легендарной катушке (или резонансном трансформаторе) Тесла. В данном случае катушка индуктивности работает одновременно и как трансформатор, и как колебательный контур, и как приемная антенна с открытой емкостью. Здесь нет конденсатора параллельно резонирующей катушке, как в индукционном нагревателе, но есть уединенная емкость в виде тороида.

Каждая катушка кроме параметра «индуктивность», обладает еще и емкостью, и собственным волновым сопротивлением. Все эти параметры учитываются при настройке трансформатора Тесла. Казалось бы, просто заземленная катушка индуктивности с тороидом наверху, введенная в собственный резонанс. Но как эффектно смотрится!

Ранее ЭлектроВести писали, что группа ученых, работающих на ВМФ США, разработала сверхпроводник, который работает при комнатной температуре и изменит компьютерные системы будущего. Первый, который не нужно охлаждать или подвергать давлению. Впрочем, конкретных цифр в патентной заявке маловато.

По материалам: electrik.info.

Применение катушек индуктивности — ООО «УК Энерготехсервис»

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

  • Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:
  • где
  • В – магнитное поле, Вб
  • I – сила тока, А
  • А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение
  • И у нас получится вот такая картина с магнитными силовыми линиями:
  • Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки.

Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

  1. где
  2. I – сила тока в катушке , А 
  3. U – напряжение в катушке, В 
  4.  R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

  • Для катушек средней индуктивности используются ферритовые сердечники:
  • Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств.

Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов).

На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

  1. Имеется ферритовый сердечник
  2. Начинаю вводить катушку в сердечник на самый край
  3. LC-метр  показывает 21 микрогенри.
  4. Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

  • где
  • 1 – это каркас катушки
  • 2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

  1. Индуктивность стала почти 50 микрогенри!
  2. А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

  • Давайте поэкспериментируем с ферритовым кольцом.
  • Замеряем индуктивность
  • 15 микрогенри
  • Отдалим витки катушки друг от друга
  • Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

  1. Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности


  • При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.
  • А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате.

Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Катушка индуктивности. Параметры. Виды. Обозначение на схемах

Здравствуйте, уважаемые читатели сайта sesaga.ru. Катушка индуктивности относится к числу элементов, без которых не получится построить приемник, телевизор, радиоуправляемую модель, передатчик, генератор сигналов, модемный преобразователь, сетевой фильтр и т.п.

Катушку индуктивности или просто катушку можно представить в виде нескольких витков провода намотанного в спираль. Ток проходя по каждому витку спирали создает в них магнитное поле, которое пересекаясь с соседними витками наводит в них э.д.с самоиндукции. И чем провод длиннее и большее число витков он образует, тем самоиндукция больше.

Индуктивность

По своей сути индуктивность является электрической инерцией и ее основное свойство состоит в том, чтобы оказывать сопротивление всякому изменению протекающего тока. Если через катушку пропускать определенный ток, то ее индуктивность будет противодействовать как уменьшению, так и увеличению протекающего тока.

В отличие от конденсатора, который пропускает переменный и не пропускает постоянный ток, катушка индуктивности свободно пропускает постоянный ток и оказывает сопротивление переменному току, потому что он изменяется быстрее, чем может изменяться магнитное поле.

И чем больше индуктивность катушки и чем выше частота тока, тем оказываемое сопротивление сильнее. Это свойство катушки применяют, например, в приемной аппаратуре, когда требуется в электрической цепи преградить путь переменному току.

Индуктивность измеряется в генри (Гн), миллигенри (1мГн = 10ˉ3 Гн), микрогенри (1мкГн = 10ˉ6 Гн), наногенри (1нГн = 10ˉ9 Гн) и обозначается латинской буквой L.

Общие свойства катушек индуктивности

В зависимости от требуемой индуктивности и частоты, на которой катушка будет работать, она может иметь самые различные исполнения.

Для высоких частот это может быть простая катушка состоящая из нескольких витков провода или же катушка с сердечником из ферромагнитного материала и иметь индуктивность от нескольких наногенри до нескольких десятков миллигенри. Такие катушки применяются в радиоприемной, передающей, измерительной аппаратуре и т.п.

Катушки, работающие на высоких частотах, можно разделить на катушки контуров, катушки связи и дроссели высокой частоты. В свою очередь катушки контуров могут быть с постоянной индуктивностью и переменной индуктивностью (вариометры).

По конструктивному признаку высокочастотные катушки разделяются на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными и немагнитными сердечниками, бескаркасные, цилиндрические плоские и печатные.

Для работы в цепи переменного тока низкой частоты, на звуковых частотах, во входных фильтрах блоков питания, в цепях питания осветительного электрооборудования применяются катушки с достаточно большой индуктивностью. Их индуктивность достигает десятки и даже сотни генри, а в обмотках могут создаваться большие напряжения и протекать значительные токи.

Для увеличения индуктивности при изготовлении таких катушек применяют магнитопроводы (сердечники), собранные из отдельных тонких изолированных пластин сделанных из специальных магнитных материалов – электротехнических сталей, пермаллоев и др.

Применение наборных магнитопроводов обусловлено тем, что под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, образуются вихревые токи, которые нагревают магнитопровод, бесполезно потребляя часть энергии магнитного поля. Изоляция же между слоями стали оказывается на пути вихревых токов и значительно снижает потери.

Катушки с магнитопроводами из изолированных пластин можно разделить на дроссели и трансформаторы.

Основные параметры катушек индуктивности

Свойства катушек могут быть охарактеризованы четырьмя основными параметрами: индуктивностью, добротностью, собственной емкостью и стабильностью.

1. Индуктивность

Индуктивность (коэффициент самоиндукции) является основным электрическим параметром и характеризует величину энергии, запасаемой катушкой при протекании по ней электрического тока. Чем больше индуктивность катушки, тем больше энергии она запасает в своем магнитном поле.

Индуктивность зависит от размеров каркаса, формы, числа витков катушки, диаметра и марки провода, а также от формы и материала магнитопровода (сердечника).

В радиолюбительских схемах, как правило, величину индуктивности не указывают, так как радиолюбителя интересует не эта величина, а количество витков провода в катушке, диаметр и марка провода, способ намотки (внавал, виток к витку, крест на крест, секционная намотка) и размеры каркаса катушки.

2. Добротность

Добротность (Q) характеризуется качеством работы катушки индуктивности в цепях переменного тока и определяется как отношение реактивного сопротивления катушки к ее активному сопротивлению потерь.

Активное сопротивление включает в себя сопротивление провода обмотки катушки; сопротивление, вносимое диэлектрическими потерями в каркасе; сопротивление, вносимое собственной емкостью и сопротивления, вносимые потери в экраны и сердечники.

Чем меньше активное сопротивление, тем выше добротность катушки и ее качество. В большинстве случаев добротность катушки определяют резонансные свойства и к.п.д. контура. Современные катушки средних размеров имеют добротность около 50 – 300.

3. Собственная емкость

Катушки индуктивности обладают собственной емкостью, которая увеличивается по мере увеличения числа витков и размеров катушки. Между соседними витками существует межвитковая емкость, из-за которой некоторая часть тока проходит не по проводу, а через емкость между витками, отчего сопротивление между выводами катушки уменьшается.

Все дело в том, что общее напряжение, приложенное к катушке, разделяется на межвитковые напряжения из-за чего между витками образуется электрическое поле, вызывающее скопление зарядов.

Витки, разделенные слоями изоляции, образуют обкладки множества маленьких конденсаторов, через которые протекает часть тока, из общей емкости которых и складывается собственная емкость катушки.

Таким образом катушка обладает не только индуктивными но и емкостными свойствами.

Собственная емкость является вредным параметром и ее стремятся уменьшить применением специальных форм каркаса и способом намотки провода.

4. Стабильность

Стабильность катушки характеризуется изменением ее параметров под воздействием температуры, влажности и во времени.

Изменение индуктивности под влиянием температуры характеризуют температурным коэффициентом индуктивности (ТКИ), равным относительному изменению индуктивности при изменении температуры на 1°С. ТКИ катушки определяется способом намотки и качеством диэлектрика каркаса.

Влажность вызывает увеличение собственной емкости и диэлектрических потерь, а также понижает стабильность катушки. Для защиты от действия влажности применяется герметизация или пропитка и обволакивание обмотки негигроскопичными составами.

Такие катушки обладают более низкой добротностью и большой собственной емкостью, но при этом они более устойчивы к воздействию влаги.

Катушки индуктивности с магнитопроводами

Для получения малогабаритных катушек различного назначения применяют магнитопроводы (сердечники), которые изготавливают из магнитодиэлектриков и ферритов. Катушки с магнитопроводами имеют меньшее число витков при заданной индуктивности, малую длину провода и небольшие размеры.

Ценным свойством катушек с магнитопроводами является возможность их подстройки, т.е. изменения индуктивности в небольших пределах путем перемещения внутри катушки специального цилиндрического подстроечника, состоящего из феррита с напрессованной на него резьбовой втулкой.

Магнитодиэлектрики представляют собой измельченное вещество, содержащее в своем составе железо (ферромагнетик), частицы которого равномерно распределены в массе диэлектрика (бакелита или аминопласта). Наиболее широко применяют магнитопроводы из альсифера (сплав алюминия, кремния и железа) и карбонильного железа.

Ферриты представляют собой твердые растворы окислов металлов или их солей, прошедшие специальную термическую обработку (обжиг). Получающееся при этом вещество – полупроводниковая керамика – обладает очень хорошими магнитными свойствами и малыми потерями даже на очень высоких частотах.

Основным достоинством ферритов является высокая магнитная проницаемость, которая позволяет существенно уменьшить размеры катушек.

В старых принципиальных схемах магнитопроводы из магнитодиэлектриков и ферритов обозначались одинаково – утолщенной штриховой линией (рис. а).

Впоследствии стандарт ЕСКД оставил этот символ для магнитопроводов из магнитодиэлектрика, а для ферритовых ввел обозначение, ранее применявшееся только для магнитопроводов низкочастотных дросселей и трансформаторов – сплошную жирую линию (рис. б).

Однако согласно последней редакции ГОСТ 2.723.68 (март 1983г.) магнитопроводы катушек изображают линиями нормальной толщины (рис. в).

Катушки, индуктивность которых можно изменять с помощью магнитопровода, на электрических схемах указываются при помощи знака подстроечного регулирования, который вводится в ее условное обозначение.

Изменение индуктивности обозначают двумя способами: либо знаком подстроечного регулирования пересекающим обозначения катушки и магнитопровода (рис. а), либо только пересечением магнитопровода с изображением его над катушкой (рис. б).

Экранированные катушки индуктивности

Для устранения паразитных связей, обусловленных внешним электромагнитным полем катушки и влияния на катушку окружающего пространства, ее экранируют, т.е. помещают в замкнутом металлическом экране.


Однако под влиянием экрана изменяются основные электрические параметры катушки: уменьшаются индуктивность и добротность, увеличивается сопротивление и собственная емкость.

Изменение параметров катушки тем больше, чем ближе к ее виткам расположен экран, т.е. изменение параметров зависит от соотношения между размерами катушки и размерами самого экрана.

Для высокочастотных катушек экраны выполняются в виде круглых или прямоугольных стаканов из алюминия, меди или латуни с толщиной стенок 0,3 – 0,5 мм.

Чтобы на схемах обозначить экранированную катушку, ее условное обозначение помещают в знак экранирования, который соединяют с корпусом.

Также необходимо отметить, что экранировать необходимо лишь катушки большого размера, диаметр которых составляет более 15 – 20 мм.

Катушки диаметром не более 4 – 5 мм создают магнитное поле в относительно небольшом пространстве и при удалении таких катушек от других деталей на расстояние в 4 – 5 раз больше их диаметра опасных связей, как правило, не возникает, поэтому они не нуждаются в специальном экранировании.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Вот и все, что хотел рассказать о катушках индуктивности.
Удачи!

Литература:
1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры».
2. В. В. Фролов «Язык радиосхем».

3. М. А. Сгут «Условные обозначения и радиосхемы».

Катушка индуктивности

Радиоэлектроника для начинающих

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»).

Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10-3 и 10-6 Генри.

Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным.

 То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник.

Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций.

Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор.

Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм.

на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор. Тогда защита от бросков сетевого напряжения будет практически полной.

В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам.

Широко известный выпрямительный диодный мост, у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки.

Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX. На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1.1; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника.  Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна 

Где  ψ — потокосцепление, µ0 = 4π*10-7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах. Цели применения различны:

— сглаживание уровня пульсаций;- накопление энергетического потенциала;- ограничение токов переменной частоты;- построение резонансных колебательных контуров;- фильтрация частот в цепях прохождения электрического сигнала;- формирование области магнитного поля;

— построение линий задержек, датчиков и т.д.

Энергия магнитного поля катушки индуктивности

Электрический ток способствует накоплению энергии в магнитном поле катушки. Если отключить подачу электричества, накопленная энергия будет возвращена в электрическую цепь. Значение напряжения при этом в цепи катушки возрастает многократно.

Величина запасаемой энергии в магнитном поле равна примерно тому значению работы, которое необходимо получить, чтобы обеспечить появление необходимой силы тока в цепи.

Значение энергии, запасаемой катушкой индуктивности можно рассчитать с помощью формулы.

Реактивное сопротивление

  • При протекании переменного тока, катушка обладает кроме активного, еще и реактивным сопротивлением, которое находится по формуле 
  • По формуле видно, что в отличие от конденсатора, у катушки с увеличением частоты, реактивное сопротивление растет, это свойство применяется в фильтрах частот.
  • При построении векторных диаграмм важно помнить, что в катушке, напряжения опережает ток на 90 градусов.

Добротность катушки

Еще одним важным свойством катушки является добротность. Добротность показывает отношение реактивного сопротивления катушки к активному. 

  1. Чем выше добротность катушки, тем она ближе к идеальной, то есть она обладает только главным своим свойством – индуктивностью.
  2. Конструкции катушек индуктивности

Индуктивность катушки можно изменять,  добавляя в конструкцию катушки ферромагнитный сердечник. Внедрение сердечников отражается на подавлении помех.

Поэтому практически все дроссели, предназначенные для подавления высокочастотных помех, как правило, имеют ферродиэлектрические сердечники, изготовленные на основе феррита, флюкстрола, ферроксона, карбонильного железа.

Низкочастотные помехи хорошо сглаживаются катушками на пермалоевых сердечниках или на сердечниках из электротехнической стали.

1 1 1 1 1 1 1 1 1 1 3.80 (10 Голоса)

Дроссель, катушка индуктивности — Принцип работы. Математическая модель. Типы, виды, категории, классификация

Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение. Свойства. Классификация. (10+)

Дроссель, катушка индуктивности — Принцип работы. Математическая модель. Типы, виды, категории, классификация

Оглавление :: ПоискТехника безопасности :: Помощь

Катушка индуктивности способна накапливать энергию в своем магнитном поле. Это проявляется в том, что при приложении к ней напряжения в ней постепенно нарастает ток, а при смене полярности — постепенно убывает.

Резко изменить силу тока в катушке индуктивности (дросселе) невозможно. Она будет сопротивляться этому путем формирования напряжения самоиндукции на своих выводах.

Это напряжение может быть очень большим и обеспечит прохождение тока путем пробоя изоляции.

Работа дросселя проявляется во времени. Без рассмотрения изменения силы тока во времени понимание работы катушки индуктивности невозможно.

Главной характеристикой дросселя является индуктивность. Индуктивность — коэффициент, определяющий зависимость скорости изменения электрического тока от напряжения на катушке.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Математическая модель катушки индуктивности. Обозначение

Катушка индуктивности (дроссель) может иметь несколько выводов — отводов от частей обмотки и два вывода от начала и от конца обмотки.

Работу катушки описывает следующее соотношение, которое и определяет ее применение в электронных схемах.

[Сила тока через катушку в момент T] = [Сила тока через катушку в начальный момент T0] + интеграл от [T0] до [T] ([Напряжение на катушке] / [Индуктивность катушки]) по [Времени].

Более привычно эта формула выглядит так:

В случае, если к катушке приложено постоянное напряжение, то формула приобретает более простой вид: [Сила тока через катушку индуктивности в момент T] = [Сила тока через катушку индуктивности в начальный момент T0] + [Напряжение на катушке] * ([T1] — [T0]) / [Индуктивность катушки]

Индуктивность измеряется в генри. Через дроссель индуктивностью 1 Гн за 1 с при напряжении 1 вольт пойдет ток 1 ампер. Обычно в схемах используются индуктивности от 1 микрогенри до 100 миллигенри.

Физически катушка индуктивности состоит из одного или нескольких витков провода, которые могут быть просто размещены в воздухе, а могут быть намотаны на сердечник из какого-либо материала. Сердечник намагничивается и, тем самым, накапливает в себе энергию.

Расчет индуктивности катушки в общем случае представляет серьезную сложность. С уверенностью можно утверждать только, что индуктивность пропорциональна квадрату числа витков.2

На идеальном дросселе тепловая энергия не выделяется, хотя через него может проходить ток. Дело в том, что сначала дроссель накапливает энергию, потом отдает ее в цепи питания, не рассеивая.

На схемах катушка индуктивности обозначается, как показано на рисунке.

Идеальный дроссель

Идеальный дроссель имеет строго фиксированную индуктивность, соответствующую расчетной или надписи на корпусе, не зависящую от тока, напряжения и внешних условий, например, температуры. Он не имеет паразитной емкости и внутреннего сопротивления, потерь на перемагничивание.

Идеальный дроссель выдерживает любой ток, имеет нулевые размеры, не занимает место на плате. Он не шумит. Ток через него строго зависит от напряжения и времени, без посторонних помех.

Реальные дроссели. Классификация, виды, типы

Если бы дроссели на самом деле были идеальными, то нужен был бы всего один тип дросселя — ПИД (просто идеальный дроссель). Его можно было бы применять во всех схемах. Но, как это часто бывает в жизни, идеала не существует. Для разных применений можно подобрать дроссели с определенными свойствами, пожертвовав другими, менее важными для данной схемы.

Главная проблема дросселя — омическое сопротивление провода, которым он намотан. Это сопротивление ухудшает параметры катушки индуктивности, приводит к нагреву, ограничивает максимальный ток. Снижение этого сопротивления требует снижения длины обмотки и увеличения толщины провода.

Снизить длину обмотки, сохранив требуемую индуктивность, можно, применив сердечник из ферромагнитного материала.

Такой сердечник намагничивается, накапливает в себе энергию, значительно (иногда, в десятки тысяч раз) увеличивая индуктивность одного витка, а значит, сокращая число витков, необходимых для получения требуемой индуктивности. Наилучшим в этом смысле сердечником является мягкое трансформаторное железо.

Однако, применение сердечника, снижая омическое сопротивление катушки, порождает сразу ряд новых проблем. Во-первых, у сердечника есть определенный уровень магнитной индукции насыщения, выше которого сердечник уже не может намагнититься и не будет накапливать энергию. Дроссель (за исключением ряда специальных схем) должен применяться в условиях, исключающих насыщение.

Во-вторых, под действием переменного электрического тока в сердечнике возникают потери, вызванные наведенными электрическими токами и нагревом от перемагничивания сердечника.

Для борьбы с наведенными токами используются специальные технологии изготовления сердечника, исключающие большие контура в нем, по которым могут течь такие токи (например, слоеный сердечник с изоляцией между слоями или порошковое железо), или применение специальных материалов (ферритов), которые вообще не проводят электрический ток.

Ферриты не проводят электрический ток, но с точки зрения своих магнитных свойств намного уступают железу. Поэтому их применяют в высокочастотных схемах (от 10 кГц), а для низкочастотных эффективнее применять трансформаторное железо.

Заказать партию дросселей с нужными параметрами не составляет труда, но в большинстве случаев подобрать дроссель промышленного производства для экспериментальной схемы не удается. Его приходится делать самостоятельно.

(читать дальше…) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Возможности применения катушек индуктивности

Возможными
вариантами применения катушки
индуктивности, в частности, являются:

  1. Компактная катушка индуктивности цепи постоянного тока (DC) с малыми пульсациями переменного тока (конструкция с ограниченным размером окна)

  2. Крупногабаритная катушка индуктивности цепи постоянного тока (конструкция с ограничением насыщения)

  3. Катушка индуктивности с сильным переменным током (конструкция с ограничением потерь в сердечнике)

Каждый
из трех вариантов характеризуется
специфическими требованиями к конструкции.
В компактной катушке индуктивности
цепи постоянного тока ограничительный
фактор определяется в большей степени
доступным размером окна сердечника,
нежели площадью поперечного сечения
сердечника.

Окно сердечника должно быть
достаточно большим для того, чтобы
расположить в нем количество витков
провода, достаточное для получения
требуемой индуктивности. В крупногабаритной
катушке индуктивности цепи постоянного
тока ограничительным фактором часто
является точка насыщения сердечника.

Сердечник должен иметь достаточно
крупные габариты и достаточно малую
магнитную проницаемость, чтобы избежать
насыщения (или смещения величины
индуктивности ниже минимального
требуемого уровня).

Эти факторы требуют
увеличения числа витков и длины медных
проводов, что вызывает проблему в виде
потерь в проводах. Основным ограничительным
фактором для катушки индуктивности с
сильным переменным током являются
потери в сердечнике.

Поскольку потери
в сердечнике зависят от колебаний
потока, создаваемого переменным током,
а не уровнем индукции, создаваемой
постоянным током, потери в сердечнике
становятся доминирующим фактором,
определяющим выбор конструкции.

Перестраиваемая индуктивность

Катушка
индуктивности является одним из
распространенных пассивных элементов,
используемых при создании различных
электронных схем.

Специфика применения
катушки в современных электронных
приборах с высокой степенью интеграции
заключается в том, что она плохо поддается
как миниатюризации, так и реализации в
интегральном исполнении.

В отличие от
резисторов и конденсаторов, выполняемых
в виде участков полупроводникового
кристалла с заданной проводимостью и
обратносмещенных p-n-переходов,
катушки индуктивности реализуют либо
схемотехнически в виде их гираторных
аналогов, либо в форме плоских спиралей
или отрезков передающих линий методами
планарной и гибридно-интегральной
технологий . Гираторы, представляющие
собой по сути активные схемы электронных
усилителей с выраженными частотно-зависимыми
характеристиками, используются в
диапазоне сравнительно низких частот
и применяются, в основном, в
частотно-избирательных схемах различных
фильтров. Катушки, выполненные как в
форме плоской спирали или отрезков
передающих линий, так и в ином миниатюрном
исполнении , успешно применяются в ВЧ-
и СВЧ-диапазоне, но имеют общий недостаток,
заключающийся в том, что изменение
значения их индуктивности возможно
преимущественно механическим способом.

Гиратор

электрическая
цепь, которая осуществляет преобразование
импеданса.
Другими словами, эта схема заставляет
ёмкостные цепи проявлять индуктивные
свойства,
полосовой
фильтр
будет
вести себя как режекторный фильтр
и
т. п.

Рис.3.
Схема гиратора

Основное
применение гираторов заключается в
создании участков цепи, имитирующих
индуктивность.
Поскольку
катушки
индуктивности
далеко
не всегда могут применяться в электрических
цепях (например в
микросхемах),
использование гираторов позволит
обходиться без катушек. Для этого
используется цепь, состоящая из
конденсатора,
операционного
усилителя
или
транзисторов
и
резисторов.

Назначение
гиратора — поменять знак
комплексного
сопротивления цепи, а на приведённой
схеме — инвертировать действие
конденсатора. Желаемый импеданс цепи,
который мы хотим получить, можно описать
как

То
есть это последовательно соединённые
индуктивность
L
и
сопротивление
RL.
Из схемы видно, что импеданс имитированной
индуктивности соединён параллельно с
импедансом
C
и
R.

В
случае, когда
R
много
больше, чем
RL,
то это выражение принимает вид

Таким
образом, мы получаем последовательно
соединённые сопротивление

и
индуктивность
.

Основное отличие от истинной индуктивности
здесь проявляется в том, что присутствует
параллельное
,
и в том, что

png» width=»24″>
обычно
значительно больше, чем в реальных
катушках.

Для
достаточно длинного соленоида длиной
l
и площадью сечения виткаS
с общим числом витков
N
индуктивность
равна

  • ????
    — относительная
    магнитная проницаемость среды;
  • n
    — число витков на единицу длины,;
  • V
    объем соленоида,V=Sl.

Отметим,
что значение индуктивности прямо
пропорционально квадрату числа витков,
занимаемому объему и магнитной
проницаемости среды. Формулы для
вычисления индуктивности катушек другой
формы более сложны и могут не иметь
аналитического вида, но основные
пропорции для указанных параметров
сохраняются.

Изменение этих параметров
традиционно используют для управления
величиной индуктивности путем механической
перестройки катушки (переключения
секций катушки, изменения взаимного
расположения витков, введения в катушку
сердечника, выполненного из магнетика).

Переключение секций катушки посредством
интегрального коммутатора позволяет
управлять значением индуктивности
электронным способом, но параметр
катушки при этом можно изменять лишь
дискретно. Известен способ электронного
управления индуктивностью, заключающийся
в подмагничивании ферромагнитного
сердечника катушки.

Однако при этом в
конструкцию катушки вводится дополнительная
подмагничивающая обмотка, что не
способствует миниатюризации изделия
в целом.

Предлагаемый
в настоящей работе способ электронного
управления индуктивностью пассивной
катушки заключается во введении в ее
конструкцию специфического сердечника,
свойства которого изменяются под
воздействием приложенного электрического
поля, оказывая при этом влияние на
индуктивность. В качестве такого
сердечника используется кремниевая
структура n-i-p-i-n-типа,
обладающая протяженными i-областями.

Если
объект помещается внутрь катушки, то
первичное переменное магнитное поле
вызывает в нем вихревые токи.
Электромагнитное поле катушки при этом
изменится под действием поля вихревых
токов.

Это изменение поля вызывает такой
эффект, какой получился бы, если изменить
характеристики самой катушки.

Анализ
изменения свойств катушки под влиянием
объекта, особенно если он имеет
неоднородную структуру и параметры,
изменяющиеся под воздействием внешнего
смещения, чрезвычайно сложен.

В
общем случае на индуктивность оказывают
влияние физические характеристики
материала объекта — электрические и
магнитные свойства, определяемые его
составом и структурой: электропроводность,
магнитная проницаемость, геометрические
размеры, наличие неоднородностей.

Для
проверки возможности создания индуктивного
элемента с электронной перестройкой
изготовлена
двухсекционная катушка,
сердечниккоторой
представляет собой кремниевуюn-i-p-i-n
структуру
с толщиной i-областей
200 мкм.

В качестве такой структуры
использовался выпускаемый промышленностью
бескорпусный диод типа 2А505, конструктивно
объединяющий в себе двеp-i-nструктуры
с общей p-областью,
имеющей гибкий соединительный вывод.
Контакты n-областей
диода имеют вид металлических площадок
из материала с хорошей проводимостью.

Диод, длина которого вместе с контактами
составляет примерно 0,8 мм, размещался
между двумя секциями катушки, намотанными
виток к витку в форме плоской спирали
на оправке диаметром 0,9 мм, причем
изолированный вывод p-области
пропускался наружу между плоскостями
секций, аp-i-n-структуры
заполняли области внутри секций. Сам
диод центрировался по оси катушки с
помощью тонкой изолирующей диэлектрической
прокладки.

Обе
секции содержали по три витка медного
провода в лаковой изоляции диаметром
0,5 мм. Электрический контакт с n-областями
диода осуществлялся с помощью прижимных
электродов, не оказывающих влияние на
индуктивность катушки.

Таким
образом, магнитное поле изготовленной
катушки сосредоточено во внутреннем
объеме секций, преобладающую часть
которого занимали протяженные i-области
(базы) диода, размер которых значительно
превышал размерыp
и n-областей.
В отсутствие прямого смещения базовые
областиp-i-n-структур
представляют собой по сути диэлектрик
с магнитной проницаемостью ????=1.

Добротность
катушки при введении в нееn-i-p-i-n-структуры
без смещения снижалась, значение
индуктивности уменьшалось.

При
подаче наp-i-n-диод
напряжения прямого смещения происходит
процесс инжекции носителей заряда в
высокоомную i-область
диода, в результате чего концентрация
носителей заряда в базе возрастает на
несколько порядков и, соответственно,
увеличивается проводимость базы. В
таком случае говорят, что база диода
«заливается» носителями заряда или
«металлизируется».

  1. Диод,
    находящийся в магнитном поле исследуемой
    катушки индуктивности, представляет
    собой объект, проводимость которого
    изменяется в широком диапазоне в
    зависимости от величины приложенного
    напряжения.
  2. Зависимость
    параметров катушки от величины напряжения
    прямого смещения, прикладываемого к
    n-i-p-i-n-структуре,
    выполняющей роль управляемого
    электрическим полем сердечника,
    позволяющего определить резонансным
    методом как значение индуктивности,
    так и величину потерь.
  3. Добротность
    начинает заметно снижаться непосредственно
    с появлением тока черезn-i-p-i-nструктуру.

Уменьшение
добротности с ростом приложенного кn-i-p-i-n-структуре
напряжения может быть объяснено
увеличением мощности потерь, связанным
с ростом числа инжектированных носителей
заряда. При диаметре намоточного провода
1 мм зависимость индуктивности от
напряжения смещения выражена весьма
слабо.

Большое значение имеет также
выбор конкретного экземпляра
n-i-p-i-n-структуры.
Как показала практика, диоды имеют
значительный разброс характеристик в
пределах партии, причем возможна заметная
неидентичность характеристикp-i-n-диодовотдельно
выбраннойn-i-p-i-n-структуры.

Не последнюю роль, оказывающую влияние
на величину как индуктивности, так и
добротности, играет качество изготовления
самой катушки.

В
связи с этим для изготовления управляемой
катушки индуктивности можно рекомендовать
материалы, обладающие хорошей
проводимостью, что повысит начальное
значение добротности и позволит выбрать
диаметр намоточного провода, сравнимый
с размерами i-областей
диода. Геометрия индуктивного элемента
определяется преимущественно размерами
используемого диода и должна обеспечивать
концентрацию магнитного поля катушки
в объеме p-i-n-структуры.

В
резонансном контуре применена катушка
индуктивности описанной выше конструкции.
Принципиальная электрическая схема
разработанного устройства приведена
на
рис.4.

Рис.4.
Принципиальная электрическая схема
разработанного устройства

Катушка
индуктивности L
и включенный параллельно ей конденсатор
С1 представляли собой колебательный
контур, резонансная характеристика
которого определяла частоту ВЧ-несущей.
К катушке подключался источник питания.
Напряжение на входе регулировалось
подстроечным резистором R1
СП-04.

Так же был подключен вольтметр для
контроля напряжения на входе. С помощью
генератора высоких частот и осциллографа
была найдена резонансная частота.
Изначальный резонанс наблюдался на
частоте .
Значение индуктивности L1
при

png»>
было равно L1=414
нГн. После увеличения напряжения до
0.5V
частота уменьшилась до .
Значение индуктивности L1
при
возросло до 422 нГн.

При увеличении
входного напряжения, регулируемого
подстроечным резистором R1,
резонансная частота сдвинулась на 60
кГц в сторону уменьшения.

Значение
индуктивности было рассчитано по
формуле:

Диапазон
изменения величины индуктивности можно
весьма просто увеличить, изготовив
многосекционную катушку, поскольку
геометрия n-i-p-i-n-
структуры позволяет это сделать без
значительных конструктивных трудностей.
Катушки индуктивности предложенной
конструкции удобны для изготовления в
планарной форме, когда витки формируются
напылением или травлением материала
поверхности вокруг n-i-p-i-n-структуры.

Индуктивность.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной, а обмотка, с которой трансформированое напряжение снимается — вторичной.


Отношение числа витков вторичной(Np) и первичной (Ns) обмоток равно отношению соответствующих им напряжений — Up(напряжение первичной обмотки) и Us(напряжение вторичной обмотки).


Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор.

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is). Это вызовет пропорциональное увеличение тока(Ip) и в первичной обмотке. Будет верным соотношение:


Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:
1. Допустимые токи и напряжения для первичной и вторичной обмоток.
2. Максимальную мощность трансформатора — мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.
3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор — получится очень интересный элемент радиотехники — колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С., используя электромагнитное поле — в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова — в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же — в различных схемах задающих генераторов.

Калькулятор расчета индуктивности однослойной катушки.

Катушки индуктивности дроссели — Справочник химика 21

    КАТУШКИ ИНДУКТИВНОСТИ ДРОССЕЛИ ВЫСОКОЙ ЧАСТОТЫ [c.369]

    ГО.002.010 Трансформаторы, дроссели, катушки индуктивности. [c.273]

    Часть III. Радиодетали. Включает четыре главы седьмую — резисторы восьмую — конденсаторы девятую — катушки индуктивности и дроссели десятую — трансформаторы. [c.3]

    Добротность (Q ) катушки определяется по отношению индуктивного сопротивления к эквивалентному сопротивлению всех потерь плюс омическое сопротивление провода обмотки. В контурах применяют катушки с сердечником, имеющие добротность Q =30- 500. Катушки связи и дроссели высокой частоты имеют меньшую добротность. Зависимость добротности катушек с сердечником и без сердечника от частоты показана на рис. 10.3, [c.371]


    Ультразвуковой генератор УЗГ-10, упрощенная схема которого приведена на рис. 53, собран на триоде ГУ-10А и выполнен в виде автогенератора с индуктивной обратной связью. В анодную цепь генератора включен контур Ь, С, обладающий достаточно высокой добротностью и настраиваемый с помощью индуктивности Ы. Благодаря высокой добротности контура резкое изменение нагрузки мало влияет на режим генератора. Генератор согласуется с магнитострикционным преобразователем М1—М4 с помощью трансформатора Тр. Индуктивность Ь2 выполняет роль катушки обратной связи. Ток подмагничивания подается через дроссель Др последовательно на все преобразователи. По высокой частоте преобразователи включены параллельно. [c.167]

    При переделке генератора на 20 кгц для работы с магнитострикционными излучателями увеличиваются анодный и сеточный разделительные конденсаторы и индуктивности анодного и сеточного стопорных дросселей. Контурные катушки делают в виде вариометра. Подключение магнитостриктора осуществляется с помощью кондуктивной связи. [c.100]

    Для питания излучателя с частотой 1 Мгц производят следующие изменения. Увеличивается емкость сеточного и анодного разделительных конденсаторов и индуктивность сеточного и анодного стопорных дросселей. Исключаются дроссель и катушка. Вместо них ставится новая катушка контура с соответствующими подключениями. На контуре развивается напряжение около 4 ООО в, что вполне достаточно для возбуждения кварцевого излучателя на 1 Мгц кроме того, внутри шкафа генератора вместо рабочего конденсатора устанавливаются конденсаторы контура. [c.82]

    Дроссель насыщения (фиг. 192) представляет собой аппарат, состоящий из индуктивной катушки намотанной на магнитном сердечнике, и обмоток управления Wy. [c.344]

    Обратная связь на сетки генераторных ламп в данной схеме берется от катушки индуктивности 14. При этом исключается существовавшая в ранее применявшихся ламповых генераторах, работавших по двухконтурным схемам, возможность возникновения явления затягивания и срыва колебаний. Параллелыю катушке 14 подключена вторая контурная батарея 13 конденсаторов. Катушка связи 12 расположена коаксиально возле катушки индуктивнссти анодного контура 11. Изменением взаиморасположения катушек И ч 12 можно регулировать коэффициент магнитной связи и интенсивность нагрева. Сетка каждой генераторной лампы через антипаразит юе сопротивление 5 соединена с гридликом, предназначенным для создания на сеткз лампы отрицательного смещения. Гридлик состоит из конденсатора 10, сопротивления 9 и дросселя 8. [c.89]

    Колебательный контур генератора образован катушкой индуктивности, переменным конденсатором, с помощью которого производится подстройка генератора в резонанс с излучателем, и емкостью излучателя, включенного последовательно с конденсаторами и Катушка генератора намотана на каркасе диаметром 40 мм и содержит 360 витков провода ПЭЛ 0,5 с отводом от середины. Разделительный дроссель Др содержит 200 витков провода ПЭШО 0,25, намотанного в четырех секциях внавал, и располагается в подвале шасси генератора. В качестве каркаса может быть использован цоколь стеклянной лампы, например от лампы 5ЦЗС. [c.169]


    Катушка индуктивности генератора намотана на сердечнике СБ-5 и содержит 180 витков провода ПЭЛШО с отводом от 45-го и 90-го витка. Дроссель наматывается на керамическом каркасе от проволочного сопротивления, с которого предварительно очищается проводящий слой. Обмотка имеет три секции по 130 витков провода ПЭЛШО 0,1. Ширина секций 4 жм, расстояние между ними 1 мм. Трансформатор выполнен на ферритовом сердечнике Ш-9. Первичная обмотка содержит 30 витков провода ПЭЛ 0,25, вторичная — 210 витков провода ПЭЛ 0,12. [c.227]

    Генератор типа УЗГ-20 в основном предназначен для питания большого числа магнистострикционных излучателей, работающих на жидкую фазу. Схема самовозбуждения, применяемая в генераторе типа УЗГ-20, аналогична генератору УЗГ-10 (см. ниже). Генератор собран по двухтактной схеме с самовозбуждением на двух лампах ГУ-10А. Анодное питание параллельное, без разделительных конденсаторов. В схеме предусмотрено повышение к. п. д. генератора до 80—85% за счет прямоугольного импульса, полученного на анодах и сетках ламп с помощью анодного и сеточного дросселей. Колебательный контур находится в цепи анода и образован параллельным соединением катушки индуктивности батареи конденсаторов. [c.81]

    При воздействии на проводниковые материалы повышенной влажности происходит изменение сечещя проводника в результате окисления и коррозии материала. Проводниковые материалы, как правило, применяют в изделиях, у которых основным рабочим узлом являются обмотка катушки контуров связи и индуктивности, дроссели, трансформаторы, проволочные резисторы, потенциометры и др. [c.150]

    Индуктивный путевой выключатель ИКВ-20, показанный на фиг. 343, представляет собой дроссель с разомкнутым магнитопрово-дом и катушкой zl, заключенной в диамагнитный корпус 3 (бронзовый) с полюсными наконечниками 2, расположенными в плоскости, параллельной плоскости движения якоря 1. При прохождении якоря мимо полюсных наконечников магнитное поле замыкается, в результате чего индуктивное сопротивление Zt увеличивается примерно вдвое. [c.432]

    Стартер (зажнгатель) служит для предварительного разогрева электродов люминесцентной лампы, что облегчает ее зажигание. Дроссель представляет собой катушку с обмоткой большого индуктивного сопротивления. При размыкании контактов [c.307]

    Как видно из яриведенных схем, переделке подвергаются контурные катушки, изменяются величины разделительных конденсаторов и стопорных дросселей. Подключение нагрузки, работающей при низком напряжении (.магннтострикторы), осуществляется кондуктивной связью. Включение титанатбариевых излучателей должно производиться через индуктивную связь с анодным контурам. Включение кварца может осуществляться параллельно контуру через разделительную емкость. Для работы на частотах, отличных от приведенных на схеме, изменение величин элементов схемы производится по известным радиотехническим расчетам. [c.103]

    Как видно из приведенных схем, переделке подвергаются контурные катушки, изменяются величины разделительных конденсаторов и стопорных дросселей. Подключение нагрузки-, работающей при низком напряжении, осуществляется кондуктивной связью. Включение пьезокерамических излучателей должно производиться через индуктивную связь с анодным контуром. Для работы на частотах, отличных от приведенных на схеме, измейение величин [c.83]

    Как было показано Мелик-Гайказяном и Долиным [71], при более высоких частотах между генератором и мостом необходимо помещать специальный согласующий трансформатор с очень низким выходным сопротивлением. В противном случае ток, идущий на заряжение двойного слоя, при высоких частотах будет очень мал, что резко снизит точность измерения емкости. С другой стороны, при частотах вьппе 5000 гц необходимо компенсировать небольшие индуктивности в схеме моста (в основном, в магазине сопротивлений) специально подобранной катушкой самоиндукции мкгн). Указанные улучшения позволили поднять верхний предел частот в растворах до 0,5 мгц. Одновременно, заменив дроссель, который удобен в качестве фильтра Ф (см. рис. 2) при частотах выше 250 гц, на высокоомное сопротивление (1—2 Мом), авторы [71] снизили нижний предел частот до 20 гц. В последнее время Тедорадзе [72] было показано, что значительно удобнее при низких частотах в качестве фильтра вместо высокоомного сопротивления использовать Хб -коптур, настроенный на данную частоту. [c.18]


ВЧ дроссель

против индуктора — Блог о пассивных компонентах

Дроссели и ВЧ дроссели в основном представляют собой электрические компоненты одного и того же типа. Разница в конструкции связана с функцией, которую устройство будет выполнять в цепи. Большинство инженеров больше знакомы с индукторами — некоторые думают, что оба устройства могут использоваться взаимозаменяемо — которые распространены в частотно-избирательных системах, таких как тюнер для радиоприемников или фильтров.

Катушки индуктивности

Стандартный индуктор создается путем плотной обмотки проводов (катушек) вокруг твердого стержня или цилиндрического кольца, называемого сердечником индуктора.Когда ток циркулирует по проводам, создается магнитный поток, который противоположен изменению тока (сопротивляется любому изменению электрического тока), но пропорционален значению тока. Кроме того, в катушке индуцируется напряжение из-за движения магнитного потока. Сила магнитного потока зависит от типа сердечника.

Катушки индуктивности классифицируются в зависимости от типа сердечника, на который намотана катушка. На рисунке 1 показаны символы, используемые для различения некоторых типов.

Рисунок 1: Символы индуктивности. Источник: www.electronics-tutorials.ws

Единицы

Как мы видели, катушки индуктивности сопротивляются изменению тока (переменного тока), но легко пропускают постоянный ток. Эта способность противодействовать изменениям тока и взаимосвязи между потоком тока и магнитным потоком в катушке индуктивности измеряется показателем качества, называемым индуктивностью, с символом L и единицами измерения Генри (H), в честь американского ученого и первого секретаря Смитсоновского института. , Джозеф Генри.

RF Дроссели

Мы можем думать о ВЧ дросселях как о применении катушек индуктивности. Они спроектированы как фиксированные индукторы с целью перекрытия или подавления высокочастотных сигналов переменного тока (AC), включая сигналы от радиочастотных (RF) устройств, и обеспечения прохождения низкочастотных сигналов и сигналов постоянного тока. Строго говоря, в идеале ВЧ дроссель — это индуктор, который отклоняет все частоты и пропускает только постоянный ток. Для этого дроссель (или катушка индуктивности) должен иметь высокий импеданс в диапазоне частот, который он предназначен для подавления, как мы можем видеть, проверив формулу для значения импеданса, X L :

X L = 6.283 * f * L

Где f — частота сигнала, а L — индуктивность. Мы видим, что чем выше частота, тем выше импеданс, поэтому сигнал с высокой частотой встретит эквивалентное сопротивление (импеданс), которое заблокирует его прохождение через дроссель. Низкочастотные сигналы и сигналы постоянного тока будут проходить с небольшими потерями мощности.

Дроссели обычно состоят из катушки из изолированных проводов, намотанных на магнитный сердечник, или круглой «бусинки» из ферритового материала, нанизанной на провод.Их часто наматывают сложными узорами, чтобы уменьшить их внутреннюю емкость.

Обычно ВЧ-дроссели можно увидеть на компьютерных кабелях. Они известны как ферритовые шарики и используются для устранения цифрового радиочастотного шума. Как показано на Рисунке 2, ферритовые бусины имеют цилиндрическую или торообразную форму и обычно надеваются на проволоку.

Рис. 2. Ферритовый шарик. Источник: Wuerth Elektronik

Саморезонанс

Реальные катушки индуктивности и дроссели не являются 100-процентными индуктивными.При подаче питания появляются паразитные элементы, которые изменяют поведение устройства и изменяют сопротивление. Провода катушки, используемой для изготовления индуктора, всегда создают последовательное сопротивление, а расстояние между витками катушки (обычно разделенных изоляцией) создает паразитную емкость. Этот элемент является параллельным компонентом последовательной комбинации паразитного резистора и идеальной катушки индуктивности. Типичная эквивалентная схема катушки индуктивности показана на рисунке 3.

Рисунок 3: Эквивалентная схема индуктора

Реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора определяется по известным формулам:

X L = wL = 6.283 * ширина * длина (1)

X С = 1 / (wC) = 1 / (6,283 * f * C) (2)

Из-за наличия реактивных сопротивлений значение полного импеданса цепи изменяется с частотой. С увеличением частоты реактивное сопротивление конденсатора падает, а емкость катушки индуктивности увеличивается. Существует частота, при которой реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора равны. Это называется собственной резонансной частотой параллельной резонансной системы. В параллельном резонансном контуре полное сопротивление на резонансной частоте является максимальным и чисто резистивным.На рисунке 4 показаны графики зависимости импеданса от частоты в соответствии с уравнениями 1 (красным) и 2 (синим). Общий импеданс (черный) показывает резонансную частоту в точке, где оба импеданса равны. Импеданс в этой точке является чисто резистивным и имеет максимальное значение.

Рисунок 4. Импеданс в зависимости от частоты. Источник: Texas Instruments

.

Дроссели и индукторы: в чем разница?

Во многих технологиях используются дроссели или индукторы для подачи, изменения и фильтрации электрического тока.Понимание разницы между дросселями и индукторами необходимо при проектировании устройств и механизмов, которые зависят от электроэнергии. Каждый из этих электрических компонентов подходит для конкретных приложений.

Дроссель — это тип индуктора, но его применение, функция и конструкция отличаются от других конструкций индукторов. Обычно этот электрический компонент имеет сердечник в форме пончика с намотанной на него изолированной катушкой.

Как следует из названия, дроссель отключает или ограничивает высокочастотный переменный ток (AC).Он пропускает только постоянный ток (DC) через проводник. Дроссель устраняет переменный ток и пропускает только постоянный ток к нагрузочному резистору или другим компонентам нагрузки.

Дроссели защищают изоляцию от повреждений, вызванных резким повышением тока в цепях, вместо этого способствуя постепенному нарастанию и падению тока. Дроссели также могут сбивать напряжение, позволяя создавать переходные напряжения на люминесцентных лампах, удерживая напряжение газа от превышения напряжения системы.

Катушка индуктивности — это основной электронный компонент, подобный дросселю, но они не взаимозаменяемы — проще говоря, все дроссели являются индукторами, но не все индукторы являются дросселями.Индукторы выполняют различные функции, но в основном накапливают электрическую энергию от токов в виде магнитного поля. Они содержат магнитный сердечник, обернутый изолированной катушкой, и обычно являются одним из самых крупных компонентов электронных устройств.

Катушки индуктивности используются во многих областях, в том числе:

  • Фильтры . Индукторы фильтруют частоты, увеличивая импеданс по мере увеличения частоты.
  • Датчики . Индукторы могут ощущать близость к другому объекту без физического контакта.Это обнаружение происходит потому, что магнитные поля индуктора и объекта взаимодействуют в процессе, известном как индукция.
  • Трансформаторы . Трансформаторы включают индукторы для повышающих и понижающих процессов. Размещение нескольких катушек индуктивности с одним и тем же магнитным полем создает трансформатор.
  • Двигатели . Индукторы вызывают вращение вала двигателя с помощью своего магнитного поля. Индуктор служит регулятором для увеличения и уменьшения скорости с помощью источника питания.
  • Energy S torage . Индукторы временно накапливают электрическую энергию в магнитном поле. В компьютерах используются индукторы для поддержания цепей под напряжением и в импульсных источниках питания.

Во многих приложениях используются индукторы. Когда индуктор предлагает фильтрацию сигнала, он считается дросселем. Хотя они могут показаться взаимозаменяемыми, между ними есть несколько различий. Индукторы могут генерировать магнитные поля, а также могут накапливать энергию в магнитных полях.Основное назначение дросселя — отвод переменного тока и пропускание постоянного тока. Радиочастотные (RF) дроссели полагаются на все более крупные размеры катушек индуктивности для блокировки низкочастотных сигналов.

В Triad Magnetics наша опытная команда использует последние достижения в технологии производства магнитов для создания катушек индуктивности и дросселей, которые превосходят ожидаемые характеристики. Мы обеспечиваем соответствие нашей продукции высочайшим стандартам с помощью инспекций, проверок отгрузки и анализа отказов. Наши магнитные решения соответствуют всем соответствующим отраслевым стандартам и международным нормам, включая UL и CSA.

Мы обслуживаем ряд отраслей промышленности с помощью инновационных решений в области магнетизма более 75 лет. Со своего склада в Перрисе, Калифорния, и с производственных предприятий на Филиппинах, в Китае, Тайване и США мы доставляем лучшие в отрасли нестандартные и стандартные магнитные изделия.

Наши профессиональные логистические возможности и обширная глобальная сеть поставщиков позволяют нам предлагать в кратчайшие сроки в отрасли более 1000 изделий из магнитных материалов.

Чтобы узнать больше об индукторах, загрузите нашу электронную книгу «Руководство по индукторам.”Для получения дополнительной информации о наших решениях свяжитесь с нами или запросите расценки сегодня, чтобы узнать, как индукторы и дроссели от Triad Magnetics могут помочь вашему проекту.

Катушки индуктивности, силовые индукторы и дроссели, индукторная электроника

Индукторы играют решающую роль в электронных приложениях. Как один из жизненно важных строительных блоков электрических цепей, индукторы используются в самых разных местах. От запуска двигателей и включения двигателей до подачи энергии в ваш дом.

Если вы ищете подходящие электрические индукторы, вы найдете то, что вам нужно, здесь, в Allied Electronics. У нас есть широкий выбор различных индукторов, включая индукторы с железным сердечником и дроссели, чтобы помочь вам построить необходимую электрическую цепь.

Прочтите, чтобы узнать больше об электрических индукторах и их использовании.

Что такое индукторы?

Катушки индуктивности — это пассивные компоненты, которые накапливают энергию в магнитном поле, когда через него проходит электрический ток.Индуктор, который часто называют катушкой, реактором или дросселем, обычно состоит из изолированного провода, намотанного на катушку.

Некоторые типы индукторов просто поддерживают свою собственную структуру. Однако чаще всего катушка индуктора наматывается на сердечник. Обычно эти сердечники изготавливаются из железа из-за их магнитных способностей, которые помогают сердечнику поддерживать магнитное поле.

Как работают индукторы?

Индукторы работают, накапливая и высвобождая электрические токи через магнитное поле.Когда ток проходит через индуктор, энергия создает магнитное поле через туго намотанную катушку провода. Эта энергия затем может быть быстро высвобождена, когда это необходимо для поддержания электрического тока.

Наряду с конденсаторами и резисторами, электрические индукторы являются одним из трех основных пассивных линейных элементов, составляющих электронные схемы. Чаще всего они используются в электронике переменного тока (AC).

При использовании в электронном оборудовании, которое использует как переменный, так и постоянный ток (постоянный ток), индукторы блокируют переменный ток, так что постоянный ток может более свободно проходить по цепи.Эти типы индукторов называются дроссельными индукторами.

Электронные индукторы также используются в фильтрах для разделения различных радиочастотных сигналов. При использовании в настроенных схемах электрические индукторы могут использоваться для настройки радио и телевизионных приемников.

Где используются индукторы?

В качестве одного из центральных пассивных компонентов в цепи использование индукторов может быть эффективным в самых разных электронных устройствах. Чаще всего индукторы используются в аналоговых электрических цепях и в устройствах обработки сигналов.

Применения катушек индуктивности различаются по диапазону, но некоторые общие применения перечислены ниже:

  • Фильтры: При использовании с резисторами и конденсаторами, катушки индуктивности становятся полезными фильтрами для электроники обработки сигналов.
  • Датчики: Катушки индуктивности могут воспринимать магнитные поля энергии на расстоянии. Это сделало их идеальными для технологии бесконтактных датчиков.
  • Двигатели: Используя магнитную силу, приложенную к индукторам, индукционные двигатели превращают электрическую энергию в механическую.

Какие бывают типы индукторов?

Вы можете выбрать один из нескольких типов индукторов, каждый со своей уникальной функцией. Включая воздушный или керамический сердечник, ферритовые и железные силовые индукторы, вот несколько примеров электрических индукторов:

Катушки индуктивности с керамическим сердечником: Часто называемые индукторами с воздушным сердечником, керамический сердечник является одним из наиболее распространенных сердечников, используемых для индуктора. . Его способность выдерживать целый ряд индукционных температур делает его стабильным сердечником.

Катушки индуктивности с железным сердечником : Катушки индуктивности с железным сердечником, идеально подходящие для компактных схем, обладают высокой мощностью и высокой индуктивностью. В основном они используются в аудиоаппаратуре. Однако индукторы с железным сердечником имеют очень мало применений по сравнению с другими индукторами.

Индукторы с ферритовым сердечником: Феррит, часто называемый ферромагнитным материалом, проявляет магнитные свойства благодаря кристаллической структуре, состоящей из смешанного оксида металла, железа и других элементов.Индукторы с ферритовым сердечником имеют очень высокую индуктивность по сравнению с индукторами с керамическим сердечником.

Почему стоит выбрать Allied Electronics для покупки катушек индуктивности

В Allied Electronics мы предлагаем на продажу ряд катушек индуктивности, которые помогут вам создавать электронные схемы. Независимо от того, нужны ли вам различные типы индукторов для крупномасштабного проекта или простой дроссельный индуктор, вы обнаружите, что мы являемся лидером в области поставок индукторов по всей Северной Америке.

Если у вас возникнут вопросы, наша команда может помочь.Свяжитесь с нами, и мы расскажем вам о нашем ассортименте продукции и поможем сделать правильный выбор. Вы также можете найти совет в нашем центре содержания для экспертов.

штуцеры

НОВИНКА! ‣ — Пакеты электронных компонентов Amazon. Посетите страницу Amazon Electronic Component Packs.

Что такое дроссели?

Дроссели — это фиксированные катушки индуктивности, в первую очередь предназначенные для «дросселирования» переменного тока, в том числе высокочастотного от линий питания постоянного тока.«ВЧ дроссель» спроектирован так, чтобы иметь высокий импеданс в большом диапазоне частот.

Это сильно отличается от фиксированных катушек индуктивности, которые предназначены для использования в настраиваемых схемах. В некоторых очень случайных приложениях вы можете заменить дроссели на фиксированные катушки индуктивности, но, как правило, и, конечно, есть исключения из этого правила, я бы не стал.

Единственным исключением могут быть приложения, в которых используются некритические фильтры верхних частот или фильтры нижних частот.

С другой стороны, я, конечно, не стал бы рассматривать использование дросселя в приложении с фиксированной катушкой индуктивности, таком как качественный узкополосный фильтр или в каскадах определения частоты LC-генератора.

Мое главное возражение касается «Q» штуцера. Вторичные возражения касаются термической устойчивости штуцера. Типичные формованные дроссели, которые можно купить довольно дешево, не совсем предназначены для того, чтобы служить памятником ни высокой добротности, ни термической стабильности, ни высоким допускам.

Другие возражения относятся к собственной резонансной частоте (SRF). Дроссель, как и любой дроссель, также демонстрирует некоторую степень собственной емкости или «распределенной емкости». Эта емкость в сочетании с расчетной индуктивностью являются резонансными на определенной частоте.

Резонансные частоты дросселя

На низких частотах эта емкость практически не влияет, и дроссель может быть изображен как «A» на рисунке 1. Сопротивление — это внутреннее сопротивление дросселя как при переменном, так и постоянном токе. Когда рабочая частота повышается, «распределенная емкость» начинает становиться значительной в точке, где L и C образуют параллельный резонансный контур, как в «B».


Рисунок 1. — Резонансные частоты дросселя

Еще раз увеличивая рабочую частоту, мы обнаруживаем, что реактивное сопротивление дросселя определяется емкостью до такой степени, что теперь он представляет собой последовательный резонансный контур «C».В этот момент производительность дросселей серьезно ухудшается.

Литые дроссели

Типичный экономичный дроссель, который имеет тенденцию выглядеть как резистор и имеет цветовую кодировку, аналогичную следующей на рисунке 2, который представляет собой таблицу цветовых кодов дросселей.

Таблица цветовых кодов дросселей


Рисунок 2. — Таблица цветовых кодов штуцера

Вообще говоря, эти дроссели предназначены для миниатюризации, и какой бы тип дросселя вы ни собирались использовать, всегда дважды проверяйте его, чтобы убедиться, что он может выдерживать ожидаемый ток.Самое главное !, вы не хотите, чтобы он функционировал как «вспышка», каламбур.

Простые маломощные дроссели часто можно дешево изготовить, намотав витки провода, способного пропускать достаточный ток, на корпусный резистор подходящего размера. Формирователь пластикового типа также может быть использован при использовании отрезка, например, спицы. На более высоких частотах рассмотрите небольшой дроссель с воздушной обмоткой. Дроссели тоже дешевые.

Самодельные дроссели часто легко наматываются на ферритовые тороиды с высокой проницаемостью, ферритовые бусины или даже сердечники бинокулярного типа, используемые для балунов.Просто не забудьте использовать калибр, который будет комфортно выдерживать ожидаемый ток через ваши дроссели. Также помните, что чем выше проницаемость сердечника, тем меньше требуется витков и тем меньше «распределенной емкости» возникает в ваших дросселях.

Если позволяет ваш бюджет, подумайте о создании комплекта LC-метра, чтобы иметь возможность измерять индуктивность ваших дросселей, катушек индуктивности или даже проверять емкость конденсаторов.

КНИГА — Справочник по индуктору Клетуса Дж. Кайзера

Ссылка на эту страницу

НОВИНКА! Как перейти по прямой ссылке на эту страницу

Хотите создать ссылку на мою страницу со своего сайта? Нет ничего проще.Знания HTML не требуются; даже технофобы могут это сделать. Все, что вам нужно сделать, это скопировать и вставить следующий код. Все ссылки приветствуются; Искренне благодарю вас за вашу поддержку.

Скопируйте и вставьте следующий код для текстовой ссылки :

<а href = "https://www.electronics-tutorials.com/basics/chokes.htm" target = "_ top"> посетите страницу Ian Purdie VK2TIP "Chokes"

, и он должен выглядеть так:
посетите Ian Purdie VK2TIP «Chokes» Страница



ВЫ ЗДЕСЬ: ГЛАВНАЯ> ОСНОВНЫЕ НАПРАВЛЕНИЯ> ЗАМЕТКИ

автор Ян К.Purdie, VK2TIP сайта www.electronics-tutorials.com заявляет о моральном праве на быть идентифицированным как автор этого веб-сайта и всего его содержания. Copyright © 2000, все права защищены. См. Копирование и ссылки. Эти электронные учебные пособия предназначены для индивидуального частного использования, и автор не несет никакой ответственности за применение, использование, неправильное использование любого из этих проектов или учебных пособий по электронике, которое может привести к прямому или косвенному ущербу или убыткам, связанным с этими проектами или учебными пособиями. .Все материалы предоставляются для бесплатного частного и общественного использования.
Коммерческое использование запрещено без предварительного письменного разрешения www.electronics-tutorials.com.


Авторские права © 2000, все права защищены. URL — https://www.electronics-tutorials.com/basics/chokes.htm

Обновлено 15 мая 2000 г.

Связаться ВК2ТИП

Что такое моторный дроссель и для чего он используется?

Дроссель — это пассивное устройство, которое увеличивает индуктивность цепи.


Изображение предоставлено: KEB America

Индуктивность — это свойство катушки с проволокой, которая сопротивляется любому изменению тока, протекающего через нее.(Прямые провода также обладают небольшой индуктивностью.) Другими словами, если ток через катушку увеличивается, магнитное поле катушки создает напряжение (ЭДС), которое препятствует изменению. Индуктивность устройства определяет количество ЭДС, генерируемой при заданном изменении тока:

Где:

ЭДС = индуцированное напряжение (В)

L = индуктивность (В * с / А = Генри, Гн)

dI / dt = время нарастания тока (А / с)

Дроссель двигателя — это общее название индуктивного устройства, установленного между выходом сервопривода или частотно-регулируемого привода (VFD) и выводами серводвигателя или асинхронного двигателя переменного тока.Его цель — уменьшить пики тока, возникающие на выходе привода из-за широтно-импульсной модуляции (ШИМ) напряжения.

Дроссель двигателя — это индуктивное устройство, устанавливаемое между приводом и двигателем, которое часто рекомендуется, когда длина кабеля двигателя превышает 25 метров.
Изображение предоставлено: Force Control Industries

Широтно-импульсная модуляция — ключевой принцип работы большинства частотно-регулируемых приводов и сервоприводов. Он работает путем включения и выключения напряжения на управляющих транзисторах с очень высокой частотой — обычно в диапазоне 20 кГц — создавая импульсы напряжения.Частота переключения определяет ширину импульсов, а отношение времени включения к времени выключения определяет среднее напряжение, подаваемое на двигатель.

Без моторного дросселя длинные кабели могут привести к отраженным волнам, которые вызовут скачки напряжения на двигателе.
Изображение предоставлено: KEB America

Однако ШИМ-управление вызывает резкие изменения сигналов привода, а также шум из-за высокочастотного переключения — проблемы, которые усугубляются при использовании длинных кабелей между приводом и двигателем.Как и катушки двигателя, кабели также обладают импедансом, и если импеданс кабеля сильно отличается от импеданса двигателя, может возникнуть отраженная волна, посылая напряжение обратно через кабель от клемм двигателя к приводу. Это напряжение может, в худшем случае, добавить к напряжению, подаваемому приводом, и привести к очень высокому напряжению на двигателе, вызывая значительный нагрев двигателя и повреждение изоляции двигателя и подшипников.

Дроссель двигателя помогает решить эти проблемы, увеличивая время нарастания (dV / dt) сигналов привода.Это уменьшает острые углы или пики формы волны напряжения до закругленных краев, защищая двигатель от скачков напряжения и связанного с ними нагрева. Дроссель, расположенный между приводом и двигателем, также помогает уменьшить электромагнитные помехи от кабелей и вероятность отраженных волн.

Без дросселя двигателя производители приводов обычно рекомендуют максимальную длину кабеля двигателя около 25 метров (рекомендации различаются в зависимости от двигателя, привода и области применения).С моторным дросселем максимальная длина кабеля может быть значительно увеличена, часто до 50 или 100 метров.


Дроссели и реакторы являются индуктивными устройствами, и термины «дроссель», «реактор» и «индуктор» часто используются как синонимы.

При обсуждении систем моторного привода термин «реактор» чаще всего используется для обозначения индуктивного устройства, расположенного между основным источником питания и приводом. Термин «дроссель» чаще всего используется для обозначения индуктивного устройства, расположенного между приводом и двигателем.И «дроссель», и «реактор» — это обычно используемые термины для индуктивного устройства, размещенного после входных диодов (между входным выпрямителем и звеном шины постоянного тока) в частотно-регулируемом приводе.

Когда использовать ВЧ-дроссель вместо индуктора — Аналоговые — Технические статьи

Большинство инженеров знакомы с индукторами, поскольку они являются ключевым элементом во многих частотно-избирательных схемах. Одно из применений катушек индуктивности, с которым вы, возможно, не так хорошо знакомы, — это ВЧ дроссели.

ВЧ дроссель является индуктором, однако частотная избирательность просто пропускает постоянный ток и блокирует все остальное.

В этом приложении обычные показатели качества индукторов могут не адекватно отражать фактические желаемые характеристики индуктора.

Идеальная модель

Во многих приложениях индукторы используются для пропускания или блокировки сигналов. При использовании в качестве ВЧ-дросселя катушка индуктивности должна пропускать только постоянный ток, все остальное блокируется. К сожалению, для блокировки очень низких частот требуется очень большая катушка индуктивности. Как выбрать идеальный компонент?

При разработке фильтра очень важна добротность катушки индуктивности, и целью является достижение высокой добротности.При выборе ВЧ-дросселя не всегда лучший выбор — индуктор с высокой добротностью. Высокое значение Q означает низкие потери, но для ВЧ дросселя более высокие потери означают лучшую изоляцию. Это означает, что для данной индуктивности дроссель с более низкой добротностью имеет большее паразитное сопротивление, чем дроссель с высокой добротностью. Другое соображение заключается в том, что Q часто сильно зависит от частоты.

Лучшая модель

При выборе ВЧ дросселя обычно требуется высокое значение индуктивности. Например, в техническом описании LMH6521 мы рекомендуем катушку индуктивности не менее 1 мкГн.Это позволяет передавать низкочастотные сигналы с минимальным затуханием. В таблице данных LMH6515 на рис. 42 показано влияние различных значений индуктивности на частотную характеристику. Катушка индуктивности высокой стоимости обычно имеет довольно высокий уровень паразитной емкости и, следовательно, низкую частоту собственного резонанса. На этом этапе важно внимательно прочитать техническое описание. Теоретически катушка индуктивности ведет себя как конденсатор при использовании выше собственной резонансной частоты (см. График ниже). Это может быть случай с индукторами с высокой добротностью, но многие ВЧ дроссели имеют тонкие провода для упаковки заданной индуктивности в небольшое пространство (см. Лучшую модель ниже).Из-за скин-эффекта эти ВЧ дроссели часто не обладают достаточной емкостью, чтобы противодействовать высокочастотному сопротивлению провода. Это означает, что они могут быть полезны для более широкого частотного диапазона, чем указано в таблице данных, иногда на несколько порядков выше частоты, чем собственная резонансная частота, показанная в таблице данных.

Лучшая модель

Для пошагового подхода к выбору ВЧ дросселя используйте следующие шаги:

  1. Убедитесь, что допустимый постоянный ток соответствует требуемому току смещения.
  2. Выберите достаточно высокое значение индуктивности. (Z = 2 * pi * f * L) Выберите импеданс (Z), который намного больше сопротивления нагрузки.
  3. Определите максимально допустимое сопротивление постоянному току, чтобы падение напряжения на катушке индуктивности было небольшим по сравнению с размахом напряжения каскада усилителя. Сопротивление от 1 до 10 Ом обычно нормально.
  4. Выберите небольшой размер упаковки.
  5. Ищите катушку индуктивности с низкой добротностью (высокая L и небольшой физический размер обычно означают низкую добротность).
  6. Убедитесь, что материал сердечника пригоден для использования в интересующем диапазоне частот.

Чтобы узнать больше о сопротивлении скин-эффекту и РЧ-индукторах, щелкните здесь.

Если вам нравится то, что вы читаете здесь, ознакомьтесь с другими сообщениями в моем блоге для получения дополнительной информации.

Узнайте обо всем ассортименте микросхем усилителей TI и найдите технические ресурсы.

IPLA 32 Сильноточный плоский дроссель

Пожалуйста, внимательно прочтите заявление об отказе от ответственности перед тем, как продолжить, и перед использованием этих данных.Использование вами этих данных означает ваше согласие с условиями, изложенными ниже. Щелкните ссылку Я СОГЛАСЕН, чтобы продолжить и принять эти условия. и условия.

Эти данные предоставляются вам бесплатно для вашего использования, но остаются исключительной собственностью Vishay Intertechnology, Inc. (Vishay), Samacsys / Supplyframe Inc. или Ultra Librarian / EMA Design Automation, Inc.(вместе «Компания»). Эти данные предоставляется только для удобства и в информационных целях. Включение ссылок на эти данные на сайте Vishay не является одобрением или одобрением Vishay каких-либо продуктов, услуг или мнений Компании. В то время как Vishay и Компания приложили разумные усилия для обеспечения точности данных, Vishay и Компания не гарантируют, что данные будут безошибочными.Vishay и Компания не делают никаких заявлений, не дают никаких гарантий или гарантий, что данные полностью точные или актуальные. В некоторых случаях данные могли быть упрощены, чтобы удалить проприетарные детали при сохранении важные геометрические детали интерфейса для использования клиентами. Vishay и компания категорически отказываются от всех подразумеваемых гарантий в отношении данные, включая, помимо прочего, любые подразумеваемые гарантии, товарную пригодность или пригодность для определенной цели.Никто вышеуказанных сторон несут ответственность за любые претензии или убытки любого характера, включая, помимо прочего, упущенную выгоду, штрафные или косвенные убытки, связанные с данными.

Обратите внимание, что нажатие кнопки «Я СОГЛАСЕН» приведет к тому, что вы покинете веб-сайт Vishay и перейдете на внешний веб-сайт. Вишайские медведи не несет ответственности за точность, законность или содержание внешнего веб-сайта или последующих ссылок.Пожалуйста, свяжитесь с владельцу внешнего веб-сайта для получения ответов на вопросы по его содержанию.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *