Как работает двигатель Стирлинга. Какие существуют модификации двигателя внешнего сгорания. Каковы преимущества и недостатки двигателя Стирлинга по сравнению с ДВС. Какие попытки применения двигателя внешнего сгорания в автомобилях предпринимались.
История создания двигателя внешнего сгорания
Двигатель внешнего сгорания, также известный как двигатель Стирлинга, был изобретен шотландским инженером Робертом Стирлингом в 1816 году. Хотя сама идея двигателей горячего воздуха существовала и ранее, Стирлинг первым разработал работоспособную конструкцию такого двигателя.
Ключевым усовершенствованием Стирлинга стало добавление в конструкцию теплообменника (регенератора), который значительно повысил эффективность двигателя. Благодаря этому нововведению двигатель Стирлинга считался одним из самых надежных и безопасных двигателей своего времени.
Несмотря на первоначальный успех, в начале 20 века интерес к двигателям внешнего сгорания угас в пользу более дешевых в производстве двигателей внутреннего сгорания. Однако в середине 20 века вновь возник интерес к двигателям Стирлинга из-за их потенциальных преимуществ.

Принцип работы двигателя Стирлинга
Двигатель Стирлинга преобразует тепловую энергию в механическую работу за счет циклического нагрева и охлаждения рабочего тела (газа или жидкости) в замкнутом объеме. Основные этапы рабочего цикла:
- Нагрев рабочего тела в нижней части цилиндра, что приводит к его расширению и движению поршня вверх.
- Перемещение горячего газа в верхнюю часть цилиндра, где он охлаждается.
- Сжатие охлажденного газа, что приводит к движению поршня вниз.
- Возвращение газа в нижнюю часть цилиндра для повторения цикла.
Важно отметить, что система полностью герметична, поэтому рабочее вещество не расходуется, а лишь перемещается внутри цикла. Это отличает двигатель Стирлинга от двигателей внутреннего сгорания, где топливо сгорает внутри цилиндров.
Модификации двигателя внешнего сгорания
Существует три основные модификации двигателя Стирлинга:
Модификация «Альфа»
Эта конфигурация состоит из двух отдельных цилиндров — горячего и холодного. Каждый цилиндр содержит свой поршень. Тепло подводится к горячему цилиндру, а холодный находится в охлаждающем теплообменнике.

Модификация «Бета»
В этой версии используется один цилиндр, который с одной стороны нагревается, а с другой охлаждается. Внутри цилиндра перемещаются два элемента — силовой поршень и вытеснитель. Вытеснитель служит для перемещения рабочего газа между горячей и холодной зонами цилиндра.
Модификация «Гамма»
Эта модификация использует два соединенных цилиндра. В одном цилиндре (полностью холодном) движется силовой поршень. Во втором цилиндре, который нагрет с одной стороны и охлажден с другой, перемещается вытеснитель.
Преимущества двигателя внешнего сгорания
Двигатель Стирлинга обладает рядом существенных преимуществ по сравнению с традиционными двигателями внутреннего сгорания:
- Универсальность в выборе источника тепла: может работать от любого источника тепловой энергии, включая солнечную энергию и биотопливо.
- Простота конструкции: не требует сложных систем зажигания, газораспределения и т.д.
- Долговечность: отсутствие детонации и меньшее количество движущихся частей обеспечивают длительный срок службы.
- Бесшумность работы: особенно в модификации «Бета» с ромбовидным механизмом.
- Экологичность: низкий уровень выбросов, особенно при использовании альтернативных источников тепла.
- Высокий теоретический КПД: в идеальных условиях может достигать 60-70%.
Недостатки и ограничения двигателя Стирлинга
Несмотря на многочисленные преимущества, двигатели внешнего сгорания имеют ряд существенных недостатков, препятствующих их массовому применению:

- Высокая материалоемкость: требуют использования дорогих жаропрочных материалов.
- Большие габариты и вес: из-за необходимости в объемных теплообменниках.
- Сложность регулирования мощности: требуются специальные системы управления.
- Высокая стоимость производства: из-за использования дорогих материалов и сложной обработки.
- Медленный отклик на изменение нагрузки: усложняет применение в транспортных средствах.
Попытки применения двигателя внешнего сгорания в автомобилях
Несмотря на технические сложности, было предпринято несколько попыток создания автомобилей с двигателями Стирлинга:
- Ford Motor Company и Volkswagen Group проявляли интерес к этой технологии в 1950-х годах.
- Шведская компания UNITED STIRLING разработала четырехцилиндровый V-образный двигатель для грузовых фургонов.
- Philips создала двигатель 4-125DA мощностью 173 л.с. для легковых автомобилей.
- General Motors разработала восьмицилиндровый V-образный двигатель, который устанавливался на ограниченную серию Ford Torino в 1972 году.
Эти эксперименты показали потенциал двигателей Стирлинга, но также выявили их ограничения для массового применения в автомобильной промышленности.

Перспективы развития двигателей внешнего сгорания
Несмотря на текущие ограничения, двигатели Стирлинга продолжают привлекать внимание исследователей и инженеров. Основные направления развития включают:
- Разработку новых материалов: создание доступных жаропрочных сплавов и керамики может снизить стоимость производства.
- Совершенствование систем управления: разработка эффективных методов регулирования мощности.
- Оптимизация конструкции: уменьшение габаритов и веса двигателя.
- Интеграция с альтернативными источниками энергии: использование солнечной энергии или биотоплива.
При успешном решении этих задач двигатели внешнего сгорания могут стать конкурентоспособной альтернативой традиционным ДВС и электромоторам, особенно в специализированных применениях, требующих высокой эффективности и экологичности.
Заключение: будущее двигателей внешнего сгорания
Двигатели Стирлинга, несмотря на свой возраст, продолжают оставаться перспективной технологией. Их уникальные преимущества — универсальность в выборе топлива, высокая эффективность и экологичность — делают их привлекательными для ряда специализированных применений.

Однако для широкого распространения в автомобильной промышленности потребуются значительные технологические прорывы. Ключевыми факторами успеха станут разработка доступных жаропрочных материалов, оптимизация конструкции для уменьшения габаритов и совершенствование систем управления.
В ближайшем будущем двигатели внешнего сгорания, вероятно, найдут применение в нишевых областях, таких как автономные энергоустановки, космические аппараты и специализированные транспортные средства. Их развитие может также стимулировать инновации в смежных областях, например, в разработке новых материалов и теплообменников.
Хотя маловероятно, что двигатели Стирлинга полностью вытеснят традиционные ДВС или электромоторы в ближайшее время, они, несомненно, останутся важной частью развития энергоэффективных и экологичных технологий будущего.
Двигатели внешнего сгорания
Энергосберегающие технологии: Теплоэнергетическая установка FX-38 на основе двигателя внешнего сгорания с сжиганием газообразного топлива
Принцип работы
Предлагаемая инновационная технология основана на использовании высокоэффективного четырехцилиндрового двигателя внешнего сгорания. Это — тепловой двигатель. Тепло может поставляться от внешнего источника тепла или производиться путем сжигания широкого спектра видов топлива внутри камеры сгорания.
Тепло поддерживается при постоянной температуре в одном отделении двигателя, где оно преобразуется в водород, находящийся под давлением. Расширяясь, водород толкает поршень. В отделении двигателя с низкой температурой водород охлаждается при помощи аккумуляторов тепла и охладителей жидкости. При расширении и сжатии водород вызывает возвратно-поступательное движение поршня, которое преобразуется во вращательное движение при помощи наклонной шайбы, которая приводит в действие стандартный, емкостный электрический генератор. В процессе охлаждения водорода также производится тепло, которое можно использовать для комбинированного производства электроэнергии и тепла во вспомогательных процессах.
Общее описание
Теплоэнергетическая установка FX-38 представляет собой единый модуль «двигатель-генератор», который включает двигатель внешнего сгорания, систему сгорания, работающую на пропане, природном газе, попутном нефтяном газе, других видах топлива со средней и низкой энергоемкостью (биогаз), индуктивный генератор, систему контроля двигателя, защищенный от атмосферных воздействий корпус со встроенной системой вентиляции и другое вспомогательное оборудование для параллельной работы с сетью высокого напряжения.
Номинальная мощность по электричеству при работе на природном газе или биогазе при частоте 50 Гц составляет 38 кВт. Кроме того, установка производит 65 кВт-ч извлекаемого тепла с поставляемой по специальному заказу системой комбинированного производства тепла и электроэнергии.
Установка FX-38 может быть оснащена различными опциями системы охлаждения для обеспечения гибкости схемы установки. Продукт разработан для простого подключения к электрическим контактам, системам подачи топлива и внешним трубам системы охлаждения, если оборудованы таковыми.
Дополнительные детали и опции
- Модуль измерения мощности (обеспечивает установленный трансформатор тока для считывания на дисплее параметров переменного тока)
- Опция дистанционного мониторинга по интерфейсу RS-485
- Опции встроенного, либо удаленно смонтированного радиатора
- Опция использования пропанового топлива
- Опция использования природного газа
- Опция использования попутного нефтяного газа
- Опция использования топлива низкой энергоемкости
Установка FX-48 может применяться в нескольких вариантах следующим образом:
- Параллельное подключение к высоковольтной сети при 50 Гц, 380 В переменного тока
- Режим совместной выработки тепла и электроэнергии
Эксплуатационные характеристики установки
Выходная мощность складывается из электрической мощности и тепловой мощности. Для работы при частоте 50 Гц установка работает с тепловым коэффициентом 12230 кДж/кВт-ч (низшая теплота сгорания) и рассчитана на электрическую мощность 38 кВт. Показатель вырабатываемой электроэнергии 38 кВт включает паразитные потери, связанные с радиатором системы охлаждения, водяным насосом, вентилятором подачи воздуха в камеру сжигания, масляным насосом, контрольной системой и системой вентиляции блока.
В режиме производства электроэнергии и тепла при частоте 50 Гц установка производит 65 кВт-ч извлекаемого тепла. Продукт оборудован системой труб, готовой для подключения к поставляемому заказчиком теплообменнику типа жидкость/жидкость. Горячая сторона теплообменника представляет собой схему замкнутого цикла с охладителем кожуха двигателя и встроенным радиатором системы, если таковые присутствуют. Холодная сторона теплообменника предназначена для схем теплоприемника заказчика.
Техническое обслуживание
Установка предназначена для непрерывной работы и отбора мощности. Базовая проверка эксплуатационных характеристик проводится заказчиком с интервалом в 1000 часов и включает проверку системы водяного охлаждения и уровня масла. Через 10000 часов эксплуатации производится обслуживание передней части установки, включающее замену поршневого кольца, сальника штока, ремня привода и различных сальников. Специфические ключевые компоненты проверяются на износ. Скорость работы двигателя составляет 1500 оборотов в минуту для работы на частоте 50 Гц.
Бесперебойность
Бесперебойность работы установки составляет свыше 95%, исходя из интервалов эксплуатации, и учитывается при графике технического обслуживания.
Уровень звукового давления
Уровень звукового давления блока без встроенного радиатора составляет 64 дБА на расстоянии 7 метров. Уровень звукового давления блока с встроенным радиатором с вентиляторами охлаждения составляет 66 дБА на расстоянии 7 метров.
Выбросы
При работе на природном газе выбросы двигателя меньше или равны 0,0574 г/Нм3 NOx, 15,5 г/Нм3 летучих органических соединений и 0,345 г/Нм3 СО.
Газообразное топливо
Двигатель рассчитан на работу на различных типах газообразного топлива со значениями низшей теплоты сгорания от 13,2 до 90,6 МДж/Нм3, попутный нефтяной газ, природный газ, угольный метан, газ вторичной переработки, пропан и биогаз полигонов ТБО. Для охвата данного диапазона устройство может быть заказано со следующими конфигурациями топливной системы:
Система сгорания требует регулируемого давления подачи газа в 124-152 мбар для всех типов топлива.
Окружающая среда
Установка в стандартном исполнении работает при температуре окружающей среды от -20 до +50°С.
Описание установки
Теплоэнергетическая установка FX-38 полностью готова для выработки электроэнергии в заводской поставке. Встроенный электрический пульт монтируется на блок для удовлетворения требований интерфейса и контроля. Устойчивый к атмосферным воздействиям цифровой дисплей, встроенный в электрический пульт, обеспечивает оператору интерфейс запуска, остановки и перезапуска с помощью кнопок. Электрический пульт также служит основным местом подключения оконечного электрического устройства заказчика, а также с оконечными устройствами проводной связи.
Установка способна достигать выходной мощности полной нагрузки примерно через 3-5 минут с момента запуска в зависимости от изначальной температуры системы. Последовательность запуска и установки приводится в действие нажатием кнопки.
После команды пуска установка подключается к высоковольтной сети путем закрытия внутреннего контактора на сеть. Двигатель немедленно поворачивается, очищая камеру сжигания до открытия топливных клапанов. После открытия топливного клапана энергия подается на запальное устройство, поджигая топливо в камере сжигания. Наличие сжигания определяется по повышению температуры рабочего газа, что приводит в действие процедуру управления разгоном до точки рабочей температуры. После этого пламя остается самоподдерживающимся и постоянным.
После команды остановки установки сначала закрывается топливный клапан для прекращения процесса сжигания. По прошествии предварительно установленного времени, в течение которого механизм охлаждается, откроется контактор, отключая установку от сети. В случае если таковые установлены, вентиляторы радиатора могут работать некоторое время для уменьшении температуры охлаждающей жидкости.
В установке используется двигатель внешнего сгорания с постоянной длиной хода, подключенный к стандартному индукционному генератору. Устройство работает параллельно с высоковольтной сетью или параллельно с системой распределения энергии. Индукционный генератор не создает своего собственного возбуждения: он получает возбуждение от подключенного источника электросети. Если напряжение в электросети исчезает, установка отключается.
Описание узлов установки
Конструкция установки обеспечивает ее простой монтаж и подключение. Имеются внешние соединения для топливных труб, оконечных устройств электроэнергии, интерфейсов коммуникаций и, если это предусмотрено, внешнего радиатора и система труб теплообменника жидкость/жидкость. Установку можно заказать в комплекте со встроенным или удаленно монтированным радиатором и/или системой труб теплообменника жидкость/жидкость для охлаждения двигателя. Также предоставляются инструменты для безопасного отключения и логические схемы управления, разработанные специально для желаемого режима работы.
Кожух имеет две эксплуатационные панели на каждой стороне отделения двигатель/генератор и внешнюю однопетельную дверь для доступа к электрическому отделению.
Вес установки: около 1770 кг.
Двигатель является 4-цилиндровым (260 см3/цилиндр) двигателем внешнего сгорания, поглощающим тепло непрерывного сжигания газового топлива в камере внутреннего сгорания, и включает следующие встроенные компоненты:
- Вентилятор подачи воздуха в камеру сгорания, приводится в действие двигателем
- Воздушный фильтр камеры сгорания
- Топливная система и кожух камеры сгорания
- Насос для смазочного масла, приводится в действие двигателем
- Охладитель и фильтр для смазочного масла
- Водяной насос системы охлаждения двигателя, приводится в действие двигателем
- Температурный датчик воды в системе охлаждения
- Датчик давления смазочного масла
- Датчик давления и температуры газа
- Все необходимое контрольное и защитное оборудование
Характеристики генератора приводятся ниже:
- Номинальная мощность 38 кВт при 50 Гц, 380 В переменного тока
- Электрический КПД 95,0% при коэффициенте мощности 0,7
- Возбуждение от коммунальной электросети при помощи индукционного мотора/генераторного возбудителя
- Менее 5% общих гармонических искажений от отсутствия нагрузки до полной нагрузки
- Класс изоляции F
Интерфейс оператора – цифровой дисплей обеспечивает управление установкой. Оператор может запустить и остановить установку с цифрового дисплея, посмотреть время работы, рабочие данные и предупреждения/сбои. При установке опционального модуля измерения мощности оператор может видеть многие электрические параметры, такие как вырабатываемая мощность, киловатт-часы, киловатт-амперы и коэффициент мощности.
Функция диагностики оборудования и сбора данных встроена в систему контроля установки. Диагностическая информация упрощает удаленный сбор данных, отчет по данным и устранение неисправностей устройства. Эти функции включают сбор системных данных, таких как информация о рабочем состоянии, все механические рабочие параметры, такие как температура и давление цилиндров, а также, если подключен опциональный измеритель мощности, – электрические параметры значений вырабатываемой мощности. Данные могут быть переданы через стандартный порт соединения RS-232 и показаны на персональном компьютере или ноутбуке при помощи программного обеспечения для сбора данных. Для нескольких установок или в случаях, когда расстояние передачи сигнала превышает возможности RS-232, для получения данных используется опциональный порт RS-485 с использованием протокола MODBUS RTU.
Для переноса горячих выхлопных газов от системы сгорания используются трубы из нержавеющей стали. К выхлопной трубе в месте выхода из кожуха прикреплена сбалансированная выхлопная заслонка с защитным колпаком от дождя и снега.
Для охлаждения могут применяться различные прикладные технологии и конфигураций:
Встроенный радиатор – предоставляет собой радиатор, рассчитанный на температуру окружающей среды до +50°C. Все трубы подключаются в заводских условиях. Это типичная технология в случае, если не используется утилизация отходящего тепла.
Внешний радиатор – предназначен для установки заказчиком, рассчитан на температуру окружающей среды до +50°C. Короткие несущие ножки поставляются с радиатором для монтажа на контактном столике. При необходимости установки в помещении можно использовать данный вариант вместо предоставления системы вентиляции, требуемой для подачи охлаждающего воздуха во встроенный радиатор.
Внешняя система охлаждения – предоставляет систему труб снаружи кожуха для поставляемой заказчиком системы охлаждения. Ей может выступать теплообменник или удаленно монтированный радиатор.
Хладагент состоит из 50% воды и 50% этиленгликоля по объему: можно заменить смесью пропиленгликоля и воды, при необходимости.
Установка FX-38 использует водород в качестве рабочего тела для приведения в движение поршней двигателей по причине высоких способностей водорода к передаче тепла. В нормальном режиме работы потребляется предсказуемое количество водорода из-за нормальных утечек, вызванных проницаемостью материала. Для учета этого темпа потребления место установки требует наличия одного или нескольких наборов баллонов с водородом, отрегулированных и подсоединенных к блоку. Внутри установки встроенный водородный компрессор увеличивает давление в баллоне до более высокого давления в двигателе и вводит малые порции по запросу встроенного программного обеспечения. Встроенная система не требует технического обслуживания, а баллоны подлежат замене в зависимости от работы двигателя.
Для подачи топлива поставляется труба со стандартной трубной резьбой 1 дюйм для всех стандартных типов топлива, за исключением низкоэнергетических вариантов, для которых используется стандартная трубная резьба 1 1/2 дюйма. Требования к давлению топлива для всех видов газообразного топлива составляют от 124 до 152 мбар.
Двигатель внешнего сгорания: 3 модификации двинателя Стирлинга
Содержание статьи
Одним из перспективных источников механической энергии для автомобилей является двигатель внешнего сгорания, разработанный уроженцем Шотландии Робертом Стирлингом пару веков назад. Двигатель внешнего сгорания Стирлинга по принципу работы сильно отличается от привычного для всех ДВС. Но на какое-то время после разработки о нём благополучно забыли.
История создания
В 1816 году уроженец Шотландии Роберт Стирлинг запатентовал тепловую машину, которую сегодня называют в честь своего создателя. Однако сама идея двигателей горячего воздуха была придумана вовсе не им. Но первый осознанный проект по созданию такого агрегата реализовал именно Стирлинг.
Он усовершенствовал систему, добавив в неё очиститель, в технической литературе называвшийся теплообменником. Благодаря этому сильно возросла производительность мотора благодаря удержанию его в тепле. Эта модель для того времени была признана самой прочной, поскольку никогда не взрывалась.
Несмотря на такой быстрый успех продвижения модели, в начале двадцатого столетия от дальнейшего развития двигателя внешнего сгорания отказались из-за его себестоимости в пользу двигателя внутреннего сгорания.
Двигатель Стирлинга: принцип работы и модификации
Принцип работы любого теплового мотора заключается в том, что для получения газа в расширенном состоянии нужны немалые механические усилия. В качестве наглядного примера можно привести опыт с двумя кастрюлями, согласно которому их наполняют холодной и горячей водой. Опускают в холодную воду бутылку с закрученной пробкой. После этого бутылку переносят в горячую воду.
При таком перемещении газ в бутылке совершает механическую работу и выталкивает пробку из горлышка. Первая модель двигателя внешнего сгорания работала по точно такому же принципу. Однако позже создатель осознал, что часть выделяемого тепла можно использовать для подогрева. Производительность агрегата от этого только возросла.
Чуть позже инженер из Швеции Эриксон усовершенствовал конструкцию, выдвинув идею об охлаждении и нагревании газа при постоянном давлении вместо объёма. Это позволило двигателю «продвинуться по карьерной лестнице» и начать использоваться в шахтах и типографиях. Для экипажей и транспортных средств агрегат оказался слишком тяжёлым.
На рисунке наглядно отображается рабочий цикл двигателя Стирлинга.
Как работает двигатель Стирлинга? Он преобразует тепловую энергию, подводимую извне, в полезную механическую работу. Этот процесс происходит за счёт изменения температуры газа или жидкости, циркулирующих в замкнутом объёме. В нижней части агрегата рабочее вещество нагревается, увеличивается в объёме и выталкивает поршень вверх.
Горячий воздух поступает в верхнюю часть мотора и охлаждается с помощью радиатора. Давление рабочего тела понижается, а поршень опускается для повторения всего цикла. Система полностью герметична, благодаря чему рабочее вещество не расходуется, а лишь перемещается внутри цикла.
Кроме того, существуют моторы с открытым циклом, в которых регулирование потоком реализуется с помощью клапанов. Эти модели называют двигателем Эриксона. В целом принцип работы двигателя внешнего сгорания схож с ДВС. При низких температурах в нём происходит сжатие и наоборот. Нагрев же осуществляется по-разному.
Тепло в двигателе внешнего сгорания подводится через стенку цилиндра извне. Стирлинг догадался применять периодическое изменение температуры с вытеснительным поршнем. Этот поршень перемещает газы с одной полости цилиндра в другую. При этом с одной стороны постоянно поддерживаются низкие температуры, а с другой — высокие. При перемещении поршня вверх газ перемещается из горячей в холодную полость.
Система вытеснителя в двигателе соединена с рабочим поршнем, который сжимает газ в холоде и позволяет расширяться в тепле. Полезная работа совершается как раз благодаря сжатию в более низких температурах. Непрерывность обеспечивается кривошипно-шатунным механизмом. Особых границ между стадиями цикла не наблюдается. Благодаря этому КПД двигателя Стирлинга не уменьшается.
Некоторые детали работы двигателя
В теории подводить энергию в двигатель внешнего сгорания может любой источник тепла (солнце, электричество, топливо). Принцип работы тела двигателя заключается в использовании гелия, водорода или воздуха. Термическим максимально возможным КПД обладает идеальный цикл. КПД при этом составляет от 30 до 40 %. Эффективный регенератор может обеспечить более высокий КПД. Встроенные теплообменники обеспечивают регенерацию, обмен и охлаждение в современных двигателях. Их преимуществом является работа без масел. В целом смазки двигателю необходимо немного. Среднее давление в цилиндре варьируется от 10 до 20 МПа. Необходима хорошая уплотнительная система и возможность попадания масла в рабочие полости.
Согласно теоретическим расчётам эффективность двигателя Стирлинга сильно зависима от температуры и может достигать даже 70 %. Самые первые реализованные в металле образцы двигателя обладали низким КПД, поскольку варианты теплоносителя были неэффективны и ограничивали максимальную температуру нагрева, отсутствовали конструкционные материалы, устойчивые к высокому давлению. Во второй половине XX века двигатель с ромбическим приводом во время испытаний превысил показатель 35 % КПД на водном теплоносителе и с температурой 55 градусов по Цельсию. Совершенствование конструкции в некоторых экспериментальных образцах позволило достичь практически 39 % КПД. Почти все современные бензиновые двигатели, имеющие аналогичную мощность, обладают КПД 28 — 30 %. Турбированные дизели достигают около 35 %. Самые современные образцы двигателей Стирлинга, разработанные компанией Mechanical Technology Inc в США, показывают эффективность до 43 %.
После освоения жаропрочной керамики и других инновационных материалов появится возможность ещё сильнее увеличить температуру среды. КПД может при таких условиях достичь даже 60 %.
Существует несколько модификаций двигателя внешнего сгорания Стирлинга.
Модификация «Альфа»
Такой двигатель состоит из горячего и холодного раздельных силовых поршней, находящихся в собственных цилиндрах. К цилиндру с горячим поршнем поступает тепло, а холодный располагается в охлаждающем теплообменнике.
Модификация «Бета»
В этом варианте двигателя цилиндр, в котором расположился поршень, с одной стороны нагревается, а другой охлаждается. Внутри цилиндра двигаются вытеснитель и силовой поршень. Вытеснитель предназначен для изменения объёма рабочего газа. Регенератор же выполняет возвращение остывшего рабочего вещества в нагретую полость двигателя.
Модификация «Гамма»
Вся нехитрая конструкция модификации «Гамма» выполнена из двух цилиндров. Первый из них полностью холодный. В нём совершает движение силовой поршень. А второй — холодный только с одной стороны, а с другой — нагретый. Он служит для перемещения механизма вытеснителя. Регенератор циркуляции холодного газа в этой модификации может быть общим для обоих цилиндров и быть включённым в конструкцию вытеснителя.
Преимущества двигателя внешнего сгорания
Этот вид двигателей неприхотлив в плане топлива, поскольку основой его работы является перепад температур. Чем вызван этот перепад — особого значения не имеет. Двигатель Стирлинга имеет простую конструкцию и не нуждается в дополнительных системах и навесном оборудовании (стартер, коробка передач). Некоторые особенности устройства двигателя являются гарантией долгого срока эксплуатации: двигатель может работать непрерывно в течении примерно ста тысяч часов. Ещё одним серьёзным преимуществом двигателя внешнего сгорания является бесшумность. Она обусловлена тем, что в цилиндрах отсутствует детонация и нет необходимости в выводе отработавших газов. Особенно выделяется по этому параметру модификация «Бета». Её конструкция оснащена ромбовидным кривошипно-шатунным механизмом, который обеспечивает отсутствие вибраций во время работы. И, наконец, экологичность. В цилиндрах двигателя отсутствуют процессы, способные негативно влиять на окружающую среду.
При выборе альтернативных источников тепла (энергии солнца) двигатель Стирлинга превращается в разновидность экологически чистого силового агрегата.
Недостатки двигателя внешнего сгорания
Массовый выпуск таких двигателей в настоящее время невозможен. Основная проблема — это материалоёмкость конструкции. Охлаждение рабочего тела двигателя требует установку радиаторов с большими объёмами. Вследствие этого увеличиваются размеры. Использование сложных видов рабочего тела вроде водорода или гелия поднимает вопрос о безопасности двигателя. Теплопроводность и температурная стойкость должны быть на высоком уровне. Тепло к рабочему объёму поступает через теплообменники. Таким образом, часть тепла теряется по дороге. При изготовлении теплообменники приходится использовать термостойкие металлы. При этом металлы должны быть устойчивы к высокому давлению. Все эти материалы стоят дорого и долго обрабатываются. Принципы изменения режимов двигателя внешнего сгорания сильно отличаются от традиционных. Требуется разработка специальных управляющих устройств. Изменение мощности вызывается изменением давления в цилиндрах и угла фаз между вытеснителем и силовым поршнем. Также можно изменить ёмкость полости с рабочим телом.
Примеры реализации двигателей внешнего сгорания на автомобилях
Работоспособные модели такого двигателя были выпущены в свет, несмотря на все сложности изготовления. В 50 года XX века у автомобилестроительных компаний появилась заинтересованность в этой разновидности силового агрегата. В основном реализацией двигателей Стирлинга на автомобилях занимались Ford Motor Company и Volkswagen Group. Шведская компания UNITED STIRLING разработала такой двигатель, в котором разработчики старались чаще использовать серийные агрегаты и узлы (коленвал, шатуны). Был разработан четырёхцилиндровый V-образный двигатель, обладавший удельной массой 2,4 кг/кВт. Аналогичной массой обладает компактный дизель. Двигатель попробовали устанавливать на семитонные грузовые фургоны.
Наиболее выделяющимся успешным образцом стал Philips 4-125DA, доступный для установки на легковые автомобили. Рабочая мощность двигателя составляла 173 лошадиных силы. Размеры несильно отличались от обычного бензинового ДВС.
Компания General Motors разработала восьмицилиндровый V-образный двигатель внешнего сгорания с серийным кривошипно-шатунным механизмом. В 1972 году ограниченная версия автомобилей Ford Torino оснащалась таким двигателем. Причём расход топлива снизился на целых 25 % по сравнению с предыдущими моделями. Сегодня несколько зарубежных компаний пытаются совершенствовать конструкцию этого двигателя с целью адаптации для серийного производства и установки на легковые автомобили.
Выводы
В случае, если недостатки двигателя внешнего сгорания будут устранены, то этот вид силового агрегата придёт на смену ДВС и даже электромоторам. Но ввиду высокой стоимости материалов, сложности их обработки и громоздкости конструкции, двигатель внешнего сгорания пока не может выпускаться массово. Возможно, когда-нибудь будут разработан дешёвый жаростойкий и устойчивый к давлению материал, который будет использоваться при изготовлении двигателя Стирлинга, а пока вся конструкция обходится производителям гораздо дороже, чем обычный ДВС. Удачи и лёгких дорог!
Пожалуйста, оцените этот материал!
Загрузка…Если Вам понравилась статья, поделитесь ею с друзьями!
Двигатель Стирлинга. Виды и конструкции. Устройство и работа
Современная автомобильная промышленность достигла такого уровня, что без серьезных исследований невозможно добиться кардинальной модернизации в конструкции двигателей внутреннего сгорания. Это способствовало тому, что конструкторы стали обращать внимание на альтернативные разработки силовых установок, таких как двигатель Стирлинга.
Одни автоконцерны сконцентрировали свои силы на разработке и подготовке к выпуску в серию электрических и гибридных автомобилей, другие инженерные центры затрачивают финансовые средства в проектирование двигателей на альтернативном топливе, изготовленном из возобновляемых источников. Существуют другие различные разработки двигателей, которые в будущем могут стать новым двигателем для различных средств транспорта.
Таким возможным источником энергии механического движения для автомобильного транспорта будущего может стать двигатель внешнего сгорания, изобретенный в 19 веке ученым Стирлингом.
Устройство и принцип работы
Двигатель Стирлинга выполняет преобразование тепловой энергии, получаемой из внешнего источника, в механическое движение благодаря изменению температуры жидкости, циркулирующей в закрытом объеме.
В первое время после изобретения такой двигатель существовал в виде машины, действующей на принципе теплового расширения.
В цилиндре тепловой машины воздух перед расширением нагревался, перед сжатием охлаждался. Вверху цилиндра 1 находится водяная рубашка 3, дно цилиндра непрерывно нагревается огнем. В цилиндре расположен рабочий поршень 4, имеющий уплотнительные кольца. Между поршнем и дном цилиндра расположен вытеснитель 2, передвигающийся в цилиндре со значительным зазором.
Воздух, находящийся в цилиндре, перекачивается вытеснителем 2 к дну поршня или цилиндра. Вытеснитель движется под действием штока 5, проходящего через уплотнение поршня. Шток в свою очередь приводится в действие эксцентриковым устройством, вращающимся с запаздыванием на 90 градусов от привода поршня.
В позиции «а» поршень расположен в нижней точке, а воздух находится между поршнем и вытеснителем, охлаждается стенками цилиндра.
В следующей позиции «б» вытеснитель перемещается вверх, а поршень остается на месте. Воздух, находящийся между ними, выталкивается ко дну цилиндра, охлаждаясь.
Позиция «в» — рабочая. В ней воздух нагревается дном цилиндра, расширяется и поднимает два поршня к верхней мертвой точке. После выполнения рабочего хода вытеснитель опускается ко дну цилиндра, выталкивая воздух под поршень, и охлаждаясь.
В позиции «г» охлажденный воздух готов к сжатию, и поршень перемещается от верхней точки к нижней. Так как работа сжатия охлажденного воздуха меньше, чем работа расширения нагретого воздуха, то образуется полезная работа. Маховик при этом служит своеобразным аккумулятором энергии.
В рассмотренном варианте двигатель Стирлинга обладает малым КПД, так как теплота воздуха после рабочего хода должна отводиться через стенки цилиндра в охлаждающую жидкость. Воздух за один ход не успевает снизить температуру на необходимую величину, поэтому необходимо было продлить время охлаждения. Из-за этого скорость мотора была маленькой. Термический КПД был также незначительным. Тепло отработанного воздуха уходило в охлаждающую воду и терялось.
Разные конструкцииСуществуют различные варианты устройства силовых агрегатов, действующих по принципу Стирлинга.
Конструкция исполнения «Альфа»Этот двигатель включает в себя два отдельных рабочих поршня. Каждый поршень расположен в отдельном цилиндре. Холодный цилиндр находится в теплообменнике, а горячий нагревается.
Конструкция исполнения «Бета»Цилиндр с поршнем охлаждается с одной стороны, и нагревается с противоположной стороны. В цилиндре перемещается силовой поршень и вытеснитель, служащий для уменьшения и увеличения объема рабочего газа. Регенератор выполняет обратное перемещение остывшего газа в нагретое пространство двигателя.
Конструкция исполнения «Гамма»Вся система состоит из двух цилиндров. Первый цилиндр весь холодный. В нем перемещается рабочий поршень, Второй цилиндр с одной стороны нагретый, а с другой – холодный, и предназначен для передвижения вытеснителя. Регенератор для перекачки охлажденного газа может являться общим для двух цилиндров, либо может быть включен в устройство вытеснителя.
Преимущества- Как и множество двигателей внешнего сгорания, двигатель Стирлинга способен функционировать на разном топливе, так как для него важно наличие перепада температуры. При этом не важно, каким топливом он вызван.
- Двигатель имеет простое устройство, и не нуждается во вспомогательных системах и навесных устройствах (коробка передач, ремень ГРМ, стартер и т.д.).
- Особенности конструкции обеспечивают длительную эксплуатацию: больше 100 тысяч часов постоянной работы.
- Работа двигателя Стирлинга не создает большого шума, так как внутри двигателя не происходит детонация топлива, и отсутствует выпуск отработанных газов.
- Исполнение «Бета», снабженное кривошипно-шатунным устройством в виде ромба, является наиболее сбалансированным механизмом, который при функционировании не создает вибрацию.
- В цилиндрах мотора не возникают процессы, оказывающие вредное воздействие на природную среду. При подборе оптимального источника тепла мотор Стирлинга может стать экологически чистым устройством.
- При значительных положительных характеристиках быстрое серийное производство двигателей Стирлинга нереально по некоторым причинам. Основной вопрос в материалоемкости устройства. Чтобы охлаждать рабочее тело, необходим большой радиатор, что значительно увеличивает габариты и вес оборудования.
- Сегодняшний уровень технологий дает возможность двигателю Стирлинга конкурировать по свойствам с новыми бензиновыми двигателями за счет использования сложных типов рабочего тела (водород или гелий), находящихся под очень большим давлением. Это значительно повышает опасность использования таких двигателей.
- Серьезная проблема эксплуатации связана с проблемами температурной стойкости стальных сплавов и их теплопроводности. Тепло подходит к рабочему пространству с помощью теплообменников. Это приводит к значительным потерям тепла. Также теплообменник должен производиться из термоустойчивых сплавов, которые также должны быть устойчивы к повышенному давлению. Соответствующие этим условиям материалы очень сложны в обработке и имеют высокую стоимость.
- Принципы перехода двигателя Стирлинга на другие режимы функционирования также существенно отличаются от привычных принципов. Для этого необходимо создание специальных устройств управления. Например, для изменения мощности нужно менять угол фаз между силовым поршнем и вытеснителем, давление в цилиндрах, либо изменить емкость рабочего объема.
При необходимости создания преобразователя тепла компактных размеров можно вполне использовать мотор Стирлинга. При этом эффективность других аналогичных двигателей значительно ниже.
- Универсальные источники электричества. Моторы Стирлинга могут преобразовывать тепло в электричество. Существуют проекты солнечных электроустановок с применением таких двигателей. Их используют как автономные электростанции для туристов. Некоторые производители изготавливают генераторы, действующие от газовой конфорки. Существуют также проекты генераторов, которые работают от радиоизотопных источников тепла.
- Насосы. Если в контуре системы отопления установлен насос, то эффективность отопления значительно возрастает. В системах охлаждения также устанавливают насосы. Электрический насос может выйти из строя, к тому же, он потребляет электрическую энергию. Насос, действующий по принципу Стирлинга, решает этот вопрос. Двигатель Стирлинга для перекачивания жидкостей будет проще обычной схемы, так как вместо поршня может применяться сама перекачиваемая жидкость, служащая также для охлаждения.
Холодильное оборудование. В конструкции всех холодильников используется принцип тепловых насосов. Некоторые производители холодильников планируют устанавливать на свои изделия двигатель Стирлинга, которые будут очень экономичны. Рабочим телом будет выступать воздух.
- Сверхнизкие температуры. Для сжижения газов такие моторы очень эффективны. Их использование более выгодное, чем турбинные устройства. Также двигатель Стирлинга применяется в устройствах для охлаждения датчиков точных приборов.
- Солнечные электростанции. Электрическую энергию можно получать путем преобразования энергии солнца. Для этого могут применяться двигатели Стирлинга, которые устанавливают в фокус зеркала так, чтобы место нагрева непрерывно освещалось лучами солнца. Отражатель управляется по мере перемещения солнца, энергия которого концентрируется на малой площади. При этом происходит отражение излучения зеркалами около 92%. Рабочим телом двигателя служит чаще всего гелий или водород.
- Аккумуляторы тепла. С помощью устройства Стирлинга можно резервировать тепловую энергию, используя теплоаккумуляторы на основе расплавов солей. Такие устройства имеют запас энергии, превосходящий химические аккумуляторы, и имеют меньшую стоимость. Применяя для регулировки мощности увеличение и уменьшение угла фазы между двумя поршнями, можно накапливать механическую энергию, осуществляя торможение двигателя. При этом двигатель служит тепловым насосом.
- Автомобилестроение. Несмотря на сложности, существуют действующие модели мотора Стирлинга, использующиеся для автомобилей. Заинтересованность в таком двигателе, подходящем для автомобиля, возникла еще в прошлом веке. Разработки в этом направлении проводили английские и немецкие автоконцерны. В Швеции также был разработан двигатель Стирлинга, в котором применялись унифицированные серийные агрегаты и узлы. В результате получился 4-цилиндровый мотор, параметры которого сравнимы с характеристиками небольшого дизельного двигателя. Этот двигатель был успешно испытан в качестве силового агрегата для многотонного грузовика.
Сегодня исследования установок Стирлинга для подводных, космических и других установок, а также проектирование основных двигателей проводятся во многих зарубежных странах. Такой высокий интерес к моторам Стирлинга стал итогом интереса общественности в борьбе с загрязнением атмосферы, шумом и сохранением природных энергетических источников.
Похожие темы:
Читать онлайн — Бреусов В. Принцип работы двигателя внешнего сгорания
Паровая машина | |
Горизонтальная стационарная двухцилиндровая паровая машина для привода заводских трансмиссий. Конец XIX в. Музей индустриальной культуры. Нюрнберг | |
Медиафайлы на Викискладе |
Парова́я маши́на
— тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле
паровая машина
— любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.
Первая паровая машина была построена в XVII веке французским физиком Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году.
В России первая действующая паровая машина была построена в 1766 году по проекту Ивана Ползунова, предложенному им в 1763 году. Машина Ползунова имела два цилиндра с поршнями, работала непрерывно, и все действия в ней проходили автоматически. Но увидеть своё изобретение в работе И. И. Ползунову не пришлось: он умер 27 мая 1766 года, а его машина пущена в эксплуатацию на Барнаульском заводе только летом[1]. Через пару месяцев из-за поломки она перестала действовать и впоследствии была демонтирована.
Содержание
- 1 Принцип действия 1.1 Коэффициент полезного действия
- 1.2 Преимущества и недостатки
- 4.1 Вакуумные машины
- 8.1 Нетрадиционные машины
Конфигурация
Инженеры подразделяют двигатели Стирлинга на три различных вида:
- α-Стирлинг
— содержит два раздельных силовых поршня в раздельных цилиндрах, один — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, с холодным — в более холодном. У данного вида двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические трудности. Регенератор находится между горячей частью соединительной трубки и холодной.
- β-Стирлинг
— цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и вытеснитель, разделяющий горячую и холодную полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
- γ-Стирлинг
— тоже есть поршень и вытеснитель, но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется вытеснитель). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.
Также существуют разновидности двигателя Стирлинга, не попадающие под вышеуказанные три классических вида:
- Роторный двигатель Стирлинга
— решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, так как двигатель роторный)[1].
- Термоакустический двигатель Стирлинга — вместо использования поршня-вытеснителя, рабочее тело движется между горячей и холодной полости за счёт явлений акустического резонанса. Такая схема позволяет уменьшить количество движущихся частей, но возникают сложности с поддержанием акустического резонанса, а также со снятием мощности.
Принцип действия
Схема паровой машины тандем: 1 — поршень, 2 — поршневой шток, 3 — ползун, 4 — шатун, 5 — кривошип, 6 — движение эксцентрикового клапана, 7 — маховик, 8 — скользящий клапан, 9 — центробежный регулятор Схема работы паровой машины двойного действия
Для работы паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механическим частям.
Принцип действия поршневой паровой машины показан на иллюстрации. Работа поршня 1 посредством штока 2, ползуна 3, шатуна 4 и кривошипа 5 передаётся главному валу 6, несущему маховик 7, который служит для снижения неравномерности вращения вала. Эксцентрик, сидящий на главном валу, с помощью эксцентриковой тяги приводит в движение золотник 8, управляющий впуском пара в полости цилиндра. Пар из цилиндра выпускается в атмосферу или поступает в конденсатор. Для поддержания постоянного числа оборотов вала при изменяющейся нагрузке паровые машины снабжаются центробежным регулятором 9, автоматически изменяющим сечение прохода пара, поступающего в паровую машину (дроссельное регулирование
, показано на рисунке), или момент отсечки наполнения (
количественное регулирование
).
Поршень образует в цилиндре паровой машины одну или две полости переменного объёма, в которых совершаются процессы сжатия и расширения, что показано кривыми зависимости давления p
от объёма
V
указанных полостей. Эти кривые образуют замкнутую линию в соответствии с тепловым циклом, по которому работает паровая машина между давлениями
p1
и
p2
, а также объёмами
V1
и
V2
. Первичный поршневой двигатель предназначен для преобразования потенциальной тепловой энергии (давления) водяного пара в механическую работу. Рабочий процесс паровой машины обусловлен периодическими изменениями упругости пара в полостях её цилиндра, объём которых изменяется в процессе возвратно-поступательного движения поршня. Пар, поступающий в цилиндр паровой машины расширяется и перемещает поршень. Возвратно-поступательное движение поршня преобразуется с помощью кривошипно-шатунного механизма во вращательное движение вала. Впуск и выпуск пара осуществляются системой парораспределения. Для снижения тепловых потерь цилиндры паровой машины окружаются паровой рубашкой.
Моменты начала и конца процессов расширения и сжатия пара дают четыре основные точки реального цикла паровой машины: объём Ve
, определяемый точкой 1 начала или предварения впуска; объём конца впуска или наполнения
Е
, определяемый точкой 2 отсечки наполнения; объём предварения выпуска или конца расширения
Va
, определяемый точкой 3 предварения выпуска; объём сжатия
Vc
, определяемый точкой 4 начала сжатия. В реальной паровой машине перечисленные объёмы фиксируются парораспределительными органами.
Коэффициент полезного действия
Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла.
КПД тепловой машины равен:
η t h = W o u t Q i n {\displaystyle \eta _{th}={\frac {W_{out}}{Q_{in}}}} ,
где Wout — механическая работа, Дж; Qin — затраченное количество теплоты, Дж.
Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передаётся от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):
η t h ≤ 1 − T 2 T 1 {\displaystyle \eta _{th}\leq 1-{\frac {T_{2}}{T_{1}}}}
Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД в 30—42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать КПД в 50—60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.
Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.
Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.
У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении, конкретно — при давлении поступающего из котла пара. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют около 1 °C. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.
Преимущества и недостатки
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 29 октября 2014 года . |
Основным преимуществом паровых машин, как двигателей внешнего сгорания, в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива (источник тепла) — от кизяка до цепной реакции деления урана.
Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового океана на разных глубинах.
Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.
Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает, а, наоборот, возрастает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки и Китая, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.
В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию[уточнить
]. Экономические качества таких паровозов сравнимы с современными тепловозами и электровозами[
уточнить
].
Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог.
Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса.
Важным преимуществом поршневых паровых двигателей является сохранение максимального крутящего момента на любых оборотах, вплоть до самых минимальных. Это даёт паровым транспортным средствам динамику, недостижимую для нормальных средств с ДВС — преодоление уклонов на любой скорости, чрезвычайно медленный ход, плавный ход без рывков и т. д., а безрельсовым обеспечивает исключительную проходимость по бездорожью, несклонность к пробуксовке.
Благодаря высокому крутящему моменту поршневые паровые двигатели так же не нуждаются в коробке скоростей и понижающем редукторе, передавая усилие непосредственно на колёса или на дифференциал ведущего моста.
Простота устройства, щадящий температурный режим и низкие обороты, характерные для поршневых паровых двигателей, значительно повышают их ресурс, что обеспечивает им высокую надёжность и долговечность.
Поршневая паровая машина способна длительно выдерживать высокие перегрузки (до 100 %), на что ДВС неспособны.
Поршневая паровая машина не требует поддержания оборотов на холостом ходу и расходует пар строго пропорционально нагрузке, что значительно улучшает её экономичность. В современных автоматизированных котлах высокого давления подача топлива может отключаться сколь угодно часто, как только расход пара прекращается, а повторный пуск происходит практически мгновенно.
Поршневая паровая машина почти бесшумна.
Сжигание топлива в специальной камере при нормальном давлении позволяет провести полное окисление без образования токсичных продуктов. Использование геотермальной энергии, энергии солнца или других естественных источников может сделать паровую машину полностью экологически чистой. В результате экологический потенциал паровых машин гораздо выше, чем у двигателей внутреннего сгорания.
История
Роберт Стирлинг
Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года (английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление узла, который он назвал «эконом».
В современной научной литературе этот узел называется «регенератор». Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. Чаще всего регенератор представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходя через наполнитель в одну сторону, отдаёт тепло регенератору, а при движении в другую сторону отбирает его. Регенератор может быть внешним по отношению к цилиндрам, а может быть размещён на поршне-вытеснителе в β- и γ-конфигурациях. В последнем случае размеры и вес машины оказываются меньше. Частично роль регенератора выполняет зазор между вытеснителем и стенками цилиндра (при длинном цилиндре надобность в таком устройстве вообще исчезает, но появляются значительные потери из-за вязкости газа). В α-стирлинге регенератор может быть только внешним. Он устанавливается последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.
В 1843 году его брат, Джеймс Стирлинг, использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году инвестировала в двигатель Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.
Недостатки
Отрывок, характеризующий Двигатель внешнего сгорания
Назначено было торжественное заседание ложи 2 го градуса, в которой Пьер обещал сообщить то, что он имеет передать петербургским братьям от высших руководителей ордена. Заседание было полно. После обыкновенных обрядов Пьер встал и начал свою речь. – Любезные братья, – начал он, краснея и запинаясь и держа в руке написанную речь. – Недостаточно блюсти в тиши ложи наши таинства – нужно действовать… действовать. Мы находимся в усыплении, а нам нужно действовать. – Пьер взял свою тетрадь и начал читать. «Для распространения чистой истины и доставления торжества добродетели, читал он, должны мы очистить людей от предрассудков, распространить правила, сообразные с духом времени, принять на себя воспитание юношества, соединиться неразрывными узами с умнейшими людьми, смело и вместе благоразумно преодолевать суеверие, неверие и глупость, образовать из преданных нам людей, связанных между собою единством цели и имеющих власть и силу. «Для достижения сей цели должно доставить добродетели перевес над пороком, должно стараться, чтобы честный человек обретал еще в сем мире вечную награду за свои добродетели. Но в сих великих намерениях препятствуют нам весьма много – нынешние политические учреждения. Что же делать при таковом положении вещей? Благоприятствовать ли революциям, всё ниспровергнуть, изгнать силу силой?… Нет, мы весьма далеки от того. Всякая насильственная реформа достойна порицания, потому что ни мало не исправит зла, пока люди остаются таковы, каковы они есть, и потому что мудрость не имеет нужды в насилии. «Весь план ордена должен быть основан на том, чтоб образовать людей твердых, добродетельных и связанных единством убеждения, убеждения, состоящего в том, чтобы везде и всеми силами преследовать порок и глупость и покровительствовать таланты и добродетель: извлекать из праха людей достойных, присоединяя их к нашему братству. Тогда только орден наш будет иметь власть – нечувствительно вязать руки покровителям беспорядка и управлять ими так, чтоб они того не примечали. Одним словом, надобно учредить всеобщий владычествующий образ правления, который распространялся бы над целым светом, не разрушая гражданских уз, и при коем все прочие правления могли бы продолжаться обыкновенным своим порядком и делать всё, кроме того только, что препятствует великой цели нашего ордена, то есть доставлению добродетели торжества над пороком. Сию цель предполагало само христианство. Оно учило людей быть мудрыми и добрыми, и для собственной своей выгоды следовать примеру и наставлениям лучших и мудрейших человеков.
устройство, принцип работы и классификация
Что такое ДВС?
ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.
ДВС работает благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.
Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).
Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).
Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.
- Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
- Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
- Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.
Устройство двигателя внутреннего сгорания
При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:
- Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
- Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
- Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.
Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).
Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.
Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.
- Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
- Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
- Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
- Выхлопная система. Служит для отвода от мотора продуктов сгорания.
Включает:
— выпускной коллектор (приёмник отработанных газов),
— газоотвод (приёмная труба, в народе- «штаны»),
— резонатор для разделения выхлопных газов и уменьшения их скорости,
— катализатор (очиститель) выхлопных газов,
— глушитель (корректирует направление потока газов, гасит шум). - Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
- Система впрыска. Позволяет организовать дозированную подачу топлива.
В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.
Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.
Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.
А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.
Принцип работы двигателя
Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.
При этом сам процесс преобразования энергии может отличаться.
Самый распространённый вариант такой:
- Поршень в цилиндре движется вниз.
- Открывается впускной клапан.
- В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
- Поршень поднимается.
- Выпускной клапан закрывается.
- Поршень сжимает воздух.
- Поршень доходит до верхней мертвой точки.
- Срабатывает свеча зажигания.
- Открывается выпускной клапан.
- Поршень начинает двигаться вверх.
- Выхлопные газы выдавливаются в выпускной коллектор.
Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.
При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.
Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.
Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.
Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):
- Такт выпуска.
- Такт сжатия воздуха.
- Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
- Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха
4 такта образуют рабочий цикл.
При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.
Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?
- Поршень двигается снизу-вверх.
- В камеру сгорания поступает топливо.
- Поршень сжимает топливно-воздушную смесь.
- Возникает компрессия. (давление).
- Возникает искра.
- Топливо загорается.
- Поршень продвигается вниз.
- Открывается доступ к выпускному коллектору.
- Из цилиндра выходят продукты сгорания.
То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.
Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.
Важно! Кроме количества тактов есть отличия в механизме газообмена.
В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.
У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).
Классификация двигателей
Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.
Классификация двигателей в зависимости от рабочего цикла
В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:
- Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
- Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.
Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.
А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.
И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.
Классификация двигателей в зависимости от конструкции
- Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
- Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.
Классификация двигателей по принципу подачи воздуха
Подача воздуха также разделяет ДВС на два класса:
- Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
- Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.
Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.
Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.
Преимущества ДВС
- Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
- Высокая скорость заправки двигателя топливом.
- Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
- Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
Недостатки ДВС
При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.
Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).
Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.
Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.
Двигатель внешнего сгорания — это… Что такое Двигатель внешнего сгорания?
Статья состоит из словарного определения термина. Пожалуйста, доработайте статью, приведя ее в соответствие с правилами. Подробности могут быть на странице обсуждения. В Википедии статьи, состоящие только из словарного определения, не приветствуются, их следует попытаться улучшить или выставить к удалению. Кроме того, статью можно перенести в Викисловарь. Информация о самом слове, его значении, этимологии и употреблении, будет весьма ценным дополнением для Викисловаря. |
Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.
К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей. Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 19-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.
Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 19-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.
После изобретения двигателя внутреннего сгорания в конце 19-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания. Принцип работы двигателя внешнего сгорания
В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.
Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.
Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.
Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.
Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.
После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.
Литература
- «Двигатели внешнего сгорания», Г. В. Смирнов. Новое в жизни, науке, технике: Серия: Промышленность, 1967, М. — Знание. [1]
Энергетическое образование
2. Двигатели внешнего сгорания
В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.
Классификация двигателей в зависимости от конструкции
- Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
- Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.
Классификация двигателей по принципу подачи воздуха
Подача воздуха также разделяет ДВС на два класса:
- Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
- Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.
Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.
Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.
Преимущества ДВС
- Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
- Высокая скорость заправки двигателя топливом.
- Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
- Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
Недостатки ДВС
При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.
Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).
Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.
Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.
Двигатель внешнего сгорания — это… Что такое Двигатель внешнего сгорания?
Статья состоит из словарного определения термина. Пожалуйста, доработайте статью, приведя ее в соответствие с правилами. Подробности могут быть на странице обсуждения. В Википедии статьи, состоящие только из словарного определения, не приветствуются, их следует попытаться улучшить или выставить к удалению. Кроме того, статью можно перенести в Викисловарь. Информация о самом слове, его значении, этимологии и употреблении, будет весьма ценным дополнением для Викисловаря. |
Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.
К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей. Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 19-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.
Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 19-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.
После изобретения двигателя внутреннего сгорания в конце 19-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания. Принцип работы двигателя внешнего сгорания
В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.
Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.
Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.
Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.
Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.
После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.
Литература
- «Двигатели внешнего сгорания», Г. В. Смирнов. Новое в жизни, науке, технике: Серия: Промышленность, 1967, М. — Знание. [1]
Энергетическое образование
2. Двигатели внешнего сгорания
В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.
Двигатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.
Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления.
При нагревании газа его объём увеличивается, а при охлаждении — уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.
Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. Разницу объёмов газа можно превратить в работу, чем и занимается двигатель Стирлинга. 1. Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх (обратите внимание, что вытеснительный поршень неплотно прилегает к стенкам). 2. Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру. 3. Воздух остывает и сжимается, поршень опускается вниз. 4. Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.
Двигатель Стирлинга может использоваться для преобразования солнечной энергии в электрическую. Для этого двигатель стирлинга устанавливается в фокус параболического зеркала, (похожего по форме на спутниковую антенну) таким образом, чтобы область нагрева была постоянно освещена. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.
В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга.
Компания Stirling Solar Energy разрабатывает солнечные коллекторы большой мощности — до 150 кВт на одно зеркало. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию.
Солнечные коллекторы. Основы двигателя внутреннего сгорания| Министерство энергетики
Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, от них в Соединенных Штатах полагаются более 250 миллионов транспортных средств по шоссе. Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для повышения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.
Как работает двигатель внутреннего сгорания?
Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал.В конечном счете, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.
В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, а это означает, что для завершения цикла требуется четыре хода поршня. Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.
Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода. В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.
Улучшение двигателей внутреннего сгорания
За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС определенных загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (PM), более чем на 99%, чтобы соответствовать стандартам выбросов EPA. .Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.
Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.
Внешний тепловой двигатель — Energy Education
Внешний тепловой двигатель (EHE) относится к любому двигателю, который получает тепло от источника, отличного от жидкости, которая заставляет двигатель работать.Наиболее распространенный тип EHE — двигатель внешнего сгорания, который используется во многих конструкциях силовых установок.
Внешние тепловые двигатели, как правило, представляют собой паровые двигатели, и они отличаются от двигателей внутреннего сгорания тем, что источник тепла отделен от рабочей жидкости. [1] Например, двигатель внешнего сгорания будет использовать пламя для нагрева воды до пара, а затем использовать пар для вращения турбины. Это отличается от внутреннего сгорания, как в двигателе автомобиля, где бензин воспламеняется внутри поршня, работает, а затем выбрасывается.
Все двигатели внешнего сгорания являются внешними тепловыми двигателями. Существуют ЭТО, такие как солнечные тепловые электростанции, атомные электростанции и геотермальные электростанции, которые не являются двигателями внешнего сгорания. Несмотря на это, внешние тепловые двигатели, такие как ядерные реакторы, иногда называют двигателями внешнего сгорания. [3]
Двигатель внешнего сгорания
Двигатели внешнего сгорания являются наиболее распространенной формой внешних тепловых двигателей из-за их использования на электростанциях.Двигатель внешнего сгорания отличается от других EHE, потому что он требует, чтобы топливо подвергалось сгоранию для создания тепла, которое используется для работы.
Двигатели внешнего сгорания больше не используются на транспорте, поскольку мобильные конструкции недостаточно эффективны, но они продолжают использоваться на электростанциях. [4] Например, электростанция, работающая на природном газе, превращает воду в пар, чтобы вращать турбину, создавая электричество. Конструкция внешнего сгорания означает, что природный газ не вступает в прямой контакт с водой, и двигатель по-прежнему использует огромное количество выделяемой энергии для выполнения полезной работы.Электростанция, работающая на угле, работает примерно так же, когда уголь забирается на станцию из шахты и сжигается в котле. Трубы направляют воду в котел, а горящий уголь кипятит воду, создавая пар, который вращает турбину и вырабатывает электричество.
Примеры
Список литературы
Двигатель внешнего сгорания: типы и применение — стенограмма видео и урока
Двигатели внешнего и внутреннего сгорания
Разница между двигателями внешнего и внутреннего сгорания довольно проста и очевидна благодаря разнице в их названиях.В двигателе внешнего сгорания топливо не сжигается внутри двигателя. В двигателе внутреннего сгорания камера сгорания находится прямо посередине двигателя.
Внешние двигатели имеют рабочую жидкость, нагреваемую топливом. Двигатели внутреннего сгорания полагаются на взрывную силу топлива в двигателе для выполнения работы. В двигателях внутреннего сгорания взрыв с силой выталкивает поршни или выталкивает горячий газ под высоким давлением из двигателя на больших скоростях.Как движущиеся поршни, так и выбрасываемый с высокой скоростью газ могут выполнять свою работу. В двигателях внешнего сгорания при сгорании нагревается жидкость, которая, в свою очередь, выполняет всю работу.
Двигатели внешнего сгорания Типы
Паровой двигатель — это один из типов двигателей внешнего сгорания. В паровом двигателе в камере сгорания сжигается такое топливо, как уголь. Это тепло превращает воду в бойлере в пар. По трубам пар подается в турбину, у которой к валу прикреплен ряд лопастей.При прохождении через турбину высокотемпературный пар расширяется, давит на лопасти и заставляет их вращать вал. Вращающийся вал может приводить в движение электрогенератор, приводить в движение гребной винт или выполнять другую полезную работу.
Другая конфигурация включает нагнетание пара высокого давления в камеру с поршнем. Пар давит на поршень, соединенный с коленчатым валом. Коленчатый вал может преобразовывать возвратно-поступательное движение поршня во вращательное движение, которое может вращать колеса или пропеллеры.
Второй тип двигателя внешнего сгорания — это двигатель Стирлинга . Двигатель Стирлинга отличается от парового двигателя тем, что его рабочая жидкость всегда находится в газовой фазе, в отличие от парового двигателя, который превращает жидкую воду в газообразный пар. Кроме того, двигатель Стирлинга непрерывно рециркулирует свою рабочую жидкость, в то время как паровые двигатели сбрасывают конденсированный пар, как только он проходит через двигатель.
В двигателях Стирлингаработает горячий газ, нагретый внешним источником, через поршни, вращающие коленчатый вал.В сложной конфигурации газ циркулирует между горячим и холодным концом поршневой камеры, расширяясь при нагревании и сжимаясь при охлаждении. Расширенный газ толкает поршень вперед, в то время как сжимающийся газ толкает поршень назад. Тепло, генерируемое при сгорании, используется для производства работы и непрерывного цикла рабочего тела в горячих и холодных циклах.
Использование двигателей внешнего сгорания
Паровые двигатели были первыми изобретенными удачными двигателями, и именно они стали движущей силой промышленной революции.Именно они питали знаменитый паровоз, струйка пара которого вырывалась из трубы. В настоящее время они используются для производства большого количества электроэнергии в мире. Любая угольная или атомная электростанция приводится в движение паровыми двигателями. Любой, кто когда-либо водил машину на электростанции, видел гигантские белые клубы пара, поднимающиеся из нескольких труб.
Двигатель Стирлинга имеет более ограниченное применение и не так широко распространен, как паровой двигатель. Двигатели Стирлинга используются для выработки электроэнергии в некоторых частях мира.Они также используются на подводных лодках и для отопления жилых домов. Недавно они были объединены с солнечными фермами для выработки электроэнергии.
Резюме урока
Таким образом, двигатель внешнего сгорания классифицируется как таковой, потому что он работает на сгорании топлива, но сгорание происходит в камере, внешней по отношению к двигателю. Таким образом, он отличается от двигателя внутреннего сгорания , поскольку в двигателе внутреннего сгорания сгорание происходит внутри двигателя.
Двигатели внешнего сгорания могут быть паровыми двигателями или двигателями Стирлинга. Паровые двигатели превращают жидкую воду в газообразный пар и работают на паровозах и электростанциях и очень широко используются. Двигатели Стирлинга отличаются от паровых двигателей тем, что в них рабочая жидкость всегда находится в газовой фазе, ограничены в их использовании. В некоторых частях света они вырабатывают электроэнергию, обогревают дома и подводные лодки.
Устройство и принцип действия двигателей Мы широко используем тепловые двигатели с момента их изобретения в 17 веке.Есть много видов двигателей, и они используются в нашей жизни. На этом занятии представлены конструкция, принцип и характеристики тепловых двигателей и источника энергии. Поршневой паровой двигатель Поршневой паровой двигатель — первый двигатель, получивший практическое применение. Этот двигатель получает механическую мощность за счет статического давления пара. После промышленной революции он долгое время использовался в качестве источника энергии для промышленности и транспорта.Но его заменяют двигатели внутреннего сгорания, и в настоящее время он не используется. Двигатель Стирлинга Двигатель Стирлинга состоит из двух поршней, как показано на правом рисунке. Это двигатель внешнего сгорания с замкнутым циклом, который многократно использует рабочий газ без какого-либо клапана.Запоминающейся характеристикой этого двигателя является то, что для получения высокого КПД используется регенератор. В те дни был изобретен двигатель, который назывался «Двигатель горячего воздуха» вместе с двигателем Эрикссон, описанным ниже. После многих разработок двигатели Стирлинга в настоящее время получают высокую мощность и высокий КПД за счет использования гелия или водорода под высоким давлением в качестве рабочего газа. Но этот двигатель еще не получил практического применения, потому что у него есть несколько проблем, таких как большой вес и высокая стоимость производства. Эрикссон Двигатель Дж. Эрикссон разработал несколько двигателей, модернизировав двигатель Стирлинга (в наши дни называемый двигателем горячего воздуха). Один из них сегодня называется движком Ericsson. Это двигатель внешнего сгорания с открытым циклом с двумя клапанами на подающем цилиндре и силовом цилиндре, как показано на правом рисунке. Также в большинстве двигателей, изобретенных Дж. Эриксоном, использовался регенератор. Бензиновый двигатель В настоящее время бензиновый двигатель (двигатель с искровым зажиганием) широко используется в качестве источника энергии для автомобилей.По принципу этого двигателя смесь топлива и воздуха сначала сжимается в цилиндре. А газ взрывается от свечи зажигания и генерирует выходную мощность. В качестве хороших характеристик двигателя может быть реализован двигатель меньшего размера и легкого веса, при этом возможны высокие обороты двигателя и большая мощность. Также обслуживание двигателя очень простое. Паровая турбина Паровая турбина имеет вращающиеся лопатки вместо поршня и цилиндра поршневого парового двигателя.Этот двигатель используется в качестве источника энергии на тепловых и атомных электростанциях. Паровая турбина использует динамическое давление пара и преобразует тепловую энергию в механическую, хотя поршневой паровой двигатель использует статическое давление пара. Оба двигателя используют энергию, полученную при расширении пара. Дизельный двигатель Газовая турбина По принципу газовой турбины рабочий газ (воздух) сжимается компрессором и сначала нагревается за счет энергии сгорания топлива. Рабочий газ становится высокой температуры и высокого давления. Двигатель преобразует энергию рабочего газа во вращающуюся энергию лопастей, используя взаимодействие между газом и лопастями. Ракетный двигатель Ракетный двигатель получает газообразные продукты сгорания высокой температуры и высокого давления из топлива и окислителя в конбусторе.Газообразные продукты сгорания приобретают высокую скорость с адиабатическим расширением через сопло и выбрасываются в заднюю часть двигателя. Движущая сила получается за счет реакции высокоскоростного газа. Топливный элемент Вышеупомянутые тепловые двигатели меняют энергию топлива на механическую за счет тепловой энергии. С другой стороны, топливный элемент напрямую преобразует химическую энергию топлива в электрическую. |
Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций
Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций
Администрация — Навыки, процедуры, обязанности военнослужащих и т. Д.
Продвижение — Военное продвижение по службе книги и др.
Аэрограф / Метеорология
— Метеорология
основы, физика атмосферы, атмосферные явления и др.
Руководство по аэрографии и метеорологии ВМФ
Автомобили / Механика — Руководства по обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным запчастям, руководства по запчастям дизельных двигателей, руководства по запчастям для бензиновых двигателей и т. Д.
Автомобильные аксессуары |
Перевозчик, Персонал |
Дизельные генераторы |
Механика двигателя |
Фильтры |
Пожарные машины и оборудование |
Топливные насосы и хранилище |
Газотурбинные генераторы |
Генераторы |
Обогреватели |
HMMWV (Хаммер / Хаммер) |
и т.п…
Авиация — Принципы полета,
авиастроение, авиационная техника, авиационные силовые установки, руководства по авиационным деталям, руководства по деталям самолетов и т. д.
Руководства по авиации ВМФ |
Авиационные аксессуары |
Общее техническое обслуживание авиации |
Руководства по эксплуатации вертолетов AH-Apache |
Руководства по эксплуатации вертолетов серии CH |
Руководства по эксплуатации вертолетов Chinook |
и т.д …
Боевой — Служебная винтовка, пистолет
меткая стрельба, боевые маневры, органическое вспомогательное оружие и т. д.
Химико-биологические, маски и оборудование |
Одежда и индивидуальное снаряжение |
Инженерная машина |
и т.д …
Строительство — Техническое администрирование,
планирование, оценка, календарное планирование, планирование проекта, бетон, кладка, тяжелые
строительство и др.
Руководства по строительству военно-морского флота |
Агрегат |
Асфальт |
Битуминозный распределитель кузова |
Мосты |
Ведро, раскладушка |
Бульдозеры |
Компрессоры |
Обработчик контейнеров |
Дробилка |
Самосвалы |
Земляные двигатели |
Экскаваторы | и т.п…
Дайвинг — Руководства по дайвингу и утилизации разного оборудования.
Чертежник — Основы, приемы, составление проекций, эскизов и др.
Электроника — Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. Д.
Кондиционер |
Усилители |
Антенны и мачты |
Аудио |
Аккумуляторы |
Компьютерное оборудование |
Электротехника (NEETS) (самая популярная) |
Техник по электронике |
Электрооборудование |
Электронное общее испытательное оборудование |
Электронные счетчики |
и т.п…
Инженерное дело — Основы и приемы черчения, черчение проекций и эскизов, деревянное и легкое каркасное строительство и др.
Военно-морское дело |
Программа исследования прибрежных заливных отверстий в армии |
так далее…
Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.
Логистика — Логистические данные для миллионов различных деталей.
Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.
Книги медицинские — Анатомия, физиология, пациент
уход, оборудование для оказания первой помощи, аптека, токсикология и др.
Медицинские руководства военно-морского флота |
Агентство регистрации токсичных веществ и заболеваний
MIL-SPEC — Government MIL-Specs и другие сопутствующие материалы
Музыка — мажор и минор масштабные действия, диатонические и недиатонические мелодии, ритм биения, пр.
Ядерные основы — Теории ядерной энергии,
химия, физика и др.
Справочники DOE
Фотография и журналистика
— Теория света,
оптические принципы, светочувствительные материалы, фотографические фильтры, копия
редактирование, написание статей и т. д.
Руководства по фотографии и журналистике военно-морского флота |
Армейская фотография Полиграфия и пособия по журналистике
Религия — Основные религии мира, функции поддержки поклонения, венчания в часовне и т. д.
Основы работы с двигателем Основы работы с двигателемХанну Яэскеляйнен, Магди К.Хаир
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Аннотация : Поршневые двигатели внутреннего сгорания — подкласс тепловых двигателей — могут работать в четырех- и двухтактных циклах. В каждом случае двигатель может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI). Возможен ряд других классификаций двигателей, основанных на мобильности двигателя, применении, топливе, конфигурации и других параметрах конструкции.Теоретически процесс сгорания можно смоделировать, применяя законы сохранения массы и энергии к процессам в цилиндре двигателя. Основные конструктивные и рабочие параметры двигателей внутреннего сгорания включают степень сжатия, рабочий объем, зазор, выходную мощность, указанную мощность, термический КПД, указанное среднее эффективное давление, среднее эффективное давление при торможении, удельный расход топлива и многое другое.
Тепловые двигатели
Определение и классификация
Тепловые двигатели — это машины преобразования энергии — они преобразуют химическую энергию топлива в работу, сжигая топливо в воздухе для производства тепла.Это тепло используется для повышения температуры и давления рабочего тела, которое затем используется для выполнения полезной работы. Тепловые двигатели можно классифицировать как:
- Двигатели внутреннего сгорания, или
- Двигатели внешнего сгорания.
Их также можно разделить на возвратно-поступательные и вращательные. В поршневых двигателях рабочая жидкость используется для линейного перемещения поршня. Затем поступательное движение обычно преобразуется во вращательное с помощью кривошипно-скользящего механизма (шатун / коленчатый вал).В роторном двигателе рабочая жидкость вращает ротор, соединенный с выходным валом.
Двигатели внутреннего сгорания
В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливовоздушной смеси или продуктов сгорания самой топливно-воздушной смеси. Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в действие автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших служебных приложениях.Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются двухтактный двигатель и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.
Общие цели при проектировании и разработке всех тепловых двигателей включают: максимизацию работы (выходную мощность), минимизацию потребления энергии и уменьшение загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу.На рисунке 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами отрасли крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях. Впускные и выпускные клапаны опущены для простоты, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей используются впускные и выпускные отверстия, а не клапаны.
Рисунок 1 . Основные узлы поршневых (а) и крейцкопфных (б) двигателейКак двух-, так и четырехтактный поршневой двигатель внутреннего сгорания может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).
Обычно системы с искровым зажиганием характеризуются предварительно смешанным зарядом (т.е. топливо и воздух смешиваются перед зажиганием) и внешним источником зажигания, таким как свеча зажигания. Предварительное смешивание может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве случаев, это распределение также может быть неоднородным. Возгорание инициируется искрой, и пламя распространяется наружу вдоль фронта от места искры.Сгорание в двигателях SI считается кинетическим, потому что вся смесь воспламеняется, а скорость сгорания определяется тем, насколько быстро химическая реакция может потреблять эту смесь, начиная с источника воспламенения.
Обычные дизельные двигатели характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заправка воздуха и топлива в этих двигателях очень неоднородна: одни регионы являются чрезмерно богатыми, а другие — обедненными.Между этими крайностями смесь топлива и воздуха будет существовать в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания. Температура испарившегося топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс сгорания. Температура самовоспламенения топлива зависит от его химического состава. В отличие от системы SI, сгорание в двигателях с воспламенением от сжатия может происходить во многих точках, где соотношение воздух-топливо и температура могут поддерживать этот процесс.Говорят, что основная часть процесса сгорания в двигателях с ХИ регулируется смешиванием, потому что скорость регулируется образованием воспламеняющихся смесей воздуха и топлива в камере сгорания.
В некоторых случаях различие между модулями SI и CI может быть нечетким. Из-за необходимости сокращения выбросов и расхода топлива были разработаны системы сгорания, которые могут использовать некоторые особенности двигателей SI и CI; например, самовозгорание предварительно смешанных смесей бензина, дизельного топлива или их смеси.
Газовые турбины, рис. 2, являются еще одним примером двигателей внутреннего сгорания. Однако, в отличие от поршневых двигателей с возвратно-поступательным движением, сгорание происходит отдельно в специальной камере сгорания.
Рисунок 2 . Микрогазовая турбина для расширителей диапазона в транспортных средствах средней и большой грузоподъемности(Источник: Wrightspeed Inc.)
Двигатели внешнего сгорания
В двигателях внешнего сгорания рабочее тело полностью отделено от топливовоздушной смеси.Тепло от продуктов сгорания передается рабочему телу через стенки теплообменника. Паровая машина — хорошо известный пример двигателя внешнего сгорания.
Примером поршневого двигателя внешнего сгорания является двигатель Стирлинга, в котором тепло добавляется к рабочему телу при высокой температуре и отводится при низкой температуре. Тепло, добавляемое к рабочему телу, может быть получено практически от любого источника тепла, такого как сжигание ископаемого топлива, дерева или любого другого органического материала.
Цикл Ренкина, на котором основаны многие конструкции паровых двигателей, является еще одним примером двигателя внешнего сгорания. Тепло, поступающее от внешнего источника, повышает температуру жидкости, такой как вода, до тех пор, пока она не превратится в пар, который используется для перемещения поршня или вращения турбины. Паровые двигатели приводили в движение автомобили в США с 1900 по 1916 год; однако к 1924 году они почти исчезли. Паровые грузовики были популярны в Англии до середины 1930-х годов. В то время как паровые локомотивы во многих странах постепенно заменялись тепловозами на протяжении большей части 20 -го -го века, некоторые из них оставались в эксплуатации до 21 -го и века.Причины прекращения использования парового двигателя как основного двигателя в мобильных приложениях заключались в размере и количестве основных компонентов, необходимых для их работы, таких как печь, котел, турбина, клапаны, а также в их сложных элементах управления [422] . Паровая турбина, которая до сих пор работает на многих стационарных электростанциях, является примером роторного двигателя внешнего сгорания.
В 21, и веке, акцент на повышении эффективности двигателей вызвал возобновление интереса к циклу Ренкина для мобильных приложений — в форме рекуперации отработанного тепла выхлопных газов (WHR).В то время как в некоторых из этих устройств используется пар, в других используются органические жидкости, которые лучше подходят для применений с относительно низкой температурой выхлопных газов транспортных средств. Из-за комбинации цикла Ренкина и органической рабочей жидкости эти системы часто называют системами рекуперации отходящего тепла с органическим циклом Ренкина (ORC).
###
Разница между двигателем внутреннего и внешнего сгорания
Автор: Admin
Двигатель внутреннего и внешнего сгорания
Двигатель внутреннего сгорания и двигатели внешнего сгорания — это типы тепловых двигателей, в которых в качестве основного источника энергии используется тепловая энергия, производимая путем сгорания.Проще говоря, оба этих типа машин преобразуют тепловую энергию в механическую работу в виде вращения вала, который впоследствии используется для питания любого механизма, от автомобилей до пассажирских самолетов.
Подробнее о двигателе внутреннего сгорания
Двигатель внутреннего сгорания — это тепловой двигатель, в котором процесс сгорания топлива, смешанного с окислителем, происходит в камере сгорания, которая является неотъемлемой частью контура потока рабочего тела.
Основной принцип работы любого двигателя внутреннего сгорания заключается в сжигании топливовоздушной смеси, создании газового объема с высоким давлением и температурой и использовании давления для перемещения компонента, прикрепленного к валу.Механизмы, используемые для достижения этой функциональности, разнообразны, а двигатели специально разработаны и обладают собственными характерными свойствами.
Наиболее распространенным типом двигателей внутреннего сгорания является поршневой или поршневой двигатель, в котором поршень, соединенный с коленчатым валом, перемещается за счет давления и тепла, генерируемых при сгорании. У них относительно низкое отношение мощности к весу, а поток рабочей жидкости прерывистый, поэтому они используются для питания относительно небольших мобильных устройств, таких как автомобили, локомотивы или тягачи.Поршневые двигатели термодинамически моделируются либо по циклу Отто, либо по дизельному циклу.
Газотурбинные двигатели также являются двигателями внутреннего сгорания, но используют газ под высоким давлением для перемещения лопаток турбины, соединенной с валом. Сгорание газотурбинных двигателей является непрерывным и имеет очень высокое отношение мощности к массе; поэтому используется в больших мобильных единицах, таких как реактивные самолеты, коммерческие авиалайнеры и корабли. Газотурбинные двигатели, работающие на воздухе в качестве рабочего тела, моделируются циклом Брайтона.Топливо, используемое во многих двигателях внутреннего сгорания, представляет собой нефтяное топливо разной степени.
Подробнее о двигателе внешнего сгорания
Двигатель внешнего сгорания — это тепловой двигатель, в котором рабочая жидкость доводится до высокой температуры и давления за счет сгорания от внешнего источника тепла через стенку двигателя или теплообменник во внешнем источнике, и процесс сгорания происходит вне цикла потока рабочего тела.
Большинство типов паровых двигателей являются двигателями внешнего сгорания, в которых вода превращается в перегретый пар с помощью внешнего источника тепла, такого как котел, работающий от тепловой энергии, ядерной энергии или сжигания ископаемого топлива.В зависимости от механизма и фазового перехода паровые двигатели термодинамически моделируются циклом Стирлинга (однофазный — перегретый пар) и циклом Ренкина (двухфазный перегретый — пар и насыщенная жидкость).
В чем разница между двигателем внутреннего и внешнего сгорания?
• Процесс сгорания двигателей внутреннего сгорания является неотъемлемой частью цикла потока жидкости, а тепловая энергия генерируется непосредственно внутри системы.
• В двигателях внешнего сгорания тепловая энергия генерируется вне цикла потока рабочего тела и затем передается рабочему телу.
.