Электродвигатель из генератора автомобиля: Как сделать мощный мотор из автомобильного генератора

Содержание

Как сделать мощный мотор из автомобильного генератора

Как-то у меня появился старый, но рабочий генератор. Я решил переделать его в BLDC мотор. В последующем буду его использовать для самодельного электровелосипеда или электросамоката. В целом двигатель подойдет везде, где требуется регулируемый электропривод.

Используемые материалы


  • автомобильный генератор;
  • припой;
  • провода медные;
  • АКБ;
  • плата управления с регулятором оборотов.

Инструмент: трещотка с удлинителем и набором головок; отвертки; молоток; узкогубцы; съемник для подшипников; кусачки; канцелярский ножик; паяльник.

Процесс переделки генератора в BLDC двигатель


Берем автомобильный генератор и приступаем к его разборке.

В первую очередь откручиваем гайки, которые удерживают заднюю крышку с подшипником.

Снимаем щеточный узел.

Отворачиваем крепление шкива и снимаем его.

Вытаскиваем шпонку.

Снимаем переднюю крышку генератора.

Вытаскиваем ротор.

Откручиваем крепления выводов обмоток статора от выпрямительного блока диодов.

Отсоединяем статор от задней крышки.

Откручиваем крепления диодного моста и убираем его.

Зачищаем выводы. Обмотку статора соединяем по схеме «треугольник».

Припаиваем к выводам провода.

Берем снятый щеточный узел. В его конструкции присутствует регулятор напряжения. Его требуется отсоединить.

Припаиваем к щеткам провода в обход регулятора напряжения.

Собираем двигатель в обратном порядке. При необходимости меняем подшипники и протачиваем контактные кольца.

Подключаем обмотку ротора к питанию. Выходы статора подсоединяются к плате управления. Сам драйвер запитывается от АКБ.

С помощью регулятора, которым может выступать обычный потенциометр, регулируем обороты BLDC мотора.

Полезные советы


Получаемый таким образом BLDC двигатель имеет недостаточно хороший КПД, так как энергия тратится в обмотке возбуждения на подмагничивание ротора. Устранить этот недостаток можно с помощью установки неодимовых магнитов.
Я брал драйвер, который работает без датчика Холла. Он дешевле и вполне подходит. При желании получить хорошую производительность можно поставить датчик Холла в двигатель и подключить его к соответствующей плате.
Перед подключением двигателя к АКБ обязательно проверяем обмотки на межвитковое КЗ и пробой на корпус.

Смотрите видео


Мотор из генератора своими руками | Делаем электродвигатель | КРОТ.NET — Еженедельный Журнал

Многие из нас, видя проезжающие по городу электро- скутеры, велосипеды или самокаты, с завистью оборачиваются вслед. Еще бы, пользоваться любимым транспортным средством прилагая минимум усилий – мечта каждого. Вот только стоят они весьма недешево. Вот тут-то и возникает мысль: а нельзя ли переделать свой велосипед в электрический?
Необходимым элементом для переделки является безщеточный мотор постоянного тока (BLDC), но его цена на рынке достаточно высока. В нашей статье мы расскажем вам, как сделать такой мотор из генератора своими руками. Это значительно уменьшит расходы на переделку велосипеда. Ведь б/у генератор в хорошем состоянии можно недорого купить на любой автомобильной разборке.

Для того, чтобы сделать мотор из генератора, вам понадобятся:

  • старый автомобильный генератор;
  • плоскогубцы, набор ключей и отверток;
  • контроллер регуляторов оборотов;
  • паяльник;
  • провода;
  • две аккумуляторные батареи на 6В;
  • мультиметр;
  • подшипники (при необходимости их замены).

Шаг 1. Разбираем автомобильный генератор

1

Раскручиваем четыре длинных болта, соединяющих генератор.

2

Отсоединяем регулятор напряжения (реле-регулятор в сборе со щетками) и снимаем его.

Источник: https://youtu.be/y3qCx2JCIeo

3

Придерживая шкив, отворачиваем гайку крепления и снимаем его.

4

Снимаем все шайбы, крыльчатку и вынимаем шпонку.

Источник: https://youtu.be/y3qCx2JCIeo

5

Снимаем переднюю крышку, вынимаем ротор с коллектором и подшипники.

Источник: https://youtu.be/y3qCx2JCIeo

Если подшипники износились – замените их на аналогичные.

6

Откручиваем статор от задней крышки и выпрямительного блока и вынимаем его.

7

Отсоединяем и удаляем блок выпрямителей (диодный мост).

Источник: https://youtu.be/y3qCx2JCIeo

8

Зачищаем и соединяем в «треугольник» выводы обмоток статора.

9

Залуживаем их и припаиваем к ним провода.

Источник: https://youtu.be/y3qCx2JCIeo

10

Отсоединяем два контакта реле-регулятора от щеток и так же припаиваем к ним провода.

Источник: https://youtu.be/y3qCx2JCIeo

Шаг 2. Собираем мотор

1

Соединяем провода статора в жгут и вставляем его в заднюю крышку.

Источник: https://youtu.be/y3qCx2JCIeo

2

Ставим на место ротор с коллектором и подшипниками, надеваем переднюю крышку и стягиваем все длинными болтами.

3

Присоединяем на место щеточный блок.

Источник: https://youtu.be/y3qCx2JCIeo

4

Ставим на место шпонку, одеваем крыльчатку, шайбы и шкив и затягиваем все гайкой.

Шаг 3. Проводим испытание

Перед подключением источников питания к мотору обязательно проверьте мультиметром отсутствие межвиткового короткого замыкания, а также пробивания на корпус!

1

Подключаем выводы со щеток мотора к одному аккумулятору, а выводы со статора, через контроллер регуляторов оборотов – к другому.

2

В результате мы из старого автомобильного генератора получили BLDC мотор с возможностью регулировки оборотов.

Источник: https://youtu.be/y3qCx2JCIeo

Если вам понравилась наша статья, поставьте лайк 👍

✔️ Подписывайтесь на сайт, чтобы не пропустить ничего интересного!⚡

Больше фотографий и видеоконтента на сайте https://krrot.net

Как превратить электродвигатель в генератор

Вопрос о необходимости иметь дома собственный генератор возникает у многих, так как вещь довольно практичная, а в некоторых случаях крайне необходима. Второй вопрос – как его сделать самому? Наиболее верный метод в данном решении – это сделать генератор из электродвигателя. На помощь приходят такие свойства электротехнических агрегатов как обратимость, позволяющая из одного преобразовать в другое. Для этих целей подходят отлично асинхронные электродвигатели переменных значений тока. В этом случае, главный атрибут генератора, такой как магнитное поле, будет обеспечиваться при вращении якоря.

Чтобы конструктивно подойти к преображению в генератор электродвигателя, рассмотрим основные конструктивные узлы последнего:

  • стартер и его обмотка;
  • крышки с подшипниками: передняя и задняя;
  • выполненный с короткозамкнутыми витками ротор;
  • контактные выходы для присоединения к сети питания.

Первоначально простая конструкция, отличающаяся надёжностью составляющих из-за их немногочисленности в конструкции, на самом деле имеет множество нюансов, основанных как на строении приводных частей, так и на участвующих в создании электромагнитной энергии с преобразованием её в механическую.  В общем смысле, суть работы электродвигателя имеет вид:

  1. Вокруг статорной обмотки появляется достаточно мощное электромагнитное поле. Назвать это условием для генерирования пока нельзя, так как в статическом поле отсутствует процесс движения.
  2. Благодаря имеющимся в роторе замкнутым виткам толстого кабеля, индуцируется ЭДС, создающее переменно магнитное поле в окружающем ротор пространстве.
  3. Под действием данных сил ротор приводится во вращение.

Поскольку генератор – это машина трёхфазного подключения, образующая электрическую энергию от механической, заданной первичным двигателем, элементы строения электродвигателей подходят для создания требуемого агрегата. И так, приводящийся в движение ротор достигает вращения в синхронной частоте, что вызывает во влиянии остаточного магнитного поля появление электродвижущей силы на клемах статорной обмотки. Далее, путём подключения конденсаторов к зажимам, в статорных обмотках появиться намагничивающий ёмкостный ток опережения. Чтобы появилось самовозбуждение генератора, конденсаторная ёмкость должна быть больше, нежели изначальные параметры генератора в критическом ёмкостном значении. Это повысит его частоту вращения генератора процентов на 5-10 в номинальном режиме от заданной синхронной. Так, к примеру, электродвигатель частотой 1500 об/мин для обращения в генератор должен быть раскручен до 1575-1650 об/мин.

Главное правило для выполнения электрогенераторов – мощность двигателей, которые используются, не должна превышать максимума в 20 кВА. Полученный агрегат, выполненный своими руками, станет незаменимым в рамках домашнего хозяйства.

Будьте осторожны

Процесс превращения электродвигателя в генератор несёт не только массу удовольствия, но и немалый риск, связанный с нарушением техники безопасности. Наиболее требуемыми правилами являются:

  • поскольку генератор переменного тока является достаточно опасным, применяемое напряжение должно быть 380В. 220В допускается лишь по крайнему случаю;
  • электрогенератор должен обязательно быть оборудован заземляющими отводами;
  • перед эксплуатацией выполните пробный запуск на наличие ошибок;
  • применять конденсаторы следует исходя из таблицы расчёта, представленной в любом соответствующем справочнике. Использование конденсаторов ниже или выше мощности может сулить нерабочим или неправильным в работе состоянием генераторов;
  • проверяйте надёжность соединения всех рабочих устройств и механизмов;
  • используйте частотные преобразователи Веспер или другие устройства для регулирования задающих параметров генератором, перемена энергетических величин которого может влиять на работу введённых электроприводов в полученную сеть;
  • не используйте генератор холостым ходом, так как может случиться перегрев;
  • чётко прослеживайте выходную вырабатываемую мощность тока. Так, если в трёхфазном генераторе была задействована всего одна типаемая фаза, мощность составит 30-35%, при двух – 60-70% мощности общего значения, которую имеет генератор;
  • выполняйте контроль частоты переменного тока путём сравнения выходного напряжения, величина которого при холостых оборотах превысит промышленное значение на 4-6%.
Электродвигатель

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Двигатель электромобиля — принцип работы, устройство, виды

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.


Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.
  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:
  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:
  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).
Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:
  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем


Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.

  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.


  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

Электродвигатель как генератор — ООО «СЗЭМО Электродвигатель»

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

  • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
  • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
  • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

  • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
  • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.

И «минусы»:

  • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
  • Частота вырабатываемого тока часто нестабильна.
  • Такой генератор не может обеспечить промышленную частоту тока.

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.


асинхронный, синхронный или на постоянных магнитах?

Можно ли буксировать электромобили? Зависит от типа двигателя. Да, бывают разные. Если вы только собираетесь покупать электрокар, то знайте: до полной разрядки его лучше не доводить. И вот почему

Автомобили с двигателями внутреннего сгорания допускают буксировку. Если у вас механическая коробка передач, то это самое простое дело: ставите нейтраль в коробке передач или выжимаете сцепление – и ваш мотор оказывается физически отключен от колес, а машина превращается в обычную телегу: тяни не хочу.

С автоматами чуть сложнее, в них полного разрыва связи между колесами и мотором не предусмотрено. Но и они в режиме N позволяют буксировать машину на короткие расстояния и с невысокой скоростью.

Однако в инструкциях к электромобилям вы прочтете, что буксировка или не допускается вовсе, или, как в случае с современными моделями Tesla, допускается со скоростью не более 5 км/ч на расстояние не более 10 метров: иными словами, вы в праве только оттолкать сломанную машину на обочину.

А может ли быть иначе? Да, старые модели Tesla такое позволяли. Как и GM EV1 – легенда электрокаров 90-х годов прошлого века. Так в чем же дело? В типе электрических двигателей. Или, если уж говорить совсем правильно, электрических машин, так как в электромобилях эти устройства служат не только двигателями, но и генераторами. И на современных типах электрокаров встречается три типа таких устройств. Но для начала немного истории.

В 1821 году британский ученый Майкл Фарадей в своей статье впервые описал основные принципы преобразования электроэнергии в движение. Фарадей уже знал, что электрический ток, проходя через проволоку, создает магнитное поле. Закрученный в катушку, такой провод становится электромагнитом.

Он также знал, что противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются. В электромагнитах же полярность зависит от направления движения тока, то есть ее можно быстро менять. И вот что придумал Фарадей. Берем магнит, который движется к другому. В последний момент полярность меняется, но рядом расположен третий магнит, к которому можно тянуться. Затем четвертый, пятый. Эти разнополярные магниты выстроены в линию. И если ее закольцевать, движение будет идти по кругу до тех пор, пока сквозь электромагниты идет ток и пока его направление не перестает меняться.

Чтобы понять, как это действует, представьте, что у вас в руках два школьных магнита в форме подковы или буквы U – помните, были такие. Если их повернуть друг к другу взаимоотталкивающимися полюсами, то они будут стремиться сделать полуоборот, чтобы снова друг к другу притянуться. А теперь представьте, что их полюса постоянно меняются местами: тогда они станут вертеться друг относительно друга. Это и есть электродвигатель.

Так впервые был описан принцип действия всех электромоторов в целом и самого древнего в частности: того, который работает от постоянного тока и использует с одной стороны постоянные магниты из намагниченного сплава, а с другой – переменные электромагниты. Это наш первый герой: мотор-генератор постоянного тока на перманентных магнитах.

Изобретения Фарадея были развиты его полседователями, в частности изобретателем электрической лампочки Томасом Эдисоном. Эдисон усовершенствовал генераторы постоянного тока и стал пионером в электрификации Нью-Йорка. В 1884 году на пороге его кабинета появился молодой сербский инженер. Звали иммигранта Никола Тесла.

Тесла предложил улучшить конструкцию Эдисона и попросил за работу 50 тысяч долларов – баснословная в те времена сумма. По легенде Эдисон согласился, но когда Тесла действительно существенно улучшил существующую модель, любимец Америки просто кинул безвестного сербского эмигранта.

Тесла рассердился и отправился к главному конкуренту, адепту переменного тока Джорджу Вестингаузу. Так началась «Война токов», окончательно проигранная постоянным током только в 2007 году, когда Нью-Йорк последним из городов перешел на ток переменный.

Генераторы Эдисона вырабатывали электричество с напряжением, близким к потребительскому: 100-200 вольт. Это удобно для домов, но его сложно передавать на большие расстояния из-за сопротивления проводов. Тут было два решения: увеличивать диаметр кабелей или повышать напряжение. Первый вариант позволял делать линии длинной 1,5 километра. Да, совсем немного. Второй вариант был невозможен из-за отсутствия в те годы эффективных способов повышения напряжения постоянного тока.

Однако еще в 1876 году русский ученый Павел Яблочков изобрел трансформатор, меняющий напряжение переменного тока. Подача энергии на большие расстояния перестала быть проблемой.

Но была другая проблема. Лампочкам Эдисона все равно от какого тока питаться: постоянного или переменного. А вот с электродвигателями сложнее: они в те годы требовали только постоянного. В 1888 году Тесла запатентовал в США асинхронный электрический двигатель переменного тока. Он же изобрел и синхронный генератор, впоследствии использованный и как двигатель. Это второй и третий герои нашей статьи.

Так поговорим же о них поподробнее

Если в детстве вам доводилось разбирать игрушечные электрические машинки, то вы должны помнить устройство их простейших двигателей. Для остальных напомним. Все применяемые в электромобилях моторы состоят из двух частей: неподвижного статора и вращающегося ротора.

В игрушечных машинах на статоре стоят постоянные магниты, а на роторе – электрические переменные. При вращении на них через специальные щетки подается постоянный ток от батареек, и их последовательное включение и обеспечивает движение.

Похожая конструкция встречается практически у всех электромобилей. С одним отличием: на роторе там стоят постоянные магниты, а на статоре, напротив, электрические и переменные. Так в том числе можно избавиться от щеток: одного из немногих элементов электродвигателя, который подвержен износу.

Преимущество моторов на постоянных машинах в том, что они легкие, компактные, мощные, эффективные, работают от вырабатываемого аккумуляторами постоянного тока… так, стоп! А какие недостатки?

Недостаток прост. Таким моторам не хватает тяги. Так перейдем же к асинхронным инверсионным моторам переменного тока.

Бородатый анекдот про умирающего мастера заваривать чай, который делился своим секретом словами «не жалейте заварки» – это прям притча про компанию Tesla. Вопреки расхожему мнению, ее основал не Илон Маск (он позже стал главным инвестором и владельцем), а Мартин Эберхард и его партнер Марк Тарпенинг.

Эти двое придумали немыслимое. Создать не тихоходный, эффективный и относительно дешевый электрокар, а дорогой, быстрый и клевый. Маск же первым идею оценил и быстро прибрал ее к рукам.

Имя компании Tesla не случайно. Одной из ее технических революций стало использование асинхронного двигателя без постоянных магнитов, работающего на переменном токе – того самого, который изобрел Никола Тесла. Эта конструкция дороже как сама по себе, так и благодаря необходимости в установке преобразователя постоянного тока от батареи в переменный для электродвигателя. Успешное решение данной задачи и стало первым из множества теперь уже легендарных прорывов «Теслы».

Благодаря мощному асинхронному мотору электрокары Tesla с самого начала были очень динамичным, что стало ключевой причиной роста их популярности. В таком моторе переменный ток в обмотке статора создает вращающееся магнитное поле. Оно вызывает индукцию в роторе, заставляя его вращаться чуть медленнее, чем вращение самого поля – поэтому двигатель и называется асинхронным. Если скорости вращения синхронизируются, поле перестает создавать в роторе индукцию, и он начинает замедляться, рассинхронизируясь обратно. Важно заметить, что собственно на ротор никакого электричества напрямую не подается.

Итак, есть еще третий тип электрического двигателя, который встречается в современных электромобилях: синхронный на электромагнитах. Он похож по устройству на двигатели с постоянными магнитами на роторе, только эти магниты – электрические. На них подается постоянный ток, так что полярность магнитов ротора остается неизменной. А вот полярность магнитов статора, напротив, меняется, что и обеспечивает вращение.

Такие синхронные моторы на электромагнитах славятся своей способностью обеспечивать стабильность оборотов и ставятся, обычно, на всякие установки вроде насосов. А еще… на электрокар Renault Zoe. Зачем? Честно сказать, найти быстрый ответ на этот вопрос не получилось. Можем лишь предположить, что это связано с лучшей способностью такого двигателя служить генератором, рекуперируя энергию торможения. Мотор на Zoe не самый мощный, а мощным генератором он быть обязан.

Так что же лучше? Большинство автоконцернов выбирает моторы на постоянных магнитах: они эффективнее. Tesla в первые годы настаивала на асинхронных моторах. Но потом… сделала ставку на двух моторную полнопривродную схему, в которой асинхронный мотор обеспечивает динамику, а двигатель на постоянных магнитах гарантирует низкий расход энергии при небольших нагрузках. И только Renault… ну вы поняли.

А теперь о том, что ждет нас дальше. При буксировке даже обесточенный двигатель на постоянных магнитах тут же начинает работать как генератор, что чревато перегревом и возгоранием энергосистемы электромобиля. В синхронных моторах Renault оставшейся магнетизм в роторе также способен вызвать индукцию в катушках статора, ну и пошло поехало – генерация тока, перегрев, пожар.

И только асинхронные двигатели, когда их статоры не под напряжением, не являются генераторами: их можно буксировать.

Так вот, современная тенденция такова. Моторы на постоянных магнитах становятся все мощнее и тяговитее, оставаясь самыми эффективными. Производители постепенно переходят на них. Но придумать, как машины с ними безопасно буксировать инженерам еще предстоит. Пока они декларируют принцип «Наши электромобили не ломаются и в буксировке не нуждаются». Но звучит не больно убедительно.

«Ванкель» для привода генератора гибридных автомобилей

Компания Mazda, имеющая многолетний опыт разработок и производства роторных двигателей, представила прототип очередного «ванкеля», предназначенного для привода генератора гибридных автомобилей.

Расширение применения современных электромобилей в значительной мере сдерживается недостаточным запасом хода таких транспортных средств. Решению этой проблемы способствует развитие последовательных гибридных систем, в которых используются экономичные малоразмерные двигатели внутреннего сгорания для привода, подзаряжающего батарею генератора.

Концептуальный зарядный модуль установлен на электромобиле Mazda 2, передние колеса которого приводятся электродвигателем мощностью 75 кВт. Электроэнергия размещенной под полом литий-ионной батареи обеспечивает пробег до 200 км. При установке нового модуля с бензобаком емкостью всего 10 л запас хода удваивается.

Передние колеса этой Mazda 2 приводятся электродвигателем мощностью 75 кВт

Однороторный двигатель рабочим объемом 330 см3 и мощностью 22 кВт (29,5 л.с.) при 4500 об/мин или 28 кВт (37 л.с.) при 6000 об/мин сблокирован с генератором. Ременный привод повышает частоту вращения вала генератора, увеличивая его эффективность. Малые габаритные размеры модуля позволяют разместить его под полом багажного отделения.

Блок привода генератора, выставочный макет

Работая в стационарном режиме, двигатель Ванкеля отличается от аналогичного поршневого повышенной эффективностью, малыми габаритными размерами, возможностью использования различных видов топлива. Так, уровень шума на расстоянии 50 см при частоте вращения вала 3000 об/мин и развиваемой мощности 25 кВт составляет 87 ДБ (А). Аналогичный показатель для обычного двигателя – 92 ДБ. Специалисты компании утверждают, что в отличие от автомобиля Chevrolet Volt с последовательным гибридным приводом, водитель электромобиля Mazda 2 практически не заметит шума работы модуля генератора.

Созданием подобных двигателей с малыми габаритными размерами и высокими экономическими и экологическими показателями занимаются и другие автопроизводители и исследовательские организации. В частности, корпорация GM на седане Chevrolet Volt применяет малогабаритный бензиновый поршневой двигатель. Среди нетрадиционных разработок в этой области можно отметить ударно-волновой (газотурбинный) двигатель, создаваемый группой специалистов Университета штата Мичиган специально для привода генератора в гибридах. Прототип такого двигателя имеет массу, на 30% меньшую, чем у традиционного ДВС, обеспечивая запас хода электромобиля около 800 км.

Руководство компании Mazda не раскрывает конкретных сроков возможной реализации проекта, но отмечает, что в современных условиях производство роторных двигателей может быть рентабельно при выпуске не менее 100 тыс. штук в год. Инженеры компании продолжают работать над совершенствованием конструкции и технологии изготовления нового модуля.

  • Александр Трикоз
Из

автомобильных генераторов получаются отличные электродвигатели; Вот как

Скромный автомобильный генератор скрывает интересный секрет. Известные как часть, которая преобразует энергию внутреннего сгорания в электричество, необходимое для работы всего остального, они также могут использоваться в качестве электродвигателя.

Схема простого автомобильного генератора переменного тока из патента США 3329841A, поданного в 1963 году для Robert Bosch GmbH.

Эти устройства почти всегда представляют собой трехфазный генератор переменного тока с магнитной составляющей, питаемой от электромагнита на роторе, и поставляются с блоком выпрямителя и регулятора для преобразования более высокого переменного напряжения в 12 В для электрических систем автомобиля.Внутри они имеют три соединения с катушками статора, которые, как представляется, универсально соединены треугольником, и пару соединений с набором щеток, питающих катушки ротора через набор контактных колец. Они обладают удивительно высокой мощностью, а их возможности как двигателей оцениваются в несколько лошадиных сил. Лучше всего, что они легко доступны из вторых рук, а также удивительно дешевы. Показанный здесь блок Ford Focus был получен из автомата eBay и стоил всего 15 фунтов стерлингов (около 20 долларов США).

Мы уже слышим, как вы кричите «Почему ?!» на своем волшебном интернет-устройстве, пока вы это читаете. Давайте перейдем к этому.

Эти люди думают, что создание собственных электромобилей — это весело!

Одна из интересных сторон наблюдения за тем, как серия UK Hacky Racer вырастает из группы друзей, создающих глупые электромобили, до чего-то, приближающегося к формальной гоночной серии, — это наблюдение за эволюцией искусства создания Hacky Racer. Как немного более грязный кузен серии US Power Racing, он в некоторой степени извлек выгоду из унаследованного ими эволюционного опыта, но это не остановило Hacky Racers придумывать собственные разработки автомобилей.Они перешли от утилизированной мобильности и моторов для гольф-багги к китайским электродвигателям для электровелосипедов и трехколесных мотоциклов, и теперь более смелые конструкторы начинают искать движущую силу еще дальше. Одним из многообещающих источников недорогого двигателя с приличной мощностью является автомобильный генератор переменного тока.

Наш генератор переменного тока Ford Focus

При поиске переоборудованных автомобильных генераторов можно найти множество страниц, HOWTO и руководств, многие из которых могут быть чрезвычайно запутанными и сложными. В частности, есть предложения относительно трех соединений статора, с советами разорвать отдельные обмотки и применить к ним особые конфигурации проводки.Судя по опыту преобразования большого количества генераторов переменного тока, это кажется удивительным, поскольку все модели, которые мы преобразовали, имели одинаковую готовую к работе дельта-конфигурацию, которая вообще не нуждалась в перенаправлении. Возможно, пришло время представить руководство Hackaday с настоящим генератором переменного тока и развенчать все оставшиеся мифы, пока мы работаем над этим.

Итак, воодушевленные перспективой дешевого бесщеточного двигателя в проходе выше, перед вами на стенде стоит генератор переменного тока Ford Focus. Как его преобразовать?

Бессмысленное уничтожение невинной машины Часть

Снятие узла регулятора и щетки

На задней панели современного генератора всегда есть пластиковая пылезащитная крышка, которая крепится набором болтов.Эти устройства предназначены для ремонта, поэтому (возможно, что удивительно для современных автомобильных компонентов) их обычно очень легко демонтировать. Если вы снимете пылезащитный кожух, вы увидите регулятор, выпрямители и щетки, иногда объединенные в единый блок, но чаще, как в случае с генератором Focus с регулятором и щетками, как отдельная сборка с выпрямителем.

Часто бывает большое количество силиконового герметика, который необходимо срезать, но все гайки или болты, фиксирующие регулятор, должны быть откручены, и осторожно, чтобы не повредить сами щетки, их можно снять целиком. .Затем выпрямительный блок может быть удален — процесс, при котором иногда проще атаковать его боковыми ножами, чем пытаться удалить его целиком.

Задняя панель генератора со снятыми регулятором и выпрямителем, на которой показаны соединения обмотки статора.

Вы должны уметь идентифицировать три пучка толстых эмалированных медных проводов, идущих от катушек статора, и отсоединить от них ремни выпрямителя. В некоторых генераторах они припаяны, но в некоторых других особенно неприятных конструкциях они приварены точечной сваркой.В конце процесса демонтажа у вас должен быть оголенный генератор с тремя наборами выступающих проводов статора и оголенный вал с двумя контактными кольцами, независимо от того, что осталось от блока выпрямителя, и блока регулятора / щеток.

Следующим шагом является снятие схемы регулятора с сохранением формы узла регулятор / щетка, а также поиск и сохранение соединений щеток там, где они встречаются с регулятором. И снова потребуется обильное количество силиконового герметика, но, в конце концов, регулятор должен быть открыт.Это универсальная гибридная схема на керамической или металлической подложке, при этом соединения, выходящие из формованного пластика, окружающего их, припаяны к контактным площадкам на их краях. Определить пару соединений щеток, аккуратно распаять их и вытолкнуть цепь регулятора должно быть относительно просто.

Открытая цепь регулятора с контактами контактного кольца вверху справа.

Контактные контактные кольца прикреплены к их проводам.

Готовый мотор.

Наконец, у вас должен быть голый генератор, набор щеток с отсутствующей схемой регулятора и пластиковая крышка от пыли. Просто припаяйте три провода подходящего большого сечения к трем наборам проводов статора и закройте их термоусадочной пленкой, припаяйте пару более легких проводов к соединениям щеток и снова соберите комплект щеток к генератору. Возможно, вам придется приложить какое-нибудь приспособление для снятия натяжения на проводах к щеткам. Блок выпрямителя не требует повторной сборки, поэтому на некоторых моделях вам может потребоваться сделать проставку, чтобы заменить ее в поддержке одной стороны блока щеток.

В пылезащитной крышке можно сделать отверстия для всех различных проводов, а в пылезащитной крышке можно установить все проталкиваемые провода. На этом этапе вы переоборудовали свой генератор, и все, что осталось, — это привести его в движение. К счастью, это удивительно простой процесс с готовыми деталями.

Вождение вашего нового двигателя

Мотор и контроллер на стенде.

Так называемый бесщеточный двигатель постоянного тока — это просто двигатель переменного тока со связкой электроники, которая преобразует источник постоянного тока в источник переменного тока для его работы.Они имеют преимущество перед щеточными двигателями постоянного тока в надежности, эффективности и простоте регулирования скорости, но за счет большей сложности.

Хорошая новость для людей, перерабатывающих автомобильные генераторы переменного тока в электродвигатели, заключается в том, что за небольшие деньги можно приобрести целый ряд контроллеров бесщеточных двигателей в виде электронных регуляторов скорости (ESC), предназначенных для китайских электрических велосипедов и трехколесных мотоциклов. Они используют источник постоянного тока от аккумуляторной батареи и вырабатывают трехфазный переменный ток, подходящий для работы двигателя, подключенного по схеме треугольника, и они хорошо работают с преобразованными генераторами переменного тока.

У

ESC есть два режима: один для двигателей с датчиками обратной связи на эффекте Холла, а второй для двигателей без генератора, например. Обычно для этого требуется проводная связь, обратитесь к инструкциям для вашего контроллера. Мы обнаружили, что генератор переменного тока хорошо управляется, как двигатель, от источника питания 36 В или 48 В, и пока используется контроллер с достаточной мощностью, он работает надежно. Быстрый поиск на AliExpress по запросу «бесщеточный контроллер двигателя 1500 Вт» дает большой выбор.

При наличии контроллера существует еще одно требование, чтобы наш генератор переменного тока стал двигателем, он должен иметь постоянный ток на обмотке ротора.Он должен иметь ток около 2 или 3 А, для чего модуль блока питания с ограничением по току отлично справляется с этой задачей. Необходимость использовать эту мощность делает двигатель немного менее эффективным, чем двигатель с постоянным магнитом, но стоимость лома генератора трудно превзойти.

Мотор, изображенный на наших фотографиях, призван стать одним из пары, обеспечивающей тягу в новом автомобиле для штурма гонок этого года. Личный опыт работы с SMIDSY, робот Robot Wars, привел меня к тому, что я предложил им принудительное воздушное охлаждение, но, в отличие от трехколесных электрических двигателей, они, похоже, хорошо справляются с нагревом.Электродвигатель генератора переменного тока может не быть универсальным решением для любых ваших небольших потребностей в тяговом усилии, но даже в этом случае стоит знать, что это вариант без неожиданных ритуалов подключения. Если вы конвертируете его для проекта, обязательно напишите об этом и отправьте в нашу линию советов!

Можно ли привести электродвигатель переменного тока в электрооборудование с помощью генератора переменного тока?

Газовые автомобили с электродвигателями существуют в различных формах. То, о чем вы спрашиваете, можно легко сделать, но «генератор переменного тока» включает в себя ненужные преобразования энергии.Каждый раз, когда вы конвертируете энергию, вы теряете часть энергии, поэтому «генератор переменного тока» того типа, о котором вы говорите, представляет собой газовый двигатель, подключенный к генератору переменного тока, с компенсацией катушки возбуждения и регулировкой дроссельной заслонки. Вы предлагаете прикрепить это устройство к электродвигателю / мотору, запускающему автомобиль. Электродвигатель / комплект двигателя требует некоторой формы привода, что означает дополнительное преобразование мощности, если все электродвигатели не работают на одном уровне мощности, а компенсация возбуждения и дроссельной заслонки предназначена для обеспечения правильного напряжения / тока привода для электродвигателей. .

Для данного размера газового двигателя, если у вас нет возможности хранить значительную мощность (аккумуляторная батарея), ваши затраты на входе по сравнению с выходной мощностью будут выше, если газовый двигатель напрямую обеспечивает крутящий момент приводного вала. Единственные потери, которые должна устранить электрическая система, — это трение в системе привода, которое добавляет потери в линии, потери при преобразовании мощности и т. Д.

Чтобы устройство, включающее как газ, так и электричество, было полезным, обычно необходимо использовать некоторые другие особенности комбинации, например:

  • Использование рекуперативного торможения (обработка колес как генератора при замедлении), которое лучше всего работает на более высоких скоростях, поэтому должно сопровождаться традиционным торможением для полной остановки.Рекуперированная энергия имеет большое значение, особенно при остановках и остановках, когда потери газа на ускорение быстро растут.
  • Устранение трения трансмиссии за счет использования колесных двигателей вместо одного электродвигателя на физическом дифференциале, вы экономите энергию и затраты на техническое обслуживание, которые ушли бы на трение трансмиссии и затраты на ее производство за счет разработки и производства 4 современные электродвигатели с точной механической обработкой вместо одного большого газового двигателя, который значительно проще в производстве благодаря существующим методам производства.
  • При правильном наборе датчиков отзывчивость автомобиля может быть чрезвычайно высокой по сравнению с автомобилем, работающим на газе, и, возможно, существует значительный выигрыш в безопасности, если ваш автомобиль реагирует более точно и быстро. При разработке системы, которая использует это преимущество, необходимо приложить очень большие усилия, поскольку процессор (ы), управляющий системой, должен реагировать очень быстро и разумно, позволяя двигателям работать на пределе своих возможностей или в оптимальном диапазоне КПД, компенсируя разницу в интеллектуальный способ реагирования в тепловых и электрических пределах каждого компонента системы.Этот метод может делать то, что традиционный дифференциал не может делать хорошо, например, активно измерять противодействующий крутящий момент и скорость на каждом колесе в реальном времени и минимизировать пробуксовку, давая вам чрезвычайно интеллектуальную работу с полным приводом.
  • Гибридные автомобили
  • теоретически могут иметь некоторые из этих преимуществ, не требуя, чтобы вы жили там, где есть зарядные станции, или у вас есть ресурсы, такие как несколько автомобилей для определенных целей. Я не осведомлен о текущем рынке гибридных автомобилей, но чтобы сделать электромобиль, который лучше управлялся бы, чем бензиновый, вам придется вложить много усилий и денег.

Из всего вышесказанного, «от генератора к двигателю», возможно, придется сделать вывод из вышеизложенного. Вы действительно можете заставить его работать, но могут потребоваться некоторые усилия, чтобы выяснить, как сделать это стоящим, особенно без батареи в системе. Добавление небольшого эффективного генератора и выпрямителя к вашей электрической тележке для гольфа было бы гораздо более правдоподобным, чем к вашему ховерборду или велосипеду, а работа с и без того сложным типом транспортного средства потребует огромных усилий.

Почему у электромобилей нет генераторов переменного тока?

Часто задаваемый вопрос о Д.И.Ю. Проекты электромобилей: «Почему бы вам просто не добавить генератор для зарядки автомобиля во время движения?»

Так как насчет этого? Если у автомобилей, работающих на ископаемом топливе, есть генераторы для зарядки аккумулятора, почему бы электромобили не делать то же самое?

Чтобы найти ответ, нам нужно знать, как работает генератор и откуда берется энергия.

ГЕНЕРАТОРЫ:
Автомобильный генератор переменного тока — это генератор переменного тока. Ремень от двигателя транспортного средства вращает шкив, который соединен с ротором генератора переменного тока.На валу находятся либо постоянные магниты, либо катушки из медной проволоки, через которые протекает небольшой постоянный ток. Поток тока создает магнитное поле. Когда вал вращается, это магнитное поле заставляет ток течь в согласованном стационарном наборе катушек. Поскольку магнитные поля на роторе меняют полярность (север / юг), направление потока тока индуцировало «триггеры» много раз в секунду, меняя направление на противоположное. Обычно мы называем это «переменным током».
Переменный ток преобразуется в постоянный ток (DC) с помощью диодов, а схема управления напряжением гарантирует, что выходное напряжение подходит для зарядки 12-вольтовой аккумуляторной батареи автомобиля.

ИСТОЧНИК ЭНЕРГИИ:
Откуда берется первоначальный источник энергии для генератора переменного тока?
Такие ученые, как Галилей, Ньютон и Бернулли, изучили мир природы и пришли к выводу, что существуют определенные «правила», которым всегда следуют. Со временем это стало известно как законы термодинамики.
Согласно Закону Сохранения Энергии, «Энергия не может быть создана или уничтожена; скорее, он может быть только преобразован или перенесен из одной формы в другую.”

В случае с генератором, двигатель, работающий на ископаемом топливе (соединенный ремнем и шкивом), подает МЕХАНИЧЕСКУЮ * энергию генератору, который преобразует эту энергию в ЭЛЕКТРИЧЕСКУЮ энергию. Электричество не «создается», это просто преобразуется какая-то другая форма энергии. Это означает, что двигатель отказывает в равной сумме. Двигатель должен работать больше и сжигать больше топлива, чтобы обеспечить эту дополнительную энергию.

Еще одна важная концепция, которую следует запомнить, заключается в том, что механическая энергия двигателя НЕ ИДЕАЛЬНО преобразовывается в электричество.Некоторые из них преобразуются в шум, тепло и вибрацию. Хотя эффективность далека от 100%, все же очень полезно преобразовывать механическую энергию в электричество для зарядки аккумулятора и работы электрических систем автомобиля.

ТАК, ПОЧЕМУ НЕ В АВТОМОБИЛЕ?
Если генератор переменного тока отлично работает для зарядки аккумулятора, почему бы нам не использовать его в электромобиле?
Две основные причины:
1) E.V. нет двигателя
2) Есть устройство ЛУЧШЕ, чем генератор переменного тока.

Помните, ЭНЕРГИЯ, которая питает генератор переменного тока, на самом деле представляет собой механическую энергию, создаваемую двигателем при сжигании ископаемого топлива. У электромобиля нет двигателя или газового / дизельного топлива. Вместо этого у него есть электродвигатель и аккумулятор. Мы МОЖЕМ использовать аккумулятор, чтобы раскрутить двигатель, чтобы раскрутить генератор для выработки электричества. НО в лучшем случае мы просто использовали бы электричество для производства электричества. Хуже того, на подходе все еще есть потери. Конверсионные потери часто проявляются в виде тепла, шума и вибрации.По сути, используя генератор переменного тока, приводимый в действие электродвигателем, мы могли производить только меньшее количество электроэнергии, чем мы начали. (Если бы мы могли создать такое же количество или больше, у нас был бы Perpetual Motion Machine.) Однако мы МОЖЕМ создать другое напряжение. Аккумуляторная батарея электромобиля обычно составляет более 300 В постоянного тока, тогда как нам нужна только система 12 В для фар, радио и других аксессуаров.

DC / DC — лучший способ:
Если мы хотим преобразовать только постоянный ток из одного напряжения в другое, есть гораздо более простой и эффективный способ сделать это.Это происходит с помощью устройства, называемого преобразователем постоянного тока в постоянный. Это электронное устройство, которое принимает постоянный ток одного напряжения и преобразует его в другое напряжение. Это все еще не «бесплатная энергия». Преобразование в более высокое напряжение означает также более низкий ток. Получение более высокого тока означает также более низкое напряжение. В любом случае, это то же количество энергии за вычетом потерь, которое проявляется в виде тепла. Базовые преобразователи постоянного тока в постоянный отводят тепло через металлический корпус. Преобразователи большей мощности имеют радиаторы, вентиляторы или даже активное жидкостное охлаждение.

Преобразователи постоянного тока в постоянный ток

имеют ряд преимуществ перед генераторами переменного тока. Они компактны. Они экономят вес. Они более эффективны. Нет движущихся частей — ремней, которые нужно заменить, шкивов, подшипников. Это также означает, что они не требуют обслуживания.

Если вы покупаете преобразователь постоянного тока в постоянный для своего собственного проекта электромобиля, помните о входном напряжении и максимальной мощности. Вам нужно, чтобы входное напряжение, на которое он рассчитано, соответствовало напряжению вашей аккумуляторной батареи. Многие преобразователи допускают диапазон входного напряжения и указаны в соответствующем списке.Например, один может быть указан как «48-96 В на входе / 13,5 В на выходе». Мощность рассчитывается как максимальное количество ватт, которое может вырабатывать преобразователь. В машине вам нужно достаточно мощности для фар, радио и других аксессуаров. Это может быть несколько сотен ватт. Не забудьте предохранить выход DC / DC преобразователя и использовать соответствующую проводку для измерения выходного тока. За редким исключением, преобразователь постоянного тока в постоянный всегда комбинируется с аккумулятором 12 В, как и генератор переменного тока.

Электродвигатель AS Генератор:
Наконец, двигатели переменного тока, используемые в коммерческих электромобилях, являются отличными генераторами.Но вы по-прежнему не можете волшебным образом создать силу, управляя автомобилем. Помните, мы можем только ПРЕОБРАЗОВАТЬ энергию из одной формы в другую. Еще бывают случаи, когда это полезно. Преобразование КИНЕТИЧЕСКОЙ энергии автомобиля в какую-либо другую форму (электричество для зарядки аккумулятора или тепло трения от традиционных тормозных колодок) удалит кинетическую энергию и, таким образом, ЗАМЕДЛИТ движущееся транспортное средство. Это идеально, если вы все равно хотите притормозить! На электромобиле мы используем это и называем «регенеративным торможением». Это отличный способ вернуть часть энергии, использованной для первоначального разгона автомобиля, и повысить общую эффективность автомобиля.

В другом сценарии автомобиль может спускаться с большого холма или горы накатом. ПОТЕНЦИАЛЬНАЯ энергия преобразуется в КИНЕТИЧЕСКУЮ энергию. В автомобиле, работающем на ископаемом топливе с механической коробкой передач, водитель может переключить передачу на более низкую передачу и использовать сжатие двигателя, чтобы замедлить движение автомобиля. В электромобиле мотор может заряжать аккумулятор, чтобы делать то же самое. Следует отметить, что аккумулятор должен быть хотя бы частично разряжен, чтобы у него было место для электричества для работы рекуперативного торможения.Лучше жить у подножия горы, чем на вершине горы, поскольку полностью заряженный аккумулятор не сможет принимать больше заряда за счет рекуперативного торможения.

Генераторы переменного тока — это продуманная технология, позволяющая преобразовывать механическую энергию в электрическую. Подобная технология широко используется для выработки электроэнергии на электростанциях. Генераторы отлично подходят для транспортных средств, работающих на ископаемом топливе, но они сложны, неэффективны и требуют больших затрат в обслуживании по сравнению с преобразователями постоянного тока в постоянный ток, используемыми на электромобилях.

Мы надеемся, что это поможет вам лучше понять генераторы и электромобили, чтобы вы могли работать над своим собственным проектом по производству электромобилей.

— Бен Нельсон и команда 300MPG.org

* Двигатель, работающий на ископаемом топливе, фактически берет ХИМИЧЕСКУЮ энергию (в виде бензина, дизельного топлива и т. Д.) И воспламеняет ее, преобразовывая ее в ТЕРМИЧЕСКУЮ энергию, которая затем приводит в движение поршень (ЛИНЕЙНАЯ МЕХАНИЧЕСКАЯ ЭНЕРГИЯ), который затем вращает коленчатый вал (ВРАЩАЮЩИЙ МЕХАНИЧЕСКИЙ ЭНЕРГИЯ), которая ТОЛЬКО ТОЛЬКО идет к генератору через ремень.Энергия теряется на каждом этапе процесса преобразования.
Что еще хуже, нам нужно заправить машину топливом. Требуется огромное количество энергии, чтобы искать нефть, бурить ее, транспортировать, очищать, отправлять на заправку и, наконец, залить ее в наш топливный бак.
Когда мы смотрим на тотальный сценарий «Well-to-Wheels», современный легковой автомобиль, возможно, является самой НЕЭФФЕКТИВНОЙ машиной в истории человечества.

Как работают генераторы и динамо-машины

Как работают генераторы и динамо-машины — объясните это Рекламное объявление

Криса Вудфорда.Последнее изменение: 10 августа 2020 г.

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно. Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн. Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя.Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество. Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20-го века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова. Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии. Откуда ты это возьмешь? Есть основной закон физики называется закон сохранения энергии, который объясняет, как можно получить энергия — и как вы не можете. Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать.Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно.Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель. Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо.В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя нагревать). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора. Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Рекламные ссылки

Как мы можем производить электричество?

Фото: Типичный электрогенератор.Он может вырабатывать до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении. Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться. Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь вокруг и вокруг и приводя в действие что-нибудь из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри. Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? Что бы вы сделали, это вручную повернули электродвигатель. ось вокруг.Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора. По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Изображение: простой генератор, подобный этому, вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное).Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в обратном направлении. Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита.Теперь резко проведите провод через невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография). Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется Правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же). Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив тот или иной из них на колесо.Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

А теперь самое интересное. Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась, как на схеме. Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество течет в одну сторону; когда он движется вниз, ток будет течь в обратном направлении.Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток). Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается.Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока. Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока.В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный. В генераторе постоянного тока (вверху) коммутатор меняет направление тока на противоположное каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

Генераторы переменного тока

Что делать, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам нужен генератор, который представляет собой просто генератор переменного тока. Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фотография: Генератор переменного тока — это генератор, вырабатывающий переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим механика, снимающего генератор с двигателя подвесной моторной лодки.Фото Есении Росас любезно предоставлено ВМС США.

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары загорелись — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек. Динамо-машина — это просто очень маленькое электричество генератор.Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива. А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца.Суть проста: энергия всегда должна исходить от где-то.)

Какую мощность вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем большую мощность он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Ветряная микро турбина 500
Малый дизельный генератор 5000 (5 кВт)
Ветряная турбина 2 000 000 (2 МВт)

Переносные генераторы

Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем фонари, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. А вдруг вы работаете на улице, в глуши, и нет источник электричества, который вы можете использовать для питания вашей бензопилы или вашего электрическая дрель?

Одна из возможностей — использовать аккумуляторные инструменты с перезаряжаемые батарейки. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать портативный электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое необходимое напряжение в любом месте, где оно вам нужно.В виде пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082 переиздание 8 141 Эдварда Уэстона, любезно предоставленного Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Вам могут понравиться эти другие статьи на нашем сайте по смежным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалевый провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

Статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

INFINITI заявляет, что новая бензиновая электромеханическая система (Nissan e-POWER) является центральным элементом стратегии электрификации

Будущие модели INFINITI предложат водителям выбор электрифицированных силовых агрегатов, поскольку бренд использует новые технологии для движения своих автомобилей. (Предыдущий пост.) К ним относятся полностью электрические системы, а также система электромобилей, генерируемая бензином (известная как e-POWER в Nissan, ранее), в которой бензиновый двигатель вырабатывает электроэнергию, хранящуюся в батарее (серийный гибрид), который затем может быть доставлен на все четыре колеса через пару мощных электродвигателей.

Эти силовые агрегаты будут сочетаться со специализированными платформами и архитектурами транспортных средств, обеспечивая высокую производительность, уверенный запас хода и снижение воздействия на окружающую среду.

INFINITI заявляет, что новый бензиновый силовой агрегат электромобиля является центральным в его стратегии электрификации, и устанавливает новую схему силовых установок для многих будущих моделей бренда.

Обладая характеристиками вождения высокопроизводительного электромобиля, эта новая трансмиссия устраняет два предполагаемых препятствия на пути к потреблению электромобилей потребителями — уверенность в запасе хода и практичность подзарядки.

Питание подается непосредственно на два электродвигателя большой мощности — по одному на каждую ось — от аккумуляторной батареи, расположенной под полом кабины, мощность которой варьируется от 3,5 до 5,1 кВтч в зависимости от модели.

Как электромобиль, работающий на бензине, характер подачи энергии такой же захватывающий, плавный и безмятежный, как в электромобиле с высокими характеристиками аккумуляторной батареи. Благодаря мгновенным, возбуждающим откликам на нажатие педали акселератора электродвигатели обеспечивают максимальный крутящий момент от 0 об / мин.Мощные двигатели развивают общую мощность от 185 до 320 кВт (от 248 до 429 л.с.) в зависимости от автомобиля.

Ускорение, как и у любого электромобиля, является линейным, с более мощными версиями трансмиссии, способными разгоняться от 0 до 62 миль в час примерно за 4,5 секунды. Кроме того, водитель и пассажиры не испытают того же «шока переключения», который часто бывает при переключении передач в обычном гибридном автомобиле или автомобиле с ДВС.

Аккумуляторная батарея постоянно заряжается новым двигателем INFINITI MR15DDT.В этом трехцилиндровом 1,5-литровом бензиновом генераторе — первом применении этого двигателя — используется инновационная технология переменной степени сжатия VC-Turbo от INFINITI (предыдущая публикация), обеспечивающая плавно регулируемый уровень заряда аккумулятора.

Что особенно важно, использование бензинового генератора означает, что этим транспортным средствам никогда не нужно будет подключаться к сети на несколько часов для подзарядки. Действительно, у них вообще не будет порта для зарядки. Трансмиссии требуется лишь короткая остановка на заправке для заправки топливного бака, что устраняет опасения по поводу дальности полета.

Несмотря на высокий уровень предлагаемых характеристик, выбросы от автомобилей с новой силовой установкой EV, работающей на газе, будут значительно сокращены по сравнению с существующими автомобилями этой марки и другими автомобилями с ДВС, предлагающими аналогичную мощность и характеристики.

Важно отметить, что система разрывает историческую связь между ездой по городу и более высокими выбросами, поскольку генератору MR15DDT приходится меньше работать на низких скоростях для питания аккумуляторной батареи. Результатом являются более низкие выбросы и улучшенный запас хода в городских условиях, где выбросы для автомобилей с ДВС обычно выше.

Автомобили INFINITI, оснащенные силовым агрегатом EV, работающим на газе, будут оснащены рядом передовых и первых в мире технологий и функций, обеспечивающих тихую и изысканную езду, присущую обычным электромобилям.

Одним из самых ярких нововведений является первая в мире независимая система крепления генератора MR15DDT под капотом, благодаря которой шум и вибрации двигателя практически незаметны при любой скорости движения. Чтобы сохранить спокойствие и умиротворение в салоне, двигатель и электродвигатели полностью герметизированы, чтобы уменьшить слышимый шум двигателя и вой двигателя.Независимая система опоры двигателя оснащена опорами, заполненными жидкостью, которые предназначены для поглощения любых дополнительных вибраций, которые в противном случае могут передаваться через корпус.

Сам двигатель MR15DDT VC-Turbo необычайно плавный, со значительно меньшим уровнем шума и вибрации по сравнению с обычными рядными двигателями. Это результат его многорычажной конструкции, в которой поршневые шатуны во время цикла сгорания почти вертикальны, а не смещаются в поперечном направлении шире, как при традиционном вращении коленчатого вала.Это представляет собой идеальное возвратно-поступательное движение и полностью исключает необходимость использования балансирных валов в других рядных двигателях.

Ожидается, что внутри самой кабины газовые электромобили INFINITI будут предлагать активное шумоподавление, которое будет дополнительно противодействовать любым низкочастотным шумам от двигателя и дороги, создавая встречные звуковые волны. Это нейтрализует нежелательные шумы в салоне и обеспечивает более тихую и спокойную поездку.

Эти меры по изоляции двигателя и активному шумоподавлению означают, что система никогда не будет более слышимой, чем любой остаточный шум ветра и дороги, возникающий при вождении.В сочетании с бесшумными шинами, тщательно настроенными системами подвески, акустическим стеклом и другими мерами пассивной звукоизоляции автомобили, оснащенные новой силовой установкой EV, работающей на газе, обеспечат в высшей степени безмятежную езду в любых условиях.

За три десятилетия INFINITI заработала репутацию производителя силовых агрегатов, которые вдохновляют и расширяют возможности водителей. Наша новая газовая трансмиссия электромобилей представляет собой следующий шаг в наше электрифицированное будущее, выступая в качестве моста к полной электрификации и задавая тон нашим будущим автомобилям с нулевым и сверхнизким уровнем выбросов.Каким бы ни был двигатель, наши автомобили будут предлагать захватывающие, но безмятежные электрические характеристики и системы электронного полного привода, которые вселяют уверенность водителя.

—Эрик Риго, генеральный директор по стратегии и планированию продукции INFINITI Motor Company

Варианты трансмиссии электромобилей с полностью электрическим или газовым двигателем будут сочетаться со специализированными платформами и архитектурами транспортных средств в соответствии с новым подходом INFINITI «две трансмиссии, одна платформа» к разработке моделей. Это приведет к созданию платформ, которые могут вместить оба типа трансмиссии, с высоким уровнем общности между ними.

Обеспечивая питание от аккумулятора высокопроизводительной системы e-AWD (электрический полный привод), платформы всех будущих электрифицированных автомобилей INFINITI будут спроектированы так, чтобы вмещать пару электродвигателей высокой мощности — один на передней оси, другой на тыл. Для электромобилей в пространстве между двумя осями будет размещаться аккумуляторная батарея большой емкости, в то время как модели EV, работающие на газе, будут иметь аккумуляторную батарею значительно меньшего размера, а также топливный бак и выхлопную систему, подключенную к переднему VC- Турбо бензиновый генератор.Для всех моделей привод будет обеспечиваться исключительно электродвигателями.

Hunstable Electric Turbine обещает гораздо больше мощности от электродвигателя сопоставимых размеров

За последние два года компании обещали электродвигатели с гораздо большей плотностью крутящего момента, измеряемой в киловаттах на килограмм. Avid заявил, что его двигатель Evo Axial Flux обеспечивает «одну из самых высоких полезной мощности и плотности крутящего момента среди всех двигателей электромобилей, доступных сегодня на рынке». Equipmake заявляет, что его двигатели развивают «лучшую в своем классе удельную мощность.« Yasa утверждает, что его электродвигатели … обеспечивают самую высокую удельную мощность / крутящий момент, доступную в своей категории».

Войдите в Linear Labs, которая утверждает, что у нее есть двигатель, который всех превзойдет. Компания объявляет о своей Hunstable Electric Turbine (HET), возможно, с непреднамеренными оттенками Ayn Rand, « The Motor of the World ».

Компания сообщила Autoblog : «Определяющая характеристика этого двигателя [состоит] в том, что] при очень низких оборотах… [для] того же размера, того же веса, того же объема и того же количества энергии, потребляемой двигателем, мы будем всегда производит — как минимум, иногда больше, но как минимум — в два-три раза больше крутящего момента, чем любой электродвигатель в мире, и делает это с высокой эффективностью во всем диапазоне крутящего момента и скорости.”

«Hunstable» исходит от двух руководителей: Фреда Ханстебла, инженера, который годами проектировал электрическую инфраструктуру для атомных электростанций в Соединенных Штатах; и Брэд Ханстейбл, сын Фреда и бывший технический предприниматель, который помог основать потоковый сервис Ustream, проданный IBM в 2016 году за 150 миллионов долларов.

Linear Labs начиналась как проект отца и сына по созданию линейного генератора, окружающего вал старомодной ветряной мельницы, который обеспечивал бы надежную электроэнергию (а также чистую воду) бедным общинам.Задача заключалась в разработке генератора, способного производить достаточную мощность за счет низкоскоростного возвратно-поступательного движения вала с высоким крутящим моментом. Брэд сказал, что его отец взломал код около четырех лет назад, что привело к «линейному генератору, производящему огромное количество электричества из тихоходной ветряной мельницы». Более того, прорыв был модульным, что привело к созданию семейства двигателей, на которое было выдано 25 патентов.

Что такое электрическая турбина Hunstable?

Электродвигатели

вступили во второе столетие своего существования, практически не изменившись с года. Никола Тесла запатентовал свое изобретение с современным трехфазным четырехполюсным асинхронным двигателем в период с 1886 по 1889 год.Хотя все двигатели состоят из одинаковых основных компонентов — катушек из медной проволоки, известных как обмотки, и магнитов — способ взаимодействия этих компонентов немного отличается. В двигателе с радиальным магнитным потоком один компонент вращается внутри другого — представьте, что маленькая банка вращается внутри более крупной стационарной. В конструкции с осевым потоком компоненты вращаются рядом друг с другом, как два маховика между центральной неподвижной пластиной.

Как правило, способ создать больший крутящий момент состоит в том, чтобы направить больший ток в двигатель или построить двигатель большего размера.Linear Labs нашла другой способ: объединив осевые и радиальные магнитные потоки в одном двигателе.

Иллюстрации Linear Labs

HET — это четыре ротора, окружающие статор. Центральный ротор вращается внутри статора, создавая один источник магнитного потока. Второй ротор вращается вне статора, создавая второй источник магнитного потока. Два дополнительных ротора расположены на левом и правом концах статора, по сути, образуя двигатель AF. Это еще два источника потока, всего четыре.По сути, это два концентрических радиальных двигателя и два осевых.

Linear Labs утверждает, что все HET создают крутящий момент в направлении движения ротора. В рекламном видео Фред Ханстейбл сказал: «Мы называем это окружным потоком, что-то вроде туннеля крутящего момента».

Создание большего крутящего момента в заданном объеме и движение всего этого крутящего момента в направлении движения ротора, как утверждает Hunstables, «в два-три раза больше крутящего момента для этого диапазона размеров по сравнению с любым другим двигателем.Неважно, что это за [двигатель], мы всегда будем его больше производить ».

Кроме того, за счет использования дискретных прямоугольных катушек, вставленных в полюса статора, HET требуется на 30% меньше меди, чем двигателю аналогичного размера. В конструкции также отсутствуют концевые обмотки — отрезки меди, которые лежат вне статора в типичном двигателе, генерируя бесполезное магнитное поле и тепло.

Иллюстрация Linear Labs

Что HET может означать для электромобилей будущего

На данный момент Linear Labs подписала сделки с производителем скутеров, со шведской фирмой, производящей системы электропривода Abtery , и с неназванной фирмой, проектирующей гиперкар, который будет выпущен в течение двух лет с использованием четырех HET.Тем не менее, Брэд Ханстейбл считает, что HET может найти применение в области электромобилей, поскольку крутящий момент HET достигается на оборотах, соответствующих конечному использованию. Современные электромоторы вращаются намного быстрее, чем колеса, поэтому в большинстве электромобилей используется редуктор для соединения двигателя, вращающегося со скоростью несколько тысяч оборотов в минуту, с колесами, вращающимися со скоростью от 1 до 1800 оборотов в минуту. Если HET генерирует необходимый крутящий момент при оборотах, соответствующих скорости вращения колес, автопроизводитель теоретически может отказаться от понижающей передачи, уменьшив вес и повысив эффективность трансмиссии.

Брэд сказал, что испытания показали, что HET в конфигурации с прямым приводом работает в приложениях, обычно обслуживаемых понижающей коробкой передач 6: 1, и возможно, что передаточное число еще выше. По словам Ханстейбла, последующие эффекты могут быть значительными. Эта экономия веса — более низкая рабочая скорость HET означает меньшее количество и более легкую электронику, — заявляет компания — и повышение эффективности может быть использовано для уменьшения размера батареи и, следовательно, веса автомобиля, экономии денежных средств и позволяя производителю использовать более легкую -обязанные компоненты — возможно, достаточно, чтобы существенно повлиять на чистую прибыль, считает Ханстейбл.

HET также может взять на себя роль компонента, известного как повышающий преобразователь постоянного тока в постоянный, который используется в некоторых электромобилях в ситуациях, когда транспортному средству требуется обменять крутящий момент на мощность, например, во время резкого ускорения на скоростях шоссе. Поступая так, они используют дополнительную энергию, которую нельзя направить на дальность действия. В целом электромобили, которые подчеркивают производительность, используют повышающий преобразователь, как Tesla Model S, а электромобили, которые подчеркивают эффективность, не используют, например Hyundai Ioniq EV. (Следует отметить, что некоторые гибриды, такие как гибриды Toyota и Lexus, используют повышающие преобразователи для ускорения гусей.)

Linear Labs сообщает, что HET выполняет работу повышающего преобразователя постоянного / постоянного тока самостоятельно, изменяя относительное положение одного или нескольких из четырех его роторов, аналогично системе регулируемых кулачков на ДВС, изменяя положение в зависимости от потребности в нагрузке. Linear Labs утверждает, что сочетая в себе дополнительный крутящий момент, уменьшенный вес и сложность, возможную без коробки передач или повышающего преобразователя, и более легкие вспомогательные устройства, HET может увеличить дальность полета на 10%.

Производитель автомобилей говорит …

Ни один автопроизводитель не будет рассматривать претензии компании, о которой он никогда не слышал, о компонентах, которые он никогда не использовал.Тем не менее, мы хотели получить комментарий OEM для сравнения с заявлениями Linear Labs. Мы связались с Chevrolet, Tesla и Hyundai. Только Hyundai согласилась на вопросы и ответы, которые связали нас с Джеромом Грегеуа, старшим менеджером завода по производству силовых агрегатов Hyundai Group, и Райаном Миллером, менеджером группы разработки электрифицированных трансмиссий Hyundai.

Грегеуа сказал, что OEM-производители так много инвестируют в аккумуляторы, потому что они «намного дороже, чем любые [другие] компоненты», а химический состав аккумуляторов позволяет добиться гораздо большей эффективности.Следовательно, «единственный способ достичь конкурентоспособных цен по сравнению с двигателями внутреннего сгорания или гибридами — это действительно снижать стоимость батарей».

Что касается двигателей, Миллер сказал: «Наше внимание и внимание отрасли к двигателям перешли на преобразователи двигателей на основе карбида кремния». Инвертор двигателя преобразует постоянный ток аккумуляторной батареи (DC) в переменный ток (AC), используемый для питания электродвигателей, обеспечивающих привод транспортного средства. При рекуперативном торможении инвертор двигателя делает обратное — преобразует переменный ток от двигателей обратно в постоянный ток для зарядки аккумулятора.Технология карбида кремния, которую IEEE назвал «меньше, быстрее, прочнее», , как считается, позволяет примерно на 50% уменьшить объем инвертора.

Изображение предоставлено Hyundai

Миллер сообщил нам, что двигатель с постоянными магнитами в Hyundai Ioniq весит около 50 килограммов или 110 фунтов. Коробка передач, которая содержит главную передачу и дифференциал, весит около 70 фунтов. «Это не легкий, — сказал он, — потому что шестерни обычно стальные». Что касается объема, то коробка передач занимает около 70% объема мотора.

Мы спросили Грежеуа и Миллера, будет ли двигатель с прямым приводом, позволяющий отказаться от коробки передач, иметь огромное значение в стоимости или сложности трансмиссии. Сказал Грежеуа: «Мы думаем, что с точки зрения затрат коробка передач будет дешевле, чем два двигателя». Миллер добавил: «Сталь и алюминий очень дешевы».

Один пример автопроизводителя не отрицает преимуществ Hunstable Electric Turbine, и Брэд Ханстейбл считает, что экономия есть. «Каждую трансмиссию можно спроектировать и спроектировать несколькими способами», — сказал он.«Но если у вас есть два двигателя, которые производят вдвое больший крутящий момент и вдвое меньше, чем один обычный двигатель, который должен использовать коробку передач, тогда нет никакого сравнения. HET побеждает. Конечно, для краткосрочного автомобиля массового спроса наиболее вероятным сценарием является включение одного двигателя непосредственно в дифференциал, при этом стандартная… коробка передач по-прежнему устраняется ».

А автопроизводители — это , тратящие деньги на улучшение своих двигателей. Honda улучшила электродвигатель в Accord Hybrid, использовав квадратные медные провода для обмоток статора и три магнита вместо двух на роторе.Говорят, что изменения добавили 6 фунт-футов крутящего момента и 14 лошадиных сил.

Иллюстрация Linear Labs

Первый иннинг

Мы спросили Брэда, сколько времени, по его мнению, пройдет, прежде чем мы увидим HET в такой машине, как Chevrolet Bolt. «Три или четыре, некоторые говорят, что через пять лет… У крупных компаний есть более длительные производственные циклы, [но] мы находимся в соглашениях о совместной разработке, мы проводим испытания с [автопроизводителями]».

В мире электромобилей было так много шарлатанов, что многие из прочитанных нами историй о HET заканчиваются тем, что комментаторы атакуют его, как гиены, выпотрошившие гну.

«В моторном отсеке много дыма и зеркал», — признал Брэд. «Отличие в этом: мы их построили. В конце концов, вы не можете спорить с тем, что построено прямо перед вами ».

«Мы буквально находимся на первом этапе внедрения этой технологии, — продолжил он, — поэтому мы продолжим делать еще много вещей, которые сделают это еще лучше. Но первые двигатели, которые мы производим на рынке, — это буквально качественный скачок во всем, что есть на рынке.”

Тогда возникает вопрос, имеет ли этот квантовый скачок смысл с точки зрения стоимости и упаковки для целого ряда производителей электромобилей, или он имеет смысл в первую очередь для производителей электромобилей класса люкс, которые могут оправдать стоимость HET. Можно ли противодействовать и оправдать этот еще один эффективный, но дорогой компонент, удалив не особо дорогую вещь (коробку передач) и удалив некоторые из этих довольно дорогих и тяжелых вещей (батареи)? Представители Hyundai не были так уверены, но если это действительно только первый иннинг для HET, возможно, дальнейшие разработки и фактический доступ со стороны крупных производителей дадут ответ по ходу игры.

Создание генератора с генератором переменного тока для питания вашего дома

При всей неопределенности современного мира многие люди пытаются стать более самодостаточными. Выращивание собственных овощей, выращивание собственных цыплят для получения яиц или выращивание более крупных животных, таких как мясной и молочный скот, если у них есть место.

Более самодостаточные люди даже шьют себе одежду и / или другие предметы домашнего обихода, в том числе строят свои дома и даже обставляют их мебелью ручной работы.

Многие из этих людей, желающие отключиться от электросети, должны найти способы снабдить свои дома электроэнергией, не полагаясь на энергокомпанию.

Некоторые, например амиши, могут не использовать современное удобство электричества и поэтому используют фонари, рабочих лошадей и тому подобное для удовлетворения своих потребностей.

Но нет никаких сомнений в том, что современные приборы и электроинструменты облегчают жизнь, поэтому для многих самодостаточных людей единственный логический ответ — создать собственное электричество дома.

Это можно сделать двумя способами. Один из способов — купить довольно дорогие солнечные панели, чтобы использовать энергию солнца.

Другой способ — потратить тысячи долларов на генератор, который можно использовать отдельно или вместе с вышеупомянутыми солнечными батареями. Но зачем покупать такой, если можно самому сделать самодельный генератор с генератором?

Начало работы с генератором

Средний американец привык к домашней электросети, которая обеспечивает 110 В переменного тока для работы базовой электроники, такой как свет, телевизор, компьютер или холодильник, и 220 В переменного тока для работы их плиты и сушилки для белья.

Но если вы живете вне сети и делаете это с ограниченным бюджетом, подумайте о том, что вы можете запустить систему освещения дома на цепи 12 В с резервным аккумулятором, просто используя автомобильные генераторы и аккумуляторы (на самом деле морские батареи глубокого цикла работают лучше) с напряжением 12 В. огни.

Это снижает потребность в электроэнергии, и в случае выхода из строя газового генератора или невозможности получить топливо вы все равно можете управлять своим домом от батарей, и, дополнив систему солнечной энергией и ветрогенератором, построенным с автомобильный генератор переменного тока (или аналогичный), вы можете держать батареи заряженными для работы 12-вольтовых ламп и инверторов питания.

Эта 12-вольтовая система по-прежнему может управлять холодильником или плитой, просто используя повышающий трансформатор, широко известный как инвертор мощности, или вы можете использовать 12-вольтовую систему для питания двигателя 12 В для включения полностью независимой генераторной системы с более высоким выходным напряжением, если Вы можете получить это бесплатно, а не тратить несколько сотен долларов на инверторы.

Предположительно, автомобильные генераторы переменного тока можно перенастроить для выработки 110 В.

Другой метод, который вы можете легко найти в Интернете для генерации 110 В, — это использование двигателя 110 В, такого как двигатель от печи, или даже двигатель сушилки или потолочного вентилятора.

Обычно, если вы вводите электричество в двигатель, оно превращается в кинетическую энергию и вращает двигатель, но если вы обращаете этот процесс вспять и используете внешнюю силу для поворота двигателя, он генерирует электричество, или, по крайней мере, эту историю можно найти в Интернете. .

Я никогда толком не пробовал ни один из этих двух методов, но есть что изучить. Однако я могу сказать со 100% уверенностью, что система генератора 12 В с аккумулятором и инвертором питания может достаточно хорошо работать с домашней электроникой на 110 В.

Я использую преобразователь мощностью 800 Вт для походов и охоты (на фото ниже), но если вы хотите использовать этот метод для непрерывной работы дома, вам понадобится существенный преобразователь в диапазоне 4000-5000 Вт, хотя 1000 Вт будет работать с холодильник, телевизор и несколько ламп, как это видно на этом видео на YouTube.

Другой метод управления домом от самодельной генераторной установки включает в себя набор аккумуляторов, инвертор (ы) и использование автомобильных генераторов переменного тока в небольшой ветряной мельнице на заднем дворе или другого источника питания, такого как двигатель газонокосилки, для включения генератора.

Фото: авторский преобразователь 800 Вт для кемпинга / охоты

Здесь можно увидеть пример генератора 12В, построенного с двигателем в стиле газонокосилки.

Эта установка использует ветер или другой источник энергии для поддержания заряда батареи, а батареи питают инвертор (ы), которые, в свою очередь, питают ваше электронное оборудование. Вот пример ветряной мельницы с автомобильным генератором переменного тока.

В некоторых из этих видеороликов люди говорят, что купили новые компоненты, но это лишает их самодостаточности.Использование найденных запчастей или покупка бывшего в употреблении двигателя косилки ближе к дому.

Если у вас под рукой есть быстрый поток, вы даже можете сделать свою собственную миниатюрную гидроэлектростанцию, используя лопаточное колесо и редуктор (подумайте, 15-скоростные велосипедные шестерни и цепной привод) для вращения генератора (ов).

Какой метод вы выберете для достижения этой цели, полностью зависит от вас и, вероятно, лучше всего может быть определен из того, с чем у вас есть под рукой, и сколько вы можете позволить себе потратить на инвертор, если вы решите использовать метод инвертора.

Инвертор придется покупать, если только вы не знаете, как его сделать, как этот парень:

Есть масса видео о том, как это сделать, но я не уверен, что хочу попробовать, я куплю инвертор.

После того, как вы настроили аккумуляторную батарею с выбранной вами системой зарядки генератора, остается лишь подключить силовой инвертор. Вы можете подключить инвертор непосредственно к главному автомату, если хотите (просто убедитесь, что он не находится в какой-либо внешней электросети).

Электропитание для небольшого дома обычно составляет 100 ампер, но для более крупного дома потребуется больше. В более новых домах, построенных в 1970-х годах и позже, будут использоваться блоки выключателей, они выглядят как выключатели.

В служебных панелях старых домов используются предохранители, они похожи на выключатель, но когда предохранитель перегорает, это происходит, когда выключатель срабатывает, вы просто полностью переключаете его в выключенное положение, затем снова во включенное состояние, и обслуживание восстанавливается.

В распределительную коробку в вашем доме подается питание 220 В, которое затем делится на две группы по 110 В.Здесь вы видите выключатели, которые вы используете для каждой цепи в доме.

Например, вероятно, есть несколько узких 15-амперных прерывателей для домашнего освещения и розеток, а также 20-амперный прерыватель для холодильника.

Это однополюсные выключатели, которые используются только для 110 В. Вы также увидите более крупный и широкий двойной прерыватель на 30 или 50 ампер, он предназначен для сушилки (30) и печи (50). Для этих цепей требуется 220 В.

Если вы можете подключить его непосредственно к стороне питания коробки выключателя, так как инвертор только 110 В, чтобы получить 220 В, вам нужно будет подключить 110 В от инвертора к ОБЕИМ сторонам коробки выключателя (черные провода на схеме ниже) , блок выключателя соответственно распределяет мощность между цепями, как если бы вы были в электросети.

Фото: схема внутри блока главного выключателя Фото: схема системы с двумя инверторами

На схемах выше показано, как подключить систему, начиная с генератора 12 В, созданного с автомобильным генератором переменного тока, до аккумуляторной батареи, чтобы поддерживать его в заряженном состоянии.

Этот аккумуляторный блок, в свою очередь, обеспечивает необходимый вход 12 В для инвертора (ов) 110 В, который затем может быть подключен непосредственно к распределительной коробке дома.

Еще раз убедитесь, что дом НЕ подключен к электросети. Обычно это можно сказать, потому что в доме, куда поступает запас, будет стеклянный шар.

Если глобуса нет, то, вероятно, будет безопасно пойти дальше и подключиться к коробке. Вам нужно будет снять сервисную панель с передней части коробки выключателя, чтобы получить к ней доступ.

Фото: схема системы с двумя инверторами

При использовании одного более крупного инвертора на 110 В (4000-5000 Вт) вам придется разделить положительный (+) на два провода и подключить каждую сторону коробки выключателя, если вы используете два инвертора меньшего размера (2000-3000 ) проложите отрицательный (-) от каждого инвертора к центральной шине (общая шина заземления, вдоль этой шины будет скручен голый медный провод), а затем проведите положительный полюс от каждого инвертора к одной стороне коробки.Это обеспечит электроэнергией весь дом.

Если вы действительно хотите убедиться, что у вас достаточно мощности, два больших инвертора опять же, в зависимости от того, что доступно, это лучший сценарий. Новые батареи глубокого разряда недешевы, но если вы можете себе их позволить, вы добьетесь лучших результатов, как если бы вы использовали два больших инвертора.

Раскрытие информации: в этом посте есть партнерские ссылки, поэтому я могу получить комиссию, если вы совершите покупку по этим ссылкам. См. Мое полное раскрытие для получения дополнительной информации.

Но если у вас ограниченный бюджет, «найденные» автомобильные аккумуляторы и инверторы меньшего размера по-прежнему будут работать, вы просто не сможете использовать плиту или сушилку.

Конфорка меньшего размера, работающая на 110 В, может быть заменена на полноразмерную плиту, если вы не можете или не хотите обеспечивать достаточную мощность для работы цепи 220 В для плиты.

Обзор

Теперь, когда вы полностью запутались, давайте просто сделаем краткий обзор того, как на самом деле сделать генератор.

  1. Найдите необходимые детали. Используя найденные предметы, вы можете снизить стоимость генератора; в конце концов, если вам нужно потратить 400 долларов на его строительство, вы можете просто купить генератор. Для этой сборки вам понадобится:
    • Двигатель газонокосилки
    • Автомобильный генератор
    • Кронштейн генератора (используйте тот, что от автомобиля, на котором был изготовлен генератор)
    • Ремень (ремень генератора от автомобиля-донора)
    • Аккумулятор от машины-донора
    • Различные болты и гайки (здесь также используются гайки и болты с донорской машины)
    • Base (это может быть простая доска или катящаяся тележка, если вы используете двигатель ездовой косилки, вы можете просто прикрутить генератор и инвертор к газонокосилке и получить управляемый мобильный генератор)
    • Шкив двигателя (шкив от машины-донора или ремень можно надеть прямо на вал двигателя, если нужно))
    • Инструменты (ключи, дрели, сверла и т. Д.)) * ПРИМЕЧАНИЕ. Если вам нужен генератор для подачи электричества, вы, очевидно, не сможете использовать дрель. Советую найти ручную дрель старого образца; Блошиные рынки часто являются хорошим источником таких старых инструментов.
  2. Прикрепите двигатель к основанию
  3. Прикрепите кронштейн генератора к основанию (убедитесь, что шкивы правильно выровнены)
  4. Прикрепите генератор к кронштейну, установите ремень и затяните
  5. Подсоедините кабели к положительным и отрицательным клеммам на генератор.(можно использовать кабели аккумулятора от автомобиля-донора)
  6. Добавьте аккумулятор в устройство и подсоедините положительный и отрицательный кабели к соответствующим клеммам на аккумуляторе. Это позволит генератору проработать несколько часов без запуска двигателя. Эту батарею также можно использовать для запуска двигателя.
  7. Добавьте инвертор (инверторы) питания 12 В постоянного тока к 110 В переменного тока, подключите провода от батареи и подключите выходные провода питания. Его можно подключить прямо к коробке выключателя, как описано в статье, или вы можете просто вставить шнур с розетками, если генератор предназначен для использования переносным .

Последние мысли

Быть самодостаточным в наши дни становится все более важным, и это намного лучше, чем полагаться на кого-то, кто придет и спасет вас. Вспомните времена, когда из-за сильных штормов многие люди оставались без электричества на несколько дней или даже недель.

Несколько лет назад мы пережили сильный ледяной шторм, который отключил электричество у всех жителей сельской местности, где мы жили. Я просто достал свой генератор и подключил холодильник, микроволновую печь, несколько ламп, обогреватель и телевизор.

К моему удивлению, кабель все еще работал! Все, кто проезжал мимо, останавливались и спрашивали о электричестве, и я им отвечал: нет, он все еще выключен, у меня есть генератор.

Приведенная здесь информация может быть использована для временных чрезвычайных ситуаций, таких как отключение электроэнергии из-за шторма, для дешевого обустройства охотничьего домика или летнего дома или для электроснабжения постоянного дома, если вы решите это сделать.

С предметами, которые вы можете раздобыть, или с минимальными начальными вложениями и используя свой мозг, вы можете сделать свой домашний источник энергии для себя.Эта информация предназначена для того, чтобы показать вам, что это можно сделать, проявив немного изобретательности.

Заявление об ограничении ответственности

Предупреждение! Изготовление собственного генератора может быть опасным. Содержание этой статьи предназначено только для информационных целей, и его НЕ следует принимать за совет профессионала.

Ни автор, ни www.SurvivalSullivan.com не несут ответственности за использование советов, представленных в этой статье. Мы настоятельно рекомендуем вам обратиться за советом к специалисту, если вы собираетесь заняться этим проектом.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *