Что такое электрическое поле и как оно возникает. Какими характеристиками обладает электрическое поле. Как можно описать и изобразить электрическое поле. Какие существуют виды электрических полей.
Что такое электрическое поле и как оно возникает
Электрическое поле — это особый вид материи, который возникает вокруг электрических зарядов и оказывает силовое воздействие на другие заряженные тела. Основные свойства электрического поля:
- Создается электрическими зарядами и токами
- Существует в пространстве вокруг зарядов
- Действует силой на помещенные в него электрические заряды
- Является одним из проявлений электромагнитного поля
Электрическое поле возникает вокруг любого электрического заряда — как неподвижного, так и движущегося. Оно непрерывно распределено в пространстве и простирается до бесконечности, хотя его действие ослабевает с расстоянием.
Основные характеристики электрического поля
Для описания свойств и действия электрического поля используются следующие основные характеристики:
Напряженность электрического поля
Напряженность электрического поля — это векторная физическая величина, характеризующая силовое действие электрического поля на помещенный в него пробный положительный заряд. Напряженность определяется по формуле:
E = F / q
где F — сила, действующая на пробный заряд q.
Единица измерения напряженности — В/м (вольт на метр).
Потенциал электрического поля
Потенциал — это энергетическая характеристика электрического поля, равная работе, которую совершает поле при перемещении единичного положительного заряда из данной точки в бесконечность. Единица измерения потенциала — вольт (В).
Как можно описать и изобразить электрическое поле
Для наглядного представления структуры электрического поля используются следующие способы:
Силовые линии
Силовые линии — это линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля. Они начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий характеризует величину напряженности поля.
Эквипотенциальные поверхности
Эквипотенциальные поверхности — это поверхности, во всех точках которых потенциал электрического поля имеет одинаковое значение. Они всегда перпендикулярны силовым линиям.
Какие существуют виды электрических полей
Различают следующие основные виды электрических полей:
Электростатическое поле
Электростатическое поле создается неподвижными электрическими зарядами. Его напряженность и потенциал не меняются со временем. Примером является поле точечного заряда или заряженного проводника.
Стационарное электрическое поле
Стационарное поле создается постоянными электрическими токами. Его характеристики также не зависят от времени. Пример — поле вокруг проводника с постоянным током.
Переменное электрическое поле
Переменное электрическое поле меняется со временем по величине и направлению. Оно возникает при протекании переменных токов или колебаниях зарядов. Переменное электрическое поле всегда связано с переменным магнитным полем.
Принцип суперпозиции электрических полей
Важным свойством электрического поля является принцип суперпозиции: напряженность результирующего поля, создаваемого системой зарядов, равна векторной сумме напряженностей полей, создаваемых каждым зарядом в отдельности:
E = E1 + E2 + … + En
Это позволяет рассчитывать сложные электрические поля, создаваемые системами зарядов.
Проводники и диэлектрики в электрическом поле
Вещества по-разному ведут себя в электрическом поле:
Проводники в электрическом поле
В проводниках под действием электрического поля происходит перераспределение свободных зарядов. В результате поле внутри проводника становится равным нулю, а на поверхности образуются индуцированные заряды. Это явление называется электростатической индукцией.
Диэлектрики в электрическом поле
В диэлектриках свободных зарядов нет, но под действием внешнего поля происходит поляризация — смещение связанных зарядов и ориентация полярных молекул. В результате диэлектрик создает свое внутреннее поле, ослабляющее внешнее.
Применение электрического поля
Знание свойств электрического поля находит широкое практическое применение:
- Электростатические генераторы и ускорители заряженных частиц
- Электрофильтры для очистки газов от пыли и дыма
- Электростатическая окраска и нанесение покрытий
- Копировальные аппараты и лазерные принтеры
- Электронно-лучевые трубки и дисплеи
- Конденсаторы для накопления заряда
Таким образом, электрическое поле играет важную роль как в фундаментальной физике, так и в современных технологиях. Понимание его свойств необходимо для работы со всеми электрическими и электронными устройствами.
Электрическое поле: основные понятия
Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.
Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.
Понятие напряженности электрического поля
Определение 1Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.
Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.
Напряженность электрического поля можно задать формулой:
E→=F→q.
Напряжение электрического поля является векторной величиной. Направление вектора E→ совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.
Напряженность электрического поля
Какое поле называют электростатическим?
Определение 2Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.
Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.
Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.
Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:
E→=E1→+E2→+. ..
Электрическое поле подчиняется принципу суперпозиции.
Определение 4Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:
E=14πε0·Qr2.
Это поле называется кулоновским.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать заданиеВ кулоновском поле направление вектора E⇀ зависит от знака заряда Q: если Q>0, то вектор E⇀ направлен по радиусу от заряда, если Q<0, то вектор E⇀ направлен к заряду.
Обратимся к иллюстрации. На рисунке для большей наглядности мы используем силовые линии электрического поля. Они проходят таким образом, чтобы направление вектора E⇀ в каждой из точек пространства совпадало с направлением касательной к силовой линии. Густота силовых линий соответствует модулю вектора напряженности поля.
Рисунок 1. 2.1. Силовые линии электрического поля.
Мы можем использовать как положительные, так и отрицательные точечные заряды. Оба эти случая мы изобразили на рисунке. Электростатическое поле, которое создается системой зарядов, мы можем представить как суперпозицию кулоновских полей точечных зарядов. В связи с этим мы можем рассматривать поля точечных зарядов как элементарные структурные единицы любого электрического поля.
Рисунок 1.2.2. Силовые линии кулоновских полей.
Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r→от заряда Q к точке наблюдения. Тогда при Q>0 вектор E→ параллелен r→, а при Q<0 вектор E→ антипараллелен r→.
Следовательно можно записать:
E→=14πε0·Qr3r→,
где r – модуль радиус-вектора r→.
По заданному распределению зарядов можно определить электрическое поле E→. Такие задачи часто встречаются в таком разделе физики как электростатика. Рассмотрим пример такой задачи.
Пример 1Предположим, что нам нужно найти электрическое поле длинной однородно заряженной нити на расстоянии R от нее. Для большей наглядности мы привели схему на рисунке ниже.
Рисунок 1.2.3. Электрическое поле заряженной нити.
Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δx нити, с зарядом τΔx, где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей ∆E→. Результирующее поле оказывается равным
E=τ2πε0R.
Вектор E→ везде направлен по радиусу R→. Это следует из симметрии задачи.
Даже в таком простом примере вычисления могут быть достаточно громоздкими. Упростить математические расчеты позволяет теорема Гаусса, которая выражает фундаментальное свойство электрического поля.
Рисунок 1.2.4. Модель электрического поля точечных зарядов.
Рисунок 1. 2.5. Модель движения заряда в электрическом поле.
Понятие о диполях
Определение 5Электрический диполь – это система из двух одинаковых по модулю зарядов, которые отличаются знаками и расположены на некотором расстоянии друг от друга.
Эта система может послужить нам хорошим примером применения принципа суперпозиции полей, а также электрической моделью многих молекул.
Рисунок 1.2.6. Силовые линии поля электрического диполя E→=E1→+E2→.
Дипольный момент p→ является одной из наиболее важных характеристик электрического диполя:
p→=l→q,
где l→ – вектор, направленный от отрицательного заряда к положительному, модуль l→=l.
Электрическим дипольным моментом обладает, например, нейтральная молекула воды (h3O), так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105°. Дипольный момент молекулы воды p=6,2·10–30 Кл · м.
Рисунок 1.2.7. Дипольный момент молекулы воды.
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — это… Что такое ЭЛЕКТРИЧЕСКОЕ ПОЛЕ?
- ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
- ЭЛЕКТРИЧЕСКОЕ ПОЛЕ (электростатическое поле), область вокруг электрического заряда, в которой на каждую заряженную частицу действует некоторая сила. Объект с противоположным зарядом испытывает силу притяжения. Объект, имеющий такой же заряд, как и окружающее его поле, испытывает отталкивающее воздействие. Сила поля относительно единичного заряда на расстоянии r от заряда Q равна: Q/4pr2e, где e — диэлектрическая проницаемость среды, окружающей заряд. Переменное магнитное поле также может создать электрическое поле. см. также ЭЛЕКТРОМАГНЕТИЗМ.
Научно-технический энциклопедический словарь.
- ЭЛЕКТРИЧЕСКИЙ ТОК
- ЭЛЕКТРИЧЕСТВО
Смотреть что такое «ЭЛЕКТРИЧЕСКОЕ ПОЛЕ» в других словарях:
Spheroidally — Spheroidal Sphe*roid al, a. [Cf. F. sph[ e]ro[ i]dal.] Having the form of a spheroid. {Sphe*roid al*ly}, adv. [1913 Webster] {Spheroidal state} (Physics.), the state of a liquid, as water, when, on being thrown on a surface of highly heated metal … The Collaborative International Dictionary of English
Geniculate — Ge*nic u*late, a. [L. geniculatus, fr. geniculum little knee, knot or joint, dim. of genu knee. See {Knee}.] Bent abruptly at an angle, like the knee when bent; as, a geniculate stem; a geniculate ganglion; a geniculate twin crystal. [1913… … The Collaborative International Dictionary of English
Turnkey — Turn key , n.; pl. {Turnkeys}. [1913 Webster] 1. A person who has charge of the keys of a prison, for opening and fastening the doors; a warder. [1913 Webster] 2. (Dentistry) An instrument with a hinged claw, used for extracting teeth with a… … The Collaborative International Dictionary of English
Книги
- Почему у свитых проводников с током отсутствует электромагнитное поле? Электромагнитное поле, магнитное поле, электрическое поле проводника с током. Импульсное поле витка с током и катушки (теория аб, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. В книге доказано, что электромагнитное поле проводника с током образовано электронами. Электромагнитное поле — есть пространство, заполненное направленно движущимися по винтовым траекториям… Подробнее Купить за 916 грн (только Украина)
- Теоретические основы электротехники. Электромагнитное поле, Л. А. Бессонов. Рассмотрены традиционные и появившиеся за последние годы новые вопросы теории и методы расчета физических процессов в электрических, магнитных и электромагнитных полях, предусмотренные… Подробнее Купить за 750 руб
- Почему у свитых проводников с током отсутствует электромагнитное поле? Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Почему у свитых проводников с током отсутствует электромагнитное поле? Электромагнитное поле, магнитное поле, электрическое поле проводника с током. Импульсивноеполе витка с током и катушки… Подробнее Купить за 715 руб
В работе Эфироэлектрическая теория достигла, наконец, такого уровня развития, что позволяет приступить к созданию целостной картины мира. В настоящее время такая работа ведётся, промежуточные результаты периодически выкладываются в разделе «Картина мира». | Главная Электрическое поле Понятие «электрическое поле«, как и понятие вообще обо всех, так называемых, физических полях возникло сравнительно недавно. Двухсот лет не прошло. Вначале людям было достаточно того, что наэлектризованные тела так или иначе взаимодействуют друг с другом. Без понятия поля удалось построить практически всю электростатику, сформировать закон Кулона, выяснить роль среды в электрических взаимодействиях. Действие заряженных тел на расстоянии во времена Ш. О. Кулона не представлялось чем-то непонятным.
Но вот в первой трети 19 века, во времена Фарадея, многие исследователи начали задаваться вопросом: как же могут взаимодействовать материальные объекты на расстоянии через «ничто»? Надо отметить, что в те времена уже существовал универсальный ответ на этот вопрос: материальные тела взаимодействуют друг с другом вовсе не через «ничто», а через вполне реальную окружающую их среду, через мировой эфир. Но такой ответ был слишком общим, слишком абстрактным. Без точных знаний об эфире не удавалось даже понять чем отличаются гравитационные взаимодействия от электрических, а электрические от магнитных и т.п. А ответы хотелось получить здесь и сейчас. Обычное для людей свойство. Тогда некоторые учёные (в частности сам М. Фарадей), просто объявили, что наэлектризованные или намагниченные тела окружены неким подобием «атмосферы», некоей субстанцией, которую назвали в случае наэлектризованных тел электрическим полем, а в случае тел намагниченных (и токов) магнитным полем. Конечно же, сразу проэкстраполировали эту идею на взаимодействие массивных тел, и назвали специфическую атмосферу, якобы окружающую массивные тела, гравитационным полем. Вначале никто особо не настаивал на физической реальности этих полей (за исключением, быть может, М. Фарадея, который, говорят современники, буквально «видел» силовые линии). Потом много потрудились над понятием поля математики и математически образованные физики, такие как Дж. Максвелл, О. Хевисайд, Г. Герц. Обратите внимание Выведены были уравнения полей, установлены различные красивые законы и соотношения, началось плодотворное практическое использование электричества и магнетизма. И к концу 19 века уже все прочно верили в то, что эти физические поля — не просто удобный приём для описания неких загадочных взаимодействий, но реально и объективно существующие физические субстанции. Произошло так называемое овеществление полей (по К. Канну). Но быстро выяснилось, что магнитные явления могут порождать электрические, а электрические процессы могут порождать магнитные взаимодействия. Стало быть, что же, эти поля не есть самостоятельные, объективно существующие и независящие ни от чего сущности? К этому времени из физики уже практически изгнали мировой эфир, отчаявшись грубыми механистическими методами что-то выяснить о его сущности и свойствах. Так что вернуться назад, от придуманных наскоро «полей» к основе, к мировой среде было уже затруднительно. В начале 20 века учёные понимают, что никакиго магнитного поля, как самостоятельной физической субстанции не существует, а электрическое поле тоже проявляет себя по-разному в зависимости от того движется прибор или стоит. Возникла и экспериментальная база и теории, вроде специальной теории относительности (СТО) Эйштейна, которые ясно показывали относительность силовых взаимодействий, а, значит, и их причины — физических полей. А раз «поле» зависит от того, движется наблюдатель (с прибором) или нет, вплоть до полного исчезновения этого «поля», то какие же они, к чёрту, объективно существующие субстанции? Чтобы как-то смягчить шок и недоумение от этого случившегося в первой же трети 20 века «исчезновения полей», учёные придумали так называемое «электромагнитное поле». Мол, магнитного и электрического поля нет, а есть единое электромагнитное поле, частными проявлениями которого являются электрические и магнитные явления, и вот оно-то и обладает объективным бытием. Вроде бы, ловкий ход? Увы, к тому времени как этот приём был придуман и внедрён в широкий научный обиход, уже появились на свет и «овеществились» новые «поля»: сильное и слабое ядерное, отвечающие за соответствующие взаимодействия между элементарными частицами. Да и с гравитационным случилась беда — оно, оказывается (по крайней мере теоретически, в рамках общей теории относительност (ОТО)), должно влиять на электрические и магнитные взаимодействия. А возможно и на слабые с сильными. И тут родилась идея объединить все вообще столь поспешно овеществлённые «поля» в некое «Единое Поле», которое, соответственно, обладало бы максимальной объективностью и могло бы объяснить все известные учёным виды физических силовых взаимодействий. Идея, вроде бы, благородная. Только вот почти столетие возни в этом направлении так и не принесло серьёзного результата. Не выходит, увы, «каменный цветок»! А если завтра учёные придумают ещё парочку «полей»? А ведь уже, уже тянут ручонки… Вон, космологический член, якобы отвечающий за расширение Вселенной кое-кто уже уверенно крестит «полем». Эдаким всемирным полем отталкивания…
|
§ 2. Напряженность электрического поля, электрическое поле, электрический потенциал и напряжение
Напряженность электрического поля. Физическая природа электрического поля и его графическое изображение. В пространстве вокруг электрически заряженного тела существует электрическое поле, представляющее собой один из видов материи. Электрическое поле обладает запасом электрической энергии, которая проявляется в виде электрических сил, действующих на находящиеся в поле заряженные тела.
Рис. 4. Простейшие электрические поля: а – одиночных положительного и отрицательного зарядов; б – двух разноименных зарядов; в – двух одноименных зарядов; г – двух параллельных и разноименно заряженныx пластин (однородное поле)
Электрическое поле условно изображают в виде электрических силовых линий, которые показывают направления действия электрических сил, создаваемых полем. Принято направлять силовые линии в ту сторону, в которую двигалась бы в электрическом поле положительно заряженная частица. Как показано на рис. 4, электрические силовые линии расходятся в разные стороны от положительно заряженных тел и сходятся у тел, обладающих отрицательным зарядом. Поле, созданное двумя плоскими разноименно заряженными параллельными пластинами (рис. 4, г), называется однородным .
Электрическое поле можно сделать видимым, если поместить в него взвешенные в жидком масле частички гипса: они поворачиваются вдоль поля, располагаясь по его силовым линиям (рис. 5).
Напряженность электрического поля. Электрическое поле действует на внесенный в него заряд q (рис. 6) с некоторой силой F. Следовательно, об интенсивности электрического поля можно судить по значению силы, с которой притягивается или отталкивается некоторый электрический заряд, принятый за единицу. В электротехнике интенсивность поля характеризуют напряженностью электрического поля Е. Под напряженностью понимают отношение силы F, действующей на заряженное тело в данной точке поля, к заряду q этого тела:
E = F / q (1)
Рис. 5. Картина распределения силовых линий электрического поля: а – заряженный шар; б – разноименно заряженные шары; в – разноименно заряженные параллельные пластины
Поле с большой напряженностью Е изображается графически силовыми линиями большой густоты; поле с малой напряженностью — редко расположенными силовыми линиями. По мере удаления от заряженного тела силовые линии электрического поля располагаются реже, т. е. напряженность поля уменьшается (см. рис. 4 а,б и в). Только в однородном электрическом поле (см. рис. 4, г) напряженность одинакова во всех его точках.
Рис. 6. Схема действия электрического поля на внесенный в него электрический заряд q
Электрический потенциал. Электрическое поле обладает определенным запасом энергии, т. е. способностью совершать работу. Как известно, энергию можно также накопить в пружине, для чего ее нужно сжать или растянуть. За счет этой энергии можно получить определенную работу. Если освободить один из концов пружины, то он сможет переместить на некоторое расстояние связанное с этим концом тело. Точно так же энергия электрического поля может быть реализована, если внести в него какой-либо заряд. Под действием сил поля этот заряд будет перемещаться по направлению силовых линий, совершая определенную работу.
Для характеристики энергии, запасенной в каждой точке электрического поля, введено специальное понятие — электрический потенциал. Электрический потенциал ? поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.
Понятие электрического потенциала аналогично понятию уровня для различных точек земной поверхности. Очевидно, что для подъема локомотива в точку Б (рис. 7) нужно затратить большую работу, чем для подъема его в точку А. Поэтому локомотив, поднятый на уровень Н2, при спуске сможет совершить большую работу, чем локомотив, поднятый на уровень Н2 За нулевой уровень, от которого производится отсчет высоты, принимают обычно уровень моря.
Рис. 7. Разность уровней в поле земного тяготения
Рис. 8. Разность потенциалов U между точками А и Б электрического поля определяет работу, которая затрачивается на перемещение заряда q между этими точками
Точно так же за нулевой потенциал условно принимают потенциал, который имеет поверхность земли.
Электрическое напряжение. Различные точки электрического поля обладают разными потенциалами. Обычно нас мало интересует абсолютная величина потенциалов отдельных точек электрического поля, но нам весьма важно знать разность потенциалов ?1—?2 между двумя точками поля А и Б (рис. 8). Разность потенциалов ?1 и ?2 двух точек поля характеризует собой работу, затрачиваемую силами поля на перемещение единичного заряда из одной точки поля с большим потенциалом в другую точку с меньшим потенциалом. Точно так же нас на практике мало интересуют абсолютные высоты Н1и Н2 точек А и Б над уровнем моря (см. рис. 7), но для нас важно знать разность уровней И между этими точками, так как на подъем локомотива из точки А в точку Б надо затратить работу, зависящую от величины Я. Разность потенциалов между двумя точками поля носит название электрического напряжения. Электрическое напряжение обозначают буквой U (и). Оно численно равно отношению работы W, которую нужно затратить на перемещение положительного заряда q из одной точки поля в другую, к этому заряду, т. е.
U = W / q (2)
Следовательно, напряжение U, действующее между различными точками электрического поля, характеризует запасенную в этом поле энергию, которая может быть отдана путем перемещения между этими точками электрических зарядов.
Электрическое напряжение — важнейшая электрическая величина, позволяющая вычислять работу и мощность, развиваемую при перемещении зарядов в электрическом поле. Единицей электрического напряжения служит вольт (В). В технике напряжение иногда измеряют в тысячных долях вольта — милливольтах (мВ) и миллионных долях вольта — микровольтах (мкВ). Для измерения высоких напряжений пользуются более крупными единицами — киловольтами (кВ) — тысячами вольт.
Напряженность электрического поля при однородном поле представляет собой отношение электрического напряжения, действующего между двумя точками поля, к расстоянию l между этими точками:
E = U / l (3)
Напряженность электрического поля измеряют в вольтах на метр (В/м). При напряженности поля в 1 В/м на заряд в 1 Кл действует сила, равная 1 ньютону (1 Н). В некоторых случаях применяют более крупные единицы измерения напряженности поля В/см (100 В/м) и В/мм (1000 В/м).
Электрическое поле и электрический ток: напряженность и сила
Взаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле.
Электрическое поле
Электрическое поле заряда – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.
Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.
Напряженность электрического поляЗаряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды. Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.
Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.
Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.
Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.
Потенциал. Разность потенциалов. Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.
Диэлектрики в электрическом поле
Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.
Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны. Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е. смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.
Полярные и неполярные диэлектрики
Виды диэлектриков
К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кислород, водород, бензол.
Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.
Проводники в электрическом поле
Проводниками называются тела, способные пропускать через себя электрические заряды. Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.
Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд. Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд. Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.
При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю. Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.
Электроемкость и конденсатор
Электроемкость – количественная мера способности проводника удерживать заряд.
Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая индукция – позволяют получить на поверхности тел не большое количество свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.
Конденсатор – это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.
Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, т. к. равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.
Электрический ток
Это направленное движение заряженных частиц. В металлах носителями тока являются свободные электроны, в электролитах – отрицательные и положительные ионы, в полупроводниках – электроны и дырки, в газах – ионы и электроны. Количественной характеристикой тока является сила тока.
Источниками могут служить – гальванический элемент(происходят хим. реакции и внутренняя энергия, превращается в электрическую) и аккумулятор(для зарядки через него пропускают постоянный ток, в результате химической реакции один электрод становиться положительно заряженным, другой – отрицательно.
Действия электрического тока: тепловое, химическое, магнитное.
Направление электрического тока: от + к –
Направленное движение заряженных частиц
Поэтому достаточным условием для существования тока является наличие электрического поля и свободных носителей заряда. О наличии тока можно судить по явлениям, которые его сопровождают: Проводник, по которому течет ток, нагревается. Электрический ток может изменять химический состав проводника.
Силовое воздействие на соседние точки и намагниченные тела.
При существовании электрического поля внутри проводника, на концах его существует разность потенциалов. Если она не меняется, то в проводнике устанавливается постоянный электрический ток.
Сила тока
Сила тока – отношение заряда, пронесенного через поперечное сечение проводника за интервал времени, к этому интервалу времени.
Сила тока, как и заряд, величина скалярная. Она может быть как положительной, так и отрицательной. За положительное направление силы тока принято движение положительных зарядов. Если с течением времени сила тока не меняется, то ток называется постоянным.
Электродвижущая сила
Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток.
Во внешней цепи электрические заряды движутся под действием сил электрического поля. Но, чтобы поддерживать разность потенциалов на концах внешней цепи, необходимо перемещать электрические заряды внутри источника тока против сил электрического поля. Такое перемещение может осуществляться только под действием сил неэлектростатической природы.
Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами. Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических процессов, происходящих на границе раздела электрод – электролит. В машине постоянного тока сторонней силой является сила Лоренца.
Последовательное и параллельное соединение проводников
Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.
При последовательном соединении электрическая цепь не имеет разветвлений, все проводники включают в цепь поочередно друг за другом.
Сила тока во всех проводниках одинакова, так как в проводниках электрический заряд не накапливается и через поперечное сечение проводника за определенное время проходит один и тот же заряд.
При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.
При параллельном соединении электрическая цепь имеет разветвления (точку разветвления называют узлом). Начала и концы проводников имеют общие точки подключения к источнику тока.
При этом напряжение на всех проводниках одинаково. Сила тока равна сумме сил токов во всех параллельно включенных проводниках, так как в узле электрический заряд не накапливается, поступающий за единицу времени в узел заряд равен заряду, уходящему из узла за то же время.
Соединение источников тока
Соединение источников тока
Химические источники э. д. с. (аккумуляторы, элементы) включаются между собой последовательно, параллельно и смешанно.
Последовательное соединение источников э. д. с. На рисунке представлены три соединенных между собой аккумулятора. Такое соединение аккумуляторов, когда минус каждого предыдущего источника соединен с плюсом последующего источника, называется последовательным соединением. Группа соединенных между собой аккумуляторов или элементов называется батареей.
Электрическое поле. Действие электрического поля на электрические заряды
Электрическое поле — это особая форма материи, посредством которой осуществляется взаимодействие электрически заряженных частиц.
Введение понятия электрического поля понадобилось для объяснения взаимодействия электрических зарядов, т. е. для получения ответа на вопросы:почему возникают силы, действующие на заряды, и как они передаются от одного заряда к другому?
Понятия электрического и магнитного полей ввел великий английский физик Майкл Фара-дей. Согласно идее Фарадея, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.
С введением понятия поля в физике утвердилась теория близкодействия,главным отличием которой от теории дальнодействия является идея осуществовании определенного процесса в пространстве между взаимодействующими телами, который длится конечное время.
Идея эта получила подтверждение в работах великого английского физика Дж. К. Максвелла, который теоретически доказал, что электромагнитные взаимодействия должны распространяться в пространстве с конечной скоростью — с, равной скорости света в вакууме (300 000 км/с). Экспериментальным доказательством этого утверждения явилось изобретение радио.
Электрическое поле возникает в пространстве, окружающем неподвижный заряд, точно так же, как вокруг движущихся зарядов — токов либо постоянных магнитов — возникает магнитное поле. Магнитные и электрические поля могут превращаться друг в друга, образуя единое электромагнитное поле. Электрическое поле (как и магнитное) является лишь частным случаем общего электромагнитного поля. Переменные электрические и магнитные поля могут существовать и без зарядов и токов, их породивших. Электромагнитное поле переносит определенную энергию, а также импульс и массу. Таким образом, электромагнитное поле — физическая сущность, обладающая определенными физическими свойствами.
Итак, природа электрического поля состоит в следующем:
1. Электрическое поле материально, оно существует независимо от нашего сознания.
2. Главным свойством электрического поля является действие его на электрические заряды с некоторой силой. По этому действию устанавливается факт его существования. Действие поля на единичный заряд — напряженность поля — является одной из его основных характеристик, по которой изучается распределение поля в пространстве.
Электрическое поле неподвижных зарядов называют электростатическим.Со временем оно не меняется, неразрывно связано с зарядами, его породившими, и существует в пространстве, их окружающем.
5.4. Электрическое поле и его характеристики
5.4. Электрическое поле и его характеристики
Заряды взаимодействуют не только при соприкосновении наэлектризованных тел, но и тогда, когда эти тела находятся на расстоянии друг от друга. Вид материи, посредством которой осуществляется взаимодействие электрических зарядов на расстоянии, называется электрическим полем.
Электрическое поле всегда существует вокруг электрического заряда и имеет две характеристики: силовую (напряженность электрического поля в данной точке) и энергетическую (потенциал электрического поля в данной точке).
Напряженность Е электрического поля в какой-либо точке измеряется силой F, с которой поле действует на единичный положительный точечный заряд q, помещенный в эту точку:
Е = F/ q.
Напряженность электрического поля – векторная величина. Направление вектора напряженности совпадает с направлением вектора силы F, действующей в данной точке на положительный заряд.
Потенциалом электрического поля в данной точке называется величина, численно равная значению потенциальной энергии единичного положительного точечного заряда, помещенного в этой точке.
Потенциалы точек электрического поля положительно заряженного тела положительны и уменьшаются по мере удаления от тела, а потенциалы точек электрического поля отрицательно заряженного тела отрицательны и увеличиваются при удалении от тела.
Потенциал наэлектризованного проводника становится тем больше, чем больше электричества сообщается ему.
Если электрическое поле создается несколькими зарядами, расположенными в различных точках пространства, то потенциал в каждой точке поля равен алгебраической сумме потенциалов полей всех зарядов в этой точке.
Разность потенциалов (ϕ 1 – ϕ 2) между двумя точками электрического поля получила название напряжения (U). Напряжение численно равно работе А, которую производят электрические силы при перемещении единичного положительного заряда q между двумя точками:
U = ϕ 1 – ϕ 2 = А / q.
В системе СИ за единицу разности потенциалов (единицу напряжения) принимается один вольт (1 В) – разность потенциалов между двумя точками электрического поля, при которой силы поля, перемещая один кулон электричества из одной точки в другую, совершают работу в один джоуль.
Если электрическое поле однородно, т.е. напряженность во всех точках поля постоянна по величине и направлению, то между напряженностью поля и разностью потенциалов существует взаимосвязь:
E = – U/ L, где L – длина силовой линии однородного электрического поля.
В системе СИ напряженность электрического поля измеряется в единицах вольт/метр (В/м). 1 В/м – это напряженность такого однородного электрического поля, у которого разность потенциалов на концах силовой линии длиной в 1 м равна 1 В.
Учебное пособие по физике: Линии электрического поля
В предыдущем разделе Урока 4 обсуждалась векторная природа напряженности электрического поля. Величина или напряженность электрического поля в пространстве, окружающем заряд источника, напрямую связана с количеством заряда на заряде источника и обратно пропорционально расстоянию от источника заряда. Направление электрического поля всегда направлено в том направлении, в котором положительный испытательный заряд будет выталкиваться или вытягиваться, если его поместить в пространство, окружающее исходный заряд.Поскольку электрическое поле является векторной величиной, его можно представить векторной стрелкой. В любом заданном месте стрелки указывают направление электрического поля, а их длина пропорциональна напряженности электрического поля в этом месте. Такие векторные стрелки показаны на схеме ниже. Обратите внимание, что длины стрелок больше, когда они ближе к источнику заряда, и короче, когда они дальше от источника заряда.
Более полезным средством визуального представления векторной природы электрического поля является использование силовых линий электрического поля.Вместо того, чтобы рисовать бесчисленные векторные стрелки в пространстве, окружающем заряд источника, возможно, более полезно нарисовать узор из нескольких линий, которые проходят между бесконечностью и зарядом источника. Эти линии, иногда называемые линиями электрического поля , указывают в направлении, в котором положительный испытательный заряд будет ускоряться, если поместить на линию. Таким образом, линии направлены от положительно заряженных исходных зарядов к отрицательно заряженным исходным зарядам.Для передачи информации о направлении поля каждая линия должна включать стрелку, указывающую в соответствующем направлении. Схема силовых линий электрического поля может включать бесконечное количество линий. Поскольку рисование такого большого количества линий имеет тенденцию к снижению читабельности рисунков, количество линий обычно ограничено. Присутствия нескольких линий вокруг заряда обычно достаточно, чтобы передать природу электрического поля в пространстве, окружающем эти линии.
Правила построения диаграмм электрического поля
Существует множество условных обозначений и правил для рисования таких моделей линий электрического поля.Условные обозначения просто установлены для того, чтобы рисунки линий электрического поля передавали наибольший объем информации о природе электрического поля, окружающего заряженный объект. Одно из распространенных правил — окружать более заряженные объекты большим количеством линий. Предметы с большим зарядом создают более сильные электрические поля. Окружив сильно заряженный объект большим количеством линий, можно передать силу электрического поля в пространстве, окружающем заряженный объект, с помощью линейной плотности.Это соглашение изображено на диаграмме ниже.
Плотность линий, окружающих любой данный объект, не только раскрывает информацию о количестве заряда в исходном заряде, но и плотность линий в определенном месте в пространстве раскрывает информацию о напряженности поля в этом месте. Рассмотрим объект, показанный справа. На разных расстояниях от источника заряда нарисованы два разных круглых сечения. Эти поперечные сечения представляют области пространства ближе и дальше от источника заряда.Силовые линии расположены ближе друг к другу в областях пространства, ближайших к заряду; и они разбросаны дальше друг от друга в наиболее удаленных от заряда областях пространства. Основываясь на соглашении относительно линейной плотности, можно было бы заключить, что электрическое поле является наибольшим в местах, наиболее близких к поверхности заряда, и, по крайней мере, в местах, удаленных от поверхности заряда. Плотность линий в структуре силовых линий электрического поля раскрывает информацию о силе или величине электрического поля.
Второе правило рисования линий электрического поля включает рисование силовых линий, перпендикулярных поверхностям объектов в местах, где линии соединяются с поверхностями объектов. На поверхности объектов как симметричной, так и неправильной формы никогда не бывает компонента электрической силы, направленной параллельно поверхности. Электрическая сила и, следовательно, электрическое поле всегда направлены перпендикулярно поверхности объекта. Если бы когда-либо существовала какая-либо составляющая силы, параллельная поверхности, то любой избыточный заряд, находящийся на поверхности заряда источника, начал бы ускоряться.Это привело бы к возникновению электрического тока внутри объекта; это никогда не наблюдается в статическом электричестве . Как только силовая линия покидает поверхность объекта, она часто меняет свое направление. Это происходит при рисовании линий электрического поля для конфигураций из двух или более зарядов, как описано в разделе ниже.
Последнее правило рисования линий электрического поля включает пересечение линий. Линии электрического поля никогда не должны пересекаться. Это особенно важно (и соблазнительно нарушить) при рисовании линий электрического поля в ситуациях, связанных с конфигурацией зарядов (как в разделе ниже).Если бы силовым линиям электрического поля было позволено пересекаться друг с другом в данном месте, вы могли бы представить себе результаты. Линии электрического поля раскрывают информацию о направлении (и силе) электрического поля в определенной области пространства. Если линии пересекаются друг с другом в данном месте, тогда должно быть два отчетливо разных значения электрического поля с их собственным индивидуальным направлением в этом заданном месте. Этого никогда не могло быть. Каждое отдельное место в космосе имеет свою собственную напряженность электрического поля и направление, связанное с ней.Следовательно, линии, представляющие поле, не могут пересекать друг друга в любом заданном месте в пространстве.
Линии электрического поля для конфигураций из двух или более зарядов
В приведенных выше примерах мы видели силовые линии электрического поля в пространстве, окружающем точечные заряды. Но что, если область пространства содержит более одного точечного заряда? Как можно описать электрическое поле в пространстве, окружающем конфигурацию из двух или более зарядов, линиями электрического поля? Чтобы ответить на этот вопрос, мы сначала вернемся к нашему первоначальному методу рисования векторов электрического поля.
Предположим, что есть два положительных заряда — заряд A (Q A ) и заряд B (Q B ) — в данной области пространства. Каждый заряд создает собственное электрическое поле. В любом заданном месте вокруг зарядов напряженность электрического поля можно рассчитать с помощью выражения kQ / d 2 . Поскольку есть две зарядки, расчет kQ / d 2 необходимо будет выполнить дважды в каждом месте — один раз с kQ A / d A 2 и один раз с kQ B / d B 2 (d A — это расстояние от этого места до центра заряда A, а d B — это расстояние от этого места до центра заряда B).Результаты этих вычислений проиллюстрированы на диаграмме ниже с векторами электрического поля (E A и E B ), нанесенными в различных местах. Сила поля обозначается длиной стрелки, а направление поля обозначается направлением стрелки.
Поскольку электрическое поле является вектором, обычные операции, применяемые к векторам, могут быть применены к электрическому полю. То есть они могут быть добавлены «голова к хвосту» для определения результирующего или результирующего вектора электрического поля в каждом месте.Это показано на схеме ниже.
На диаграмме выше показано, что величина и направление электрического поля в каждом месте — это просто векторная сумма векторов электрического поля для каждого отдельного заряда. Если выбрано больше местоположений и процесс рисования E A , E B и E net повторяется, тогда напряженность и направление электрического поля во множестве местоположений будут известны. (Это не делается, поскольку это очень трудоемкая задача.В конце концов, линии электрического поля, окружающие конфигурацию двух наших зарядов, начнут проявляться. Для ограниченного числа точек, выбранных в этом месте, можно увидеть начало рисунка силовых линий электрического поля. Это показано на диаграмме ниже. Обратите внимание, что для каждого местоположения векторы электрического поля касаются направления линий электрического поля в любой данной точке.
Построение силовых линий электрического поля таким способом — утомительная и громоздкая задача.Использование компьютерной программы для построения полевых графиков или лабораторной процедуры дает аналогичные результаты за меньшее время (и с большим количеством операций). Какой бы метод ни использовался для определения рисунков силовых линий электрического поля для конфигурации зарядов, общая идея состоит в том, что образец является результатом рисунков для отдельных зарядов в конфигурации. Картины силовых линий электрического поля для других конфигураций заряда показаны на диаграммах ниже.
На каждой из приведенных выше диаграмм заряды отдельных источников в конфигурации имеют одинаковую величину заряда.Имея одинаковое количество заряда, каждый исходный заряд имеет равную способность изменять окружающее его пространство. Следовательно, узор является симметричным по своей природе, и количество линий, исходящих от заряда источника или идущих к заряду источника, одинаково. Это усиливает обсуждавшийся ранее принцип, согласно которому плотность линий, окружающих любой заданный заряд источника, пропорциональна количеству заряда на этом заряде источника. Если количество заряда на исходном заряде не идентично, рисунок примет асимметричный характер, поскольку один из исходных зарядов будет иметь большую способность изменять электрическую природу окружающего пространства.Это показано на рисунках силовых линий электрического поля ниже.
После построения диаграмм линий электрического поля для различных конфигураций заряда можно предсказать общие модели для других конфигураций. Есть ряд принципов, которые помогут в таких прогнозах. Эти принципы описаны (или повторно описаны) в списке ниже.
- Линии электрического поля всегда проходят от положительно заряженного объекта к отрицательно заряженному объекту, от положительно заряженного объекта к бесконечности или от бесконечности к отрицательно заряженному объекту.
- Силовые линии электрического поля никогда не пересекаются.
- Линии электрического поля наиболее плотны вокруг объектов с наибольшим зарядом.
- В местах, где силовые линии электрического поля встречаются с поверхностью объекта, линии перпендикулярны поверхности.
В Уроке 4 подчеркивалось, что концепция электрического поля возникла, когда ученые пытались объяснить действие на расстоянии, которое происходит между заряженными объектами.Понятие электрического поля было впервые введено физиком 19 века Майклом Фарадеем. Фарадей считал, что рисунок линий, характеризующий электрическое поле, представляет собой невидимую реальность. Вместо того чтобы мыслить в терминах влияния одного заряда на другой, Фарадей использовал концепцию поля, чтобы предположить, что заряженный объект (или массивный объект в случае гравитационного поля) влияет на пространство, которое его окружает. Когда другой объект входит в это пространство, на него влияет поле, установленное в этом пространстве.С этой точки зрения видно, что заряд взаимодействует с электрическим полем, а не с другим зарядом. Для Фарадея секрет понимания действия на расстоянии заключается в понимании силы заряда-поля-заряда. Заряженный объект посылает свое электрическое поле в космос от «съемника до шкива». Каждый заряд или конфигурация зарядов создает сложную сеть влияния в окружающем его пространстве. Хотя линии невидимы, эффект очень реален. Таким образом, когда вы практикуете упражнение по построению силовых линий электрического поля вокруг зарядов или конфигурации зарядов, вы делаете больше, чем просто рисуете извилистые линии.Скорее, вы описываете наэлектризованную паутину пространства, которая притягивает и отталкивает другие заряды, попадающие в нее.
Мы хотели бы предложить … Иногда просто прочитать об этом недостаточно. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения «Положите заряд в цель» и / или интерактивного интерфейса «Линии электрического поля».Оба интерактивных компонента можно найти в разделе Physics Interactives на нашем веб-сайте. Оба Interactives обеспечивают увлекательную среду для исследования силовых линий электрического поля. Проверьте свое пониманиеИспользуйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.
1. На диаграммах ниже показаны несколько диаграмм направленности силовых линий электрического поля.Какие из этих шаблонов неверны? _________ Объясните, что не так во всех неправильных схемах.
2. Эрин Агин нарисовала следующие силовые линии электрического поля для конфигурации из двух зарядов. Что Эрин сделала не так? Объяснять.
3. Рассмотрите силовые линии электрического поля, показанные на диаграмме ниже.Из диаграммы видно, что объект A — ____, а объект B — ____.
а. +, + | г. -, — | г. +, — | г. -, + | e. недостаточно информации |
4.Рассмотрим линии электрического поля, нарисованные справа для конфигурации из двух зарядов. На схеме обозначено несколько мест. Расположите эти места в порядке убывания напряженности электрического поля — от наименьшего к наибольшему.
5. Используйте свое понимание силовых линий электрического поля для определения зарядов на объектах в следующих конфигурациях.
6.Наблюдайте за линиями электрического поля ниже для различных конфигураций. Ранжируйте предметы, у которых есть наибольшая величина электрического заряда, начиная с наименьшего заряда.
Электрическое поле и движение заряда
Возможно, одним из самых полезных, но само собой разумеющихся достижений последних веков является разработка электрических цепей.Поток заряда по проводам позволяет нам готовить пищу, освещать дома, кондиционировать рабочее и жилое пространство, развлекать нас фильмами и музыкой и даже позволяет нам безопасно ездить на работу или в школу. В этом разделе Физического класса мы исследуем причины, по которым заряд течет по проводам электрических цепей, и переменные, которые влияют на скорость, с которой он течет. Средства, с помощью которых движущийся заряд передает электрическую энергию приборам для их работы, будут подробно рассмотрены.
Один из фундаментальных принципов, который необходимо понять, чтобы понять электрические цепи, относится к концепции того, как электрическое поле может влиять на заряд внутри цепи, когда он перемещается из одного места в другое. Понятие электрического поля впервые было введено в разделе «Статическое электричество». В этом блоке электрическая сила описывалась как неконтактная сила. Заряженный воздушный шар может оказывать притягивающее воздействие на противоположно заряженный воздушный шар, даже когда они не находятся в контакте.Электрическая сила действует на расстоянии, разделяющем два объекта. Электрическая сила — это сила, действующая на расстоянии.
Силы действия на расстоянии иногда называют полевыми силами. Концепция силы поля используется учеными для объяснения этого довольно необычного явления силы, которое происходит при отсутствии физического контакта. На пространство, окружающее заряженный объект, влияет наличие заряда; в этом пространстве устанавливается электрическое поле.Заряженный объект создает электрическое поле — изменение пространства или поля в окружающей его области. Другие заряды в этой области почувствовали бы необычное изменение пространства. Независимо от того, входит заряженный объект в это пространство или нет, электрическое поле существует. Пространство изменяется присутствием заряженного объекта; другие объекты в этом пространстве испытывают странные и таинственные качества космоса. По мере того, как другой заряженный объект входит в пространство и перемещается на все глубже и глубже на в поле, действие поля становится все более и более заметным.
Электрическое поле — это векторная величина, направление которой определяется как направление, в котором положительный тестовый заряд будет выдвигаться при помещении в поле. Таким образом, направление электрического поля около положительного заряда источника всегда направлено от положительного источника. И направление электрического поля около отрицательного заряда источника всегда направлено в сторону отрицательного источника.
Электрическое поле, работа и потенциальная энергияЭлектрические поля подобны гравитационным полям — оба связаны с силами, действующими на расстоянии.В случае гравитационных полей источником поля является массивный объект, а силы воздействия на расстоянии действуют на другие массы. Когда концепция силы тяжести и энергии обсуждалась в Блоке 5 Класса физики, было упомянуто, что сила тяжести является внутренней или консервативной силой. Когда гравитация воздействует на объект, перемещая его с высокого места на более низкое, общее количество механической энергии объекта сохраняется. Однако во время падающего движения произошла потеря потенциальной энергии (и увеличение кинетической энергии).Когда гравитация действительно воздействует на объект, перемещая его в направлении гравитационного поля, объект теряет потенциальную энергию. Потенциальная энергия, изначально запасенная внутри объекта в результате его вертикального положения, теряется, когда объект движется под действием гравитационного поля. С другой стороны, для перемещения массивного объекта против его гравитационного поля потребуется энергия. Стационарный объект не может естественно двигаться против поля и получать потенциальную энергию. Энергия в форме работы должна быть передана объекту внешней силой, чтобы он достиг этой высоты и соответствующей потенциальной энергии.
Важный момент, который следует сделать из этой аналогии с гравитацией, заключается в том, что внешняя сила должна совершать работу, чтобы переместить объект против природы — от энергии с низким потенциалом к энергии с высоким потенциалом. С другой стороны, объекты естественным образом переходят от энергии с высоким потенциалом к энергии с низким потенциалом под действием силы поля. Для объектов просто естественно переходить от высокой энергии к низкой; но требуется работа, чтобы переместить объект с низкой энергии на высокую.
Аналогичным образом, чтобы переместить заряд в электрическом поле против его естественного направления движения, потребуется работа. Работа внешней силы, в свою очередь, добавит объекту потенциальной энергии. Естественное направление движения объекта — от высокой энергии к низкой энергии; но необходимо провести работу по перемещению объекта против природы . С другой стороны, не потребуется работы, чтобы переместить объект из места с высоким потенциалом энергии в место с низким потенциалом энергии.Когда этот принцип логически распространяется на движение заряда в электрическом поле, связь между работой, энергией и направлением движения заряда становится более очевидной.
Рассмотрим диаграмму выше, на которой положительный заряд источника создает электрическое поле, а положительный тестовый заряд движется против поля и вместе с ним. На диаграмме A положительный тестовый заряд перемещается против поля из точки A в точку B. Перемещение заряда в этом направлении было бы подобно движению против природы.Таким образом, потребуется работа, чтобы переместить объект из местоположения A в местоположение B, и положительный тестовый заряд будет приобретать потенциальную энергию в процессе. Это было бы аналогично перемещению массы в восходящем направлении; потребовалась бы работа, чтобы вызвать такое увеличение потенциальной гравитационной энергии. На схеме B положительный испытательный заряд перемещается с полем из точки B в точку A. Это движение было бы естественным и не требовало работы внешней силы. Положительный тестовый заряд будет терять энергию при перемещении из точки B в точку A.Это было бы аналогично падению массы вниз; это произойдет естественным образом и будет сопровождаться потерей гравитационной потенциальной энергии. Из этого обсуждения можно сделать вывод, что место с высокой энергией для положительного тестового заряда — это место, ближайшее к положительному исходному заряду; а место с низким энергопотреблением находится дальше всего.
Вышеупомянутое обсуждение относилось к перемещению положительного тестового заряда в электрическом поле, созданном положительным зарядом источника. Теперь рассмотрим движение того же положительного пробного заряда в электрическом поле, создаваемом отрицательным зарядом источника.Тот же принцип в отношении работы и потенциальной энергии будет использоваться для определения местоположений высокой и низкой энергии.
На схеме C положительный тестовый заряд движется из точки A в точку B в направлении электрического поля. Это движение было бы естественным — как масса, падающая на Землю. Для того, чтобы вызвать такое движение, не потребуется работа, и это будет сопровождаться потерей потенциальной энергии. На схеме D положительный тестовый заряд движется из точки B в точку A против электрического поля.Потребуется работа, чтобы вызвать это движение; это было бы аналогично увеличению массы в гравитационном поле Земли. Поскольку энергия передается испытательному заряду в виде работы, положительный испытательный заряд будет приобретать потенциальную энергию в результате движения. Из этого обсуждения можно сделать вывод, что место с низкой энергией для положительного тестового заряда — это место, ближайшее к отрицательному заряду источника, а место с высокой энергией — это место, наиболее удаленное от отрицательного заряда источника.
Когда мы начнем обсуждать схемы, мы применим эти принципы, касающиеся работы и потенциальной энергии, к движению заряда по цепи. Как мы здесь рассуждали, перемещение положительного тестового заряда против электрического поля потребует работы и приведет к увеличению потенциальной энергии. С другой стороны, положительный тестовый заряд будет естественным образом перемещаться в направлении поля без необходимости работы с ним; это движение приведет к потере потенциальной энергии.Прежде чем применять это к электрическим цепям, нам нужно сначала изучить значение концепции электрического потенциала.
линий электрического поля: многократные заряды
Цели обучения
К концу этого раздела вы сможете:
- Рассчитайте общую силу (величину и направление), прилагаемую к испытательному заряду от более чем одного заряда
- Опишите диаграмму электрического поля точечного положительного заряда; отрицательного точечного заряда с удвоенной величиной положительного заряда
- Проведите силовые линии электрического поля между двумя точками одного заряда; между двумя точками противоположного заряда.
Рисунки с использованием линий для представления электрических полей вокруг заряженных объектов очень полезны для визуализации напряженности и направления поля. Поскольку электрическое поле имеет как величину, так и направление, оно является вектором. Как и все векторов , электрическое поле может быть представлено стрелкой, длина которой пропорциональна ее величине и которая указывает в правильном направлении. (Мы часто использовали стрелки для обозначения векторов силы, например.)
На рисунке 1 показаны два графических изображения одного и того же электрического поля, созданного положительным точечным зарядом Q .На рисунке 1b показано стандартное представление с использованием сплошных линий. На рисунке 1b показаны многочисленные отдельные стрелки, каждая из которых представляет силу, действующую на испытательный заряд q . Линии поля — это, по сути, карта векторов бесконечно малых сил.
Рис. 1. Два эквивалентных представления электрического поля, обусловленного положительным зарядом Q . 2} \\ [/ latex] и площадь пропорциональна r 2 .Это графическое представление, в котором силовые линии представляют направление, а их близость (то есть их поверхностная плотность или количество линий, пересекающих единицу площади) представляет силу, используется для всех полей: электростатического, гравитационного, магнитного и других.
Рис. 2. Электрическое поле, окружающее три различных точечных заряда. (а) Положительный заряд. (б) Отрицательный заряд такой же величины. (c) Больший отрицательный заряд.
Во многих ситуациях взимается несколько сборов.Общее электрическое поле, создаваемое несколькими зарядами, представляет собой векторную сумму отдельных полей, создаваемых каждым зарядом. В следующем примере показано, как добавить векторы электрического поля.
Пример 1. Добавление электрических полей
Найдите величину и направление полного электрического поля, создаваемого двумя точечными зарядами, q 1 и q 2 , в начале системы координат, как показано на рисунке 3.
Рисунок 3. Электрические поля E 1 и E 2 в начале координат O добавить к E к .
Стратегия
Поскольку электрическое поле является вектором (имеющим величину и направление), мы добавляем электрические поля с помощью тех же векторных методов, которые используются для других типов векторов. Сначала мы должны найти электрическое поле, создаваемое каждым зарядом в интересующей точке, которая в данном случае является началом системы координат (O). Мы делаем вид, что есть положительный тестовый заряд, q , в точке O, который позволяет нам определить направление полей E 1 и E 2 .5 \ text {N / C} \ end {array} \\ [/ latex]
В этом решении сохранены четыре цифры, чтобы проиллюстрировать, что E 1 ровно в два раза превышает величину E 2 . Теперь стрелки нарисованы для обозначения величин и направлений E 1 и E 2 . (См. Рис. 3.) Направление электрического поля — это направление силы, действующей на положительный заряд, поэтому обе стрелки указывают прямо от положительных зарядов, которые их создают.{\ circ} \ end {array} \\ [/ latex]
или 63,4º выше оси x .
Обсуждение
В случаях, когда добавляемые векторы электрического поля не перпендикулярны, можно использовать компоненты вектора или графические методы. Общее электрическое поле в этом примере — это полное электрическое поле только в одной точке пространства. Чтобы найти полное электрическое поле, создаваемое этими двумя зарядами по всей области, необходимо повторить тот же метод для каждой точки в этой области.Этой невероятно длительной задачи (существует бесконечное количество точек в пространстве) можно избежать, вычислив общее поле в репрезентативных точках и используя некоторые объединяющие функции, указанные ниже.
Рисунок 4. Два положительных точечных заряда q 1 и q 2 создают результирующее электрическое поле, показанное на рисунке. Поле рассчитывается в репрезентативных точках, а затем сглаживаются линии поля в соответствии с правилами, изложенными в тексте.
На рисунке 4 показано, как можно нарисовать электрическое поле от двух точечных зарядов, найдя полное поле в представительных точках и проведя линии электрического поля, согласующиеся с этими точками.Хотя электрические поля от нескольких зарядов сложнее, чем от одиночных зарядов, легко заметить некоторые простые особенности.
Например, поле между одноименными зарядами слабее, как показано линиями, расположенными дальше друг от друга в этой области. (Это связано с тем, что поля от каждого заряда оказывают противоположные силы на любой заряд, помещенный между ними.) (См. Рисунок 4 и рисунок 5a.) Кроме того, на большом расстоянии от двух одинаковых зарядов поле становится идентичным полю от одного заряда. , больший заряд.На рис. 5б показано электрическое поле двух разноименных зарядов. Поле между зарядами сильнее. В этой области поля от каждого заряда имеют одинаковое направление, поэтому их сила увеличивается. Поле двух разнородных зарядов слабо на больших расстояниях, потому что поля отдельных зарядов направлены в противоположные стороны, и поэтому их силы уменьшаются. На очень больших расстояниях поле двух разнородных зарядов выглядит как поле меньшего одиночного заряда.
Рис. 5. (a) Два отрицательных заряда создают показанные поля.Это очень похоже на поле, создаваемое двумя положительными зарядами, за исключением того, что их направления меняются местами. Между зарядами поле явно слабее. Отдельные силы на испытательном заряде в этой области противоположны. (b) Два противоположных заряда создают показанное поле, которое сильнее в области между зарядами.
Мы используем линии электрического поля для визуализации и анализа электрических полей (линии являются графическим инструментом, а не физическими объектами сами по себе). Свойства силовых линий электрического поля для любого распределения заряда можно резюмировать следующим образом:
- Полевые линии должны начинаться с положительных зарядов и заканчиваться на отрицательных зарядах или на бесконечности в гипотетическом случае изолированных зарядов.
- Количество силовых линий, оставляющих положительный заряд или входящих в отрицательный, пропорционально величине заряда.
- Напряженность поля пропорциональна близости силовых линий, точнее, количеству линий на единицу площади, перпендикулярных линиям.
- Направление электрического поля касается силовой линии в любой точке пространства.
- Линии поля никогда не пересекаются.
Последнее свойство означает, что поле уникально в любой точке.Линия поля представляет направление поля; поэтому, если они пересекутся, поле будет иметь два направления в этом месте (невозможно, если поле уникальное).
Исследования PhET: заряды и поля
Перемещайте точечные заряды по игровому полю, а затем просматривайте электрическое поле, напряжения, эквипотенциальные линии и многое другое. Это красочно, динамично, бесплатно.
Щелкните, чтобы запустить моделирование.
Сводка раздела
- Рисунки линий электрического поля — полезные визуальные инструменты.Свойства силовых линий электрического поля для любого распределения заряда таковы:
- Полевые линии должны начинаться с положительных зарядов и заканчиваться на отрицательных зарядах или на бесконечности в гипотетическом случае изолированных зарядов.
- Количество силовых линий, оставляющих положительный заряд или входящих в отрицательный, пропорционально величине заряда.
- Напряженность поля пропорциональна близости силовых линий, точнее, количеству линий на единицу площади, перпендикулярных линиям.
- Направление электрического поля касается силовой линии в любой точке пространства.
- Линии поля никогда не пересекаются.
Концептуальные вопросы
- Сравните и сопоставьте кулоновское силовое поле и электрическое поле. Для этого составьте список из пяти свойств кулоновского силового поля, аналогичных пяти свойствам, перечисленным для силовых линий электрического поля. Сравните каждый элемент в вашем списке свойств кулоновского силового поля со свойствами электрического поля — они одинаковые или разные? (Например, силовые линии электрического поля не могут пересекаться.Верно ли то же самое и для кулоновских силовых линий?)
- [ссылка] показывает электрическое поле, простирающееся на три области, обозначенные I, II и III. Ответьте на следующие вопросы. (а) Существуют ли отдельные обвинения? Если да, то в каком регионе и каковы их признаки? б) Где поле наиболее сильное? (c) Где он самый слабый? (г) Где поле наиболее однородно?
Рисунок 6.
Задачи и упражнения
- (a) Нарисуйте линии электрического поля около точечного заряда + q .(b) Сделайте то же самое для точечного заряда −3,00 q .
- Нарисуйте линии электрического поля на большом расстоянии от распределений заряда, показанных на рисунках 5a и 5b.
- На рисунке 8 показаны силовые линии электрического поля возле двух зарядов [латекс] {q} _ {1} [/ латекс] и [латекс] {q} _ {2} [/ латекс]. Каково соотношение их величин? (b) Нарисуйте линии электрического поля на большом расстоянии от зарядов, показанных на рисунке.
Рисунок 7. Электрическое поле около двух зарядов.
- Нарисуйте линии электрического поля вблизи двух противоположных зарядов, где отрицательный заряд в три раза больше по величине, чем положительный.(См. Рисунок 7 для аналогичной ситуации).
Глоссарий
электрическое поле: трехмерная карта электрической силы, распространяющейся в космос от точечного заряда
линий электрического поля: серия линий, проведенных от точечного заряда, представляющих величину и направление силы, оказываемой этим зарядом
вектор: величина с величиной и направлением
сложение векторов: математическая комбинация двух или более векторов, включая их величины, направления и положения
электрических полей
электрических полейДалее: Рабочие примеры Up: Электричество Предыдущая: Закон Кулона Согласно закону Кулона, заряд действует на второй заряд, и наоборот , даже в вакууме.Но как эта сила передается через пустое пространство? Чтобы ответить на этот вопрос, физики из 19 век разработал концепцию электрического поля . Идея в следующем. В заряд создает электрическое поле который заполняет пространство. Электростатическая сила, действующая на второй заряд, на самом деле создается локально за счет электрическое поле на месте этого заряда в соответствии с законом Кулона. Точно так же заряд порождает собственное электрическое поле который также заполняет пространство.Равная и противоположная реакция действующая сила создается локально электрическим полем на положение этого заряда опять же в соответствии с законом Кулона. Конечно, электрическое поле не может воздействовать на порождающий его заряд, точно так же, как мы не можем взять себя в руки шнурками. Между прочим, электрические поля имеют реальное физическое существование, а не просто теоретические конструкции, изобретенные физиками, чтобы обойти проблема передачи электростатического проталкивает через вакуум.Мы можем сказать это с уверенностью, потому что, как мы увидим позже, существует энергия связаны с электрическое поле, заполняющее пространство. Действительно, действительно можно преобразовать эту энергию в тепло или работать, и наоборот .
Электрическое поле
генерируемое набором фиксированных электрических зарядов, представляет собой векторное поле, которое определяется следующим образом.
Если
это электростатическая сила, испытываемая небольшим положительным
пробный заряд, расположенный в определенной точке пространства, то электрическое поле на
эта точка — это просто сила, деленная на величину испытания
заряжать.Другими словами,
(62) |
Электрическое поле имеет размерность силы на единицу заряда, и единицы ньютонов на кулон ( ). Кстати, причина что мы указываем маленькую, а не большую, Тестовая зарядка заключается в том, чтобы не беспокоить любой из фиксированные сборы которые генерируют электрическое поле.
Воспользуемся указанным выше правилом, чтобы восстановить электрическое поле, создаваемое
точечный заряд. Согласно закону Кулона электростатическая сила
вызванный точечным зарядом положительного испытательного заряда, находящегося на расстоянии
от него, имеет величину
(63) |
и направлена радиально от прежнего заряда, если, и радиально к нему, если.Таким образом, электрическое поле на расстоянии вдали от заряда имеет величину
(64) |
и направлена радиально от заряда, если, и радиально в сторону заряд если. Обратите внимание, что поле не зависит от величины тестового заряда.
Следствием приведенного выше определения электрического поля является то, что стационарный заряд
находящийся в электрическом поле испытывает электростатическую силу
(65) |
где — электрическое поле в месте нахождения заряда (без учета поля самого заряда).
Поскольку электростатические силы наложены друг на друга, отсюда следует, что электрические поля также наложены. Например, если у нас есть три стационарных точечные заряды« и, расположенные в трех разных точках пространства, тогда чистое электрическое поле, заполняющее пространство, представляет собой просто векторную сумму созданных полей. по каждому точечному заряду, взятому изолированно.
Далее: Рабочие примеры Up: Электричество Предыдущая: Закон Кулона Ричард Фицпатрик 2007-07-14
Электрические поля: определение и примеры — видео и стенограмма урока
Статические электрические поля
Статические электрические поля или электростатические поля создаются стационарными зарядами и не связаны с магнитными полями.Возможно, вы столкнулись с тем же явлением, когда белье цепляется друг за друга при извлечении из сушилки. Молния также вызывается очень сильным статическим электрическим полем между облаком и землей.
Электрическое поле имеет четкое направление и определенную интенсивность в каждой точке поля. Это связано с тем, что сила, действующая на любой конкретный заряд, варьируется по величине и направлению от точки к точке внутри поля. Электрические поля представлены линиями так же, как магнитные поля.
На этом изображении показаны электрические поля вокруг изолированных положительных и отрицательных зарядов, двух разнородных зарядов (один положительный и один отрицательный) и двух одинаковых зарядов (оба положительных). Стрелки на линиях показывают направление, в котором действуют электрические силы. Разделение между линиями указывает на напряженность электрического поля. Как и следовало ожидать, чем дальше мы удаляемся от зарядов, тем меньше напряженность электрического поля. Вы также можете видеть, как и в случае с магнитными полями, в отличие от электрических зарядов притягиваются, а подобные заряды отталкиваются друг от друга.Линии электрического поля вокруг положительно заряженной частицы направлены радиально наружу, а линии вокруг отрицательно заряженной частицы — радиально внутрь.
Сила, с которой два электрических заряда притягивают или отталкивают друг друга, косвенно пропорциональна квадрату расстояния между двумя зарядами. Другими словами, если расстояние между двумя зарядами сокращается вдвое, сила между ними увеличивается в четыре раза. Если расстояние между двумя зарядами увеличивается вдвое, сила между ними составляет четверть исходной силы.
Примером электростатического поля является то, что создается конденсатором с параллельными пластинами. Конденсатор с параллельными пластинами состоит из двух параллельных пластин с одинаковой площадью поверхности, разделенных определенным расстоянием. Объем между пластинами заполнен диэлектрическим материалом. Диэлектрический материал также называется изолятором. В идеальном диэлектрике через материал не протекает ток. Примеры диэлектриков включают стекло, парафин, слюду и кварц.
Источник постоянного напряжения (DC) подключен к двум проводящим пластинам.Заряд одинаковой и противоположной полярности переносится на поверхности проводников. Из-за приложенной разности напряжений положительный заряд равномерно накапливается на пластине, подключенной к клемме положительного напряжения, а отрицательный заряд равномерно накапливается на пластине, подключенной к клемме отрицательного напряжения. В диэлектрической среде между пластинами заряды создают однородное электрическое поле в направлении от положительных зарядов к отрицательным.
Динамические электрические поля
Динамические поля или изменяющиеся во времени поля индуцируются изменяющимися во времени источниками.Изменяющиеся во времени поля используются для создания электромагнитных волн, которые используются в таких вещах, как оборудование для радио- и телевещания, радары, рентгеновские и ультразвуковые аппараты, микроволновые печи, сотовые и беспроводные телефонные системы и беспроводные маршрутизаторы.
Источники, изменяющиеся во времени, включают электрические токи и плотности заряда. Если ток, связанный с пучком движущихся заряженных частиц, изменяется со временем, то количество заряда, присутствующего в пучке, также изменяется со временем, и наоборот.В этом случае электрическое и магнитное поля связаны друг с другом. Изменяющееся во времени электрическое поле создает изменяющееся во времени магнитное поле, и наоборот. Электрическое поле и магнитное поле всегда перпендикулярны (то есть на 90 градусов друг от друга) друг к другу. Непрерывная генерация электрического и магнитного полей, разнесенных на 90 градусов друг от друга, заставляет волну «путешествовать» во времени и пространстве.
Примером изменяющегося во времени поля является электрическое (и магнитное) поле, создаваемое монопольной антенной, используемой в радиовещании.Передатчик, который является источником переменного тока (AC), подключен к антенне. Это обеспечивает изменяющийся во времени ток, необходимый для создания изменяющегося во времени магнитного поля, которое, в свою очередь, генерирует изменяющееся во времени электрическое поле. Цикл непрерывный, и антенна выпускает электромагнитную волну в воздух.
Краткое содержание урока
Электрическое поле — это сила, заполняющая пространство вокруг каждого электрического заряда или группы зарядов. Есть два типа электрических полей: статических (или электростатических) полей и динамических (или изменяющихся во времени) полей .Электрические поля имеют определенную величину и определенное направление. Величина (или напряженность) электрического поля в любой точке задается уравнением: E = F / q — сила, испытываемая зарядом в этой точке, деленная на заряд. Примеры электрических полей включают поле, создаваемое в диэлектрике конденсатора с параллельными пластинами (которое создает электростатическое поле), и электромагнитную волну, создаваемую монопольной антенной радиовещания (которая создает изменяющееся во времени поле).
Что такое электрическое поле? Определение, формула, пример
Когда воздушный шар трется о свитер, он заряжается. Из-за этого заряда воздушный шар может прилипать к стенкам, но когда его помещают рядом с другим воздушным шариком, который также был натерт, первый воздушный шар летит в противоположном направлении.
Ключевые выводы: электрическое поле
- Электрический заряд — это свойство вещества, которое заставляет два объекта притягиваться или отталкиваться в зависимости от их заряда (положительного или отрицательного).
- Электрическое поле — это область пространства вокруг электрически заряженной частицы или объекта, в которой электрический заряд может ощущать силу.
- Электрическое поле — это векторная величина, которую можно представить в виде стрелок, идущих к зарядам или от них. Линии определены как направленные радиально наружу, , от положительного заряда, или радиально внутрь , в сторону отрицательного заряда.
Это явление является результатом свойства вещества, называемого электрическим зарядом.Электрические заряды создают электрические поля: области пространства вокруг электрически заряженных частиц или объектов, в которых другие электрически заряженные частицы или объекты будут ощущать силу.
Определение электрического заряда
Электрический заряд, который может быть как положительным, так и отрицательным, — это свойство материи, которое заставляет два объекта притягиваться или отталкиваться. Если предметы заряжены противоположно (положительно-отрицательно), они будут притягиваться; если они заряжены одинаково (положительно-положительно или отрицательно-отрицательно), они будут отталкиваться.
Единицей электрического заряда является кулон, который определяется как количество электричества, которое переносится электрическим током силой 1 ампер за 1 секунду.
Атомы, которые являются основными единицами материи, состоят из трех типов частиц: электронов, нейтронов и протонов. Сами электроны и протоны электрически заряжены и имеют соответственно отрицательный и положительный заряд. Нейтрон электрически не заряжен.
Многие объекты электрически нейтральны и имеют нулевой суммарный заряд.Если имеется избыток электронов или протонов, в результате чего суммарный заряд не равен нулю, объекты считаются заряженными.
Один из способов количественно определить электрический заряд — использовать константу e = 1,602 * 10 -19 кулонов. Электрон, который представляет собой наименьшее количество отрицательного электрического заряда , имеет заряд -1,602 * 10 -19 кулонов. Протон, который представляет собой наименьшее количество положительного электрического заряда, имеет заряд +1,602 * 10 -19 кулонов.Таким образом, 10 электронов имели бы заряд -10 э, а 10 протонов имели бы заряд +10 э.
Закон Кулона
Электрические заряды притягивают или отталкивают друг друга, потому что они действуют друг на друга. Сила между двумя точечными электрическими зарядами — идеализированными зарядами, которые сосредоточены в одной точке пространства — описывается законом Кулона. Закон Кулона гласит, что сила или величина силы между двумя точечными зарядами составляет пропорционально величине зарядов и обратно пропорционально расстоянию между двумя зарядами.
Математически это выражается как:
F = (k | q 1 q 2 |) / r 2
где q 1 — заряд первого точечного заряда, q 2 — заряд второго точечного заряда, k = 8,988 * 10 9 Нм 2 / C 2 — постоянная Кулона, а r расстояние между двумя точечными зарядами.
Хотя технически нет реальных точечных зарядов, электроны, протоны и другие частицы настолько малы, что могут быть приблизительно или точечным зарядом.
Формула электрического поля
Электрический заряд создает электрическое поле, которое представляет собой область пространства вокруг электрически заряженной частицы или объекта, в которой электрический заряд будет ощущать силу. Электрическое поле существует во всех точках пространства, и его можно наблюдать, добавляя другой заряд в электрическое поле. Однако для практических целей электрическое поле можно приблизить к нулю, если заряды находятся достаточно далеко друг от друга.
Электрические поля — это векторная величина, которую можно представить в виде стрелок, направленных к зарядам или от них.Линии определены как направленные радиально наружу, , от положительного заряда, или радиально внутрь , в сторону отрицательного заряда.
Величина электрического поля определяется формулой E = F / q, где E — напряженность электрического поля, F — электрическая сила, а q — пробный заряд, который используется для «ощущения» электрического поля. .
Пример: электрическое поле двухточечных зарядов
Для двухточечных зарядов F определяется законом Кулона выше.
- Таким образом, F = (k | q 1 q 2 |) / r 2 , где q 2 определяется как испытательный заряд , который используется для «ощущения» электрического поле.
- Затем мы используем формулу электрического поля, чтобы получить E = F / q 2 , поскольку q 2 был определен как пробный заряд.
- После замены F, E = (k | q 1 |) / r 2 .
Источники
- Фитцпатрик, Ричард.«Электрические поля». Техасский университет в Остине , 2007 г.
- Левандовски, Хизер и Чак Роджерс. «Электрические поля». Университет Колорадо в Боулдере , 2008 г.
- Ричмонд, Майкл. «Электрический заряд и закон Кулона». Рочестерский технологический институт.
18,3 Электрическое поле | Texas Gateway
Задачи обучения
К концу этого раздела вы сможете делать следующее:
- Рассчитывать напряженность электрического поля
- Создание и интерпретация чертежей электрических полей
электрическое поле | пробный заряд |
Возможно, вы слышали о силовом поле в научно-фантастических фильмах, где такие поля применяют силы в определенных позициях в космосе, чтобы удержать злодея в ловушке или защитить космический корабль от вражеского огня.Концепция поля очень полезна в физике, хотя несколько отличается от того, что вы видите в фильмах.
Поле — это способ концептуализации и отображения силы, которая окружает любой объект и действует на другой объект на расстоянии без видимой физической связи. Например, гравитационное поле, окружающее Землю и все другие массы, представляет собой гравитационную силу, которая возникла бы, если бы другая масса была помещена в заданную точку внутри поля.Майкл Фарадей, английский физик XIX века, предложил концепцию электрического поля. Если вы знаете электрическое поле, вы можете легко вычислить силу (величину и направление), приложенную к любому электрическому заряду, который вы помещаете в это поле.
Электрическое поле создается электрическим зарядом и сообщает нам силу на единицу заряда во всех точках пространства вокруг распределения заряда. Распределение зарядов может быть единой точечной зарядкой; распределение заряда, скажем, по плоской пластине; или более сложное распределение заряда.Электрическое поле распространяется в пространство вокруг распределения заряда. Теперь рассмотрите возможность размещения пробного заряда в полевых условиях. Пробный заряд — это положительный электрический заряд, заряд которого настолько мал, что он не вызывает значительного возмущения зарядов, создающих электрическое поле. Электрическое поле действует на пробный заряд в заданном направлении. Приложенная сила пропорциональна заряду испытательного заряда. Например, если мы удвоим заряд испытательного заряда, сила, приложенная к нему, удвоится.Математически, говоря, что электрическое поле — это сила на единицу заряда, записывается как
18,15. E → = F → qtestE → = F → qtest, где мы рассматриваем только электрические силы. Обратите внимание, что электрическое поле — это векторное поле, которое направлено в том же направлении, что и сила, действующая на положительный тестовый заряд. Единицы электрического поля — N / C.
Если электрическое поле создается точечным зарядом или сферой с однородным зарядом, то величина силы между этим точечным зарядом Q и пробным зарядом определяется законом Кулона
F = k | Qqtest | r2F = k | Qqtest | r2
, где используется абсолютное значение, потому что мы учитываем только величину силы.Тогда величина электрического поля равна
18,16. E = Fqtest = k | Q | r2.E = Fqtest = k | Q | r2.Это уравнение дает величину электрического поля, создаваемого точечным зарядом Q . Расстояние r в знаменателе — это расстояние от точечного заряда Q или от центра сферического заряда до интересующей точки.
Если тестовый заряд убрать из электрического поля, электрическое поле все еще существует. Чтобы создать трехмерную карту электрического поля, представьте, что тестовый заряд размещается в разных местах поля.В каждом месте измерьте силу, действующую на заряд, и используйте векторное уравнение E → = F → / qtestE → = F → / qtest для расчета электрического поля. Нарисуйте стрелку в каждой точке, куда вы помещаете тестовый заряд, чтобы обозначить силу и направление электрического поля. Длина стрелок должна быть пропорциональна напряженности электрического поля. Если соединить эти стрелки вместе, получатся линии. На рисунке 18.18 показано изображение трехмерного электрического поля, созданного положительным зарядом.
Рисунок 18.18 Трехмерное представление электрического поля, создаваемого положительным зарядом.
Простое рисование силовых линий электрического поля в плоскости, пересекающей заряд, дает двумерные карты электрического поля, показанные на рис. 18.19. Слева — электрическое поле, созданное положительным зарядом, а справа — электрическое поле, созданное отрицательным зарядом.
Обратите внимание, что линии электрического поля направлены от положительного заряда в сторону отрицательного заряда.Таким образом, положительный тестовый заряд, помещенный в электрическое поле положительного заряда, будет отталкиваться. Это согласуется с законом Кулона, который гласит, что одинаковые заряды отталкивают друг друга. Если мы поместим положительный заряд в электрическое поле отрицательного заряда, положительный заряд будет притягиваться к отрицательному заряду. Обратное верно для отрицательных тестовых зарядов. Таким образом, направление силовых линий электрического поля согласуется с тем, что мы находим с помощью закона Кулона.
Уравнение E = k | Q | / r2E = k | Q | / r2 говорит, что электрическое поле становится сильнее по мере приближения к заряду, который его генерирует.Например, на расстоянии 2 см от заряда Q ( r = 2 см) электрическое поле в четыре раза сильнее, чем на расстоянии 4 см от заряда ( r = 4 см). Снова посмотрев на рис. 18.18 и рис. 18.19, мы видим, что силовые линии электрического поля становятся более плотными по мере приближения к заряду, который его генерирует. Фактически, плотность силовых линий электрического поля пропорциональна напряженности электрического поля!
Рисунок 18.19 Силовые линии электрического поля от двух точечных зарядов. Красная точка слева несет заряд +1 нКл, а синяя точка справа несет заряд –1 нКл.Стрелки указывают направление движения положительного тестового заряда. Линии поля становятся более плотными по мере приближения к точечному заряду.
Карты электрического поля могут быть составлены для нескольких зарядов или для более сложных распределений зарядов. Электрическое поле из-за нескольких зарядов можно найти, сложив электрическое поле от каждого отдельного заряда. Поскольку эта сумма может быть только одним числом, мы знаем, что только одна линия электрического поля может проходить через любую заданную точку. Другими словами, линии электрического поля не могут пересекать друг друга.
На рис. 18.20 (а) показана двумерная карта электрического поля, создаваемого зарядом + q и ближайшим зарядом — q . Трехмерная версия этой карты получается вращением этой карты вокруг оси, проходящей через оба заряда. Положительный испытательный заряд, помещенный в это поле, будет испытывать силу в направлении силовых линий в его местоположении. Таким образом, он будет отталкиваться от положительного заряда и притягиваться к отрицательному. Рисунок 18.20 (b) показано электрическое поле, создаваемое двумя зарядами — q . Обратите внимание на то, как линии поля имеют тенденцию отталкиваться друг от друга и не перекрываются. Положительный тестовый заряд, помещенный в это поле, будет притягиваться к обоим зарядам. Если вы находитесь далеко от этих двух зарядов, где «далеко» означает намного больше, чем расстояние между зарядами, электрическое поле выглядит как электрическое поле от одного заряда −2 q .
Рис. 18.20 (a) Электрическое поле, создаваемое положительным точечным зарядом (слева) и отрицательным точечным зарядом той же величины (справа).(б) Электрическое поле, создаваемое двумя равными отрицательными зарядами.
Виртуальная физика
Исследование электрического поля
Это моделирование показывает электрическое поле, создаваемое зарядами, которые вы размещаете на экране. Начните с установки верхнего флажка на панели параметров справа, чтобы отобразить электрическое поле. Перетаскивайте заряды из ведер на экран, перемещайте их и наблюдайте за электрическим полем, которое они образуют. Чтобы более точно увидеть величину и направление электрического поля, перетащите датчик электрического поля или датчик E-field из нижнего ведра и перемещайте его по экрану.
Проверка захвата
Если поместить на экран положительный и отрицательный заряды, где будет нулевое электрическое поле?
- Электрическое поле равно нулю вблизи положительного заряда.
- Электрическое поле равно нулю вблизи отрицательного заряда.
- Электрическое поле равно нулю на полпути между двумя зарядами.
- Электрическое поле равно нулю на расстоянии одной четвертой от положительного заряда.
Watch Physics
Электростатика (часть 2): интерпретация электрического поля
В этом видео объясняется, как рассчитать электрическое поле точечного заряда и как интерпретировать карты электрического поля в целом. Обратите внимание, что лектор использует d для расстояния между частицами вместо r . Обратите внимание, что точечные заряды бесконечно малы, поэтому все их заряды сосредоточены в одной точке. Когда рассматриваются более крупные заряженные объекты, расстояние между ними необходимо измерять между центрами объектов.
Проверка захвата
Верно или неверно — если точечный заряд имеет линии электрического поля, которые указывают на него, заряд должен быть положительным.
- правда
- ложь
Рабочий пример
Сколько стоит?
Посмотрите на рисунок электрического поля на рис. 18.22. Какова относительная сила и знак трех зарядов?
Рисунок 18.22 Карта электрического поля от трех заряженных частиц.
СТРАТЕГИЯ
Мы знаем, что электрическое поле исходит от положительного заряда и заканчивается отрицательным зарядом.Мы также знаем, что количество силовых линий электрического поля, которые касаются заряда, пропорционально заряду. Заряд 1 имеет 12 выходящих полей. Заряд 2 имеет шесть линий поля, входящих в него. Заряд 3 имеет 12 линий поля, входящих в него.
Решение
Силовые линии электрического поля выходят из заряда 1, так что это положительный заряд. Линии электрического поля переходят в заряды 2 и 3, поэтому они являются отрицательными зарядами. Отношение зарядов q1: q2: q3 = + 12: −6: −12q1: q2: q3 = + 12: −6: −12. Таким образом, величина зарядов 1 и 3 вдвое больше, чем у заряда 2.
Обсуждение
Хотя мы не можем определить точный заряд каждой частицы, мы можем получить много информации из электрического поля о величине и знаке зарядов, а также о том, где сила на пробном заряде будет наибольшей (или наименьшей).
Рабочий пример
Электрическое поле от дверной ручки
Дверная ручка, которую можно принять за сферический металлический проводник, приобретает заряд статического электричества q = -1,5 нКл. Q = -1,5 нКл. Что такое электрическое поле 1.0 см перед дверной ручкой? Диаметр дверной ручки 5,0 см.
СТРАТЕГИЯ
Поскольку дверная ручка является проводником, весь заряд распределяется по внешней поверхности металла. Кроме того, поскольку предполагается, что дверная ручка имеет идеально сферическую форму, заряд на поверхности распределен равномерно, поэтому мы можем рассматривать дверную ручку так, как если бы весь заряд находился в центре дверной ручки. Справедливость этого упрощения будет доказана в более позднем курсе физики.Теперь нарисуйте дверную ручку и определите свою систему координат. Используйте + x + x, чтобы указать направление наружу, перпендикулярное двери, с x = 0x = 0 в центре дверной ручки (как показано на рисунке ниже).
Если диаметр дверной ручки 5,0 см, ее радиус равен 2,5 см. Нам нужно знать электрическое поле на расстоянии 1,0 см от поверхности дверной ручки, что составляет расстояние r = 2,5 см + 1,0 см = 3,5 см = 2,5 см + 1,0 см = 3,5 см от центра дверной ручки. Мы можем использовать уравнение E = k | Q | r2E = k | Q | r2, чтобы найти величину электрического поля.Направление электрического поля определяется знаком заряда, который в данном случае отрицательный.
Решение
Вставив заряд Q = -1,5 нКл = -1,5 · 10-9 CQ = -1,5 нКл = -1,5 · 10-9 Кл и расстояние r = 3,5 см = 0,035 mr = 3,5 см = 0,035 м в уравнение E = k | Q | r2E = k | Q | r2 дает
18,17E = k | Q | r2 = (8,99 × 109 Н · м2 / C2) | −1,5 × 10−9 C | (0,035 м) 2 = 1,1 × 104 N / CE = k | Q | r2 = (8,99 × 109 Н · м2 / C2) | −1,5 · 10−9 C | (0,035 м) 2 = 1,1 · 104 N / C.Поскольку заряд отрицательный, силовые линии электрического поля направлены к центру дверной ручки..
Обсуждение
Это похоже на огромное электрическое поле. К счастью, электрическое поле примерно в 100 раз сильнее (3 × 106 Н / К3 × 106 Н / К), чтобы вызвать разрушение воздуха и провести электричество. Кроме того, вес взрослого человека составляет около 70 кг × 9,8 м / с2≈700 Н70 кг × 9,8 м / с2≈700 Н, так почему бы вам не почувствовать силу протонов в руке, когда вы тянетесь к дверной ручке? ? Причина в том, что ваша рука содержит равное количество отрицательного заряда, который отталкивает отрицательный заряд дверной ручки.