Что такое логические элементы. Как работают базовые логические элементы И, ИЛИ, НЕ. Какие комбинированные логические элементы существуют. Где применяются логические элементы в цифровой технике.
Что такое логические элементы и для чего они нужны
Логические элементы — это базовые электронные устройства, предназначенные для обработки информации, представленной в виде двоичных сигналов. Они являются основой построения всех цифровых электронных устройств.
Основные функции логических элементов:
- Выполнение простейших логических операций над двоичными сигналами
- Преобразование уровней и форм импульсных сигналов
- Создание временных задержек сигналов
Логические элементы обрабатывают входные сигналы в соответствии с заложенной в них логической функцией и формируют выходной сигнал. На основе комбинаций простейших логических элементов строятся более сложные цифровые устройства — триггеры, регистры, счетчики, сумматоры и т.д.
![](/800/600/https/science.lecture.center/files/uch_group50/uch_pgroup107/uch_uch501/image/image039.jpg)
Базовые логические элементы И, ИЛИ, НЕ
Существует три базовых типа логических элементов, реализующих основные логические функции:
Логический элемент И (AND)
Выполняет операцию логического умножения (конъюнкции). Выходной сигнал равен 1 только если все входные сигналы равны 1.
Таблица истинности элемента И:
Вход A | Вход B | Выход Y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Логический элемент ИЛИ (OR)
Выполняет операцию логического сложения (дизъюнкции). Выходной сигнал равен 1, если хотя бы один из входных сигналов равен 1.
Таблица истинности элемента ИЛИ:
Вход A | Вход B | Выход Y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Логический элемент НЕ (NOT)
Выполняет операцию логического отрицания (инверсии). Выходной сигнал противоположен входному.
Таблица истинности элемента НЕ:
Вход X | Выход Y |
---|---|
0 | 1 |
1 | 0 |
Комбинированные логические элементы
На практике широко применяются комбинированные логические элементы, сочетающие в себе функции базовых элементов:
И-НЕ (NAND)
Выполняет логическое умножение с последующей инверсией результата. Это базовый элемент для построения цифровых устройств.
![](/800/600/https/konspekta.net/lektsiiorgimg/baza9/6503567200895.files/image605.gif)
ИЛИ-НЕ (NOR)
Выполняет логическое сложение с инверсией результата. Также часто используется как базовый элемент.
Исключающее ИЛИ (XOR)
Выходной сигнал равен 1, если входные сигналы не равны между собой. Применяется в сумматорах, компараторах и других устройствах.
Применение логических элементов в цифровой технике
- Комбинационные схемы (шифраторы, дешифраторы, мультиплексоры)
- Арифметические устройства (сумматоры, компараторы)
- Триггеры и регистры
- Счетчики импульсов
- Запоминающие устройства
- Аналого-цифровые и цифро-аналоговые преобразователи
На основе логических элементов строятся сложные цифровые системы — микропроцессоры, контроллеры, компьютеры и другие цифровые устройства обработки информации.
Базовый элемент ТТЛ-логики
Транзисторно-транзисторная логика (ТТЛ) — одна из наиболее распространенных технологий изготовления цифровых интегральных микросхем. Базовым элементом ТТЛ является логический элемент И-НЕ.
![](/800/600/https/studfile.net/html/2706/160/html_S9I26NbMLW.Nj0d/img-XeAh87.png)
Схема простейшего ТТЛ-элемента И-НЕ включает:
- Многоэмиттерный входной транзистор
- Фазоинверсный каскад
- Двухтактный выходной каскад
Такая схема обеспечивает высокое быстродействие, хорошую нагрузочную способность и помехоустойчивость логических элементов ТТЛ. На основе базового элемента И-НЕ строятся все остальные логические элементы и цифровые устройства ТТЛ-серий.
Параметры и характеристики логических элементов
Основные параметры, характеризующие работу логических элементов:
- Напряжение питания
- Входное и выходное напряжение логического нуля и единицы
- Помехоустойчивость
- Быстродействие (задержка распространения сигнала)
- Потребляемая мощность
- Коэффициент разветвления по выходу
Важной характеристикой является нагрузочная способность — максимальное количество входов других элементов, которое можно подключить к выходу данного элемента.
Современные серии логических микросхем
В настоящее время выпускается большое количество серий логических микросхем с различными технологиями изготовления:
![](/800/600/https/varikap.ru/wp-content/uploads/2018/09/tablica_istini_.png)
- ТТЛ (транзисторно-транзисторная логика)
- КМОП (комплементарная металл-оксид-полупроводник)
- ЭСЛ (эмиттерно-связанная логика)
- И2Л (интегральная инжекционная логика)
Наиболее распространены серии ТТЛ и КМОП логики. Они обеспечивают оптимальное сочетание быстродействия, потребляемой мощности и помехоустойчивости для большинства применений.
Перспективы развития логических элементов
Основные направления совершенствования логических элементов:
- Повышение степени интеграции
- Снижение энергопотребления
- Увеличение быстродействия
- Повышение функциональной сложности базовых элементов
- Применение новых физических принципов (оптоэлектроника, спинтроника и др.)
Развитие технологий позволяет создавать все более быстродействующие и энергоэффективные логические элементы, что обеспечивает дальнейший прогресс цифровой электроники.
Базовые логические элементы.
И, ИЛИ, НЕ и их комбинации
В Булевой алгебре, на которой базируется вся цифровая техника, электронные элементы должны выполнять ряд определённых действий. Это так называемый логический базис. Вот три основных действия:ИЛИ – логическое сложение (дизъюнкция) – OR;
И – логическое умножение (конъюнкция) – AND;
НЕ – логическое отрицание (инверсия) – NOT.
Примем за основу позитивную логику, где высокий уровень будет «1», а низкий уровень примем за «0». Чтобы можно было более наглядно рассмотреть выполнение логических операций, существуют таблицы истинности для каждой логической функции. Сразу нетрудно понять, что выполнение логических функций «и» и «или» подразумевают количество входных сигналов не менее двух, но их может быть и больше.
Логический элемент И.
На рисунке представлена таблица истинности элемента «
Вход X1 | Вход X2 | Выход Y |
---|---|---|
0 | 0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
1 | 1 | 1 |
На принципиальных схемах логический элемент «И» обозначают так.
На зарубежных схемах обозначение элемента «И» имеет другое начертание. Его кратко называют AND.
Логический элемент ИЛИ.
Элемент «ИЛИ» с двумя входами работает несколько по-другому. Достаточно логической единицы на первом входе или на втором как на выходе будет логическая единица. Две единицы так же дадут единицу на выходе.
Вход X1 | Вход X2 | Выход Y |
---|---|---|
0 | 0 | |
1 | 0 | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
На схемах элемент «ИЛИ» изображают так.
На зарубежных схемах его изображают чуть по-другому и называют элементом OR.
Логический элемент НЕ.
Элемент, выполняющий функцию инверсии «НЕ» имеет один вход и один выход. Он меняет уровень сигнала на противоположный. Низкий потенциал на входе даёт высокий потенциал на выходе и наоборот.
Вход X | Выход Y |
---|---|
0 | 1 |
1 | 0 |
Вот таким образом его показывают на схемах.
В зарубежной документации элемент «НЕ» изображают следующим образом. Сокращённо называют его NOT.
Все эти элементы в интегральных микросхемах могут объединяться в различных сочетаниях. Это элементы: И–НЕ, ИЛИ–НЕ, и более сложные конфигурации. Пришло время поговорить и о них.
Логический элемент 2И-НЕ.
Рассмотрим несколько реальных логических элементов на примере серии транзисторно-транзисторной логики (ТТЛ) К155 с малой степенью интеграции. На рисунке когда-то очень популярная микросхема К155ЛА3, которая содержит четыре независимых элемента
Цифра всегда обозначает число входов логического элемента. В данном случае это двухвходовой элемент «И» выходной сигнал которого инвертируется. Инвертируется, это значит «0» превращается в «1», а «1» превращается в «0». Обратим внимание на кружочек на выходах – это символ инверсии. В той же серии существуют элементы 3И–НЕ, 4И–НЕ, что означает элементы «И» с различным числом входов (3, 4 и т.д.).
Как вы уже поняли, один элемент 2И-НЕ изображается вот так.
По сути это упрощённое изображение двух объёдинённых элементов: элемента 2И и элемента НЕ на выходе.
Зарубежное обозначение элемента И-НЕ (в данном случае 2И-НЕ). Называется NAND.
Таблица истинности для элемента 2И-НЕ.
Вход X1 | Вход X2 | Выход Y |
---|---|---|
0 | 0 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
1 | 1 | 0 |
В таблице истинности элемента 2И – НЕ мы видим, что благодаря инвертору получается картина противоположная элементу «И». В отличие от трёх нулей и одной единицы мы имеем три единицы и ноль. Элемент «И – НЕ» часто называют элементом Шеффера.
Логический элемент 2ИЛИ-НЕ.
Логический элемент 2ИЛИ – НЕ представлен в серии К155 микросхемой 155ЛЕ1. Она содержит в одном корпусе четыре независимых элемента. Таблица истинности так же отличается от схемы «ИЛИ» применением инвертирования выходного сигнала.
Таблица истинности для логического элемента 2ИЛИ-НЕ.
Вход X1 | Вход X2 | Выход Y |
---|---|---|
0 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
1 | 1 | 0 |
Изображение на схеме.
На зарубежный лад изображается так. Называют как NOR.
Мы имеем только один высокий потенциал на выходе, обусловленный подачей на оба входа одновременно низкого потенциала. Здесь, как и на любых других принципиальных схемах, кружочек на выходе подразумевает инвертирование сигнала. Так как схемы И – НЕ и ИЛИ – НЕ встречаются очень часто, то для каждой функции имеется своё условное обозначение. Функция И – НЕ обозначается значком «&«, а функция ИЛИ – НЕ значком «1«.
Для отдельного инвертора таблица истинности уже приведена выше. Можно добавить, что количество инверторов в одном корпусе может достигать шести.
Логический элемент «исключающее ИЛИ».
К числу базовых логических элементов принято относить элемент реализующий функцию «исключающее ИЛИ». Иначе эта функция называется «неравнозначность».
Высокий потенциал на выходе возникает только в том случае, если входные сигналы не равны. То есть на одном из входов должна быть единица, а на другом ноль. Если на выходе логического элемента имеется инвертор, то функция выполняется противоположная – «равнозначность». Высокий потенциал на выходе будет появляться при одинаковых сигналах на обоих входах.
Таблица истинности.
Вход X1 | Вход X2 | Выход Y |
---|---|---|
0 | 0 | 0 |
1 | 0 | 1 |
0 | 1 | 1 |
1 | 1 | 0 |
Эти логические элементы находят своё применение в сумматорах. «Исключающее ИЛИ» изображается на схемах знаком равенства перед единицей «=1«.
На зарубежный манер «исключающее ИЛИ» называют XOR и на схемах рисуют вот так.
Кроме вышеперечисленных логических элементов, которые выполняют базовые логические функции очень часто, используются элементы, объединённые в различных сочетаниях. Вот, например, К555ЛР4. Она называется очень серьёзно 2-4И-2ИЛИ-НЕ.
Её таблица истинности не приводится, так как микросхема не является базовым логическим элементом. Такие микросхемы выполняют специальные функции и бывают намного сложнее, чем приведённый пример. Так же в логический базис входят и простые элементы «И» и «ИЛИ». Но они используются гораздо реже. Может возникнуть вопрос, почему эта логика называется транзисторно-транзисторной.
Если посмотреть в справочной литературе схему, допустим, элемента 2И – НЕ из микросхемы К155ЛА3, то там можно увидеть несколько транзисторов и резисторов. На самом деле ни резисторов, ни диодов в этих микросхемах нет. На кристалл кремния через трафарет напыляются только транзисторы, а функции резисторов и диодов выполняют эмиттерные переходы транзисторов. Кроме того в ТТЛ логике широко используются многоэмиттерные транзисторы. Например, на входе элемента 4И стоит четырёхэмиттерный транзистор.
Главная » Цифровая электроника » Текущая страница
Также Вам будет интересно узнать:
go-radio.ru
Логические элементы
В данной статье расскажем что такое логические элементы, рассмотрим самые простые логические элементы.
Любое цифровое устройство — персональный компьютер, или современная система автоматики состоит из цифровых интегральных микросхем (ИМС), которые выполняют определённые сложные функции. Но для выполнения одной сложной функции необходимо выполнить несколько простейших функций. Например, сложение двух двоичных чисел размером в один байт происходит внутри цифровой микросхемы называемой «процессор» и выполняется в несколько этапов большим количеством логических элементов находящихся внутри процессора. Двоичные числа сначала запоминаются в буферной памяти процессора, потом переписываются в специальные «главные» регистры процессора, после выполняется их сложение, запоминание результата в другом регистре, и лишь после результат сложения выводится через буферную память из процессора на другие устройства компьютера.
Процессор состоит из функциональных узлов: интерфейсов ввода-вывода, ячеек памяти – буферных регистров и «аккумуляторов», сумматоров, регистров сдвига и т.д. Эти функциональные узлы состоят из простейших логических элементов, которые, в свою очередь состоят из полупроводниковых транзисторов, диодов и резисторов. При конструировании простых триггерных и других электронных импульсных схем, сложные процессоры не применить, а использовать транзисторные каскады – «прошлый век». Тут и приходят на помощь – логические элементы.
Логические элементы, это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Для того, чтобы разобраться, что такое логические элементы, мы будем рассматривать самые простейшие из них. А потом, наращивая знания, разберёмся и с более сложными цифровыми элементами.
Начнём с того, что единица цифровой информации это «один бит». Он может принимать два логических состояния – логический ноль «0», когда напряжение равно нулю (низкий уровень), и состояние логической единицы «1», когда напряжение равно напряжению питания микросхемы (высокий уровень).
Поскольку простейший логический элемент это электронное устройство, то это означает, что у него есть входы (входные выводы) и выходы (выходные выводы). И входов и выходов может быть один, а может быть и больше.
Для того, чтобы понять принципы работы простейших логических элементов используется «таблица истинности». Кроме того, для понимания принципов работы логических элементов, входы, в зависимости от их количества обозначают: Х1, Х2, … ХN, а выходы: Y1, Y2, … YN.
Функции, выполняемые простейшими логическими элементами, имеют названия. Как правило, впереди функции ставится цифра, обозначающая количество входов. Простейшие логические элементы всегда имеют лишь один выход.
Рассмотрим простейшие логические элементы
— «НЕ» (NOT) – функция отрицания (инверсии сигнала). Потому его чаще называют — «инвертор». Графически, инверсия обозначается пустым кружочком вокруг вывода элемента (микросхемы). Обычно кружок инверсии ставится у выхода, но в более сложных логических элементах, он может стоять и на входе. Графическое обозначение элемента «НЕ» и его таблица истинности представлены на рисунке слева.
У элемента «НЕ» всегда один вход и один выход. По таблице истинности следует, что при наличии на входе элемента логического нуля, на выходе будет логическая единица. И наоборот, при наличии на входе логической единицы, на выходе будет логический ноль. Цифра «1» внутри прямоугольника обозначает функцию «ИЛИ», её принято рисовать и внутри прямоугольника элемента «НЕ», но это ровным счётом ничего абсолютно не значит.
Обозначение D1.1 означает, что D — цифровой логический элемент, 1 (первая) — номер микросхемы в общей схеме, 1 (вторая) — номер элемента в микросхеме. Точно также расшифровываются и другие логические элементы.
Часто, чтобы отличить цифровые микросхемы от аналоговых микросхем, применяют обозначения из двух букв: DD – цифровая микросхема, DA – аналоговая микросхема. В последующем, мы не будем заострять внимание на это обозначение, а вернёмся лишь тогда, когда это будет необходимым.
Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «НЕ», является интегральная микросхема (ИМС) К155ЛН1, внутри которой имеется шесть элементов «НЕ». Нумерация выводов этой микросхемы показана справа.
— «И» (AND) – функция сложения (если на всех входах единица, то на выходе будет единица, в противном случае, если хотя бы на одном входе ноль, то и на выходе всегда будет ноль). В алгебре-логике элемент «И» называют «конъюнктор». Графическое обозначение элемента «2И» и его таблица истинности представлены слева.
Название элемента «2И» обозначает, что у него два входа, и он выполняет функцию «И». На схеме внутри прямоугольника микросхемы рисуется значок «&», что на английском языке означает «AND» (в переводе на русский — И).
По таблице истинности следует, что на выходе элемента «И» будет логическая единица только в одном случае — когда на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то и на выходе будет ноль.
Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «2И», является интегральная микросхема (ИМС) К155ЛИ1, внутри которой имеется четыре элемента «2И». Нумерация выводов этой микросхемы показана справа.
Для того, чтобы вам было понятнее что такое «2И», «3И», «4И», и т.д., приведу графическое обозначение и таблицу истинности элемента «3И».
По таблице истинности следует, что на выходе элемента «3И» будет логическая единица только в том случае — когда на всех трёх входах будет логическая единица. Если хотя бы на одном входе будет логический ноль, то и на выходе элемента также будет логический ноль. Самой распространённой микросхемой ТТЛ, выполняющей функцию «3И», является микросхема К555ЛИ3, внутри которой имеется три элемента «3И».
— «И-НЕ» (NAND) – функция сложения с отрицанием (если на всех входах единица, то на выходе будет ноль, в противном случае на выходе всегда будет единица). Графическое обозначение элемента «2И-НЕ» и его таблица истинности приведены слева.
По таблице истинности следует, что на выходе элемента «2И-НЕ» будет логический ноль только в том случае, если на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то на выходе будет единица.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «2И-НЕ», является ИМС К155ЛА3, а микросхемами КМОП (комплементарный металлооксидный полупроводник) – ИМС К561ЛА7 и К176ЛА7, внутри которых имеется четыре элемента «2И-НЕ». Нумерация выводов этих микросхем показана справа.
Сравнив таблицы истинности элемента «2И-НЕ» и элемента «2И» можно догадаться об эквивалентности схем:
Добавив к элементу «2И» элемент «НЕ» мы получили элемент «2И-НЕ». Так можно собрать схему, если нам необходим элемент «2И-НЕ», а у нас в распоряжении имеются только элементы «2И» и «НЕ».
И наоборот:
Добавив к элементу «2И-НЕ» элемент «НЕ» мы получили элемент «2И». Так можно собрать схему, если нам необходим элемент «2И», а у нас в распоряжении имеются только элементы «2И-НЕ» и «НЕ».
Аналогичным образом, путём соединения входов элемента «2И-НЕ» мы можем получить элемент «НЕ»:
Обратите внимание, что было введено новое в обозначении элементов – дефис, разделяющий правую и левую часть в названии «2И-НЕ». Этот дефис непременный атрибут при инверсии на выходе (функции «НЕ»).
— «ИЛИ» (OR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – единица, в противном случае на выходе всегда будет ноль). В алгебре-логике, элемент «ИЛИ» называют «дизъюнктор». Графическое обозначение элемента «2ИЛИ» и его таблица истинности приведены слева.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ», является ИМС К155ЛЛ1, внутри которой имеется четыре элемента «2ИЛИ». Нумерация выводов этой микросхемы показана справа.
Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать схему, которая будет выполнять функцию «2ИЛИ»:
— «ИЛИ-НЕ» (NOR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – ноль, в противном случае на выходе всегда будет единица). Как вы поняли, элемент «ИЛИ-НЕ» выполняет функцию «ИЛИ», а потом инвертирует его функцией «НЕ».
Графическое обозначение элемента «2ИЛИ-НЕ» и его таблица истинности приведена слева.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ-НЕ», является ИМС К155ЛЕ1, а микросхемами КМОП – К561ЛЕ5 и К176ЛЕ5, внутри которых имеется четыре элемента «2ИЛИ-НЕ». Нумерация выводов этих микросхем показана справа.
Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ-НЕ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «2ИЛИ-НЕ»:
По аналогии с элементом «2И-НЕ», путём соединения входов элемента «2ИЛИ-НЕ» мы можем получить элемент «НЕ»:
— «Исключающее ИЛИ» (XOR) — функция неравенства двух входов (если на обоих входах элемента одинаковые сигналы, то на выходе – ноль, в противном случае на выходе всегда будет единица). Операция, которую он выполняет, часто называют «сложение по модулю 2».
Графическое обозначение элемента «Исключающее ИЛИ» и его таблица истинности приведены слева.
Самой распространённой микросхемой ТТЛ, выполняющей функцию «Исключающее ИЛИ», является ИМС К155ЛП5, а микросхемами КМОП – К561ЛП2 и К176ЛП2, внутри которых имеется четыре элемента «Исключающее ИЛИ». Нумерация выводов этих микросхем показана справа.
Предположим, что нам в схеме необходим элемент, выполняющий функцию «Исключающее ИЛИ», но у нас есть в распоряжении только элементы «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «Исключающее ИЛИ»:
В цифровой схемотехнике процессоров главная функция — «Суммирование двоичных чисел», поэтому сложный логический элемент – «Сумматор» является неотъемлемой частью арифметико-логического устройства любого, без исключения процессора. Составной частью сумматора является набор логических элементов, выполняющих функцию «Исключающее ИЛИ с переносом остатка». Что это такое? В соответствии с наукой «Информатика», результатом сложения двух двоичных чисел, две единицы одного разряда дают ноль, при этом формируется «единица переноса» в следующий старший разряд, который участвует в операции суммирования в старшем разряде. Для этого в схему добавляется ещё один вывод «переноса» — «Р».
Графическое обозначение элемента «Исключающее ИЛИ с переносом» и его таблица истинности представлена слева.
Такая функция сложения одноразрядных чисел в простых устройствах обычно не используется, и как правило, интегрирована в состав одной микросхемы – сумматора, с минимальным количеством разрядов – четыре, для сложения четырехбитных чисел. По причине слабого спроса, промышленность таких логических элементов не выпускает. Поэтому, в случае необходимости, функцию «Исключающее ИЛИ с переносом» можно собрать по следующей схеме из элементов «2И-НЕ» и «2ИЛИ-НЕ», которая активно применяется как внутри простых сумматоров, так и во всех сложных процессорах (в том числе Pentium, Intel-Core, AMD и других, которые появятся в будущем):
Вышеперечисленные логические элементы выполняют статические функции, а на основе них строятся более сложные статические и динамические элементы (устройства): триггеры, регистры, счётчики, шифраторы, дешифраторы, сумматоры, мультиплексоры.
meanders.ru
5. Логические элементы цифровых устройств
Логические элементы — это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отобpажаемыx напpяжeниeм (сигналом) выcoкого и низкого уpовня. Логические элементы реализyют логические функции И, ИЛИ, НЕ и их комбинации. Указанные логические операции выполняются с помощью электронных схем, входящих в состав микросхем. Из логических элементов И, ИЛИ, НЕ, можно сконстpуировать цифровое электронное устройство любой сложности.
Логические элементы могут выполнять логические функции в режимах положительной и отрицательной логики. В режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю — низкий уровень напряжения. В режиме отрицательной логики наоборот логической единице соответствует низкий уровень напряжения, а логическому нулю — высокий.
Если в режиме положительной логики логический элемент, реализует операцию И, то в режиме отрицательной логики выполняет операцию ИЛИ, и наоборот. И если в режиме положительной логики — И-НЕ, то в режиме отрицательной логики — ИЛИ-НЕ.
Условное графическое обозначение логического элемента представляет собой прямоугольник, внутри которого ставится изображение указателя функции. Входы изображают линиями с левой стороны прямоугольника, выходы элемента — с правой стороны. При необходимости разрешается располагать входы сверху, а выходы снизу. У логических элементов И, ИЛИ может быть любое начиная с двух количество входов и один выход. У элемента НЕ один вход и один выход. Если вход обозначен окружностью, то это значит, что функция выполняется для сигнала низкого уровня (отрицательная логика). Если окружностью обозначен выход, то элемент производит логическое отрицание (инверсию) результата операции, указанной внутри прямоугольника.
Все цифровые устройства делятся на комбинационные и на последовательностные. В комбинационных устройствах выходные сигналы в данный момент времени однозначно определяются входными сигналами в тот же момент. Выходные сигналы последовательностного устройства (цифрового автомата) в данный момент времени определяются не только логическими переменными на его входах, но еще зависят и от предыдущего состояния этого устройства. Логические элементы И, ИЛИ, НЕ и их комбинации являются комбинационными устройствами. К последовательностным устройствам относятся триггеры, регистры, счетчики.
Логический элемент И (рис. 1) выполняет операцию логического умножения (конъюнкцию). Такую операцию обозначают символом /\ или значком умножения (·). Если все входные переменные равны 1, то и функция Y=X1·X2 принимает значение логической 1. Если хотя бы одна переменная равна 0, то и выходная функция будет равна 0.
Таблица 1 | ||||
Y=X1·X2 | X1 | X2 | Y | |
0 | 0 | 0 | ||
0 | 1 | 0 | ||
1 | 0 | 0 | ||
Рис. 1 | 1 | 1 | 1 |
Наиболее наглядно логическая функция характеризуется таблицей, называемой таблицей истинности (Табл. 1). Талица истинности содержит всевозможные комбинации входных переменных Х и соответствующие им значения функции Y. Количество комбинаций составляет 2n, где n – число аргументов.
Логичеcкий элeмент ИЛИ (рис. 2) выполняет операцию логического сложения (дизъюнкцию). Обозначают эту операцию символом \/ или знаком сложения (+). Функция Y=X1\/X2 принимает значение логической 1, если хотя бы одна переменная равна 1. (Табл. 2).
Таблица 2 | ||||
Y=X1\/X2 | X1 | X2 | Y | |
0 | 0 | 0 | ||
0 | 1 | 1 | ||
1 | 0 | 1 | ||
Рис. 2 | 1 | 1 | 1 |
Логический элемент НЕ (инвертор) выполняет операцию логического отрицания (инверсию). При логическом отрицании функция Y принимает значение противоположное входной переменной Х (Табл. 3). Эту операцию обозначают .
Таблица 3 | |||
Y= | X1 | Y | |
0 | 1 | ||
Рис. 3 | 1 | 0 |
Кроме указанных выше логических элементов, на практике широко используются элементы И-НЕ, ИЛИ-НЕ, Исключающее ИЛИ.
Логичеcкий элемeнт И-НЕ (рис. 4) выполняет операцию логического умнoжения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.
Таблица 4 | ||||
X1 | X2 | Y | ||
0 | 0 | 1 | ||
0 | 1 | 1 | ||
1 | 0 | 1 | ||
Рис. 4 | 1 | 1 | 0 |
Логический элемент ИЛИ-НЕ (рис. 5) выполняет операцию логического сложения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.
Таблица 5 | ||||
X1 | X2 | Y | ||
0 | 0 | 1 | ||
0 | 1 | 0 | ||
1 | 0 | 0 | ||
Рис. 5 | 1 | 1 | 0 |
Логический элемент Исключающее ИЛИ представлен на рис. 6. Логическая функция Исключающее ИЛИ (функция «неравнозначность» или сумма по модулю два) записывается в виде и принимает значение 1 при X1≠X2, и значение 0 при X1=X2=0 или X1=X2=1 (Табл. 6).
Таблица 6 | ||||
Y=X1X2 | X1 | X2 | Y | |
0 | 0 | 0 | ||
0 | 1 | 1 | ||
1 | 0 | 1 | ||
Рис. 6 | 1 | 1 | 0 |
Любой из выше перечисленных элементов можно заменить устройством, собранным только из базовых двухвходовых элементов ИЛИ-НЕ или И-НЕ. Например: операция НЕ (рис. 7, а) приX1 = X2 = X; операция И (рис. 7, б) .
Рис. 7
Интегральные логические элементы выпускаются в стандартных корпусах с 14 или 16 выводами. Один вывод используется для подключения источника питания, еще один является общим для источников сигналов и питания. Оставшиеся 12 (14) выводов используют как входы и выходы логических элементов. В одном корпусе может находится несколько самостоятельных логических элементов. На рисунке 8 показаны условные графические обозначения и цоколевка (нумерация выводов) некоторых микросхем.
К155ЛЕ1 К155ЛА3 К155ЛП5
Рис. 8
Базовый элемент транзисторно-транзисторной логики (ТТЛ). На рисунке 9 показана схема логического элемента И-НЕ ТТЛ с простым однотранзисторным ключом.
Рис.
9
Простейший логический элемент ТTЛ строится на базе многоэмиттерного транзистор VT1. Пpинцип дейcтвия такого транзистора тот же, что и у обычного биполяpного транзистора. Oтличие заключается в том, что инжекция носителей заряда в базу осуществляется через несколько самостoятельных эмиттерных р—n-переходов. При поступлении на входы логической единицы U1вх, запираются все эмиттерные переxоды VT1. Ток, текущий через резистор Rб, замкнется через открытые р-n—переходы: коллектoрный VT1 и эмиттерный VT2. Этoт ток откpоет транзиcтор VT2, и напряжение на его выходе станет близким к нулю, т. е. Y=U0вых. Если хотя бы на один вход (или на все входы) VT1 будет подан сигнал логического нуля U0вх, то ток, текyщий по Rб, замкнeтся через откpытый эмиттерный переход VT1. Пpи этoм входной ток VT2 будет близoк к нулю, и выходной транзистоp окажется запеpтым, т. е. Y=U1вых. Таким образом, рассмотренная схема осуществляет логическую операцию И-НЕ.
Контрольные вопросы.
Что называется логическим элементом?
Чем различаются положительная и отрицательная логики?
Что называется таблицей истинности?
Каким символом обозначают логическое умножение?
Как на схемах изображают логический элемент И?
При каких входных переменных на выходе логического элемента И формируется логическая 1?
Каким символом обозначают логическое сложение?
Как на схемах изображают логический элемент ИЛИ?
При каких входных переменных на выходе логического элемента ИЛИ формируется логическая 1?
Как на схемах изображают логический элемент НЕ?
Как на схемах изображают логический элемент И-НЕ?
При каких входных переменных на выходе логического элемента И-НЕ формируется логическая 1?
Как на схемах изображают логический элемент ИЛИ-НЕ?
При каких входных переменных на выходе логического элемента ИЛИ-НЕ формируется логическая 1?
Как на схемах изображают логический элемент Исключающее ИЛИ?
При каких входных переменных на выходе логического элемента Исключающее ИЛИ формируется логическая 1?
Как из элемента ИЛИ-НЕ получить элемент НЕ?
Как из элемента И-НЕ получить элемент НЕ?
Опишите принцип действия базового элемента ТТЛ.
studfile.net
РадиоКот :: Логические элементы
РадиоКот >Обучалка >Цифровая техника >Основы цифровой техники >Логические элементы
Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.
Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.
Итак, какие бывают элементы?
Смотрим:
Элемент «И» (AND)
Иначе его называют «конъюнктор».
Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется « таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.
Вот так выглядит элемент «И» и его таблица истинности:
Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.
Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.
Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.
Элемент «ИЛИ» (OR)
По другому, его зовут «дизъюнктор».
Любуемся:
Опять же, название говорит само за себя.
На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.
Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент.
Элемент «НЕ» (NOT)
Чаще, его называют «инвертор».
Надо чего-нибудь говорить по поводу его работы?
Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ».
Элемент «И-НЕ» (NAND)
Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» — единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:
Элемент «ИЛИ-НЕ» (NOR)
Та же история – элемент «ИЛИ» с инвертором на выходе.
Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR)
Он вот такой:
Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.
Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.
Эквивалентная схема примерно такая:
Ее запоминать не обязательно.
Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.
Далее мы позанудствуем о том, как синтезировать цифровую схему, имея ее таблицу истинности. Это совсем несложно, а знать надо, ибо пригодится (еще как пригодится) нам в дальнейшем.
Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.
<<—Вспомним пройденное—-Поехали дальше—>>
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Схемная реализация логических элементов И-ИЛИ-НЕ и других
Для выполнения логических операций и решать логические задачи с помощью средств электроники были изобретены логические элементы. Их создают с помощью диодов, транзисторов и комбинированных элементов (диодно-транзисторные). Такая логика получила название диодной логики (ДЛ), транзисторной (ТЛ) и диодно–транзисторной (ДТЛ). Используют как полевые, так и биполярные транзисторы. В последнем случае предпочтение отдается устройствам типа n-p-n, так как они обладают большим быстродействием.
Логический элемент «ИЛИ»
Схема логического элемента «ИЛИ» представлена на рисунке 1 а. На каждый из входов может подаваться сигнал в виде какого-то напряжения (единица) или его отсутствия (ноль). На резисторе R появиться напряжение даже при его появлении на каком – либо из диодов.
![](/wp-content/uploads/element-i-ne_2.jpg)
Элементы или могут иметь несколько логических входов. Если используются не все входы, то те входы которые не используются следует соединять с землей (заземлять), чтобы избежать появления посторонних сигналов.
На рисунке 1б показано обозначение на электрической схеме элемента, а на 1в таблица истинности.
Логический элемент «И»
Схема элемента приведена на рис. 2. Если хотя – бы к одному из входов будет сигнал равный нулю, то через диод будет протекать ток. Падение напряжения на диоде стремится к нулю, соответственно на выходе тоже будет ноль. На выходе сможет появится сигнал только при условии, что все диоды будут закрыты, то есть на всех входах будет сигнал. Рассчитаем уровень сигнала на выходе устройства:
![](/wp-content/uploads/element-i-ne_3.jpg)
на рис. 2 б – обозначение на схеме, в – таблица истинности.
Логический элемент «НЕ»
В логическом элементе «НЕ» используют транзистор (рис.3 а). при наличии положительного напряжения на входе х=1 транзистор открывается и напряжение его коллектора стремится к нулю. Если х=0 то положительного сигнала на базе нет, транзистор закрыт, ток не проходит через коллектор и на резисторе R нет падения напряжения, соответственно на коллекторе появится сигнал Е. условное обозначение и таблица истинности приведены на рис. 3 б,в.
![](/wp-content/uploads/element-i-ne_4.jpg)
Логический элемент «ИЛИ-НЕ»
При создании различных схем на логических элементах часто применяют элементы комбинированные. В таких элементах совмещены несколько функций. Принципиальная схема показана на рис. 4 а.
![](/wp-content/uploads/element-i-ne_5.jpg)
Здесь диоды Д1 и Д2 выполняют роль элемента «ИЛИ», а транзистор играет роль инвертора. Обозначение элемента на схеме и его таблица истинности рис. 4б и в соответственно.
Логический элемент «И-НЕ»
Показана схема на рис. 5 а. Здесь диод Д3 выполняет роль так сказать фильтра во избежание искажения сигнала. Если на вход х1 или х2 не подан сигнал (х1=0 или х2=0), то через диод Д1 или Д2 будет протекать ток. Падение на нем не равно нулю и может оказаться достаточным для открытия транзистора. Последствием чего может стать ложное срабатывание и на выходе вместо единицы мы получим ноль. А если в цепь включить Д3, то на нем упадет значительная часть напряжения открытого на входе диода, и на базу транзистора практически ничего не приходит. Поэтому он будет закрыт, а на выходе будет единица, что и требуется при наличии нуля на каком либо из входов. На рис. 5б и в показаны таблица истинности и схемное обозначение данного устройства.
![](/wp-content/uploads/element-i-ne_6.jpg)
Логические элементы получили широчайшее применение в электронике и микропроцессорной технике. Многие системы управления строятся с использованием именно этих устройств.
elenergi.ru
Базовые логические элементы и, или, не
Схема И реализует конъюнкцию (логическое умножение) двух или более логических значений.
Эл. схема | |||
Таблица истинности | ||
х | y | х и у |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет нуль, на выходе также будет нуль. Связь между выходом z этой схемы и входами х и у описывается соотношением z = х ^ у (читается как «х и у»). Операция конъюнкции на функциональных схемах обозначается знаком & (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.
Схема ИЛИ реализует дизъюнкцию (логическое сложение) двух или более логических значений.
Эл. схема | |||
Таблица истинности | ||
х | y | х или у |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 10 |
1 | 1 | 1 |
Когда хотя бы на одном входе схемы ИЛИ будет единица, на ее выходе также будет единица.Знак «1» на схеме — от устаревшего обозначения дизъюнкции как «>=!» (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами х и у описывается соотношением z = х или у.
Схема НЕ (инвертор) реализует операцию отрицания.
| |||||||||
Связь между входом х этой схемы и выходом z можно записать соотношением Z = , где х читается как «не х» или «инверсия. Если на входе схемы 0, то на выходе 1. Когда на входе 1 на выходе 0.
Нарисуйте таблицы истинности для ло: «не», «и», «или», «Исключающее или»
Таблица истинности — это таблица, описывающая логическую функцию. Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» ( либо , либо ).
Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.
Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.
Итак, какие бывают элементы?
Элемент «И» (AND)
Иначе его называют «конъюнктор».
Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.
Вот так выглядит элемент «И» и его таблица истинности:
Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.
Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.
Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.
Элемент «ИЛИ» (OR)
По другому, его зовут «дизъюнктор».
Любуемся:
Опять же, название говорит само за себя.
На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.
Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент.
Элемент «НЕ» (NOT)
Чаще, его называют «инвертор».
Надо чего-нибудь говорить по поводу его работы?
Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ».
Элемент «Исключающее ИЛИ» (XOR) Сложе́ние по мо́дулю 2, логи́ческое сложе́ние, исключа́ющее и́ли, строгая дизъюнкция — булева функция и логическая операция. Результат выполнения операции является истинным только при условии, если является истинным в точности один из аргументов. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.
Он вот такой:
Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.
Дайте определение ЛЭ. Нарисуйте ЛЭ базовых ЛО.
Логический элемент компьютера — это часть электронной логической схемы, которая реализует элементарную логическую функцию. |
Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Работу логических элементов описывают с помощью таблиц истинности.
studfile.net
Логические элементы в дискретном исполнении
Базисные логические функции(логические элементы) могут быть представлены как в дискретном исполнении, так и методами интегральной технологии. Базисные логические функции(логические элементы) «И», «ИЛИ» и «НЕ» могут выполняться на диодах, резисторах, биполярных полевых транзисторах. В соответствии с конструкцией построения логических элементов различают резисторно-транзисторную логику(РТЛ), диодно-транзисторную(ДТЛ), транзисторно-транзисторную логику(ТТЛ), а также логику на полевых транзисторах(«р»-канальная-рМОП, «n»-nМОП), комплементарную (КМДП) и динамическую (МОП).
Логический элемент «НЕ» (логическое отрицание).
Логический элемент «НЕ» имеет один вход и один выход. Условно обозначается в схемах:
Таблица истинности операции «НЕ» имеет вид:
Логический элемент » НЕ» представляет собой усилительный каскад на транзисторе, включённом по схеме ОЭ и работает в ключевом режиме. На вход подаются положительные сигналы в положительной логике. Используется транзистор типаn-p-n(рис.14-12.).
Рис. 14-12. Электронная схема реализующая логический элемент «НЕ».
Допустим, что транзистор VT закрыт отрицательным потенциалом на
базе от -Еб. Если на»Вх»
подать низкий потенциал, соответствующий
«0» ,
то VT
остаётся закрытым, а при этом Iк=0
и .
Следовательно,
на выходе будет высокое напряжение
соответствующее «I».
Если на “Вх” подать высокий положительный потенциал соответствующий «I», тоVT будет в состоянии насыщения и.Такой логический элемент еще называют «инвертором».
Логический элемент «И» (логическое умножение).
Обозначается. Элемент имеет как минимум два входа и один выход. Условное обозначение элемента “И”:
Таблица истинности операции «И» имеет вид:
X1
X2
Y
0
0
0
0
1
0
1
0
0
1
1
1
Схема двухходового элемента «И» на биполярных транзисторах показана на рис 14-13.
Рис 14-13. Электронная схема, реализующая логический элемент «И».
Из схемы (рис 14-13) видно, что транзисторы VT1 иVT2 соединены последовательно и электрический ток может протекать тогда, когда открыты оба транзистора. В том случае, когда один из транзисторов будет закрыт, то на входе напряжение будет равно «0», что соответствует таблице истинности. Этот логический элемент называется конъюктор.
Логический элемент «ИЛИ» (логическое сложение)
Обозначается .
Таблица истинности операции «или» имеет вид:
X1
X2
Y
0
0
0
0
1
1
1
0
1
1
1
1
Схема двухходового логического элемента «ИЛИ» показаны на рис 14-14.
Рис 14-14. Электронная схема, реализующая логический элемент «ИЛИ».
Схема элемента «ИЛИ» выполнена на биполярных транзисторах (технология
транзисторно-транзисторной логики).
Если на входы и
не подается
напряжение, то TV1 иTV2
заперты и на(на выходе) нет напряжения, и это
соответствует тому, что на выходе
логический «0». Если на один вход или на
оба входа подается положительное
напряжение (логическая «1»), то один или
оба транзистора открываются и на выходе
появляется положительное напряжение,
отображающее «1», что соответствует
таблице истинности. Этот логический
элемент еще называют дизъюнкцией.
Логический элемент «И-НЕ»(отрицание умножения, штрих Шеффера)
Условное обозначение в схемах.
Таблица истинности операции “И-НЕ” имеет вид:
X1 | X2 | Y |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Рассмотрим схему «И-НЕ» транзисторно-транзисторной логики (ТТЛ) (элемент Шеффера, рис 14-15)
Рис 14-15. Электронная схема, реализующая логический элемент «И-НЕ» (выполнена в ТТЛ).
Данная схема предназначен для работы от сигналов в виде напряжений, отрицательной полярности в отрицательной логике. (рис 14-15)
При отсутствии сигналов на входах схемы, и
заперты
положительным смещением
,
тока нет и на выходе(то
есть «I»).Когда на входы
одновременно будут поданы
(
то есть «I») и
,
тоV
иV
откроются и на выходе
.Если
на ВхIподать «0», а на Вх2
–«1», то
будет заперт, а
открыт, тока в цепи нет и(логическая «1»). Если на ВХ1 подать «1»,
а на ВХ2 – «0», то на выходе также(логическая
«1»)
Логический элемент «ИЛИ-НЕ»(отрицание сложения элемент Пирса).
Условное обозначение в схемах (логического элемента «ИЛИ-НЕ»)
Таблица истинности логического элемента «ИЛИ-НЕ» :
X1
X2
Y
0
0
1
0
1
0
1
0
0
1
1
0
Рассмотрим схему элемента «ИЛИ-НЕ» (рис 14-16) :
Рис 14-16. . Электронная схема, реализующая логический элемент «ИЛИ-НЕ».
Схема (рис 14-16) работает от сигналов в виде напряжений отрицательной полярности в отрицательной логике. Схема выполнена на транзисторе и работает как логический элемент «НЕ» с несколькими входами (не менее двух).
При отсутствии на
входах сигналов транзистор заперт
положительным смещением +Еб
на базе,
тогда Iк=0
и Uвых
= -Ек (т.е. «I»).
Когда на любой из входов поступит сигнал
Ubx
= Uo
(т.е. «I»),
то транзистор отпирается и Uвых0
(т.е. «О») и т.д. Здесь чаще всего
используют МОП-транзисторы,
т.к. у них высокая степень интеграции и
повышенная помехоустойчивость.
Основываясь на законах алгебры логики можно любой логический элемент заменить устройством, собранных только на двухходовых элементах И-НЕ.
1). Операция НЕ, ,
Таблица истинности операции «НЕ».
у
0
0
1
1
1
0
2). Операция И,
Таблица истинности операции «И».
Х1 | Х2 | И1 | НЕ(у1) | И2 | НЕ (у) |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 |
3). Операция «ИЛИ»,
Таблица истинности операции «ИЛИ».
Х1 | Х2 | И1 | И2 | И1 | И2 | И3 | У(или) |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
4). Операция сложения по модулю два (исключающее ИЛИ),
Таблица истинности операции «исключающее ИЛИ».
Х1 | Х2 | И1 | И2 | И1 | И2 | И3 | И4 | И3 | И4 | И | НЕ(У) |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
studfile.net