Емкостные конденсаторы. Особенности применения электролитических конденсаторов: типы, характеристики и области использования

Какие основные типы электролитических конденсаторов существуют. Каковы их ключевые характеристики и отличия. В каких областях электроники применяются различные виды электролитических конденсаторов. Как правильно выбрать электролитический конденсатор для конкретной задачи.

Содержание

Основные типы электролитических конденсаторов

Электролитические конденсаторы являются одним из наиболее распространенных типов конденсаторов, применяемых в электронике. Они обладают рядом уникальных характеристик, которые делают их незаменимыми во многих схемах. Рассмотрим основные типы электролитических конденсаторов:

  • Алюминиевые электролитические
  • Танталовые электролитические
  • Ниобиевые электролитические
  • Полимерные электролитические

Каждый из этих типов имеет свои особенности и области применения. Разберем их подробнее.

Алюминиевые электролитические конденсаторы

Алюминиевые электролитические конденсаторы являются наиболее распространенным и доступным типом. Их основные характеристики:


  • Большая удельная емкость
  • Низкая стоимость
  • Широкий диапазон емкостей и напряжений
  • Относительно высокие токи утечки
  • Ограниченный срок службы из-за высыхания электролита

Где применяются алюминиевые электролитические конденсаторы? В основном они используются для фильтрации и сглаживания пульсаций в источниках питания, в цепях развязки, в аудиотехнике.

Танталовые электролитические конденсаторы

Танталовые конденсаторы отличаются следующими особенностями:

  • Высокая удельная емкость
  • Низкие токи утечки
  • Стабильность характеристик
  • Работа при высоких температурах
  • Высокая стоимость

Где применяют танталовые конденсаторы? Они широко используются в военной и космической технике, медицинском оборудовании, телекоммуникациях — везде, где требуется высокая надежность.

Особенности применения электролитических конденсаторов

При использовании электролитических конденсаторов необходимо учитывать ряд важных моментов:

  1. Полярность подключения. Электролитические конденсаторы являются полярными — их нельзя подключать в обратной полярности.
  2. Допустимое напряжение. Превышение максимального напряжения может привести к пробою и выходу конденсатора из строя.
  3. Срок службы. Со временем характеристики электролитических конденсаторов ухудшаются из-за высыхания электролита.
  4. Температурный диапазон. При повышенных температурах срок службы конденсаторов сокращается.
  5. Пульсации тока. Необходимо учитывать максимально допустимый ток пульсаций.

Сравнение характеристик различных типов электролитических конденсаторов

Рассмотрим сравнительную таблицу основных характеристик электролитических конденсаторов:


ТипЕмкостьНапряжениеESRТоки утечкиСрок службы
Алюминиевые0.1 мкФ — 1 Ф6.3 В — 450 ВСреднийВысокие1000-5000 ч
Танталовые0.1 мкФ — 1000 мкФ2.5 В — 50 ВНизкийНизкие10000-100000 ч
Полимерные10 мкФ — 560 мкФ2.5 В — 100 ВОчень низкийНизкие>100000 ч

Как видно из таблицы, каждый тип имеет свои сильные и слабые стороны. Выбор конкретного типа зависит от требований конкретного применения.

Области применения электролитических конденсаторов

Рассмотрим основные области применения различных типов электролитических конденсаторов:

  • Источники питания — фильтрация, сглаживание пульсаций
  • Аудиотехника — разделительные конденсаторы, фильтры
  • Импульсные преобразователи — накопители энергии
  • Микропроцессорная техника — развязка по питанию
  • Автомобильная электроника — фильтрация помех
  • Телекоммуникационное оборудование
  • Медицинская техника

В каждой из этих областей могут применяться различные типы электролитических конденсаторов в зависимости от конкретных требований.


Как правильно выбрать электролитический конденсатор?

При выборе электролитического конденсатора необходимо учитывать следующие факторы:

  1. Требуемая емкость
  2. Рабочее напряжение
  3. Допустимые токи пульсаций
  4. Температурный диапазон работы
  5. Требуемый срок службы
  6. Допустимые габариты
  7. Стоимость

Алгоритм выбора можно представить следующим образом:

  1. Определить требуемую емкость и напряжение
  2. Выбрать тип конденсатора (алюминиевый, танталовый, полимерный)
  3. Подобрать конкретную модель с учетом всех требований
  4. Проверить соответствие выбранной модели требованиям по току пульсаций и температурному диапазону
  5. При необходимости скорректировать выбор

Правильный выбор электролитического конденсатора позволит обеспечить надежную и долговременную работу электронного устройства.

Современные тенденции в области электролитических конденсаторов

В настоящее время наблюдаются следующие тенденции в развитии электролитических конденсаторов:

  • Увеличение удельной емкости
  • Снижение эквивалентного последовательного сопротивления (ESR)
  • Повышение рабочих температур
  • Увеличение срока службы
  • Миниатюризация
  • Развитие полимерных технологий

Эти тенденции позволяют создавать все более эффективные и надежные электронные устройства.


Заключение

Электролитические конденсаторы являются важнейшим компонентом современной электроники. Понимание их особенностей, характеристик и областей применения позволяет грамотно выбирать и использовать эти компоненты в различных устройствах. При правильном выборе и применении электролитические конденсаторы обеспечивают надежную и эффективную работу электронной аппаратуры.


Как выбрать конденсатор?

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр.) наиболее предпочтительным для вашего проекта.

В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.

Например, результат поиска для DIP конденсаторов  c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.

Рис. 1. Результат поискового запроса для  имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi  с емкостью в диапазоне  56…560 мкФ

Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.

Рис. 2. Конденсаторы различных типов

Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.

Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.

Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.

Типы конденсаторов

Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 3. Алюминиевый электролитический конденсатор

Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.

Приложения: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.

Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.

Примеры:

Для монтажа в отверстия:

  • 25 В серия TKR производства Jamicon с диапазоном доступных емкостей 10…5000 мкФ.
  • 50 В серия ECA-1HM  от Panasonic с диапазоном доступных емкостей 4.7…3300 мкФ.
  • 450 В серия HP32 от Hitachi AIC с диапазоном доступных емкостей 56…1000 мкФ.

Для поверхностного монтажа:

  • 16 В серия EEE-FK от Panasonic с диапазоном доступных емкостей 10…4700 мкФ.
  • 50 В серия CA050 от Yageo с диапазоном доступных емкостей 0,22…220 мкФ.

Рис.4. Керамические конденсаторы

Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.

Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:

Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.

Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения — до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.

  • X5R может работать в диапазоне — 55…85°C с изменением емкости +/- 15%;
  • X7R может работать в диапазоне — 55…125°C с изменением емкости +/- 15%;
  • Y5V — в диапазоне от — 30…+ 85°C с изменением емкости -20/ +80%.

Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02″, 0603 — 0,06х0,03″ и так далее.

Примеры:

Тип NP0/C0G:

  • 0402 — серия CC0402JRNPO9 производства компании Yageo с диапазоном доступных емкостей 0,01…1 нФ;
  • 0603 — серия CC0603JRNPO9 от Yageo с диапазоном доступных емкостей 0,008…2,7 нФ.

Тип X7R:

  • 0402 — серия CC0402KRX7R9BB от Yageo с диапазоном доступных емкостей 0,1…10 нФ;
  • 0603 — серия CC0603KRX7R7BB от Yageo с диапазоном доступных емкостей 0,1…1 мкФ;
  • 1206 — серия GRM31 от Murata с диапазоном доступных емкостей 470 пф…22 мкФ;
  • 0805 — серия CL21 от Samsung с диапазоном доступных емкостей 150 пф…10 мкФ.

Для монтажа в отверстия:

  • Серия C315C производства компании Kemet с диапазоном доступных емкостей 1 пФ …1 мкФ.

Танталовые конденсаторы

Рис. 5. Танталовые конденсаторы

Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.

Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.

Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06″), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D — размеру 2917.

Примеры:

  • Типоразмер A: серия TAJA от AVX с диапазоном доступных емкостей 1…10 мкФ;
  • Типоразмер B: серия TAJB от AVX с диапазоном доступных емкостей 10…47 мкФ;
  • Типоразмер C: серия TAJC от AVX с диапазоном доступных емкостей 47…220 мкФ;
  • Типоразмер D: серия TAJD от AVX с диапазоном доступных емкостей 220…680 мкФ;
  • Типоразмер A-E: серия 293D компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ;
  • Типоразмер A-X: серии T491 компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ.

Пленочные конденсаторы

Рис. 6. Пленочные конденсаторы

Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).

Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.

Примеры:

  • серия B32021 производства компании EPCOS с диапазоном доступных емкостей 1 нФ…10 нФ и рабочим напряжением 300В AC.
  • серия ECHU от Panasonic c диапазоном доступных емкостей 0,1 нФ…220 нФ и рабочим напряжением 16 В и 50 В DC.

Слюдяные конденсаторы

Рис. 7. Слюдяной конденсатор

Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.

Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как  радиопередатчики высокой мощности.

Примеры:

  • серия CD производства CDE с диапазоном доступных емкостей 0,001…47 нФ (монтаж в отверстия) рабочим напряжением до 500 В .

Полимерные (твердотельные) конденсаторы

Рис. 8. Полимерные (твердотельные) конденсаторы

Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.

Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.

Примеры:

  • серия OS-CON производства Panasonic с диапазоном доступных емкостей 3,3…2700 мкФ. 
  • серия SP-Cap производства Panasonic с диапазоном доступных емкостей 10…560 мкФ в SMD исполнении. 
  • серия ECAS производства компании Murata с диапазоном доступных емкостей 10…150 мкФ.

Конденсаторные сборки

Описание: конденсаторная сборка (capacitor array)  — это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.

Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т.д.

Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.

Примеры:

  • Серия CA конденсаторных сборок общего назначения от компании Yageo типоразмера 0612 с диапазоном доступных емкостей от 22 пФ до 100 нФ.

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:

  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением  250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805″ или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Рис. 9. Фрагмент скриншота сервиса поиска конденсатора

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.
 

Автор: Санкет Гупта Перевод: Вячеслав Гавриков (г. Смоленск)

Разделы: Конденсаторы керамические, Пленочные конденсаторы

Опубликовано: 15.03.2018

CC – высоковольтные конденсаторы связи

Основное назначение измерительных конденсаторов связи марки «CC» (Coupling Capacitor) – регистрация частичных разрядов в высоковольтных цепях. Конденсаторы связи марки «CC» монтируются рядом с контролируемым оборудованием и являются единственным типом датчиков, которые непосредственно и гальванически подключаются к высоковольтным цепям.

Высоковольтный измерительный конденсатор связи представляет собой набор достаточно большого количества последовательно включенных конденсаторов, что необходимо для получения высокого рабочего напряжения. Обычно такой интегральный конденсатор является верхним плечом емкостного делителя напряжения. Нижнее плечо измерительного делителя может быть смонтировано непосредственно внутри конденсатора связи, а чаще всего является внешним дополнительным элементом. Иногда в качестве нижнего плеча делителя напряжения могут быть использованы входные цепи измерительного прибора.

Величина выходного напряжения измерительного конденсатора связи не зависит от частоты регистрируемых импульсов, если и в нижнее плечо высоковольтного делителя также включается конденсатор. Если в качестве нижнего плеча высоковольтного делителя используется активное сопротивление, то выходное напряжение с такого «емкостно – активного» делителя станет частотно зависимым: оно будет возрастать с увеличением частоты регистрируемых импульсов.

Если же в нижнем плече делителя напряжения с измерительным конденсатором связи использовать индуктивность, то выходное напряжение такого делителя будет еще более сильно возрастать с увеличением частоты регистрируемого сигнала, чем при использовании для этих целей активного сопротивления. При использовании в качестве второго плеча делителя R или L существует вероятность повреждения измерительной аппаратуры от воздействия высокочастотных перенапряжений. Это накладывает повышенные требования к системам защиты этих датчиков.

Надежность работы измерительного конденсатора связи во многом зависит от качества и стабильности диэлектрика используемых элементарных конденсаторов, к качеству которого предъявляются жесткие требования по стойкости во всех режимах работы. Критическими, с точки зрения обеспечения надежности работы конденсатора, являются не рабочие режимы, а анормальные режимы, когда на него происходит воздействие высокочастотных импульсных перенапряжений, и испытательные режимы, во время которых к конденсатору прикладываются повышенные переменные или постоянные напряжения.

Вторым параметром, влияющим на надежность работы конденсатора связи, является длина поверхностных путей утечки, величина которого является критическим параметром для работы всех высоковольтных изоляторов.

Требования к установке и подключению измерительного конденсатора связи:

Внутри измерительного конденсатора связи обычно отсутствуют встроенные элементы защиты, что делается для обеспечения универсальности его практического применения. По этой причине при проведении измерений частичных разрядов с использованием таких датчиков, подключенных к высокому напряжению, необходимо обязательно соблюдать ряд условий, предназначенных для обеспечения надежной работы и безопасности персонала:

  • «Нижний» вывод конденсатора связи должен быть надежно закреплен на металлическом заземленном основании, или же надежно заземлен проводником необходимого сечения (не менее 2,5 мм2). Вся цепь заземления конденсатора связи должна легко визуально контролироваться.
  • Подключение конденсатора связи к высоковольтным цепям должно производиться проводником сечением не менее 20 мм2, что делается для максимального снижения уровня паразитных коронных разрядов. Наличие и тип внешней изоляции этого соединительного проводника определяются условиями его прокладки внутри контролируемого оборудования.
  • На входе измерительного прибора, к которому подключается конденсатор связи, обязательно должны быть предусмотрены надежные средства защиты от мощных высокочастотных высоковольтных импульсов, желательно дублированные. Такие опасные импульсы могут возникнуть в контролируемом высоковольтном оборудовании при коммутационных процессах, или же могут быть наведены в оборудование извне.

Измерительные конденсаторы связи различных марок могут быть использованы для регистрации частичных разрядов:

  • в электрических генераторах, электродвигателях;
  • в высоковольтных выключателях;
  • в ячейках КРУ и подходящих к ним кабельных линиях;
  • в силовых трансформаторах на стороне НН (6 ÷ 35 кВ).

Наиболее важными параметрами измерительного конденсатора связи являются:

  • номинальное рабочее напряжение;
  • испытательное напряжение и условия его приложения;
  • величина емкости конденсатора;
  • тип диэлектрика, определяющий температурный диапазон работы конденсатора.

Наиболее важные сравнительные характеристики конденсаторов связи различного типа, производимых фирмой «DIMRUS», и область их предпочтительного применения приведены в таблице 1.

Таблица 1. Характеристики конденсаторов связи «CC»

  CC-XX/I CC-XX/M CC-XX/H
Емкость, пФ 140, 70, 45 80 670, 1000
Номинальное напряжение, кВ 12, 24, 36 10, 20 12, 24, 36
Рабочая температура, °C -25 ÷ +55 -40 ÷ +80 -40 ÷ +70
Область применения Приборы марки IDR Генераторы моторы, КРУ Любое оборудование

Общие рекомендации для выбора измерительных конденсаторов связи

  • Конденсаторы связи марки «CC-XX/I» с малой емкостью предназначены для использования в качестве комплексных датчиков частичных разрядов и наличия высокого напряжения на шинах КРУ в реле контроля изоляции высоковольтного оборудования марки «IDR».
  • Конденсаторы связи марки «CC-XX/M» с емкостью 80 пФ изготавливаются с использованием высококачественного слюдяного диэлектрика и применяются, в основном, для регистрации частичных разрядов в изоляции статоров высоковольтных электрических машин различного типа.
  • Конденсаторы связи марки CC-XX/H благодаря повышенной емкости, имеют более высокую чувствительность к регистрируемым частичным разрядам. Конденсаторы связи этой марки имеют универсальное применение.

Конденсаторы связи марки «CC-XX/I»

Конденсаторы связи марки «CC-XX/I» (Coupling Capacitor, рабочее напряжение XX кВ, Indicator type), предназначены для регистрации частичных разрядов в высоковольтных шинах с рабочим напряжением 6 ÷ 36 кВ и независимого (без использования дополнительного источника питания) контроля наличия высокого напряжения.

При использовании конденсаторов связи марки «CC-XX/I» для регистрации частичных разрядов в изоляции и диагностики дефектов в высоковольтном оборудовании, их подключают к входным цепям реле контроля изоляции марки «IDR», специально разработанного для работы с такими конденсаторами. Это компактное интеллектуальное реле одновременно является и автономным индикатором наличия высокого напряжения на контролируемых шинах и выполняет функции измерительного и диагностического прибора регистрации и анализа частичных разрядов в высоковольтной изоляции.

Основные параметры конденсаторов связи марки «CC-XX/I» приведены в таблице 2. В состав этой серии входят три типоразмера конденсатора, отличающиеся величиной емкости и рабочим напряжением.

Таблица 2. Характеристики конденсаторов связи «CC-XX/I»

  Uр, кВ C, пФ Размеры, H * D, мм Путь утечки, мм
CC-12/I 12 140 130 * 77 180
CC-24/I 24 70 210 * 85 300
CC-36/I 36 45 300 * 95 430

Как видно из таблицы, с ростом рабочего напряжения емкость конденсатора уменьшается. Это сделано для того, чтобы можно было унифицировать параметры входных цепей измерительных индикаторов и приборов, с которыми используются эти конденсаторы связи.

Поскольку конденсаторы связи марки «CC-XX/I» рассчитаны только на внутреннюю установку, диапазон их рабочих температур может оказаться недостаточным для использования в некоторых промышленных применениях, когда необходима наружная установка диагностического оборудования.

Габаритные размеры конденсаторов связи марки «CC-XX/I» соответствуют размерам стандартных опорных изоляторов, они имеют необходимую прочность на изгиб, поэтому монтаж таких конденсаторов не вызывает значительных сложностей. Конденсатор связи легко монтируется на место одного из опорных изоляторов, необходимо только дополнительно выполнить на панели отверстие для измерительного вывода конденсатора.

Подключение конденсаторов связи «CC-XX/I» к приборам регистрации частичных разрядов обязательно должно осуществляться при помощи коаксиального кабеля типа «RG-50». Причиной этого является малая внутренняя емкость конденсатора, поэтому при использовании для соединения конденсатора с прибором не экранированного кабеля может многократно вырасти уровень наведенных в кабеле высокочастотных помех, затрудняющих проведение диагностики состояния изоляции контролируемого высоковольтного оборудования.

Конденсаторы связи марки «CC-XX/M»

Измерительные конденсаторы связи марки «CC-XX/M» (Coupling Capacitor, рабочее напряжение XX кВ, Motor type), предназначены для использования в системах регистрации и анализа частичных разрядов в обмотках статоров мощных высоковольтных электрических моторов и генераторов, а также на шинах КРУ среднего класса напряжений.

Конденсаторы связи марки «CC-XX/M» имеют две отличительные конструктивные особенности:

  • Встроенный внутрь конденсатор выполнен в виде моноблока на основе прокладок из высококачественного слюдяного диэлектрика и расширительных металлических прокладок, залитого в общий объем конденсатора с закладной арматурой общим эпоксидным компаундом.
  • Емкость конденсатора связи равняется 80 пФ, так как именно это значение достаточно долго принималось как некий стандарт для систем измерения частичных разрядов в обмотках крупных электрических машин.

Достоинствами конденсаторов связи «CC-XX/M» со слюдяным диэлектриком являются высокая стабильность их параметров, повышенная стойкость к возникновению внутренних частичных разрядов в слюдяном диэлектрике. Использование высококачественной слюдяной изоляции позволяет значительно расширить температурный диапазон использования измерительных конденсаторов связи марки «CC-XX/M».

Наряду с наличием очевидных достоинств, измерительные конденсаторы связи марки «CC-XX/M» со слюдяной изоляцией обладают существенными конструктивными и эксплуатационными недостатками, основными из которых являются:

  • Невозможность проведения испытаний высоковольтной изоляции контролируемого оборудования (с подключенными конденсаторами связи) повышенным постоянным напряжением. Такие испытания, в силу конструктивных особенностей конденсаторов, могут привести к пробою изоляции конденсатора.
  • Сравнительно низкая емкость слюдяных конденсаторов, всего 80 пФ, обусловленная конструктивными особенностями использования слюдяной изоляции. Это существенно ограничивает возможности применения таких конденсаторов в некоторых практических приложениях систем регистрации частичных разрядов.
  • Высокая стоимость конденсаторов со слюдяным диэлектриком, так как месторождения качественной слюды располагаются только в Индии.

Несоответствие габаритных размеров конденсаторов связи на основе слюдяного диэлектрика стандартным опорным изоляторам соответствующих классов напряжения, что ограничивает возможности их практического применения.

Основные параметры конденсаторов связи «CC-XX/M» со слюдяным диэлектриком приведены в таблице 3. Как уже указывалось выше, такие конденсаторы связи чаще всего используются для регистрации частичных разрядов в обмотках статоров высоковольтных электрических машин, так как работают в расширенном температурном диапазоне.

Таблица 3. Характеристики конденсаторов связи «CC-XX/M»

  Uр, кВ C, пФ Размеры, H * D, мм Путь утечки, мм
CC-10/M 10 80 150 * 102 180
CC-20/M 20 80 253 * 102 300

Монтаж конденсаторов связи марки «CC-XX/M» внутри высоковольтного оборудования обычно осуществляется с использованием дополнительного переходного основания, в котором располагаются все элементы защиты входных цепей измерительного прибора от импульсных перенапряжений и обычно «второе плечо» емкостного измерительного делителя напряжения.

Конденсаторы связи марки CC-XX/H повышенной емкости

Конденсаторы связи марки «CC-XX/H» (Coupling Capacitor, рабочее напряжение 12, 24 или 36 кВ), предназначены для регистрации частичных разрядов в высоковольтных шинах КРУ с напряжением 6 ÷ 35 кВ, в обмотках статоров крупных электрических машин, электродвигателей и генераторов, а также для других типов высоковольтного оборудования.

Отличительным параметром конденсаторов связи марки CC-XX/H является повышенная внутренняя емкость, значительно превышающая емкость конденсаторов связи марки CC-XX/M.

Это является достоинством для конденсаторов связи, так как благодаря этому значительно повышается реальная чувствительность систем регистрации и анализа частичных разрядов в изоляции высоковольтного оборудования.

Вторым достоинством использования конденсаторов связи повышенной емкости является то, что при проведении регистрации импульсов частичных разрядов существенно снижается вредное влияние высокочастотных помех, которые наводятся на сигнальные кабели и входные цепи измерительных приборов.

Таблица 4. Характеристики конденсаторов связи «CC-XX/H»

  Uр, кВ C, пФ Размеры, H * D, мм Путь утечки, мм Испытательное напряжение AC,
кВ, 1 минута
CC-12/H-1000 12 1000 150 * 105 180 42
CC-24/H-1000 24 1000 260 * 105 360 65
CC-36/H-670 36 670 370 * 105 540 95

Скачать документацию по конденсаторам связи «CC»

Каталог датчиков для контроля состояния высоковольтного электротехнического оборудования (3. 3 МБ) 24.03.2023

Похожие материалы:

 

ОШИБКА — 404 — НЕ НАЙДЕНА

  • Главная
  • Четыре-но-четыре

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

2×5-контактный ленточный кабель IDC

В наличии ПРТ-08535

Избранное Любимый 10

Список желаний

Датчик расстояния и жестов ZX

В наличии SEN-13162

28,50 $

3

Избранное Любимый 34

Список желаний

Стандартный комплект бесконтактного переключателя Shapeoko

В наличии ТОЛ-18469

50,00 $

Избранное Любимый 0

Список желаний

МИКРОЭ Опто 3 Клик

Нет в наличии ПРТ-19866

20,95 $

Избранное Любимый 0

Список желаний

Устройство фотодетектора

26 июня 2020 г.

Выпуск фотодетектора MAX30101 теперь доступен вместе с несколькими разъемами и новой беспроводной клавиатурой!

Избранное Любимый 0

Защелкните прокладку, Джим

18 сентября 2020 г.

SparkFun Qwiic SHIM для Raspberry Pi теперь входит в комплект!

Избранное Любимый 0

смоль ZOE-M8Q Руководство по подключению

21 октября 2021 г.

Маленький по размеру, малый по потреблению тока. Это смелый мир! Это руководство поможет вам приступить к работе с периферийной платой smôl ZOE-M8Q GNSS.

Избранное Любимый 0

  • Электроника SparkFun®
  • 6333 Dry Creek Parkway, Niwot, Colorado 80503
  • Настольный сайт
  • Ваш счет
  • Авторизоваться
  • регистр

Выбор конденсатора для приложений связи и развязки

Саймон Ндириту из General Dielectrics объясняет некоторые основные рекомендации по выбору конденсатора для приложений связи и развязки.

Конденсаторы являются основными компонентами как аналоговых, так и цифровых электронных схем. Эти пассивные компоненты играют важную роль, влияя на рабочее поведение цепей. Характеристики конденсатора различаются в основном в зависимости от используемого диэлектрического материала. Диэлектрический материал определяет значение емкости, энергоэффективность и размер конденсатора. Конденсаторы с фиксированной емкостью можно разделить на две категории: полярные (электролитические) и неполярные (электростатические). К неполярным конденсаторам относятся керамические, пленочные и бумажные конденсаторы. Алюминиевые электролитические конденсаторы и танталовые конденсаторы являются полярными компонентами.

В цепях конденсаторы используются для самых разных целей, включая накопление электрических зарядов, блокировку компонентов постоянного тока, обход компонентов переменного тока, фильтрацию нежелательных сигналов и т. д. Применение конденсатора в первую очередь зависит от его характеристик. Ключевые свойства, которые следует учитывать при выборе конденсатора для данного приложения, включают значение емкости, номинальное напряжение, характеристики частотной характеристики, стоимость и физический размер. Другие свойства конденсатора, которые могут влиять на работу электронной схемы, включают температурные характеристики, свойства самовосстановления, старение и воспламеняемость.

Конденсаторы связи

Конденсаторы связи используются в электронных схемах для передачи полезного сигнала переменного тока и блокировки нежелательных составляющих постоянного тока. Эти нежелательные сигналы постоянного тока исходят от электронных устройств или предшествующих каскадов электронной схемы. В аудиосистемах компоненты постоянного тока влияют на качество полезного сигнала, внося шум. Кроме того, сигналы постоянного тока влияют на характеристики усилителей мощности и увеличивают искажения. В цепях конденсатор связи подключается последовательно с сигнальным трактом. Конденсаторы связи используются как в аналоговых, так и в цифровых электронных схемах. Они находят множество применений в аудио- и радиочастотных системах.

Реактивная природа конденсатора позволяет ему по-разному реагировать на разные частоты. В приложениях связи конденсатор блокирует низкочастотные сигналы постоянного тока и пропускает высокочастотные сигналы переменного тока. По отношению к низкочастотным компонентам, таким как сигналы постоянного тока, конденсатор имеет высокий импеданс, тем самым блокируя их. С другой стороны, конденсатор имеет низкий импеданс по отношению к высокочастотным компонентам. Это позволяет пропускать высокочастотные сигналы, такие как компоненты переменного тока.

В аудиосистемах источники постоянного тока используются для питания аудиоцепей. Однако, поскольку аудиосигнал обычно представляет собой сигнал переменного тока, постоянная составляющая на выходе нежелательна. Чтобы предотвратить появление сигнала постоянного тока на выходном устройстве, последовательно с нагрузкой добавляется разделительный конденсатор.

Конденсаторы связи являются важными компонентами схем усилителей. Они используются для предотвращения влияния сигналов переменного тока на напряжение смещения транзистора. В большинстве схем усилителя это достигается путем передачи сигнала на вывод базы транзистора через разделительный конденсатор. Когда конденсатор с правильным значением емкости подключен последовательно, полезный сигнал может проходить, в то время как составляющая постоянного тока заблокирована.

Наличие компонентов постоянного тока в линии передачи может существенно повлиять на работу цифровой цепи. В системах связи разделительные конденсаторы используются для блокировки нежелательных составляющих постоянного тока. Блокировка составляющей постоянного тока помогает свести к минимуму потери энергии и предотвратить накопление заряда в цифровых схемах.

Типы конденсаторов для приложений связи ​

При выборе конденсатора для приложений связи/блокировки постоянного тока ключевыми параметрами, которые следует учитывать, являются импеданс, эквивалентное последовательное сопротивление и последовательная резонансная частота. Значение емкости в первую очередь зависит от диапазона частот приложения и импеданса нагрузки/источника. Типы конденсаторов, которые обычно используются для связи, включают пленочные, керамические, танталовые, алюминиевые электролитические и алюминиево-органические/полимерные электролитические конденсаторы.

Танталовые конденсаторы обеспечивают высокую стабильность при высоких значениях емкости и доступны в различных вариантах. По сравнению с керамическими эти конденсаторы имеют более высокое ESR и более дорогие. Для приложений связи танталовые конденсаторы более популярны, чем керамические конденсаторы.

Алюминиевые электролитические конденсаторы дешевле танталовых. Они обеспечивают стабильную емкость и имеют характеристики ESR, аналогичные танталовым конденсаторам. Однако эти конденсаторы имеют относительно большие размеры и не рекомендуются для схем с ограниченным пространством на печатной плате. Алюминиевые электролитические конденсаторы широко используются для связи в усилителях мощности.

Керамические конденсаторы недороги и доступны в небольших корпусах для поверхностного монтажа. Эти конденсаторы дешевле по сравнению с танталовыми конденсаторами. Хотя керамические конденсаторы обычно используются в аудио- и радиочастотных приложениях, они, как правило, не подходят для приложений, требующих превосходной производительности.

Большие физические размеры пленочных конденсаторов ограничивают их применение в сетях переменного тока. Если место не является проблемой, полипропиленовые и полиэфирные конденсаторы обладают характеристиками, которые делают их хорошим выбором для приложений связи в схемах предусилителя.

Развязывающие конденсаторы

Некоторые электронные схемы очень чувствительны к скачкам напряжения, и быстрые изменения напряжения могут сильно повлиять на их работу. Развязывающие конденсаторы используются в электронных схемах для предотвращения быстрых изменений напряжения, действуя как резервуары электрической энергии. В случае внезапного падения напряжения развязывающий конденсатор обеспечивает электроэнергию, необходимую для поддержания стабильного напряжения питания. С другой стороны, если происходит внезапный скачок напряжения, конденсатор стабилизирует напряжение, поглощая избыточную энергию.

Помимо стабилизации напряжения в электронных схемах, развязывающие конденсаторы также используются для обеспечения прохождения компонентов постоянного тока при замыкании компонентов переменного тока на землю. Конденсаторы, которые используются для обхода помех переменного тока в электронных схемах, также широко известны как обходные конденсаторы. Шунтирующие конденсаторы поглощают шумы переменного тока, создавая более чистый сигнал постоянного тока.

Для устранения помех переменного тока параллельно резистору устанавливается развязывающий конденсатор. Конденсатор обеспечивает высокое сопротивление низкочастотным сигналам и меньшее сопротивление высокочастотным сигналам. Таким образом, низкочастотные компоненты постоянного тока используют резисторный тракт, в то время как высокочастотные компоненты переменного тока шунтируются на землю через шунтирующий конденсатор. Это дает чистый сигнал постоянного тока, свободный от компонентов переменного тока.

Типы конденсаторов для развязки ​
При выборе конденсатора для развязки очень важно учитывать электрические требования конструкции. Ключевые параметры, которые следует учитывать при выборе шунтирующего конденсатора, включают самую низкую частоту сигнала переменного тока и значение сопротивления резистора. В большинстве случаев самая низкая частота составляет 50 Гц.

Хотя для развязки/шунтирования доступны различные типы конденсаторов, их характеристики заметно различаются в зависимости от используемого диэлектрического материала и структуры. Эти два параметра определяют температурную стабильность, линейность, номинальное напряжение, физический размер и стоимость. Типы конденсаторов, которые обычно используются для развязки, включают керамические, танталовые и алюминиевые электролитические конденсаторы.

Производительность и стоимость керамических конденсаторов делают их популярным вариантом для приложений с развязкой. Эти конденсаторы имеют низкое эквивалентное последовательное сопротивление (ESR) и эквивалентную последовательную индуктивность (ESL). Кроме того, многослойные керамические конденсаторы (MLCC) доступны в широком диапазоне корпусов и значений емкости. Керамические конденсаторы являются отличным вариантом для развязки в высокочастотных цепях.

Алюминиевые электролитические конденсаторы переключающего типа обычно используются для развязки в низкочастотных и среднечастотных электронных схемах. Эти конденсаторы недороги, доступны в широком диапазоне значений емкости и имеют высокое отношение емкости к объему. Однако алюминиевые электролитические конденсаторы подвержены температурному износу и имеют высокое ESR при низких температурах. Эти конденсаторы широко используются для развязки в потребительских товарах.

Твердотельные танталовые конденсаторы имеют высокую CV и менее подвержены износу. Кроме того, они демонстрируют впечатляющую стабильность при низких температурах. По сравнению с алюминиевыми электролитическими конденсаторами танталовые конденсаторы имеют более высокое отношение емкости к объему и более низкое ESR. С другой стороны, танталовые конденсаторы дороги и ограничены низковольтными приложениями, обычно до 50 В. Эти конденсаторы обычно используются в приложениях с более высокой надежностью.

Пленочные конденсаторы, такие как конденсаторы из полиэстера, полипропилена, тефлона и полистирола, имеют ограниченное применение для развязки. Хотя эти конденсаторы подходят для высоковольтных приложений и менее подвержены износу, стоимость их производства относительно высока. Тем не менее, характеристики этих конденсаторов делают их подходящими вариантами для высоковольтных, сильноточных и аудиоразвязок.

Заключение

Конденсаторы являются основными компонентами как аналоговых, так и цифровых электронных схем. Они используются для широкого спектра приложений, включая приложения связи, развязки, фильтрации и синхронизации. Конденсаторы связи пропускают компоненты переменного тока, блокируя компоненты постоянного тока. Развязывающие конденсаторы используются в электронных схемах в качестве резервуаров энергии для предотвращения быстрых изменений напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *