Фаза и ноль в электрике как определить: Как определить фазу и ноль

Содержание

Что такое фаза и ноль в электричестве

Электрическая фаза колебаний в электротехнике — это аргумент колебательной функции, то есть угол, на который смещены колебания значения ЭДС в пространстве относительно нуля.

Различают начальную фазу $φ_0$, описывающую начало колебательного процесса в нулевое время и полную фазу, описывающую состояние колебательного процесса в любой момент времени.

Пример уравнения c полной фазой, которое может описывать колебательный процесс: $cos(ωt + βx + φ_0)$. В момент времени, равный $t = 0$, угол колебаний составит $φ_0$, а если колебание начинается в точке с координатами $(0;0)$, то уравнение будет иметь вид типа $cos(φ_0)$.

Чаще всего для электроснабжения жилья используются трёхфазные системы электроснабжения, фазовый угол между генерируемыми ЭДС в которых равен $\frac{2π}{3}$ или $120°$.

Что такое фаза в электричестве — определение понятия

Фаза в электричестве — это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол. В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.

Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли

На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ — нулевой провод.

На рис. 2

показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ — фаза в квартире, а буква $R_H$ — это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.

От трансформатора идёт 2 провода, один — так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.

На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.

Что такое ноль в электричестве — определение

Ноль – это провод, необходимый для замыкания электрического контура, по нему ток возвращается к источнику.

Для чего нужен ноль в электричестве? Ноль в электричестве нужен для равномерного распределения напряжения между фазами. При отсутствии нулевого провода напряжение между фазовыми проводами будет распределяться неравномерно, в результате чего на одной фазе может быть повышенное напряжение, которое может привести к пожару, а на других – пониженное, с которым часть электроприборов может не работать или работать некорректно. Для ноля также используются другие названия – его называют нейтральным или нулевым контактом.

Что такое нулевая фаза в электричестве

Нулевая фаза – это ещё одно народное название нулевого провода, не стоит путать его с землёй.

Ток в нулевом проводе не всегда равен нулю, он будет ненулевым при подключении электроприборов.

Что такое «земля» в электричестве

«Земля» – это провод, отводимый от нулевого, используемый для безопасности. Суть в том, что в случае обрыва электрической цепи или отсутствия сопротивления ток направляется в землю, что помогает избежать удара током.

Напряжение $U$ между нулевым проводом и землёй равняется нулю, тогда как напряжение между нулём и фазой для обычной квартиры будет равно $220$ В.

Электрика для чайников: фаза и ноль – что это и как определить где что

В случае, когда вы имеете дело с проводкой, состоящей из двух проводов – один из них всегда будет фазой, а второй нулём. Для того чтобы определить где какой — достаточно воспользоваться специальной пластиковой отвёрткой с индикатором.

Для этого необходимо сначала отключить электричество и развести 2 имеющихся провода во избежание короткого замыкания.

Затем нужно включить электричество обратно и аккуратно, не прикасаясь голыми руками к оголённой части проводов, приложить конец индикаторной отвёртки к проводу. Тот, на котором сработает лампочка индикаторной отвёртки, является фазой, второй провод будет нулём.

В случае же если вам приходится иметь дело с трёхжильным проводом – определить где фаза, а где ноль будет несколько сложнее. Для этого используют специальные приборы, например, можно определить где земля, а где ноль с помощью вольтметра. Для этого сначала нужно измерить напряжение $U$ по очереди между каждым из двух неизвестных проводов и фазовым проводом. Напряжение $U$ на «земле» всегда будет больше, чем на нулевом. Также можно отличить замелю от нуля с помощью омметра — сопротивление на заземлении всегда будет достаточно небольшим и будет в районе 4 Ом.

Замечание 1

Также нулевой провод, фаза и заземление обычно имеют разную расцветку. Для обозначения фазы используют чаще всего чёрную, коричневую или серую обмотку, для земли – жёлтую или зелёную, а для ноля – синюю или белую.

Как найти фазу, землю и ноль в квартирной электропроводке – PROFI.RU — За профи говорят дела

Алексей Помазов
профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет

В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

  • Земля будет жёлтой, зелёной либо жёлто-зелёной.
  • Ноль будет синим или голубым.
  • Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

что это такое, описание и характеристики

Профессиональные электрики хорошо разбираются в понятиях фаза и ноль. Разобраться в терминологии и уметь определять параметры электрических сетей будет полезно простым обывателям и новичкам профессий, так или иначе связанных с электромонтажными работами. Подобные знания позволят безопасно подключить бытовые приборы, оборудование, розетки или осветительную арматуру.

Что такое фаза и ноль

Ток поступает в помещение от генераторов, установленных на подстанциях. Из агрегата выходят три фазы и один ноль. Движение электричества закольцовано. По фазовому проводу ток поступает к потребителям, а выходит обратно с помощью нулевого и возвращается в трансформатор. Если движение остановлено, то электроэнергия отсутствует.

Источник: avatars.mds.
yandex.net

Приборы с помощью розетки включаются в это движение. Возникает вопрос, почему нулевой провод, по которому тоже проходит электричество, не опасен. Все дело в потенциале. Ноль имеет нулевой потенциал. Чтобы разобраться в этом понятии, можно представить два резервуара, один из которых установлен на земле, а второй – зафиксирован на высоте. Если пробить дно второй емкости, то жидкость из нее польется под напором. Потенциал и есть сила течения воды в данном случае. При повреждении дна резервуара, стоящего на земле, жидкость не польется, то есть потенциал будет нулевым. Движение потока из верхней емкости в нижнюю объясняется разницей потенциалов. Применимо к электротехнике, отличие между потенциалами ноля и фазы равно 220 Вольт (для России).

Тело человека обладает нулевым потенциалом. Нулевой провод заземлен, его потенциал сбрасывается в землю. При отсутствии разницы в потенциалах движение электрического тока отсутствует. Таким образом, человек не получает удара. Опоры электропередач и подстанции конструируют таким образом, чтобы потенциал с ноля сбрасывался в землю.

Источник: avatars.mds.yandex.net

Фаза предназначена для движения электрического тока. Когда электроприбор подключается с помощью розетки, цепь замыкается. В случае, когда нулевой провод сбрасывает этот потенциал на ближайшей опоре, а человек касается оголенного ноля этой точки, потенциал будет сбрасываться через проводник по пути наименьшего сопротивления, то есть через тело.

Источник: avatars.mds.yandex.net

По этой причине электрооборудование в обязательном порядке заземляется. В этом случае при повреждении проводки и протекания потенциала через корпус устройства, потенциал будет сбрасываться в землю, и не пройдет через человека при контакте. Фаза всегда обладает потенциалом, а нулевой провод только в том случае, когда есть соединение с фазовым кабелем через нагрузку, то есть подключенный потребитель, и до ближайшего места сброса этого потенциала в землю.

Варианты определения проводников «фаза»/«ноль»

Важно соблюдать технику безопасности для обозначения параметров электропроводки. Для этого необходимо использовать специальные приборы. Предварительно следует остановить движение тока, чтобы цепь не была замкнута нагрузкой. Ремонтируемый участок электропроводки отключается от общей цепи. Существует несколько простых способов отличить фазу и ноль в домашних условиях.

Как правило, провода обладают цветной маркировкой. Корректность выбора цвета определяется качеством работ и опытом специалиста. Поэтому доверять подобной индикации следует не всегда, лучше проверить самостоятельно фазу и ноль, либо поставить задачу опытному электрику.

Проверка с помощью электрической лампы

Способ достаточно прост для применения. Понадобиться стандартный патрон и лампочка. Два провода необходимо соединить со штатными местами подключения патрона. Один из проводников следует соединить с заземлением в розетке, а второй – подключить к любому силовому разъему. Если при подключении к разъему лампочка загорается, то найдена фаза.

Источник: rusenergetics.ru
Индикаторная отвертка

С помощью бытового указателя напряжения можно быстро обнаружить фазный провод  в электросети, напряжение в которой составляет 220-230 Вольт. Индикаторные отвертки представлены в богатом ассортименте и доступны в любом магазине с электротоварами.

Источник: rusenergetics.ru

При работе с любыми электроприборами необходимо соблюдать правила безопасности. Так как инструкция к индикаторной отвертке обычно отсутствует, следует руководствоваться полезными советами специалистов:

  1. Применять индикатор согласно его целевому назначению, то есть для электромонтажных работ.
  2. Перед тем как приступить к изысканиям, следует убедиться в целостности и надежности изоляционного материала, которым оснащены рукоять и жало инструмента.
  3. Убедиться в достоверности результатов измерений можно, если заранее испытать отвертку на электрических установках под напряжением.

Если пользователь сомневается в корректной работе индикаторной отвертки,  не следует доверять показаниям прибора. В этом случае целесообразно использовать профессиональный инструмент.

Мультиметр

Бытовые мультиметры представляют собой простые в эксплуатации приборы. С их помощью можно определить, находится ли сеть под напряжением, и каково его значение. Это наиболее безопасный способ определить фазу и ноль. Щупы инструмента оснащены диэлектрической рукояткой. Принцип работы устройства заключается в подключении одного щупа к земле розетке, а второго – к одному из двух контактов розетки.

Источник: rusenergetics.ru

Фаза в электричестве, определение понятия, характеристика

Понятие фазного провода связано с определением напряжения. Данная величина обозначает, насколько напряжено электрическое поле в рамках данной точки или цепи. По-другому, это потенциал. Под действием такой силы электроны движутся по проводникам. Один из проводов, которые подключаются к потребителям, называется фазой. Именно этот проводник находится под напряжением. Фазу в понимании электротехники можно сравнить с плюсом в автотранспорте, то есть фазный провод представляет собой основное питание для электрической цепи.

Источник: rusenergetics.ru

Что такое ноль в электричестве, определение

Нулевой провод отличается от фазы тем, что не находится под напряжением. Ноль не перегружается, когда происходит отбор мощности, но по проводнику также транспортируется электричество. Направление этого движения будет обратным фазному. Если в сети отсутствует напряжение, то ноль безопасен для человека и не способен поразить его электрическим током.

Зачем нужен ноль в электричестве

Нулевой провод необходим для замыкания электросети. С помощью ноля обеспечивается необходимая мощность для включения электрических приборов. При его отсутствии электричества будет отключено. По своей сути нулевой проводник представляет собой землю.

Основным назначением ноля является обеспечение электроснабжения объектов разного назначения. Нулевой провод замыкает электрическую цепь, таким образом, создается электрический ток, и работают электроприборы. Электричество появляется из-за разности потенциалов, которая возникает между двумя проводами. Ноль характеризуется нулевым потенциалом. Поэтому напряжение в цепи определяется, как 220 – 230 Вольт.

Что представляет собой петля «ноль/земля»

Нулевой провод выходит из трансформатора, который соединяется с помощью нулевой шины с заземлением, выполненным в виде контура. Вначале цепи именно земля представляет собой нулевой потенциал, что служит причиной путаницы при определении земли и ноля. Конструкция воздушной линии электропередачи, выходящей из комплектной трансформаторной подстанции, включает три фазных проводника и один ноль. Нулевой провод  на выходе подсоединяется к нулевому контакту трансформатора. Повторное заземление выполняется на каждой второй опоре, по которым проложена воздушная линия электропередачи. С его помощью производится дополнительное соединение ноля с землей. Такое решение является гарантией полноценной связи цепи «фаза – ноль», что обеспечивает потребителя электричеством с напряжением не менее 220 Вольт.

Источник: rusenergetics.ru

Элементарные знания электротехники необходимы не только для профессиональной деятельности, но и полезны для обывателя. Электричество питает разнообразные потребительские товары. Обеспечить бесперебойное электроснабжение можно, если правильно определять фазу и ноль при подключении инженерных коммуникаций. Подобная информация будет полезна также студентам политехнических вузов.

Если в процессе обучения возникают проблемы, всегда можно обратиться к специалистам сервиса Феникс.Хелп.

Как определить фазу, ноль и землю: правила, способы, советы

Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь – ноль или земля.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

    Неверное положение нуля и фазы евророзетки

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Определение положения фазы по цвету изоляции жил провода

Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые – не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

Штекер 230 вольт Великобритании

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ – промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

Современные отвертки-индикаторы определения фазы, нулевого провода, земли

Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

Отвертка-индикатор

  • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
  • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
  • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

  1. Красный – фаза.
  2. Синий – нулевой провод.
  3. Желтый – земля.

Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

Фаза и ноль в розетке

Чтобы разобраться в том, что такое фаза и ноль в розетке, обычному человеку (не специалисту) нет необходимости углубляться в электротехнические дебри. В качестве примера приведем обычную штепсельную розетку, куда поступает переменный ток.

К розетке идут два электропровода — нулевой и фазный. Ток поступает только по одному из них — фазному (еще его называют рабочей фазой). Второй провод — нулевой (или нулевая фаза).

к содержанию ↑

Ноль и фаза в старых розетках

Чтобы подключить старую розетку, используют два проводника. Одни из них синего цвета (рабочий нулевой проводник). По этому проводу идет ток от источника электричества к бытовому прибору. Если взяться за токоведущий провод, но не дотрагиваться до второго провода, удара током не произойдет.

Второй провод в розетке — фазный. Он бывает самых разных цветов, в том числе синим, зелено-желтым или голубым.

Обратите внимание! Любое напряжение, превышающее 50 вольт, опасно для жизни.

к содержанию ↑

Фаза и ноль в современной розетке

В устройствах современного типа есть три провода. Фаза бывает любого цвета. Помимо фазы и нуля имеется еще один провод (защитный нулевой). Цвет этого проводника — зеленый или желтый.

Через фазу подается напряжение. Ноль используется для защитного зануления. Третий провод нужен как дополнительная защита — для забора лишнего тока во время замыкания. Ток перенаправляется в землю или в обратную сторону — к источнику электричества.

Обратите внимание! Не имеет практического значения, справа или слева расположены фаза и ноль. Однако чаще всего фаза расположена слева, а ноль — справа.

к содержанию ↑

Определение фазы и ноля мультиметром или отверткой

Мультиметр

Прибор представляет собой комбинированное электроизмерительное устройство, способное выполнять несколько функций. Минимальная комплектация включает вольтметр, омметр и амперметр. Отдельные модификации выполнены в виде токоизмерительных клещей. Выпускаются как аналоговые, так и электронные измерители.

Чтобы начать процесс замера, следует переключиться в режим измерения переменного напряжения. Замер осуществляется одним из нескольких методов:

  1. Зажимаем один из имеющихся щупов двумя пальцами. Второй щуп направляем к контакту, который расположен в выключателе или розетке. Если данные на мониторе несущественные (не превышают 10 вольт), речь идет о нуле. Если же прикоснуться к другому контакту, показатель будет выше — это фаза.
  2. Если имеются опасения относительно необходимости притрагиваться к щупу, есть другой путь. Один из стержней направляем в розетку. Вторым стержнем прикасаемся непосредственно к стене рядом с розеткой. Результат будет примерно таким же, как и в случае, описанном выше.
  3. Существует третий способ измерения с помощью мультиметра. Прикасаемся щупом к заземленной поверхности (например, корпусу оборудования). Вторым щупом касаемся измеряемой поверхности. Если провод является фазой, мультитестер обнаружит напряжение в 220 вольт.
к содержанию ↑

Индикаторная отвертка

Индикатор — простой способ определения фазы, доступный даже человеку, впервые занявшемуся этим делом. Контрольная отвертка внешне напоминает стандартную. Отличие состоит в наличии внутреннего устройства у индикаторной отвертки. Рукоять отвертки производится из специального прозрачного пластика. Внутри находится диод. Верхняя часть изготовлена из металла.

Обратите внимание! Нельзя использовать индикаторную отвертку не по назначению. Она не предназначена для отвинчивания и закручивания винтов. Нецелевое использование контрольной отвертки станет причиной выхода ее из строя.

Чтобы найти фазу и ноль при помощи отвертки, нужно выполнить такую последовательность операций:

  1. Концом отвертки касаемся контакта.
  2. Нажимаем пальцем на металлическую кнопку вверху отвертки.
  3. Если светодиод загорелся, речь идет о фазе. Если он не реагирует — это ноль.

Обратите внимание! Индикаторная лампа, рассчитанная на 220–380 вольт, будет светиться при напряжении, превышающем 50 вольт.

При работе с индикаторной отверткой рекомендуется придерживаться следующих мер безопасности:

  1. Не дотрагиваться до нижнего конца отвертки во время проведения замеров.
  2. Держать отвертку в чистоте, иначе велик риск нарушения изоляции.
  3. Если нужно определить отсутствие напряжения, вначале проверить работоспособность прибора, совершенно точно находящегося под напряжением.

Совет! В сети постоянного тока полярность контактов определяется очень простым способом. Для этого достаточно опустить провода в емкость с водой. Возле одного из проводов станут образовываться пузыри — это минус. Второй провод — плюс.

Не следует путать индикаторную отвертку с приспособлением для прозвона. Отвертка для прозвона снабжена батарейками. При работе с таким устройством для определения нуля и фазы не нужно нажимать на кнопку, так как отвертка будет светиться в любой из возможных ситуаций.

Электричество 101: Основы | Промышленное управление

Цель этой Info-Tec — помочь вам понять основы электрических систем. Многие проблемы, возникающие при обслуживании, связаны с электрическими проблемами или проблемами с электричеством.

В настоящее время широко используются два типа электрического тока: переменный ток (AC) и постоянный ток (DC).

Переменный ток вырабатывают все предприятия электроэнергетики. AC очень «гибкий».Его напряжение может быть легко повышено или понижено трансформаторами. Переменный ток можно преобразовать в постоянный для конечного использования с помощью выпрямителей или твердотельных устройств.

Постоянный ток всегда течет в одном направлении. Переменный ток сначала течет в одном направлении, затем меняет направление и течет в противоположном направлении. Ток «чередуется», следовательно, переменный ток. Когда переменный ток меняет направление, он не перескакивает от полного значения в одном направлении к полному значению в другом направлении. Он постепенно нарастает до максимума, постепенно спадает до нуля, затем повторяется в обратном направлении.См. Рисунок 1.

Рисунок 1.

Один из периодов нарастания и возврата к нулю в одном направлении потока — это чередование. Два чередования, одно в одном направлении, а другое в противоположном, — это цикл. Переменный ток в этой стране генерируется с частотой 60 циклов в секунду. Старое оборудование будет идентифицироваться в циклах (CY), а новое оборудование — в герцах (HZ). CY и HZ означают одно и то же. (CY был изменен на HZ в честь немецкого физика Генриха Герца, который разгадал тайну циклов переменного тока.)

Электроэнергия имеет две характеристики:

1. Напряжение . Также называется «потенциальной» или электродвижущей силой (ЭДС). Это «давление» электричества. Электричество не обязательно должно протекать, чтобы иметь напряжение. Если вольтметр подключен к «активной» цепи, он покажет напряжение независимо от того, подключена ли цепь к нагрузке или нет. Это можно сравнить с водой в трубе и манометром. Напряжение — это мера электрического «давления» или потенциала.

2. Ампер. Это «скорость протекания» тока. Это «галлоны в минуту». Если вода течет по трубе, ее потоку оказывается сопротивление. Будет падение давления от одного конца трубы к другому, в зависимости от размера трубы, длины трубы и скорости потока. То же самое и с электричеством. Проволока оказывает сопротивление. Чем меньше размер провода, тем он длиннее, количество проводимого им электричества (AMPS) определяет падение давления, или, с точки зрения электричества, падение напряжения.

Другой немецкий физик, Г.С. Омс, разработал формулу, известную как «Закон Ома». Он обнаружил, что напряжение — это произведение ампер и Ом (мера сопротивления, которую он назвал в честь себя) в резистивной цепи. Для описания этих ценностей были установлены символы. E для напряжения, I для тока и R для сопротивления. Следовательно, напряжение равно амперам, умноженным на ом: E = I x R. Это формула краеугольного камня, на которой строится знание электричества. Все значения в законе Ома могут быть рассчитаны относительно остальных значений.Например, ампер равен напряжению, разделенному на сопротивление, или:

I = E

R

Легкий способ запомнить различные математические формы, в которых выражается закон Ома, показан на рисунке 2. Если какой-либо из трех символов покрыт, два оставленных непокрытых символа имеют правильную форму. Например;

E, если покрыто, равно I x R

I, если покрыто, равно

E

R

R, если покрыто, равно

E

Я

Рисунок 2.

Цепи переменного тока подразделяются на два основных класса: однофазные (SF) и трехфазные (3F). Есть два этапа, но его использование настолько минимально, что мы не будем обсуждать его.

Если в цепи только два провода, она должна быть однофазной (не считая постоянного тока, который мы не рассматриваем в настоящее время). Если в цепи три провода, она может быть трехфазной или однофазной! Легко отличить трехпроводную однофазную от трехпроводной трехфазной. В однофазной сети два — это провода под напряжением, а один — нейтраль.В обычном жилом или легком коммерческом здании с трехпроводным питанием 115/230 вольт два горячих провода входят в служебный шкаф и имеют предохранители, или используют сбрасываемые перегрузки, но нейтраль проходит через шкаф без какого-либо переключателя или предохранителя. Этот тип входа однофазный, хотя и трехжильный. Это действительно двухпроводная однофазная схема на 230 В с нейтралью. От него можно взять две или несколько цепей на 115 вольт и одну или несколько цепей на 230 вольт. Если между горячим проводом и нейтралью поставить вольтметр, он покажет 115 вольт.Между двумя горячими проводами он покажет 230 вольт. См. Рисунок 3.

Рисунок 3.

На Рисунке 3 показано, как будет выглядеть типичный трехпроводной входной выключатель 115/230 В. (Примечание: в некоторых случаях старых систем переключатель может быть трехполюсным и размыкать нейтраль. Это небезопасно и должно быть заменено). Трехпроводные трехфазные системы обычно распространяются только на промышленные и крупные торговые площади. Как видно из названия, трехфазный ток имеет три тока, протекающие по трем проводам.В обычной трехфазной нейтрали нет; все три провода горячие. Между любыми двумя из трех проводов есть однофазный ток, но никогда не 110, 115 или 120 вольт. В общем, напряжение каждой фазы будет 208, 220, 230, 440, 550 или выше.

Трехфазные токи следуют друг за другом с интервалом в треть цикла. См. Рисунок 4.

Рисунок 4.

Если вольтметр используется для проверки трехфазного тока, полное напряжение будет обнаружено между любыми двумя из трех проводов.Напряжение чуть больше половины будет от любого провода к земле.

В Милуоки компания WEPCO использовала только заземленную трехфазную систему на 230 В. Они больше не используют его, но многие из этих систем «заземленной фазы B» были установлены (компания Climatic Control обслуживается трехфазной заземленной системой фазы B), и многие из них все еще существуют. В этой трехфазной системе одна из фаз заземлена (заземляющая ветвь). Эту систему легко ошибочно принять за трехпроводную, 115/230 вольт и однофазную, поскольку на входе будет двухполюсный переключатель с двумя предохранителями, а третья линия будет сплошной.Проверка с помощью вольтметра покажет разницу. Даже при заземленной фазе напряжение между любыми двумя из трех проводов будет составлять 230 вольт (в заземленной фазе B всегда было 230 вольт). Если каждый провод заземлен, на двух ножках будет отображаться полное напряжение, а на одной ножке — 0 вольт. Это наземная нога. Помните, что в однофазной системе на 115/230 вольт будет 115 вольт между нейтралью и горячим проводом и 230 вольт между двумя горячими проводами.

Трехфазные цепи не предназначены для однофазного использования 115 В.Хотя можно получить около 115 вольт от горячей ноги к земле, использование этой схемы запрещено электрическими правилами. Это опасная практика.

В настоящее время используются три основных трехфазных распределительных системы. Небольшие коммерческие здания и некоторые небольшие промышленные предприятия, на которые приходится около 50 процентов электрической нагрузки в виде однофазной сети на 120 вольт, будут иметь трехфазную четырехпроводную систему с напряжением 208/120 вольт. См. Рисунок 5.

Рисунок 5.

Есть три горячие линии (A, B и C), а также нейтраль (N), которая заземлена.Однофазные 120-вольтовые нагрузки питаются от линии к нейтрали (C к N, A к N или B к N), а трехфазные 208 Вольт — по линиям A, B и C.

Рисунок 6.

На рисунке 6 представлена ​​схема трехфазной четырехпроводной системы с напряжением 480/276 В. Эта система обслуживает гостиницы, торговые центры и т. Д. Трансформаторы используются для получения однофазных цепей на 120 вольт.

Рисунок 7.

На Рисунке 7 показана система, используемая на крупных промышленных предприятиях, где большую часть нагрузки составляют двигатели.Это трехфазная система с напряжением 480 В. В этой системе используются трансформаторы для обеспечения требований к напряжению 120/240 вольт.

Термины «заземление» или «заземленный» и «заземление» могут вводить в заблуждение. «Заземление» — это соединение провода, ленты или другого проводника от металлического корпуса вокруг части электрического оборудования к водопроводной трубе, заглубленной пластине, стержню или другому проводящему материалу, контактирующему с землей. Это называется «заземлением» оборудования. Это сделано для безопасности, а также для устранения или уменьшения помех (RFI).

Термин «земля» имеет другое значение. Когда по какой-либо причине ток проходит через изоляцию или вокруг нее к открытым металлическим частям, которые затем становятся горячими или «находящимися под напряжением», это называется «землей». «Заземления» можно избежать за счет хорошей конструкции оборудования и регулярного обслуживания. Основания случаются и могут быть опасными. Оборудование следует защитить путем «заземления».

Низкое напряжение всегда возникает из-за того, что проводка или трансформатор недостаточно большие для подачи такого тока, который требуется нагрузкам или нагрузкам.Когда в проводе течет ток, всегда наблюдается некоторое падение напряжения. Этого может быть недостаточно, чтобы повлиять на работу оборудования, но некоторое падение напряжения существует всегда. Бесполезно проверять падение напряжения в цепи, если не включены все нагрузки в этой цепи. Разделение нагрузок или добавление дополнительных цепей обычно может исправить перегрузку цепей, вызывающую низкое напряжение.

Если на служебном входе присутствует низкое напряжение, это может быть ошибка электроснабжения. Спрос на электрические услуги рос быстрее, чем коммунальные предприятия смогли увеличить свои услуги.Известно, что в некоторых случаях коммунальные предприятия устанавливают ответвления на своих трансформаторах, чтобы подавать более высокое вторичное напряжение для компенсации падений напряжения в периоды высокой нагрузки. В этих зонах при снижении нагрузки напряжение на отдельном служебном входе может значительно превысить норму. Это приводит к проблемам с перенапряжением. Перенапряжение приводит к перегреву двигателей, перегоранию конденсаторов и значительному сокращению срока службы лампочек, нагрузок резистивного типа, а также может нанести ущерб твердотельным устройствам.

В дополнение к обычным цепям на 120 В, цепям электроприборов на 230 В и трехфазным цепям почти во всех зданиях будет использоваться одна или несколько цепей «низкого напряжения». Цепи низкого напряжения — это любые цепи ниже 30 вольт, обычно 24 вольт. Цепи 24 В обычно представляют собой цепи управления. Сила тока в этих системах обычно небольшая, менее 5 ампер.

Поскольку напряжение и сила тока очень низкие, проводка может быть намного меньше и, следовательно, намного дешевле в установке, чем проводка с линейным напряжением.Низкое напряжение также намного безопаснее.

Так же, как напряжение электричества измеряется в вольтах, а скорость протекания тока измеряется в амперах, мощность измеряется в ваттах. Один ватт — это мощность, производимая одним вольт на один ампер. Ватты находятся путем умножения вольт на ампер. При постоянном постоянном токе найти мощность просто. Это вольт умноженное на ампер. Однако при переменном токе напряжение и сила тока меняются в зависимости от цикла. (Помните, сначала это 0, затем до максимума в одном направлении, затем снова до 0 и до максимума в другом направлении.Эффективное напряжение и сила тока будут меньше максимальных. Эффективные значения называются «среднеквадратичное значение» или RMS. Среднеквадратичное значение равно 0,707 максимального значения. Следовательно, в цепи переменного тока на 120 В, 10 А фактические максимальные значения составляют почти 170 В и чуть более 15 А. Это верно только для цепей постоянного тока и чисто резистивных цепей переменного тока, таких как нагреватели.

Пожалуй, выдающееся преимущество переменного тока перед постоянным состоит в том, что переменный ток можно легко повышать или понижать с небольшими потерями с помощью трансформаторов.

Как известно, даром что-то не получить. Выход машины будет в некоторой степени пропорционален входу. Необходимо ввести больше, чем вынуть, так как часть ввода теряется и используется машиной. Эффективность — это выходная энергия, деленная на входящую энергию. Трансформатор — это машина без движущихся частей. Он очень эффективен: от 98 до 99 процентов. 1–2 процента потеряли токи или ватты. Если вторичная обмотка трансформатора составляет 24 В, и это трансформатор «40 ВА», потребляемый ток (в амперах) может быть равен 1.667 ампер до перегрузки.

Трехфазные трансформаторы — это однофазные трансформаторы, соединенные вместе. Один метод соединения трех катушек известен как «дельта», а другой — «звезда» или «Y». Обычно токи, протекающие в каждом из трех проводов трехфазного тока, равны. Падение напряжения в каждой фазе одинаковое, и вольтметр должен показывать одинаковое напряжение на клеммах двигателя для всех трех фаз. См. Рисунок 8.

Рисунок 8.

Если напряжения не равны, некоторые из причин могут быть:

• Однофазная цепь отключена от одной из трех фаз.

• Частичное заземление или короткое замыкание в обмотках двигателя.

• Изъеденные или перегоревшие контакты в контакторе пускателя двигателя.

• Корродированные клеммы.

Ослабленные провода.

• Всегда находите причину и устраняйте трехфазный дисбаланс.

Если перегорает предохранитель, срабатывает прерыватель или отсоединяется провод, то все, что вызывает «размыкание» одной фазы трехфазной цепи, остается только одна фаза, а не две! Это известно как «однофазное».Если это происходит при работающем двигателе, он может продолжать работать при небольшой нагрузке. Если полностью разгрузить, может даже запуститься. В любом случае, если его быстро не отключить, он перегорит. Трехфазные двигатели обычно дороги, и вложение средств в устройство защиты от пониженного и перенапряжения, потери фазы и дисбаланса фаз — дешевая страховка. Предохранители защищают от короткого замыкания и заземления и не предназначены для защиты двигателей от определенных перегрузок двигателя. В большинстве случаев чрезмерное падение напряжения, однофазность, несимметричные фазы, как правило, находятся в помещении пользователя. Бизнес вырос, и вместе с другими устройствами было добавлено гораздо больше или больше двигателей, что увеличило нагрузку на исходную услугу. Перед вызовом утилиты убедитесь, что проблемы с утилитами. Пользователь должен обновить услугу в соответствии с текущими требованиями.

Однофазное электричество — Инженерное мышление

Однофазное электричество. В этом руководстве мы рассмотрим типичный однофазный источник электричества в жилом доме.Мы собираемся рассмотреть распределительные кабели и трансформатор, фазу, нейтраль и землю. главный предохранитель, счетчик электроэнергии, разъединительный выключатель, потребительский блок, а также УЗО и автоматические выключатели.

Прокрутите вниз, чтобы просмотреть учебник YouTube по однофазной электроэнергии.

Однофазный источник питания — это обычная конструкция, используемая в Великобритании, Европе, Индии, Австралии, Новой Зеландии и т. Д., Есть некоторые небольшие различия, и компоненты могут выглядеть немного по-разному в разных странах, но по сути они очень похожи.

Тем не менее, Северная Америка немного отличается, потому что в них используется два напряжения (120/240 В) в доме, поэтому мы рассмотрим это подробно в отдельном руководстве, но вы все равно можете следовать и понимать основы.

Я буду использовать европейские цветовые коды для этого видео, которое может отличаться от вашего местного законодательства. Помните, что электричество опасно и может привести к летальному исходу, вы должны быть квалифицированными и компетентными для выполнения электромонтажные работы.

Электроэнергия вырабатывается далеко на электростанции, она покидает электростанцию, и напряжение повышается в повышающем трансформаторе, где оно затем распределяется по линиям передачи на большие расстояния.Мы генерируем и распределяем переменный ток переменного тока, потому что это более экономично и удобно, чем постоянный ток. Как только он достигнет города, напряжение будет понижено на понижающем трансформаторе подстанции. Если вы хотите узнать, как работают трансформаторы, мы рассмотрели это в этой статье.

От подстанции электричество будет либо распространяется локально через воздушные или подземные кабели.

В зависимости от местной конструкции и используемого напряжения дом может быть подключен напрямую к небольшому трансформатору, расположенному рядом с собственность, или, альтернативно, группа домов будет разделять трансформатор большего размера.

Электроэнергия распределяется по трем фазам, но собственность подключена к одной фазе

Электроэнергия распределяется по трем фазам, но в данном случае мы рассматриваем однофазную установку, что означает, что собственность подключена только к одной из трех фаз и нейтральный.

Как работает трехфазное электричество? Узнать здесь

Каждый дом на улице может быть поочередно подключен к разным фазам, или разные улицы могут быть подключены к разным фазам.Это просто для того, чтобы сбалансировать нагрузку на трансформатор.

Сервисный кабель меньшего размера снимается с распределительного кабеля и накормит собственность. Этот служебный кабель снова будет над головой или под землей в зависимости от местной установки.

Примечание. Связка должна быть написана как оболочка.

Сервисный кабель содержит фазный и нейтральный провода, в большинстве случаев также есть металлическая защитная оболочка вокруг кабеля, особенно если он проложен в земле.

Сервисный кабель входит, фаза и нейтраль проходят через сервисную головку в счетчик, а затем в потребительский блок.

Электроэнергия будет идти с фазы, пройти через главный предохранитель, затем через счетчик и в блок потребителей.

Сервисная головка или вырез удерживает главный предохранитель или сервисный предохранитель. Этот предохранитель обеспечивает защиту собственности и гарантирует, что только определенное количество тока может течь в собственность. Например, в Великобритании типичный предохранитель составляет от 60 до 100 ампер. Электрораспределительная компания также может удалить этот предохранитель, чтобы изолировать собственность, и сделает это, например, для замены счетчика. Обычно этот предохранитель и сервисная головка принадлежат электроэнергетической компании, и владелец собственности не имеет права снимать или заменять их.

Затем фаза и нейтраль входят в счетчик электроэнергии, который определяет количество потребляемой энергии. В более старых объектах этот счетчик может быть механическим, цифровым или даже цифровым интеллектуальным счетчиком. Много вариаций дизайна для них.

После этого фаза и нейтраль покинут счетчик электроэнергии. и войти в блок потребителей или плату предохранителей.Размер различается в зависимости от размер собственности и количество схем.

Внутри потребительского блока у нас сначала есть главный выключатель или главный двухполюсный выключатель. Это контролирует подачу электричества к остальной части потребителя и всех его цепей, питающих собственность. Этот переключатель перекидывается вручную, чтобы отключить питание. Этот переключатель одновременно отключает фазу и нейтраль. Кабели обычно входят в главный выключатель через верхние клеммы. Внизу мы находим нейтральный провод, который подключается к нейтральному блоку.Мы можем обнаружить, что один или несколько фазовых проводов выходят из нижней части главного переключателя для питания УЗО, если УЗО не используются, то шина будет питать автоматические выключатели, и мы рассмотрим это в ближайшее время.

Фаза снова поступает на УЗО или устройство защитного отключения. обычно вход через верх. Этот переключатель УЗО постоянно контролирует электрический ток. Он проверяет, равен ли ток в фазовой линии ток в нейтральной линии, если его нет, то есть электрическая неисправность и устройство быстро и автоматически отключит питание всего, что было раньше. Переключатель.Обычно УЗО разрывает цепь, если измеряет разницу 30 мА, поскольку все, что выше этого значения, опасно для человека. Например, если вы коснетесь живого провода, и электричество пройдет через вас на землю, тогда ток проходит в обход нейтрального провода, поэтому фазный и нейтральный токи не будет равным, и УЗО отключит цепь, чтобы снизить риск поражение электрическим током или смерть.

В настоящее время все чаще используется два или более УЗО в потребительском блоке. В таком случае УЗО будет отключать питание только тех цепей, которые подключены непосредственно после него, поэтому другое УЗО по-прежнему будет получать питание, и только некоторые части собственности потеряют питание.УЗО сработает, если посчитает, что ток небезопасен даже на долю секунды. Для восстановления питания его необходимо сбросить вручную, но сначала необходимо найти и удалить неисправное устройство или приспособление.

Снизу УЗО у нас шина. Это просто некоторые проводящий металл, по которому течет электричество, и соединяется с каждым из автоматические выключатели, которые просто упрощают установку, чем использование большого количества кабелей.

Автоматический выключатель или автоматический выключатель управляет отдельными меньшие схемы.Например, при подключении к одному УЗО, возможно, у нас будет один MCB для освещение нижнего этажа, другое освещение верхнего этажа и одно освещение кухни розетки. На другом УЗО может быть один для освещения лестничного колодца, один для освещения наверху и один для розеток внизу. Эти переключатели будут быстро и автоматически отключаться, чтобы отключить питание, но должны быть сбросить вручную для восстановления питания.

MCB защищает цепи двумя способами: от перегрузки и короткого замыкания. MCB рассчитан на обработку определенного количества тока, проходящего через него, например 32 А для штепсельных розеток.Если это значение будет превышено в этой цепи, например, из-за постепенного подключения слишком большого количества устройств, MCB отключится и отключит питание для защиты.

Другая защита, которую он предлагает, — это защита от короткого замыкания. В случае короткого замыкания, например, если ток касается нейтрали, тогда цепь будет обойдена, и будет большое и мгновенное увеличение текущий. Это создаст магнитное поле внутри MCB, которое сократит сила защитить себя.

Фаза выходит через верхнюю часть MCB и течет через цепь например через некоторые лампы. Затем он возвращается через нейтральный кабель и в нейтральный блок. Все схемы делают это с фазой выходя из автоматического выключателя и двигаясь вокруг собственности и нейтральные линии возвращаются и встречаются в нейтральном блоке.

Затем нейтральный блок подключается к УЗО, которое проверяет, равен ли протекающий ток току, протекающему обратно.

Затем нейтраль протекает от УЗО к главной нейтрали. блок и оттуда обратно к главному выключателю, который подключен к счетчик электроэнергии и начальник службы.

через GIPHY

Таким образом, электроэнергия может течь от главной распределительной фазовой линии вверх через служебную головку и главный предохранитель. Затем он проходит через счетчик электроэнергии и попадает в главный выключатель потребительского блока.

От главного выключателя течет через УЗО по шине бар и в

MCB. Затем он течет вверх по разделенным цепям MCB. В затем электричество может вернуться через нейтральные провода к нейтральным блокам, а затем протекает через УЗО в главный блок, обратно в главный выключатель, затем счетчик электроэнергии, затем через служебную головку и предохранитель и обратно в нейтральная линия главных распределительных кабелей.

Вы могли заметить, что есть и другие кабели с зеленые и желтые полосы. Они называются заземляющими кабелями.

Этот кабель заземления обычно проходит вместе с фазой и нейтральные провода в светильники, такие как выключатели и розетки. Немного приборы также будут использовать заземляющий провод для дополнительной защиты, как правило, если В устройстве используется металлический корпус. Провода заземления будут подключаться от этих приспособлений к нейтральный блок внутри потребительского блока.

Все заземляющие кабели для каждой цепи затем подключаются к блок заземления в агрегате.

Затем к этому заземлению подключится другой кабель заземления. блока потребителя к главному зажиму защитного заземления, который обычно находится рядом со счетчиком электроэнергии.

Другие заземляющие провода будут подключаться от этого основного заземления. терминал над металлическими трубами, такими как водопровод и газ.

Таким образом, если человек коснется провода под напряжением и металлической трубы в собственности, электричество будет проходить через заземляющий провод и должно быть обнаруживается УЗО, которое отключит питание.

Есть несколько способов подключения основной клеммы защитного заземления. подключен к земле.

Первый вариант, как показано здесь, с основным заземлением. клемма, подключенная к нейтральному проводу служебного кабеля в пределах руководитель службы. Это означает, что замыкание фазы на землю теперь эффективно вместо этого замыкание фазы на нейтраль.

Другой вариант — использовать металлическую защитную связку вокруг служебный кабель в качестве заземляющего провода, поэтому основная клемма заземления подключен к металлической связке, и это переносит фазу на землю обратно к трансформатор.


Другой вариант заключается в том, что поставщик электроэнергии не предоставляет заземляющий провод. а вместо этого главный зажим заземления соединен со стержнем электрода, который устанавливается в землю и обеспечивает прямой грунтовый путь.


Меры предосторожности при работе с электричеством и основное оборудование

С электричеством, от которого питаются машины, инструменты и другие экспериментальные приборы, следует обращаться осторожно и внимательно. Контакт с телом с высоким напряжением и током может вызвать мышечные спазмы, ожоги, остановку сердца и даже смерть.Даже небольшой ток, пропущенный через тело, может вызвать поражение электрическим током. 10 миллиампер могут вызвать сокращение мышц, потерю мышечного контроля и неспособность расслабиться. 10 микроампер через сердце могут вызвать фибрилляцию желудочков. В лабораторных экспериментах обычно используется оборудование, соответствующее международным стандартам безопасности. Маркировка UL Underwriters Laboratory, например, удостоверяет, что оборудование соответствует этим стандартам, что предотвращает определенные виды опасного воздействия. Однако электрические входы и выходы или индивидуальное оборудование по-прежнему представляют опасность.В этом видео будут представлены меры предосторожности при электробезопасности и знакомство с обычным электрическим оборудованием, используемым во многих типах лабораторных экспериментов.

При использовании электрического оборудования надевайте длинные брюки, закрытую обувь и соответствующие средства индивидуальной защиты. Избегайте свободной одежды и удалите все болтающиеся или металлические аксессуары, которые могут случайно контактировать с электричеством. В Соединенных Штатах однофазное питание переменного тока от настенной розетки составляет 120 вольт. Розетки для трехфазного переменного тока могут обеспечивать до 480 вольт и более 10 ампер.Так что с источниками питания нужно обращаться с уважением. Чистая лабораторная среда важна для снижения опасностей. Избегайте ослабленных или изношенных проводов, кабелей и соединений. Знайте, как отключить все оборудование, источники питания и автоматические выключатели. Убедитесь, что хотя бы два человека работают над экспериментом, имеющим доступную мощность постоянного тока более 50 вольт. Соблюдайте те же меры предосторожности при питании от однофазной или трехфазной сети переменного тока. Предположим, что любой оголенный металл находится под напряжением, если это не подтверждено. Перед изменением настройки выключите или отключите источники питания, используемые в эксперименте. Правильное заземление оборудования гарантирует, что корпус находится под потенциалом земли, что предотвращает поражение электрическим током. Всегда подключайте оборудование к розеткам переменного тока с помощью предназначенного для этого кабеля питания. Более горячее оборудование, чем ожидалось, является одновременно опасностью и признаком проблемы, которую необходимо устранить. Наконец, выключите все оборудование после завершения эксперимента и выключите неиспользуемое оборудование, прежде чем покинуть лабораторию. Теперь, когда представлены основные меры предосторожности, в лаборатории будет продемонстрирована работа некоторого общего электрического оборудования.

Функциональный генератор вырабатывает сигналы для другого оборудования, нуждающегося в возбуждении или напряжении возбуждения. Наиболее распространенными периодическими выходами являются синусоидальные, треугольные, пилообразные и прямоугольные волны, которые можно регулировать по амплитуде, частоте и смещению постоянного тока. Выход функционального генератора подключается к цепи или оборудованию с помощью кабелей. Обычно на одном конце используется разъем BNC, а на другом — зажимы типа «крокодил» для легкого подключения к цепи. Источник питания постоянного тока обеспечивает напряжение или ток для работы другого электрического оборудования.Регулируемый выход типичного низковольтного лабораторного источника питания находится в диапазоне от 0 до 36 вольт. Большинство источников питания постоянного тока с одним выходом имеют три контакта: плюс, минус и заземление. Клемма «плюс» подключается к входу с более высоким напряжением нижестоящего оборудования. Минусовая клемма подключается к входу более низкого напряжения. Выход — это напряжение или ток между плюсовой и минусовой клеммами, которые электрически изолированы от земли. Клемма заземления — это фиксированная опорная точка заземления, равная нулю вольт.Другие распространенные источники питания включают однофазное питание переменного тока от стандартной настенной розетки или трехфазное питание переменного тока. Однофазное питание имеет одну горячую линию и одну нейтральную линию для передачи тока и выдает 120 вольт. Трехфазное питание обеспечивает более высокие напряжения по трем горячим линиям, при этом переменное напряжение на каждой линии одинаково по частоте и величине и сдвинуто по фазе на 120 градусов друг от друга. В результате можно подавать 208, 230 и 480 вольт с соответственно большей мощностью. Работа с трехфазным питанием требует специальной подготовки и соблюдения мер безопасности.Затем используется регулируемый автотрансформатор, также известный как Variac, для повышения или понижения напряжения переменного тока. Это полезно в приложениях, требующих нестандартных напряжений или где напряжение должно изменяться. Ручка изменяет выходное напряжение от нуля до 100% от его максимального значения. Обратите внимание, что Variac не обеспечивает гальванической развязки, поэтому не прикасайтесь к выходу при любых настройках. Осциллограф отображает напряжения изменяющихся во времени сигналов и используется для изучения поведения цепей. Осциллографы могут иметь несколько каналов, каждый из которых отображает одну форму сигнала.В этом приборе используются два основных типа пробников: обычный заземленный пробник и дифференциальный пробник. Здесь к первому каналу подключается обычный заземленный зонд. Заземленный зонд обычно рассчитан на несколько сотен вольт и измеряет напряжение между наконечником зонда и его заземляющим проводом. Провод заземления подключен к заземлению на шасси осциллографа. Важно подключать заземляющий провод только к той точке в цепи, которая также заземлена. Прикосновение заземляющего провода к любой другой точке вызовет короткое замыкание на землю.Теперь подключите первый канал осциллографа к выходу функционального генератора, затем включите его. Отрегулируйте шкалу времени осциллографа с помощью ручки «секунды на деление» и настройте шкалу напряжения с помощью ручки «вольт на деление». Уровень запуска — это напряжение, которое пересекает сигнал, чтобы вызвать синхронизацию осциллографа. Правильный запуск сводит к минимуму шум на дисплее. Отрегулируйте ручку триггера, чтобы установить уровень триггера вручную, или нажмите кнопку set level на 50%, чтобы установить его автоматически.Наконец, мультиметр — это универсальный портативный или настольный прибор для измерения напряжения, тока, сопротивления и других электрических величин. Для измерения напряжения вставьте красный щуп в контакт, обозначенный V Ohms, а черный щуп в контакт, обозначенный COM для общего. Включите источник питания постоянного тока и установите его на выходное напряжение 20 В. Измерьте расстояние на двух выходных клеммах, прикоснувшись красным щупом к плюсовой клемме, а черным щупом — к минусовой клемме. Мультиметр показывает 20 вольт.

Многие эксперименты требуют измерения электрических величин, и для получения этих данных используются базовые инструменты. Исследование полярных диэлектрических жидких мостиков требует наличия электрического поля высокой интенсивности между двумя стаканами с жидкостью. Стаканы сначала соприкасаются, а затем медленно раздвигаются, образуя мостик. В этом случае высоковольтный источник питания постоянного тока генерирует 1500 вольт, что требует особой осторожности при обращении с ним. Чтобы разработать способы управления миграцией нервных стволовых клеток для терапевтического лечения, исследователи изучали их движение под действием электрического поля.В экспериментальной камере использовался источник постоянного тока для создания необходимого управляемого электрического поля. Амперметр измерял ток, а мультиметр измерял напряжение в испытательной камере, которое использовалось для расчета напряженности электрического поля.

Вы только что посмотрели введение JoVE в области электробезопасности и основного электронного оборудования. Теперь вы должны понимать, как безопасно работать с электричеством и как использовать базовое электрическое испытательное оборудование. Спасибо за просмотр!

RP Photonics Encyclopedia — Смещение огибающей несущей, частота генерального директора, CEP, абсолютная фаза

[1] M. Иванов и др. , “Пути управления поляризуемостью атомов в сильном поле”, Phys. Rev. Lett. 74 (15), 2933 (1995), DOI: 10.1103 / PhysRevLett.74.2933
[2] L. Xu et al. , «Способ фазового управления ультракороткими световыми импульсами», Опт. Lett. 21 (24), 2008 (1996), DOI: 10.1364 / OL.21.002008
[3] A. de Bohan et al. , “Фазозависимое излучение гармоник ультракороткими лазерными импульсами”, Phys. Rev. Lett.81 (9), 1837 (1998), DOI: 10.1103 / PhysRevLett.81.1837
[4] H.R. Telle et al. , «Управление фазой сдвига несущей и огибающей: новая концепция для абсолютного измерения оптической частоты и генерации ультракоротких импульсов», Прил. Phys. B 69, 327 (1999), DOI: 10.1007 / s003400050813
[5] T. Brabec и F. Krausz, «Интенсивные лазерные поля с несколькими периодами: границы нелинейной оптики», Rev. Mod. Phys. 72 (2), 545 (2000), DOI: 10. 1103 / RevModPhys.72,545
[6] A. Baltuška et al. , “Управление фазой несущей и огибающей ультракоротких световых импульсов с помощью параметрических оптических усилителей”, Phys. Rev. Lett. 88 (13), 133901 (2002), DOI: 10.1103 / PhysRevLett.88.133901
[7] F. W. Helbing et al. , «Фазовая синхронизация смещения несущей и огибающей с аттосекундным временным джиттером», IEEE J. Quantum Electron. 9 (4), 1030 (2003), DOI: 10.1109 / JSTQE.2003.819104
[8] C.Vozzi et al. , “Импульсы высокой энергии с малым числом оптических циклов на длине волны 1,5 мкм с пассивной фазовой стабилизацией несущей и огибающей”, Опт. Express 14 (21), 10109 (2006), DOI: 10.1364 / OE.14.010109
[9] C. Grebing et al. , «Сравнение характеристик топологий интерферометров для определения фазы несущей и огибающей», Прил. Phys. B 95 (1), 81 (2009), DOI: 10.1007 / s00340-009-3428-9
[10] E. Moon et al. , «Достижения в области стабилизации фазы несущей и огибающей в усилителях чирпированных импульсов на основе решеток», Laser & Photon.Ред. 4 (1), 160 (2010), DOI: 10.1002 / lpor.200810060
[11] V. Tsatourian et al. , «Саморегулирующийся интерферометр с общим трактом для стабилизации частоты отстройки несущей и огибающей с повышенной помехоустойчивостью», Опт. Lett. 35 (8), 1209 (2010), DOI: 10.1364 / OL.35.001209
[12] З. Чанг и П. Коркум, «Аттосекундные источники фотонов: первое десятилетие и далее», J. Opt. Soc. Am. В 27 (11), В9 (2010), DOI: 10.1364 / JOSAB.27.0000B9
[13] A. M. Sayler et al. , «Точное измерение фазы несущей и огибающей ультракоротких лазерных импульсов в режиме реального времени за каждый цикл», Опт. Lett. 36 (1), 1 (2011), doi: 10.1364 / OL.36.000001
[14] К. Окамура и Т. Кобаяси, «Видимый импульс с фазовой стабилизацией несущей и огибающей с суб-3- длительность импульса фс ”, Опт. Lett. 36 (2), 226 (2011), DOI: 10.1364 / OL.36.000226
[15] B.Borchers et al. , «Стабилизация фазы несущей и огибающей с суб-10 в качестве остаточного джиттера синхронизации», Опт. Lett. 36 (21), 4146 (2011), DOI: 10.1364 / OL.36.004146
[16] G. Gademann et al. , “Стабилизация фазы несущей – огибающей усилителя чирпированных импульсов тераваттного уровня для генерации интенсивных изолированных аттосекундных импульсов”, Опт. Express 19 (25), 24922 (2011), DOI: 10.1364 / OE.19.024922
[17] A. Klenner et al., “Фазовая стабилизация частоты смещения несущей и огибающей лазерного тонкого диска с синхронизацией мод SESAM”, Опт. Express 21 (21), 24770 (2013), DOI: 10.1364 / OE.21.024770
[18] M. Hoffmann et al. , «Стабилизация генерального директора фемтосекундного лазера с использованием SESAM в качестве быстрого оптико-оптического модулятора», Опт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *