Как устроены флуоресцентные лампы. Почему они экономичны. Для чего используются в быту и на производстве. Какие преимущества и недостатки имеют по сравнению с другими источниками света.
Что такое флуоресцентные лампы и как они устроены
Флуоресцентные лампы, также известные как люминесцентные, представляют собой газоразрядные источники света низкого давления. Их основные компоненты:
- Стеклянная трубка, заполненная инертным газом (обычно аргоном) и парами ртути
- Электроды на концах трубки
- Люминофорное покрытие на внутренней поверхности трубки
- Пускорегулирующая аппаратура (ПРА) для запуска и стабилизации разряда
Как работают флуоресцентные лампы? При подаче напряжения между электродами возникает электрический разряд в парах ртути. Это вызывает ультрафиолетовое излучение, которое преобразуется люминофором в видимый свет.
Принцип действия флуоресцентных ламп
Рассмотрим подробнее, как происходит преобразование электрической энергии в световую в флуоресцентной лампе:
- При подаче напряжения между электродами начинается их нагрев и эмиссия электронов
- Образуется электрический разряд в смеси инертного газа и паров ртути
- Ионизированные атомы ртути испускают ультрафиолетовое излучение
- УФ-излучение поглощается люминофором и преобразуется в видимый свет
- Цвет и спектр излучения зависят от состава люминофора
Почему флуоресцентные лампы экономичны? Большая часть потребляемой энергии преобразуется в полезное видимое излучение, а не в тепло, как у ламп накаливания.
Виды и конструкции флуоресцентных ламп
Существует несколько основных типов флуоресцентных ламп:
- Линейные трубчатые (наиболее распространены)
- U-образные
- Кольцевые
- Компактные (энергосберегающие)
Чем отличаются разные конструкции флуоресцентных ламп? Линейные лампы имеют простую цилиндрическую форму и широко применяются в офисах. Компактные лампы со встроенным ПРА могут использоваться вместо обычных ламп накаливания в бытовых светильниках.
Преимущества флуоресцентных ламп
Почему флуоресцентные лампы популярны? Они обладают рядом важных достоинств:
- Высокая светоотдача (до 80-100 лм/Вт)
- Длительный срок службы (до 20000 часов)
- Низкое энергопотребление
- Небольшой нагрев при работе
- Возможность получения различных оттенков белого света
За счет чего достигается экономичность флуоресцентных ламп? Большая часть потребляемой энергии преобразуется в полезное видимое излучение, а не в тепло, как у ламп накаливания.
Недостатки флуоресцентных ламп
Однако флуоресцентные лампы не лишены недостатков:
- Наличие ртути (экологическая опасность)
- Необходимость специальной утилизации
- Пульсации светового потока
- Чувствительность к температуре окружающей среды
- Сложность регулировки яркости
Как влияет наличие ртути на безопасность? При нарушении целостности лампы возможно выделение паров ртути, что требует соблюдения мер предосторожности при эксплуатации и утилизации.
Области применения флуоресцентных ламп
Где используются флуоресцентные лампы? Основные сферы применения:
- Офисное освещение
- Освещение торговых площадей
- Промышленное освещение
- Уличное освещение
- Бытовое освещение (компактные лампы)
- Подсветка рекламных конструкций
Почему флуоресцентные лампы популярны для офисного освещения? Они обеспечивают равномерный рассеянный свет, комфортный для работы, и позволяют экономить электроэнергию.
Сравнение с другими источниками света
Как флуоресцентные лампы соотносятся с другими типами ламп?
Параметр | Флуоресцентные | Накаливания | Светодиодные |
---|---|---|---|
Светоотдача | 80-100 лм/Вт | 10-15 лм/Вт | 100-150 лм/Вт |
Срок службы | 10000-20000 ч | 1000 ч | 30000-50000 ч |
Экологичность | Содержат ртуть | Безопасны | Безопасны |
Почему светодиодные лампы вытесняют флуоресцентные? Они более экологичны, долговечны и энергоэффективны, хотя и дороже на начальном этапе.
Перспективы развития флуоресцентных ламп
Какое будущее у флуоресцентных ламп? Основные тенденции развития:
- Снижение содержания ртути
- Повышение световой отдачи
- Улучшение цветопередачи
- Разработка безртутных люминесцентных ламп
- Совершенствование электронных ПРА
Смогут ли флуоресцентные лампы конкурировать со светодиодными в будущем? Вероятно, их применение будет сокращаться, но они еще долго будут использоваться в определенных нишах из-за низкой стоимости.
Флуоресцентные лампы(люминесцентные). Виды и устройство.Работа
В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.
Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.
Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.
Типы флуоресцентных ламп и их устройство
У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.
Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:
- Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
- Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
- Лампы специального назначения.
Также флуоресцентные лампы делятся по другим признакам:
- Мощность энергии потребления.
- Световой поток.
- Цветовая температура.
- Индекс цветопередачи.
- Длина лампы.
- Размер цоколя.
- Вид подключения.
- Размещение пускателя. Размещается в корпусе лампы или в светильнике.
Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение. Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.
Принцип действияПри включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.
Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.
Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.
Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.
Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.
Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.
Особенности и преимущества флуоресцентных лампУльтрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.
Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.
При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.
Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.
Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.
ДостоинстваФлуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампами накаливания.
- Повышенная эффективность. Световая отдача выше в 10 раз, чем у ламп накаливания, КПД 25% по сравнению с лампами накаливания – 7%.
- Большой срок работы – до 20000 часов.
- Требуется подключение балласта для нормальной работы лампы.
- Устойчивая работа лампы зависит от температуры воздуха.
Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное. Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света. Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.
Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.
Как изготавливают флуоресцентные лампыЭта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.
Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.
Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.
Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.
Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.
Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.
Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.
Каждый образец лампы ставят на испытательное колесо для проверки качества.
После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.
Похожие темы:
Флуоресцентные лампы — лампы чёрного света
Автор Фома Бахтин На чтение 2 мин. Просмотров 2.8k. Опубликовано Обновлено
Общая информационная статья описывающая устройство и свойства флуоресцентных ламп
Другое название флуоресцентных ламп – лампы чёрного света. Способность создавать различные зрительные эффекты, благодаря длинноволновому видимому излучению позволяет с большим успехом использовать их, чаще всего, для реализации декоративного освещения, воплощения различных дизайнерских решений. Светильники с этими трубчатыми лампами, чаще всего можно увидеть в супермаркетах, аэропортах, различных развлекательных центрах, заведениях. Кроме того, они могут использоваться и в театрах – для освещения сцен.
Устройство и работа флуоресцентных ламп. Стеклянная трубка этих газоразрядных ламп низкого давления заполнена парами ртути с небольшой примесью аргона. На обоих концах трубки находятся металлические электроды, имеющие специальную оболочку, легко отдающую электроны при пропускании электрического тока.
Некоторые флуоресцентные светильники при включении некоторое время мигают. Это происходит из-за того, что парам ртути требуется некоторое время для того, чтобы зарядиться, или, что, то же самое – ионизироваться. Ионизация достигается созданием на электродах напряжения, в четыре раза превышающее рабочее, с помощью пускорегулирующей аппаратуры – ПРА (дроссель+стартер).
При этом происходит массовый выброс электронов, которые заряжают ртуть. Как только пары ртути в трубке становятся полностью ионизированными, стартер автоматически выключается, и лампа начинает работать в обычном режиме. Иногда стартер должен сработать два или три раза, чтобы зарядить ртуть, хотя аргон, который в небольшом количестве присутствует в трубке, ускоряет процесс.
Когда пары ртути ионизированы, электроны начинают сталкиваться с ионизированными атомами ртути. В результате этих столкновений происходит излучение ультрафиолетового света. Если бы светильники изготовлялись из обычного стекла, то мы вообще не могли бы пользоваться ими, поскольку ультрафиолет не воспринимается человеческим глазом. Именно для преобразования света в видимый, внутреннюю поверхность светильника покрывают либо силикатом цинка, либо вольфраматом магния. Эти вещества ведут себя необыкновенно, когда на них попадает ультрафиолетовый свет. Они начинают флуоресцировать, т. е. светиться видимым светом, поскольку преобразуют ультрафиолет в белый свет. Именно внутреннее покрытие трубки придает ровный оттенок излучаемому свету.
Особенности флуоресцентных ламп. Помимо особенного света излучения, нельзя не упомянуть и другие особенности флуоресцентных ламп: довольно, большой рабочий ресурс – более 20000 часов; экономичность энергопотребления; практически, не нагреваются в работе.
Самодельная лампа Чёрного света (лампа Вуда)
Запуск старых ламп дневного света с потерянной эмиссией, Fluorescent Lamp
Люминесцентные лампы
Применение трубчатых люминесцентных ламп позволяет изменить визуальную геометрию и дизайн освещаемых помещений.
Люминесцентные лампы являются вторым по распространенности источником света, а в некоторых странах (например, в Японии) они лидируют, оставив позади лампы накаливания. Каждый год в мире выпускается больше миллиарда этих ламп.
Первые люминесцентные лампы в том виде, в котором они дошли до наших дней, были созданы американской компанией General Electric в 1938 году. За прошедшие годы люминесцентные лампы проникли во многие сферы деятельности людей и сейчас используются практически в каждом магазине или офисе.
Принцип образования электромагнитного излучения в люминесцентных лампах
Люминесцентный источник — это газоразрядная лампа низкого давления, в которой электрический разряд образуется в смеси ртутных паров и инертного газа (обычно аргона). Колба лампы всегда выполняется в виде стеклянного цилиндра 12, 16, 26 или 38 миллиметров в диаметре. Цилиндр может выполняться изогнутым в форме окружности, буквы U или другой сложной фигуры. По обеим сторонам цилиндра к нему герметично припаяны ножки из стекла, с внутренней стороны которых расположены электроды.
По своей конструкции электроды напоминают биспиральное тело ламп накаливания и тоже изготавливаются в виде вольфрамовой нити. В некоторых лампах электроды выполнены в форме триспирали, в которых из биспирали образована новая спираль. С внешней стороны электроды припаяны к цоколю. В прямых и U-образных люминесцентных лампах применяется две разновидности цоколей — G5 и G13 (цифры обозначают расстояние между ножками в миллиметрах).
Подобно лампам накаливания, воздух из колб люминесцентных ламп полностью откачивается штенгелем, впаянным в ножку. После откачивания воздуха в колбу нагнетается инертный газ и вводится небольшая капля ртути (около 30 мг) или сплав ртути с другими металлами (висмут, индий и т.д.). На устанавливаемые в лампах электроды наносится слой из смеси оксидов стронция, кальция, бария, тория для повышения их активности.
Если на лампу подано напряжение, превышающее напряжение зажигания, то между электродами происходит разряд, ток которого должен ограничиваться дополнительными внешними компонентами. Колба лампы заполнена инертным газом, но в ней постоянно находятся ртутные пары, объем которых зависит от температуры самого холодного участка колбы. Частицы ртути ионизируются при разряде быстрее частиц инертного газа, поэтому свечение лампы и проходящий через нее ток определяются именно ртутью.
Меры, обеспечивающие увеличение доли видимого излучения
В ртутных лампах низкого давления доля излучения составляет не более двух процентов от мощности самого разряда, а светоотдача разряда — лишь 5–7 лм/Вт. Однако больше половины мощности разряда преобразуется в ультрафиолет с волнами длиной 254 и 185 нм. Из курса физики известно, что при сокращении длины волны излучения увеличивается энергия этого излучения. С помощью люминофоров можно преобразовать одно излучение в другое, причем в соответствии с законом сохранения энергии преобразованное излучение будет менее энергичным, чем первоначальное. Этим путем ультрафиолет можно преобразовать в видимое излучения, применяя люминофоры, а обратное преобразование невозможно.
Изнутри цилиндрическая колба покрыта слоем специального вещества – люминофора, который преобразует ультрафиолетовые лучи ртутных паров в видимый свет. Чаще всего в люминесцентных лампах в качестве люминофора применяется галофосфат кальция с добавлением марганца и сурьмы. При попадании на такой люминофор ультрафиолетовых лучей он начинает светиться сплошным белым светом различных тонов. Излучение люминофора имеет сплошной спектр с двумя максимумами — 480 и 580 нм. Первый максимум зависит от доли сурьмы в люминофоре, а второй — марганца. Изменение содержания этих веществ позволяет получать белый свет различных тональностей цвета — от теплых оттенков до оттенков дневного света.
Корректировка цветопередачи
В 70-е годы прошлого века начался выпуск ламп с тремя люминофорами, обладающими максимумами спектра излучения в синей, зеленой и красной областях (450, 540 и 610 нм, соответственно). Эти люминофоры изначально создавались для кинескопов цветных телевизоров, и с их помощью формировалась качественная передача цветов. Совместное применение трех люминофоров дало возможность и в лампах добиться улучшения цветопередачи и светоотдачи по сравнению с применением одного люминофора. Однако такие люминофоры имеют довольно высокую стоимость по сравнению с традиционными, что обусловлено применением в них редких химических элементов — европия, тербия и церия. Поэтому до сих пор чаще всего в люминесцентных лампах используются традиционные люминофоры на основе галофосфата кальция.
В люминесцентных лампах электроды являются как источниками, так и приемниками электронов и ионов, которые обеспечивают протекание электрического тока через разрядный промежуток. Для попадания электронов в разрядный промежуток они должны нагреваться до 1100–1200 градусов. При таких высоких температурах вольфрам излучает слабое свечение вишневого оттенка, а его испарение очень незначительно. Для повышения числа электронов электроды покрываются слоем активирующего состава, имеющим значительно меньшую термостойкость, чем вольфрам, и в процессе работы слой распыляется и оседает на внутренних стенках колбы. Главным образом именно этот процесс распыления активирующего слоя определяет продолжительность службы ламп.
Потребность в разноразмерных колбах
Для повышения эффективности разряда, то есть для максимального излучения ртутного ультрафиолета, нужно поддерживать необходимую температуру самой колбы, для чего в каждом конкретном случае подбирается диаметр колбы. Все лампы имеют приблизительно равную плотность тока, исчисляющуюся отношением величины тока к площади сечения колбы, поэтому лампы разной мощности в одинаковых колбах обычно работают при одинаковых номинальных токах. Снижение напряжения на лампе пропорционально ее длине, а так как мощность является произведением величины тока на напряжение, то при равном диаметре колб мощность ламп пропорциональна их длине. У ламп мощностью 36–40 Вт длина колбы равна 1210 мм, а у ламп мощностью 18–20 Вт — 604 мм.
Укорачивание ламп и последующее достижение необходимых мощностей за счет повышения разрядного тока не оправдывает себя, так как при этом повышается температура колбы, что ведет к повышению давления ртутных паров и снижению светоотдачи ламп. Производители ламп уменьшают их общую длину с помощью изменения формы ламп, изготавливая U-образные или кольцевые лампы. Уже в 50-е годы ХХ века в СССР изготавливались U-образные лампы мощностью 30 Вт с диаметром колбы 26 мм и мощностью 8 Вт с диаметром колбы 14 мм.
Полностью устранить проблему снижения размеров ламп получилось лишь в 80-е годы с началом применения люминофоров, которые допускают использование высоких электрических нагрузок. Колбы люминесцентных ламп стали изготавливать из трубок с диаметром 12 мм и изгибать их, уменьшая этим общую длину ламп. Началось производство компактных люминесцентных ламп, по конструкции и принципу работы не отличающихся от линейных ламп.
Люминесцентные лампы прочно вошли в нашу жизнь как один из экономичных источников света. Благодаря не ослабевающему вниманию к ним со стороны изобретателей, они продолжают быть интересны и производителям светотехнической продукции.
Почему дешевые люминесцентные лампы плохо подходят для фотосъемки (+ немного теории о спектре): dmitry_novak — LiveJournal
Газоразрядные трубки (люминесцентные лампы) используются повсеместно. Раньше мы только работали и учились при таком свете, а сегодня государство позиционирует энергосберегающие лампы как стандарт и для домашнего освещения.
Это прискорбно, потому что многие такие лампы не только пульсируют с частотой полупериода переменного тока (в силу малой инерционности свечения), но и обладают прерывистым спектром, что в совокупности утомляет зрение и не обеспечивает корректной цветопередачи.
Сегодня многие фирмы предлагают фотографам комплекты для предметной съемки на основе энергосберегающих ламп. И можно со 100%-й уверенностью сказать, что используемые там лампы не являются полноспектральными высококачественными источниками света с колориметрической точки зрения.
Почему это важно и зачем вообще я завел речь о спектре?
Многие считают, что если свет источника визуально белый, а серая карта после тыканья пипеткой становится нейтрально серой, то мы имеем точную цветопередачу. Но это заблуждение.
Давайте оттолкнемся от нашего главного, эталонного светила.
В природе существует лишь один естественный источник света, достаточно яркий и неизменный во времени в рамках существования человека как вида, чтобы можно было считать его эталонным — это Солнце.
Вот спектр солнечного света (здесь и далее спектры схематичны):
Смесь раскаленных элементов и ионизированных газов, из которых состоит Солнце и его корона, своим свечением заполняет видимый спектр и даже выходит за его пределы в ультрафиолетовом участке.
С точки зрения колориметрии и цветовосприятия это означает, что предметы любых цветов, лежащих в пределах этого спектра, и освещенные солнечным светом, будут восприниматься как одинаково интенсивные (естественно, в отрыве от особенностей психологии восприятия цвета, которая изначально наделяет одни цвета более темным «характером», а другие — более светлым). Теоретически это обеспечивает спектральную линейность в системе «Солнце — предмет – глаз (камера)».
Это во многом объясняет то, что большинство фотокамер обеспечивает наилучшую цветопередачу при солнечном освещении (и не забываем, что на матрице еще байеровская мозаика фильтров со своими кривыми характеристиками).
Близка к солнечному свету фотовспышка. В их колбах обычно используется газ ксенон, имеющий вот такой спектр:
Спектр линейчатый, но линии достаточно часты и равномерны, чтобы считать его условно непрерывным. Избыток холодной синей части спектра частично отсекается специальным покрытием желтоватого цвета, нанесенным на колбу вспышки. Кстати сказать, качество вспышки можно легко определить именно по качеству этого покрытия и по точности цветовой температуры.
В результате получается почти непрерывный спектр, очень близкий к солнечному. Поэтому вспышку можно также приближенно считать колориметрически корректным источником света.
Лампы накаливания считаются практически стопроцентными по показателю CRI (Color Rendition Index). Вот спектр лампы накаливания:
Он также непрерывен, но в нем преобладает желто-красное излучение и не хватает синего. Цветовая адаптация зрительного аппарата человека позволяет это частично компенсировать, хотя цвета от фиолетовых до зеленых будут восприниматься темнее и теплее, чем они есть в действительности. В фотографии низкая цветовая температура легко компенсируется при обработке пропорциональным сдвигом всех цветов в холодную часть спектра.
Можно использовать и конверсионные светофильтры. Важно, что при этом все равно диапазон воспроизводимых цветов остается непрерывным, как и при солнечном освещении.
Итак, мы рассмотрели три источника, каждый из которых дает условно непрерывный спектр и потому сохраняет отношения, пропорции цветов в целом(хотя они все вместе могут сдвигаться в теплую или холодную сторону). Для таких источников света цветовая температура полностью или почти полностью характеризует оттенок и то, какое влияние они будут оказывать на цветопередачу при просмотре или при фотосъемке.
Соответственно, такой спектральный сдвиг легко компенсируется настройкой баланса белого (а именно — цветовой температуры). Разумеется, это может сделать более заметными фотонные шумы, но данный вопрос лежит уже в совершенно иной области, и сегодня мы об этом не будем говорить.
А теперь давайте посмотрим, к какому свету нас хотят приучить экологи и государство (а также изготовители дешевых наборов постоянного света для фото и видео).
Итак, барабанна дробь! Дешевая энергосберегающая люминесцентная лампа:
Странная картина, не правда ли?
Излучаемый свет кажется белым, потому что действительно при сложении цветных полос в спектре получится белый. Но представьте себе, что мы освещаем таким светом фотографируемую сцену — получится, что многие цвета в ней вообще не будут освещены, банально «выпадут». Между прочим, именно этим обусловлено то, что под люминесцентными лампами так заметны дефекты кожи на портретах — просто как бы теряются промежуточные участки градиентов, яркие линии спектра «высвечивают» узкие области оттенков, а провалы затемняют такие же узкие области.
Возьмем энергосберегайку подороже:
В целом ситуация лучше, но все равно спектр имеет почти глухие провалы, где цвет будет искажен, а переходы потеряют пластичность.
Причем эти провалы невозможно исправить настройкой баланса белого, здесь даже профилирование толком не поможет.
Понятно, что для качественной съемки такие источники света использовать нельзя. И что-то мне подсказывает, что и для глаз они как минимум некомфортны.
Впрочем, есть очень качественные и очень дорогие люминесцентные лампы, которые имеют ровный спектр и высокий показатель CRI и используются например как эталонное освещение в полиграфии. Качественные лампы ставят и в качестве подсветки в дорогих мониторах. Но это скорее исключение, чем правило.
Еще одним серьезным недостатком люминесцентных ламп является то, что они имеют низкую инерционность свечения и при этом питаются переменным током, а значит в большей или меньшей степени «моргают» с частотой полупериода осветительной сети. Во-первых, это вредно для глаз. Во-вторых, это создает два неприятных эффекта. Первый из них — строб при видеосъемке, когда частота развертки матрицы приближается к частоте сети, и на изображении появляются бегущие полосы или мерцание. Второе явление — это «прыгающий» баланс белого между соседними кадрами, обусловленный тем, что выдержка может быть короче, чем период пульсации и захватывать момент угасания свечения, при котором цветовая температура сильно отличается от исходной.
Недавно в широкой продаже появился и еще один очень перспективный вариант — светодиодные лампы:
Спектр у них почти сплошной, хотя есть небольшой провал, но в целом вполне адекватно.
Многое зависит от производителя, но в целом этот вид источников света представляется очень перспективным, особенно учитывая малую потребляемую мощность и, как следствие, возможность экономичного питания от батарей на выезде.
Серьезным преимуществом светодиодных ламп является то, что, в отличие от люминесцентных, они работают от постоянного тока в силу своего принципа действия и потому не пульсируют полупериодом переменного тока, а значит свет их постоянен и подходит для видеосъемки без эффекта строба, а также нет проблемы с различным балансом белого от кадра к кадру, как у люминесцентных ламп.
UPD: Настоятельно рекомендуется прочитаться и вот этот аддендум, где я разъясняю некоторые возникшие вопросы.
<br><br>
Люминесцентные лампы
Линейные люминесцентные лампы — экономичные и доступные источники света.
Люминесцентные лампы многие считают такой же классикой освещения, как и лампы накаливания. С этим тяжело спорить, учитывая, что первая люминесцентная лампа была выпущена аж в 1938 году, а в СССР такие лампы были разработаны в 1951 году. А первая газоразрядная лампа — предок современных люминесцентных ламп — была изобретена в 1956 году.
По сравнению с лампами накаливания линейные люминесцентные лампы дневного света являются более экономичными (примерно в 5 раз) и имеют больший срок службы (в 5-10 раз).
Немного истории Изобретателем люминесцентной лампы (лампы дневного света) считается Эдмунд Гермер. Он и его команда в 1926 году получили бело-цветной свет от газоразрядной лампы, колба которой внутри была покрыта флуоресцентным порошком. Позже корпорация General Electric купила патент у Гермера и в 1938 году довела лампы дневного света до широкого коммерческого использования. Свет первых ламп напоминал естественный уличный свет в пасмурный день (примерно 6400К): считается, что именно тогда и появилось название «лампа дневного света». В Советском Союзе массовое производство люминесцентных ламп началось только в 1948 году, за что в 1951 году разработчики первой советской лампы дневного света стали лауреатами Сталинской премии второй степени. Советский ГОСТ 6825-64 определял только три типоразмера линейных люминесцентных ламп мощностью 20, 40 и 80 ватт (длиной 600, 1200 и 1500 мм соответственно). Колба имела большой диаметр 38 мм для более легкого зажигания при низких температурах. |
Люминесцентные линейные лампы дневного света выпускаются многих видов: разной мощности, длины, с разными диаметрами колб, разными цоколями и разным светом в зависимости от назначения лампы. Более того, этот ассортимент будет еще больше, если учесть, что энергосберегающие лампы также представляют собой лампы дневного света со встроенными пусковыми устройствами.
Сегодня наиболее распространенными трубками линейных ламп дневного света являются Т8 (Ø 26 мм), Т5 (Ø 16 мм) и Т4 (Ø 12,5 мм). Лампы с трубкой Т8 имеют цоколь G13 (13 мм между штырьками), а Т4 и Т5 имеют цоколь G5 (5 мм между штырьками). Лампы дневного света Т8 в настоящее время выпускаются мощностью от 10 до 70 Вт, лампы Т5 — от 6 до 28 Вт, а лампы Т4 — от 6 до 24 Вт. Естественно, что мощность ламп напрямую влияет и на размеры (длину) люминесцентных ламп: соотношения размеров и мощностей стандартизировано. То есть лампа мощностью 18 Вт с трубкой T8 и цоколем G13 любого производителя имеет длину 590 мм.
Выпускаются люминесцентные лампы с разными цветовыми температурами для разных целей, но наиболее распространены лампы цветности 4000К и 6500К. Подробнее о цветовых температурах и сферах их применения можно посмотреть в нашей статье Энергосберегающие лампы: слухи и мифы (слух №6).
Также люминесцентные лампы по индексу цветопередачи (обозначается Ra или CRI — colour rendering index), то есть возможности точно отображать цвета по сравнению с естественным светом. Так лампы со 100% цветопередачей (Ra=1) отображают все цвета также как и при солнечном дневном свете. Но наиболее распространенными (в силу достаточности и большей доступности) являются лампы с индексом цветопередачи 70 — 89%.
Ниже мы приводим описание и технические характеристики самых часто используемых ламп, как в промышленном и муниципальном (где они наиболее распространены), так и жилом секторе. Приведенные ниже значения светового потока и срока службы являются примерными и могут отличаться в зависимости от производителя.
Стандартные линейные люминесцентные лампы с трубкой Т8 и цоколем G13 | |
Самый распространенный тип линейных люминесцентных ламп. Именно такие лампы мощностью 18 Вт («короткую») или 36 Вт («длинную») вспоминают в первую очередь, когда слышат словосочетание «люминесцентная лампа». И хотя ассортимент таких ламп состоит из моделей мощностью от 10 до 70 Вт, чаще всего используются именно лампы мощностью 18 и 36 Вт, которые взаимозаменяемы с советскими люминесцентными лампами ЛБ/ЛД-20 и ЛБ/ЛД-40 соответственно. Линейные люминесцентные лампы с трубкой Т8 и цоколем G13 используются в основном в промышленности (склады и производственные цеха), а также в офисах и муниципальных государственных учреждениях (администрации, школы, детские сады). Средняя продолжительность работы составляет 10000 часов. Диаметр трубки Т8 составляет 26 мм. Работают, как с электромагнитными дросселями (ЭмПРА) в связке со стартерами, так и с электронными балластами (ЭПРА). |
мощность | световой поток | цветовая температура | Ra (CRI) | длина с цоколем без штырьков | |
Osram L 18W/640 Philips TL-D 18W/33-640 (ЛБ-20) | 18 Вт | 1200 лм | 4000 К (холодный белый) | 60-69% | 590 мм |
Osram L 18W/765 Philips TL-D 18W/54-765 (ЛД-20) | 18 Вт | 1050 лм | 6500 К (холодный дневной) | 70-79% | 590 мм |
Osram L 36W/640 Philips TL-D 36W/33-640 (ЛБ-40) | 36 Вт | 2850 лм | 4000 К (холодный белый) | 60-69% | 1200 мм |
Osram L 36W/765 Philips TL-D 36W/54-765 (ЛД-40) | 36 Вт | 2850 лм | 6500 К (холодный дневной) | 70-79% | 1200 мм |
Osram L 15W/640 | 15 Вт | 850 лм | 4000 К (холодный белый) | 60-69% | 438 мм |
Osram L 15W/765 | 15 Вт | 740 лм | 6500 К (холодный дневной) | 70-79% | 438 мм |
Osram L 30W/640 | 30 Вт | 2100 лм | 4000 К (холодный белый) | 60-69% | 895 мм |
Osram L 30W/765 | 30 Вт | 1900 лм | 6500 К (холодный дневной) | 70-79% | 895 мм |
Osram L 58W/640 | 58 Вт | 4600 лм | 4000 К (холодный белый) | 60-69% | 1500 мм |
Osram L 58W/765 (вместо ЛД-80) | 58 Вт | 4000 лм | 6500 К (холодный дневной) | 70-79% | 1500 мм |
Osram L 70W/640 | 70 Вт | 5250 лм | 4000 К (холодный белый) | 60-69% | 1764 мм |
Стандартные линейные люминесцентные лампы с трубкой Т5 и цоколем G5 | |
Люминесцентные лампы T5 (в отличие от Т8) наиболее распространены именно в жилом секторе. Они более узкие, и поэтому светильники с ними лучше подходят для подсветки ниш или кухонных столов под шкафами. Ассортимент люминесцентных линейных ламп с трубкой Т5 состоит из моделей мощностью от 6 до 28 Вт (замена ламп накаливания от 30 до 140 Вт). В основном выпускаются лампы цветностью 4200К и 6400К. Лампы Т5 имеют цоколь G5 (5 мм между штырьками). Средняя продолжительность работы составляет 6000 — 10000 часов (в зависимости от производителя и модели). Диаметр трубки Т5 составляет 16 мм. Используются с электронными балластами (ЭПРА). |
мощность | световой поток | цветовая температура | длина трубки без цоколя | общая длина со штырьками | |
Uniel EFL-T5-06/4200/G5 | 6 Вт | 380 лм | 4000 К (холодный белый) | 211 мм | 225 мм |
Uniel EFL-T5-06/6400/G5 | 6 Вт | 350 лм | 6400 К (дневной) | 211 мм | 225 мм |
Uniel EFL-T5-08/4200/G5 | 8 Вт | 600 лм | 4000 К (холодный белый) | 288 мм | 302 мм |
Uniel EFL-T5-08/6400/G5 | 8 Вт | 580 лм | 6400 К (дневной) | 288 мм | 302 мм |
Uniel EFL-T5-13/4200/G5 | 13 Вт | 960 лм | 4000 К (холодный белый) | 516 мм | 530 мм |
Uniel EFL-T5-13/6400/G5 | 13 Вт | 940 лм | 6400 К (дневной) | 516 мм | 530 мм |
Uniel EFL-T5-21/4200/G5 | 21 Вт | 1850 лм | 4000 К (холодный белый) | 849 мм | 864 мм |
Uniel EFL-T5-21/6400/G5 | 21 Вт | 1660 лм | 6400 К (дневной) | 849 мм | 864 мм |
Uniel EFL-T5-28/4200/G5 | 28 Вт | 2470 лм | 4000 К (холодный белый) | 1149 мм | 1161 мм |
Uniel EFL-T5-28/6400/G5 | 28 Вт | 2350 лм | 6400 К (дневной) | 1149 мм | 1161 мм |
Стандартные линейные люминесцентные лампы с трубкой Т4 и цоколем G5 | |
Светильники для люминесцентных линейных ламп с трубкой Т4 получили меньшее распространение, чем светильники для ламп Т5. В основном такие люминесцентные лампы используются для местной подсветки — идеальный мебельный светильник! Выпускаются линейные люминесцентные лампы с трубкой Т4 мощностью от 6 до 24 Вт (замена ламп накаливания от 30 до 120 Вт), с цветовой температурой света 4200К и 6400К. Средняя продолжительность работы составляет 6000 — 8000 часов (в зависимости от мощности и производителя). Диаметр трубки составляет 12 мм. Работают с электронными балластами (ЭПРА). |
мощность | световой поток | цветовая температура | длина трубки без цоколя | общая длина со штырьками | |
Uniel EFL-T4-06/4200/G5 | 6 Вт | 380 лм | 4000 К (холодный белый) | 206 мм | 220 мм |
Uniel EFL-T4-06/6400/G5 | 6 Вт | 350 лм | 6400 К (холодный дневной) | 206 мм | 220 мм |
Uniel EFL-T4-08/4200/G5 | 8 Вт | 600 лм | 4000 К (холодный белый) | 326 мм | 340 мм |
Uniel EFL-T4-08/6400/G5 | 8 Вт | 580 лм | 6500 К (холодный дневной) | 326 мм | 340 мм |
Uniel EFL-T4-12/4200/G5 | 12 Вт | 940 лм | 4000 К (холодный белый) | 354 мм | 368 мм |
Uniel EFL-T4-12/6400/G5 | 12 Вт | 920 лм | 6500 К (холодный дневной) | 354 мм | 368 мм |
Uniel EFL-T4-16/4200/G5 | 16 Вт | 1210 лм | 4000 К (холодный белый) | 454 мм | 467 мм |
Uniel EFL-T4-16/6400/G5 | 16 Вт | 1195 лм | 6500 К (холодный дневной) | 454 мм | 467 мм |
Uniel EFL-T4-20/4200/G5 | 20 Вт | 1700 лм | 4000 К (холодный белый) | 553 мм | 567 мм |
Uniel EFL-T4-20/6400/G5 | 20 Вт | 1680 лм | 6500 К (холодный дневной) | 553 мм | 567 мм |
Uniel EFL-T4-24/4200/G5 | 24 Вт | 2020 лм | 4000 К (холодный белый) | 641 мм | 655 мм |
Uniel EFL-T4-24/6400/G5 | 24 Вт | 2010 лм | 6500 К (холодный дневной) | 641 мм | 655 мм |
Специальные люминесцентные лампы для растений и аквариумов Osram Fluora, Camelion Bio | |
Главной отличительной особенностью ламп для растений и аквариумов является акцент в красной и синей областях спектра. Применение Osram Fluora значительно улучшает протекание фотобиологических процессов в растениях: они при таком свете лучше растут и меньше болеют в условиях недостатка солнечного и тем более отсутствия дневного света! Также компания Osram Fluora рекомендует использовать специальные лампы для растений и аквариумов в общественных зданиях, где мало естественного дневного света: в офисах, торговых центрах, магазинах и ресторанах. Специальные линейные люминесцентные лампы Osram Fluora для аквариумов и растений выпускаются с трубкой Т8 (Ø 26 мм), цоколем G13 и мощностью от 15 до 58 Вт. |
мощность | световой поток | длина с цоколем без штырьков | |
Osram Fluora L 18W/77 | 18 Вт | 550 лм | 590 мм |
Osram Fluora L 36W/77 | 36 Вт | 1400 лм | 1200 мм |
Osram Fluora L 15W/77 | 15 Вт | 400 лм | 438 мм |
Osram Fluora L 30W/77 | 30 Вт | 1000 лм | 895 мм |
Osram Fluora L 58W/77 | 58 Вт | 2250 лм | 1500 мм |
Специальные люминесцентные лампы для освещения продуктов питания Osram Natura | |
Специальный люминофор ламп Osram Natura придает пищевым продуктам натуральный вид свежих и аппетитных продуктов! Рекомендуется использовать лампы в продуктовых магазинах, супермаркетах и рынках. Особенно актуален правильный свет для мясных магазинов и хлебобулочных отделов. Лампы Osram Natura благодаря специально подобранному световому спектру (цветность 76) придадут мясным, колбасным, булочным изделиям, овощам и фруктам более привлекательный и аппетитный вид. Замену таких ламп рекомендуется проводить каждые 10000 часов. Диаметр трубки Т8 составляет 26 мм, цоколь G13. |
мощность | световой поток | Ra (CRI) | длина с цоколем без штырьков | |
Osram Natura L 18W/76 | 18 Вт | 750 лм | 70-79% | 590 мм |
Osram Natura L 36W/76 | 36 Вт | 1800 лм | 70-79% | 1200 мм |
Osram Natura L 15W/76 | 15 Вт | 500 лм | 70-79% | 438 мм |
Osram Natura L 30W/76 | 30 Вт | 1300 лм | 70-79% | 895 мм |
Osram Natura L 58W/76 | 58 Вт | 2850 лм | 70-79% | 1500 мм |
Люминесцентные лампы: плюсы и минусы
14:33 12 марта 2018 г.
Главным условием восприятия является освещённость. Естественное освещение, которое природного происхождения наиболее оптимально для глаз. Но оно не безгранично и «работает с интервалами». Световой день сменяется ночью.
В эти периоды нашим спасением является искусственное освещение. Оно сегодня представлено широким спектром. Лампы накаливания, светодиоды, галогенные, люминесцентные и энергосберегающие аналоги, которые есть здесь – всё это наиболее используемые сегодня излучатели света.
Наверное, малознакомыми по названию вариантами из этого перечня выступают люминесцентные лампы. Хотя, все мы ими просто окружены, а сфера их применения просто безгранична. В народе их чаще называют дневными лампами, поскольку излучаемый ими свет очень приближен к естественному дневному освещению. За это качество они нашли массовое применение в промышленности, общественности, коммерции и жилье. Только ли благотворно влияющим на зрение светом они зарекомендовали себя? Наверное, нет. Практика их использования выявила ещё ряд достоинств, о которых ниже.
Плюсы применения люминесцентных ламп.
- Большая световая отдача. Если сравнивать их с лампами накаливания, то при той же мощности, люминесцентные аналоги отдают в 1,5–2 раза больше света.
- Излучаемое ими освещение близко к естественному. При таком свете нет нагрузки на зрение, глаза не устают. Выпускаемые производителями два вида ламп различной цветности, позволяют осуществлять оптимальный подбор по воздействию на глаза. В продаже они подразделены на тёплые и холодные оттенки излучаемого света.
- Не чувствительны к броскам тока. Отсюда и больший, чем у ламп накаливания срок службы. Средняя продолжительность работы – 8000 часов.
- Среди ламп освещения – люминесцентный вариант считается недорогим. Цена на лампу дневного света чуть выше цены лампы накаливания, а превосходство по работе отличается значительно. Средний срок работы обыкновенной лампы накаливания – 1000 часов. Как видим у люминесцентных ламп очевидное превосходство при такой же низкой стоимости.
- Отсутствие ослепляющего эффекта. На источник лиминесцентного освещения можно спокойно взглянуть. Их свечение мягкое, не давящее на глаза.
- Низкая температура колбы. В работе люминесцентное освещение тёплое. Температура поверхности около 50 градусов. Такая температура не способна воспламенить какую-либо поверхность, а следовательно, данный тип ламп можно считать пожаробезопасным. Сюда же можно добавить то, что при их замене обжечься просто невозможно.
Казалось бы люминесцентные лампы – идеальный вариант. И дёшевы, и долго служат. Однако – нет. Кажущаяся идиллия нарушается недостатками. Они присутствуют и о них ниже.
Минусы применения люминесцентных ламп.
- Сложное схематическое включение. Чтобы зажечь лампу будут нужны, как минимум – дроссель и стартер. Это затратно и хлопотно. Подключением двух концов тут не обойдёшься. В этом плане, упоминаемая в статье лампа накаливания, явно выигрывает.
- Снижение световой мощности. Данный эффект наблюдается к окончанию срока службы.
- Потери в потребляемой энергии. Она расходуется не только на зажигание и работу газов, содержащихся в колбе, но и на пусковые элементы. К потребляемой мощности прибавляется ещё процентов 30 от этого значения. Существенно? В плане экономии, видимо да.
- Нуждаются в обязательной утилизации. Они содержат ртуть и просто разбить, выкинуть их будет не благоразумно и опасно, как для собственного здоровья, так и для окружающей среды.
- Отмечается шумность в работе. Щелчки при зажигании, гул похожий на фон переменного тока. Такой эффект может сильно досаждать. Связано это с работой пусковых элементов. Гул от дросселя, щелчки от стартера.
- При сильном морозе или понижении напряжения лампа частенько отказывается работать. Инертный газ в колбе, при таких условиях не может зажечься.
Итак, перед нами прямо равенство какое-то. Количество плюсов и минусов одинаково. Отсюда и возникающие разногласия по практике их использования.
Однако всё та же практика показывает, что в большинстве случаев данный тип ламп просто незаменим. В 21 веке их не сменили ни светодиоды, ни энергосберегающие. А значит – люминесцентным лампам в нашем настоящем – однозначное да.
Утилизация люминесцентных ламп
Люминесцентные лампы на сегодняшний день являются одними из самых популярных среди потребителей. Изначально их основной сферой применения являлись крупные объекты (торговые центры, предприятия, офисы и т.п.). Но по мере того, как выводились из использования лампы накаливания, расширялась область применения люминесцентных ламп. Таким образом, данные источники света стали популярны в быту.
Распространение в бытовом применении объясняется тем, что светодиодные аналоги отличаются гораздо большей ценой по сравнению с компактными люминесцентными лампами (КЛЛ). Кроме того, КЛЛ от надежных производителей имеют долгий срок службы и весьма быстро окупаются.
Люминесцентные лампы обладают большим количеством положительных характеристик. Но существует один важный отрицательный момент – наличие в составе паров ртути, которые имеют первый класс опасности для здоровья и жизни людей. Именно поэтому, используя КЛЛ в освещении, необходимо быть осторожными и внимательными, а также правильно осуществлять утилизацию вышедших из строя ламп.
Первое и самое важное правило утилизации – ни в коем случае нельзя выбрасывать лампы данного типа в мусор привычным всем образом. Такая оплошность чревата экологически опасным загрязнением окружающей среды, ведь в одной КЛЛ может содержатся от 1 до 70 мг ртути, в энергосберегающей лампе бытового применения – 3-5 мг.
В случае, если колба лампы разобьется, в пространство выделятся ртутные пары, которые вызывают тяжелое отравление у человека. Более того, ртуть характеризуется таким свойством, как способность накапливаться в организме, если контакт с веществом неоднократный. Пагубное действие такой особенности заключается в поражении нервной системы, а также внутренних органов.
Именно по вышеуказанным причинам люминесцентные лампы нельзя выбрасывать, как любой другой обычный мусор.
С 18 сентября 2010 года на территории Российской Федерации в силу вступило постановление правительства РФ №681 «Об утверждении правил обращения с отходами производства и потребления в части осветительных устройств, электрических ламп, ненадлежащие сбор, накопление, использование, обезвреживание, транспортирование и размещение которых может повлечь причинение вреда жизни, здоровью граждан, вреда животным, растениям и окружающей среде».
В данном документе говорится о том, что специализированные организации должны обеспечивать сбор вышедших из строя люминесцентных ламп. Осуществление сбора должно происходить по инициативе органов местного самоуправления, о чем необходимо уведомить заранее как частные лица, так и организации.
Юридические лица должны осуществлять накопление ламп в специальной таре, которая не предназначена для утилизации иных отходов. Транспортировка люминесцентных ламп должна происходить в герметично закрытой таре на транспорте, специально предназначенном для данной цели. В местах сбора и транспортировки в обязательном порядке должны быть специальные газосигнализаторы, предназначение которых заключается в распознавании паров ртути в воздухе, и средства защиты органов дыхания человека.
В данном постановлении также обозначены меры, которые должен предпринять потребитель в чрезвычайной ситуации (например, при нарушении целостности колбы люминесцентной лампы). В таком случае необходимо покинуть помещение, где разбилась лампа, вызвать специальную организацию, которая осуществит ряд мероприятий по обеззараживанию помещения.
Существует демеркуризационный комплект – это специальный набор средств, который должен быть предусмотрен каждым юридическим лицом. В данный комплект входят необходимые препараты и материалы, при помощи которых возможно самостоятельно устранить локальные ртутные загрязнения.
Важно отметить, что в каждом регионе нашей страны существуют фирмы по оказанию такой услуги, как утилизация вышедших из строя люминесцентных ламп. Информация о них расположена на сайте Greenpeace.
Данное постановление действует более 7 лет, но до сих пор в некоторых городах утилизация люминесцентных ламп не организована надлежащим образом. В таких населенных пунктах люди обращаются в РЭУ и ДЕЗ («Ремонтно-эксплуатационное управление» и «Дирекция единичного заказчика»), где в обязательном порядке должна быть специальная тара для люминесцентных ламп. Также специалисты данных организаций должны предоставить информацию о том, что необходимо делать с вышедшими из строя люминесцентными лампами.
Люминесцентные лампы, безусловно, имеют ряд положительных характеристик, но приобретая и используя данные источники света, всегда помните о том, что их эксплуатация опасна. Будьте бдительны и осторожны, следуйте всем правилам использования КЛЛ, совершайте их правильную утилизацию во избежание чрезвычайных ситуаций.
Используйте лучше светодиодные лампы! Это безопасно и эффективно.
Недостатки люминесцентного освещения — энергоэффективное освещение
Люминесцентные лампы — это особый тип газовых светильников, которые излучают свет в результате химической реакции, в которой газы и пары ртути взаимодействуют с образованием ультрафиолетового света внутри стеклянной трубки. Ультрафиолетовый свет освещает люминофорное покрытие на внутренней стороне стеклянной трубки, которое излучает белый «флуоресцентный» свет. Флуоресцентные лампы имеют множество преимуществ перед старыми осветительными приборами, такими как лампы накаливания.Они намного эффективнее, поэтому потребляют меньше энергии. Они также имеют более длительный срок службы — примерно в 13 раз дольше, — поэтому их не нужно менять так часто.
Благодаря широкой доступности люминесцентных ламп, их можно найти практически везде — в школах, больницах, продуктовых магазинах, офисных зданиях, торговых центрах и наших домах. Хотя в ближайшем будущем технология светодиодов (светоизлучающих диодов) должна заменить люминесцентные лампы в качестве «короля выбора зеленого освещения», многие руководители предприятий продолжают использовать люминесцентные лампы в своих зданиях.На данный момент люминесцентные осветительные приборы могут быть дешевле, чем их более эффективные светодиодные аналоги, но у люминесцентного освещения есть недостатки, которые необходимо учитывать.
Компактные люминесцентные лампы (КЛЛ) и люминесцентные лампы
Основное различие между ними — размер и применение. Большинство компактных люминесцентных ламп (КЛЛ) имеют особую форму, которая позволяет их вставлять в стандартные бытовые розетки. Еще одно отличие состоит в том, что для линейных люминесцентных ламп требуется независимый балласт, отдельный от лампы, тогда как в большинстве компактных люминесцентных ламп балласт встроен в цоколь.
И линейные, и компактные люминесцентные лампы излучают искусственный свет по той же технологии. В компактных люминесцентных лампах по-прежнему используются лампы, но, как следует из названия, они намного меньше, чем их аналоги с линейными лампами. Лампы CLF были разработаны для замены стандартных применений ламп накаливания и представляют собой просто усовершенствования линейной люминесцентной технологии за счет увеличения срока службы и более эффективного освещения.
Использование флуоресцентного освещения
Раньше люминесцентным лампам требовался период «прогрева», чтобы испарить их внутренние газы в плазму.С тех пор было разработано несколько технологий почти мгновенного запуска, включая «быстрый запуск», «мгновенный запуск» и «быстрый запуск».
Поскольку люминесцентные лампы нагреваются, для их работы требуется большее напряжение. Требуемое напряжение регулируется балластом — магнитным устройством, регулирующим напряжение, ток и т. Д., — который необходим для зажигания люминесцентной лампы. По мере того, как люминесцентный свет стареет и со временем становится все менее и менее эффективным, ему требуется все больше и больше напряжения для получения того же количества света, пока напряжение в конечном итоге не превысит возможности балласта и свет не выйдет из строя.
Недостатки люминесцентного освещения
Флуоресцентное освещение существует уже более 100 лет и остается недорогим вариантом для модернизации старых осветительных приборов. Флуоресцентные лампы обычно являются высокоэффективным способом освещения большой площади, они более эффективны и служат дольше, чем лампы накаливания; однако показано, что использование исключительно флуоресцентного освещения оказывает негативное влияние на эргономику и здоровье.
1. Люминесцентные лампы содержат токсичные материалы.
Ртуть и фосфор внутри люминесцентных ламп опасны . Если люминесцентная лампа разбита, небольшое количество токсичной ртути может выделяться в виде газа, загрязняя окружающую среду. Остальное содержится в люминофоре на самом стекле, который часто считается более опасным, чем пролитая ртуть.
При чистке разрыва люминесцентной лампы EPA рекомендует проветривать место разрыва и использовать влажные бумажные полотенца для сбора битого стекла и других мелких частиц.Утилизированное стекло и использованные полотенца следует поместить в герметичный пластиковый пакет. Избегайте использования пылесосов, так как они могут привести к попаданию частиц в воздух.
2. Частое переключение приводит к преждевременному отказу.
Люминесцентные лампы значительно стареют, если они установлены в месте, где они часто включаются и выключаются. В экстремальных условиях срок службы люминесцентной лампы может быть намного короче, чем у дешевой лампы накаливания. Как бы то ни было, срок службы люминесцентной лампы можно продлить, если оставить ее постоянно включенной в течение длительного времени.
Если вы используете флуоресцентные лампы в сочетании с элементами управления освещением, такими как датчики движения, которые часто срабатывают и по истечении времени ожидания, следует учитывать аспект ранней частоты отказов.
3. Свет от люминесцентных ламп является всенаправленным.
Свет, исходящий от люминесцентных ламп, является всенаправленным. Когда люминесцентная лампа горит, она рассеивает свет во всех направлениях или на 360 градусов вокруг лампы. Это крайне неэффективно, потому что используется только около 60-70% света, излучаемого лампой, а остальная часть тратится впустую.Определенные области, как правило, становятся чрезмерно освещенными из-за растраченного света, особенно в офисных зданиях, и могут потребоваться дополнительные аксессуары в самом осветительном приборе, чтобы правильно направить выход лампы.
4. Люминесцентные лампы излучают ультрафиолетовый свет.
В исследовании 1993 года исследователи обнаружили, что воздействие ультрафиолета при сидении под флуоресцентными лампами в течение восьми часов эквивалентно одной минуте пребывания на солнце. Проблемы со здоровьем, связанные с светочувствительностью, могут усугубляться искусственным освещением у чувствительных людей.Исследователи предположили, что УФ-излучение, излучаемое этим типом освещения, привело к увеличению числа заболеваний глаз, в первую очередь катаракты. Другие медицинские работники предположили, что повреждение сетчатки, миопия или астигматизм также могут быть объяснены побочными эффектами флуоресцентного света.
Ультрафиолетовый свет также может повлиять на ценные произведения искусства, такие как акварель и текстиль. Произведения искусства должны быть защищены дополнительными стеклянными или прозрачными акриловыми листами, помещенными между источником света и картиной.
5. Старые флуоресцентные лампы терпят непродолжительный период прогрева.
Обычно приходится ждать 10–30 секунд, чтобы старые флуоресцентные лампы достигли полной яркости. Многие новые модели теперь используют «быстрый» запуск или аналогичные технологии, подобные упомянутым выше.
6. Балласт или гудение.
Магнитные балласты необходимы для работы люминесцентных ламп. Электромагнитные балласты с незначительным дефектом могут издавать слышимый гудящий или жужжащий шум. Однако шум можно устранить, используя лампы с высокочастотными электронными балластами.
7. Воздействие на окружающую среду и стоимость переработки.
Как упоминалось ранее, утилизация люминофора и, что более важно, токсичной ртути в люминесцентных лампах является экологической проблемой. Постановления, введенные правительством, требуют специальной утилизации люминесцентных ламп отдельно от обычных и бытовых отходов.
В большинстве случаев экономия энергии перевешивает затраты на переработку, но переработка остается дополнительными расходами для обеспечения правильной утилизации ламп.В некоторых случаях, если утилизация ламп обходится слишком дорого, людям больше не рекомендуется утилизировать их.
8. Чувствительность люминесцентного света
В течение последних нескольких десятилетий исследование за исследованием показывали случайную связь между воздействием флуоресцентного света и различными негативными эффектами. Все эти проблемы связаны с качеством излучаемого света и основным состоянием людей. Из более чем 35 миллионов человек, страдающих мигренью, большинство из них, вероятно, перенесут общую светочувствительность.Девять из каждых десяти аутичных людей имеют чувствительность к окружающей среде, которая, как сообщается, часто ухудшается при флуоресцентном освещении. Доказано, что при некоторых типах эпилепсии искусственное освещение вызывает приступы.
Подобно другим симптомам светобоязни (или светочувствительности), флуоресцентное освещение может вызывать головные боли / приступы мигрени, напряжение глаз и воспаление, трудности с чтением или фокусировкой, тошноту, чувство тревоги и депрессии, нарушение режима сна и многое другое. Свойства, связанные с флуоресцентным освещением, которые, как считается, влияют на уровень толерантности человека, включают: большое количество синего света, низкочастотное мерцание и общую яркость.
9. Сезонное аффективное расстройство
Сезонное аффективное расстройство, также известное как «Зимняя блюз», часто возникает у людей в зимние месяцы. Это связано с отсутствием полного спектра света, который мы обычно получаем от солнечного света. В унылое серое небо в зимние месяцы большая часть светового спектра блокируется, и наши тела реагируют негативно.
Многие люди сообщают о подобных симптомах, когда они работают при флуоресцентном освещении и не выходят на улицу в течение дня.Без полного спектра света, который мы получаем от дневного света, некоторые функции организма не запускаются и не поддерживаются, что заставляет нас чувствовать себя подавленными на свалках.
Что такое люминесцентное освещение?
Люминесцентное освещение. Вы, наверное, уже имеете представление о том, что это такое. Может быть, вы хоть немного разбираетесь в том, как это работает.
Конечно, люминесцентное освещение опасно для глаз и размывает цвет лица.
Но флуоресцентное освещение — это гораздо больше, чем не очень идеальные побочные эффекты, включая некоторые приятные преимущества.
Вот что мы обсуждаем в этом посте:
Что такое люминесцентное освещение?
Флуоресцентное освещение — это универсальный тип освещения, с которым вы, скорее всего, столкнетесь в офисе, школе или продуктовом магазине. Он известен своей энергоэффективностью по сравнению с лампами накаливания и галогеновыми лампами и более низкой ценой по сравнению со светодиодами.
Существует несколько различных типов люминесцентного освещения, включая линейные люминесцентные лампы, люминесцентные изогнутые лампы, люминесцентные лампы с круговой линией и компактные люминесцентные лампы (компактные люминесцентные лампы).
В этой статье мы сосредоточимся на линейных люминесцентных лампах из-за их популярности. Люминесцентные лампы обычно используются в потолочных светильниках, таких как troffers, во всех типах коммерческих зданий.
Как работают люминесцентные лампы?
Флуоресцентное освещение зависит от химической реакции внутри стеклянной трубки для создания света. Эта химическая реакция включает взаимодействие газов и паров ртути, в результате чего образуется невидимый ультрафиолетовый свет. Этот невидимый ультрафиолетовый свет освещает люминофорный порошок, покрывающий внутреннюю часть стеклянной трубки, излучающий белый «флуоресцентный» свет.
Вот более подробная разбивка процесса:
Электричество сначала попадает в осветительную арматуру, как трос, и через балласт. Балласт, который регулирует напряжение, ток и т. Д. И необходим для работы люминесцентной лампы, подает электричество на контакты люминесцентной лампы на обоих концах.
Подробнее: Что такое балласт и как он работает?
Затем, после того, как электричество проходит через контакты, оно течет к электродам внутри герметичной стеклянной трубки, в которой поддерживается низкое давление.Электроны начинают перемещаться по трубке от одного катода к другому.
Внутри стеклянной трубки находятся инертные газы и ртуть, возбуждаемые электрическим током. Ртуть испаряется, когда течет электричество, и газы начинают реагировать друг с другом, создавая невидимый ультрафиолетовый свет, который мы фактически не видим невооруженным глазом.
Но мы, очевидно, замечаем люминесцентные лампы, излучающие свет, так что же именно мы видим?
Каждая люминесцентная лампа покрыта люминофорным порошком.Если воткнуть палец в тюбик и потереть его изнутри, это будет выглядеть так, как будто вы только что насладились порошкообразным пончиком.
Это люминофорное покрытие светится, когда оно возбуждается невидимым ультрафиолетовым светом, и это то, что мы видим нашими глазами — светящийся порошок люминофора, который создает «белый свет». Отсюда и термин «флуоресцентный» — «светящийся белый свет».
Из-за содержания ртути в люминесцентных лампах важно утилизировать лампы после того, как они перегорели.У нас есть служба утилизации, которая позволяет легко и быстро избавиться от старых перегоревших ламп из вашего шкафа и забыть о них. Мы также продаем коробки для вторсырья.
Зачем люминесцентным лампам балласт?
Основная цель балласта — принимать переменный ток, проходящий через провода в ваших стенах — буквально волнами, вверх и вниз — и превращать его в постоянный и прямой поток электричества. Это стабилизирует и поддерживает химическую реакцию, происходящую внутри колбы.
Чтобы правильно выбрать балласт для ваших ламп, вам необходимо ответить на эти три вопроса:
- Какому типу лампы требуется питание? (Например, это T8, T5? 4 фута? 2 фута? И т. Д.)
- Сколько ламп нужно мощности?
- Какое напряжение подается на светильник?
Балласты влияют на потребление энергии через так называемый балластный фактор. Подробнее о балластном факторе и его влиянии на потребление энергии читайте здесь.
Почему флуоресцентные лампы становятся розовыми и оранжевыми?
Если вы посмотрите на большую комнату, освещенную в основном люминесцентными лампами, то с большой вероятностью вы увидите все виды разных цветов, исходящих от потолка.Почему?
Эта концепция называется «смещение цвета». Чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся и вызовут несбалансированную реакцию, в результате чего флуоресценция станет менее белой и менее яркой, чем была раньше.
Если последовательность действительно важна для вашего проекта освещения, вы можете подумать о групповой замене этих лампочек. Заменяя все трубки партиями, вы можете устранить проблему несоответствия цветов и яркости в вашем помещении.
Еще одно соображение — это обновление светодиодов для ваших ламп. О вариантах светодиодных ламп T8 мы поговорим в этой статье.
В чем разница между линейными люминесцентными лампами и компактными люминесцентными лампами?
Чтобы уточнить, как в линейных, так и в компактных люминесцентных лампах используется одна и та же технология для создания искусственного света. Самая большая разница — это форм-фактор или размер и конфигурация ламп CFL.
Компактные люминесцентные лампы (КЛЛ) — это просто усовершенствование линейной люминесцентной технологии, потребляющее меньше энергии.Они также предназначены для ввинчивания в обычную розетку накаливания или вставку в утопленную банку. Их часто называют «пружинными лампами» или «подключаемыми» КЛЛ в зависимости от назначения и формы.
Узнайте больше о компактных люминесцентных лампах в нашем посте: «Что такое лампы CFL и где их следует использовать?»
Где вы используете линейное люминесцентное освещение?
Хотя люминесцентные лампы используются в самых разных областях, они работают не везде.Самая распространенная причина, по которой люди используют люминесцентные лампы, — это экономия энергии с минимальными первоначальными затратами.
Вот некоторые типичные области применения линейного люминесцентного освещения:
Коммерческие офисы
Обычно офисные помещения не слишком заботятся о декоративном и акцентном освещении. Главный приоритет — общее освещение, функциональное для офисной среды. Из-за этого линейные люминесцентные лампы являются основными лампами, используемыми в офисных помещениях в США.
Склады
Если вы не знакомы с T5 с высокой выходной мощностью, вам необходимо это знать.Эти лампы могут прослужить до 90 000 часов и производить больше света (люмен), чем более толстые линейные люминесцентные лампы, такие как T12s и T8s. Из-за этого они являются отличным выбором для складов — или вообще для любого многоярусного потолка, где требуется значительное количество света.
Больницы
Подобно офисным помещениям, в больницах также используются линейные люминесцентные лампы для экономии энергии и получения белого, чистого и эффективного источника света.
Розничные магазины
При создании уникального дизайна освещения для розничной торговли мы рекомендуем правило 20/80 — 20 процентов вашего освещения должно быть декоративным и уникальным (например, настенные бра, люстры, чаши с облаками).Причем 80 процентов его должно быть стандартным общим освещением.
В таких универмагах, как Macy’s, JC Penney, Kohl’s и Target, 80-процентное общее освещение является основной областью для линейных флуоресцентных ламп.
Плюсы и минусы линейного люминесцентного освещения
Линейные люминесцентные профили
- Энергоэффективность
Переоборудовав лампы накаливания или галогенные на линейные люминесцентные лампы, вы можете рассчитывать на 40-процентную экономию на счетах за электроэнергию.
- Разнообразие цветовых температур
Если вам нужно действительно «прохладное» пространство, такое как коридор больницы или станция метро, флуоресцентные лампы предлагают такую прохладную цветовую температуру, как 6500 Кельвинов. Хотя не так много приложений, в которых требуется настолько холодный свет, диапазон цветов от теплого до холодного — это гибкость для флуоресцентных ламп.
- Стоимость
По сравнению со светодиодами, линейное люминесцентное освещение, как правило, более доступно.Фактически, светодиоды привели к снижению цен на флуоресцентные лампы за последние несколько лет.
Линейные люминесцентные лампы
- Изменение цвета или уменьшение светового потока
Как мы упоминали выше, чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся, что вызовет несбалансированную реакцию, что сделает флуоресценцию менее белой и менее яркой, чем была раньше. Светоотдача снижается, и со временем ваше освещение может выглядеть как лоскутное одеяло.
- Резкий свет
Флуоресцентные лампы не приятны для глаз! Если вы обнаружите, что ваши глаза часто налиты кровью или сухие, вы можете оценить источник света, под которым вы находитесь большую часть дня. Например, линейные люминесцентные лампы в параболических троферах в офисном помещении могут вызвать у вас подсознательное косоглазие из-за резкого света. Лучшим применением были бы линейные флуоресцентные лампы в центральном фильтре, который смягчает свет, падающий на землю.
- Период прогрева
Для того, чтобы флуоресцентные лампы достигли полной яркости, вам, возможно, придется подождать 10-30 секунд для прогрева.
- Воздействие на окружающую среду или затраты на переработку
Хотя затраты на переработку перевешиваются за счет экономии энергии, создаваемой флуоресцентными лампами, существуют дополнительные расходы на обеспечение правильной утилизации люминесцентных ламп. Если вы не хотите вообще заниматься ртутью и переработкой, светодиоды могут быть для вас лучшим вариантом.
Есть еще вопросы о том, подходит ли флуоресцентное освещение для вашей области применения? Поговорите со специалистом по освещению, который расскажет о специфике вашего помещения.
Люминесцентные лампы: ламповые, вставные и др.
Компактная люминесцентная винтовая база
R30 и BR30 CFL
ВершинаПлагин флуоресцентный
Круглые и ламповые люминесцентные лампы
ВершинаО компактных люминесцентных лампах
Компактные люминесцентные лампы (КЛЛ) — важный шаг к повышению энергоэффективности и увеличению срока службы ламп.В то время как традиционные лампы накаливания служат всего около 1200 часов, КЛЛ будут излучать свет до 8000 часов. Это означает меньшее количество замен ламп и снижение затрат на техническое обслуживание. Кроме того, КЛЛ более эффективно расходуют энергию. Для эквивалентного света от лампы накаливания мощностью 60 Вт (приблизительно 800 люмен) CFL потребляет всего 13–15 Вт.
Широкий ассортимент ламп CFL
В Bulb America мы предлагаем большой выбор компактных люминесцентных ламп в различных стилях для различных целей.Есть КЛЛ с резьбовым цоколем для канделябров и люстр. У нас также есть спиральные КЛЛ, КЛЛ с регулируемой яркостью, КЛЛ для ламп с 3-сторонней настройкой, КЛЛ с пулевым наконечником и КЛЛ А-образной (или А-образной) формы. MR16, MR11, BR30, PAR16, PAR20, PAR30, R20, R30 и R40 — это лампы для встраиваемых светильников. Цифры, следующие за буквами в этих утопленных лампочках, обозначают размер, который представляет собой диаметр лампы, указанный в восьмых дюймах. Например, MR11 составляет 11/8 дюйма, а BR30 — 30/8 дюйма.Это означает, что BR30 и R30 (и другие лампы с одинаковыми номерами) имеют одинаковый размер и могут использоваться взаимозаменяемо. Лампы PAR имеют внутри параболический алюминированный отражатель, который направляет свет наружу. Его покрытие дает максимальное количество света, возможное от этой лампочки. Если вам нужен очень яркий свет, выберите этот стиль. Лампы с PAR выпускаются с точечным или наводящим лучом, и многие из них можно использовать на открытом воздухе во влажных помещениях.
Специальные лампы CFL
Здесь вы не только увидите все обычные лампы CFL.У нас также есть специальные КЛЛ, такие как тройные и четверные лампы, цветные КЛЛ и съемные люминесцентные лампы в различных конфигурациях. Вам нужна круглая люминесцентная лампа (четырехконтактная), U-образная лампа, люминесцентная лампа с канавкой, лампы черного света или бактерицидные УФ-лампы? Они у нас тоже есть!
Авторские права © BulbAmerica, 2021. Все права защищены. Все цены в долларах США.
Как работают люминесцентные лампы?
Люминесцентные лампы — это трудолюбивые незамеченные герои осветительной индустрии, обеспечивающие эффективное и надежное освещение офисов, розничных магазинов, складов и множества других объектов.Но задумывались ли вы, как работают люминесцентные лампы? Читайте дальше, чтобы узнать о науке, лежащей в основе этих распространенных источников освещения.
Устройство люминесцентных ламп
Герметичная стеклянная трубка — это основной компонент люминесцентной лампы. Трубка обычно содержит аргон, инертный газ, который находится под низким давлением. Трубка также содержит следы ртути и покрытие из порошка люминофора. На каждом конце трубки есть электрод для проведения электричества, и оба электрода подключаются к электрической цепи.
Как они работают
Итак, теперь вы знаете, что внутри люминесцентных ламп, но, вероятно, все еще задаетесь вопросом: «Как же работают люминесцентные лампы?»
- Когда вы включаете свет, через электроды течет электрический ток
- Напряжение заставляет электроны перемещаться через газообразный аргон к другой стороне трубки
- Энергия этого перехода заставляет ртуть превращаться из жидкости в газ
- Столкновение электронов и заряженных атомов с атомами газообразной ртути
- Столкновения увеличивают уровни энергии электронов
- Когда электроны возвращаются к своему нормальному уровню энергии, энергия выделяется в виде фотонов, создавая свет невидимого спектра, который человеческий глаз не видит
- Порошок люминофора в стеклянной трубке взаимодействует со светом невидимого спектра, производя белый свет, который может видеть человеческий глаз
Экономьте на качественном люминесцентном освещении
Как видите, это просто вопрос возбуждения электронов для производства энергии, а затем эта энергия выделяется в виде фотонов, которые преобразуются в видимый свет порошком люминофора.Этот метод более эффективен, чем лампы накаливания, поскольку энергия преобразуется в свет, а не в тепло (по большей части).
Atlanta Light Bulbs предлагает широкий ассортимент люминесцентных ламп для жилых, коммерческих и промышленных помещений. Если вам нужны линейные люминесцентные лампы T8 или компактные люминесцентные лампы (КЛЛ), вы найдете лучшие люминесцентные осветительные приборы с меньшими затратами.
Если вы хотите узнать больше о том, как работают люминесцентные лампы, или если у вас есть какие-либо вопросы, связанные с освещением, мы рекомендуем вам связаться с нашими штатными специалистами по освещению.Вы можете позвонить по телефону 1-888-988-2852, написать по электронной почте [адрес электронной почты защищен], заполнить нашу контактную форму или нажать кнопку живого чата ниже. Экономьте на фирменных световых решениях уже сегодня!
Вниз по трубам — Как работают люминесцентные лампы
Центральным элементом люминесцентной лампы является запаянная стеклянная трубка . Трубка содержит небольшое количество ртути и инертный газ, обычно аргон, , находящийся под очень низким давлением. Трубка также содержит порошок люминофора , нанесенный по внутренней стороне стекла.Трубка имеет два электрода , по одному на каждом конце, которые подключены к электрической цепи. Электрическая цепь, которую мы рассмотрим позже, подключена к источнику переменного тока (AC).
Когда вы включаете лампу, ток течет по электрической цепи к электродам. На электродах имеется значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия превращает часть ртути в трубке из жидкости в газ.Когда электроны и заряженные атомы движутся по трубке, некоторые из них столкнутся с газообразными атомами ртути. Эти столкновения возбуждают атомы, выталкивая электроны на более высокие энергетические уровни. Когда электроны возвращаются к своему первоначальному уровню энергии, они испускают световые фотоны.
Как мы видели в предыдущем разделе, длина волны фотона определяется конкретным расположением электронов в атоме. Электроны в атомах ртути расположены таким образом, что они в основном испускают световые фотоны в ультрафиолетовом диапазоне длин волн .Наши глаза не регистрируют ультрафиолетовые фотоны, поэтому этот вид света необходимо преобразовать в видимый свет, чтобы осветить лампу.
Вот здесь и вступает в силу порошковое покрытие трубки. Люминофор — это вещества, излучающие свет при воздействии света. Когда фотон попадает в атом люминофора, один из электронов люминофора перескакивает на более высокий энергетический уровень, и атом нагревается. Когда электрон возвращается на свой нормальный уровень, он выделяет энергию в виде другого фотона.Этот фотон имеет меньше энергии, чем исходный фотон, потому что некоторая энергия была потеряна в виде тепла. В люминесцентной лампе излучаемый свет находится в видимом спектре — люминофор излучает белый свет, который мы можем видеть. Производители могут изменять цвет света, используя различные комбинации люминофоров.
Обычные лампы накаливания также излучают довольно много ультрафиолетового света, но они не преобразуют его в видимый свет. Следовательно, много энергии, используемой для питания лампы накаливания, тратится впустую.Люминесцентная лампа заставляет работать этот невидимый свет, и поэтому более эффективен, чем . Лампы накаливания также теряют больше энергии из-за тепловыделения, чем люминесцентные лампы. В целом, обычная люминесцентная лампа в четыре-шесть раз эффективнее лампы накаливания. Однако люди обычно используют в доме лампы накаливания, поскольку они излучают «более теплый» свет — свет с большим количеством красного и меньшим количеством синего.
Как мы видели, вся система люминесцентных ламп зависит от электрического тока, протекающего через газ в стеклянной трубке.В следующем разделе мы увидим, что люминесцентная лампа должна делать, чтобы установить этот ток.
История люминесцентных ламп
Как были разработаны люминесцентные лампы и лампы? Когда большинство людей думают об освещении и лампах, они думают о лампе накаливания, разработанной Томасом Эдисоном и другими изобретателями. Лампы накаливания работают за счет электричества и нити накала. Нагретая электричеством, нить накала внутри лампочки проявляет сопротивление, которое приводит к высоким температурам, заставляющим нить накаливать свет и излучать свет.
Дуговые или паровые лампы работают по-разному (люминесцентные лампы подпадают под эту категорию), свет не создается за счет тепла, свет создается в результате химических реакций, которые происходят, когда электричество применяется к различным газам, заключенным в стеклянной вакуумной камере.
Разработка люминесцентных ламп
В 1857 году французский физик Александр Э. Беккерель, исследовавший явления флуоресценции и фосфоресценции, высказал предположение о создании люминесцентных ламп, подобных тем, которые производятся сегодня.Александр Беккерель экспериментировал с покрытием электроразрядных трубок люминесцентными материалами, процесс, который получил дальнейшее развитие в более поздних люминесцентных лампах.
Американец Питер Купер Хьюитт (1861-1921) запатентовал (патент США 889 692) первую ртутную лампу в 1901 году. Ртутная дуговая лампа низкого давления Питера Купера Хьюитта является самым первым прототипом современных люминесцентных ламп. Флуоресцентный свет — это тип электрической лампы, которая возбуждает пары ртути для создания люминесценции.
Смитсоновский институт утверждает, что Хьюитт опирался на работы немецкого физика Юлиуса Плюккера и стеклодува Генриха Гайсслера. Эти двое мужчин пропустили электрический ток через стеклянную трубку, содержащую небольшое количество газа, и зажгли свет. Хьюитт работал с трубками, заполненными ртутью, в конце 1890-х годов и обнаружил, что они излучают обильный, но непривлекательный голубовато-зеленый свет.
Хьюитт не думал, что людям понадобятся лампы с сине-зеленым светом в своих домах, поэтому он искал другие варианты их применения в фотостудиях и в промышленных целях.Джордж Вестингауз и Питер Купер Хьюитт создали компанию Cooper Hewitt Electric, контролируемую Westinghouse, для производства первых коммерческих ртутных ламп.
Марти Гудман в своей «Истории электрического освещения» цитирует Хьюитта, что он изобрел первую закрытую дуговую лампу с использованием пара металла в 1901 году. Это была ртутная дуговая лампа низкого давления. В 1934 году Эдмунд Гермер создал дуговую лампу высокого давления, которая могла работать с гораздо большей мощностью в меньшем пространстве. Ртутная дуговая лампа низкого давления Хьюитта излучает большое количество ультрафиолетового света.Гермер и другие покрыли внутреннюю часть лампочки флуоресцентным химическим веществом, которое поглощало ультрафиолетовый свет и повторно излучало эту энергию в виде видимого света. Таким образом, он стал эффективным источником света.
Эдмунд Гермер, Фридрих Мейер, Ханс Спаннер, Эдмунд Гермер: Патент на люминесцентную лампу США 2182732
Эдмунд Гермер (1901–1987) изобрел паровую лампу высокого давления, его разработка усовершенствованной люминесцентной лампы и ртутной лампы высокого давления позволила получить более экономичное освещение с меньшим количеством тепла.
Эдмунд Гермер родился в Берлине, Германия, получил образование в Берлинском университете и получил докторскую степень в области светотехники. Вместе с Фридрихом Мейером и Хансом Шпаннером Эдмунд Гермер запатентовал экспериментальную люминесцентную лампу в 1927 году.
Некоторые историки считают Эдмунда Гермера изобретателем первой настоящей люминесцентной лампы. Однако можно утверждать, что люминесцентные лампы имеют долгую историю развития до Гермера.
Джордж Инман и Ричард Тайер: первая коммерческая люминесцентная лампа
Джордж Инман возглавил группу ученых General Electric, исследующих усовершенствованную и практичную люминесцентную лампу.Под давлением многих конкурирующих компаний команда разработала первую практичную и жизнеспособную люминесцентную лампу (патент США № 2 259 040), которая была впервые продана в 1938 году. Следует отметить, что General Electric приобрела патентные права на более ранний патент Эдмунда Гермера.
Согласно изданию GE Fluorescent Lamp Pioneers, « 14 октября 1941 г. Джорджу Э. Инману был выдан патент США № 2 259 040, дата подачи — 22 апреля 1936 г. Он обычно считался основным патентом.Однако некоторые компании работали над лампой одновременно с GE, а некоторые уже подали заявки на патенты. GE укрепила свои позиции, купив немецкий патент, предшествующий патенту Inman. GE заплатила 180 000 долларов за патент США № 2182732, который был выдан Фридриху Мейеру, Гансу Дж. Спаннеру и Эдмунду Гермеру. Хотя кто-то может поспорить с настоящим изобретателем люминесцентной лампы, ясно, что GE была первой, кто ее представил ».
Другие изобретатели
Несколько других изобретателей запатентовали версии люминесцентной лампы, в том числе Томас Эдисон.Он подал патент (патент США 865,367) 9 мая 1896 года на люминесцентную лампу, которая так и не была продана. Однако он не использовал пары ртути для возбуждения люминофора. В его лампе использовались рентгеновские лучи.
История люминесцентного освещения | Warehouse-Lighting.com
Рассматривая историю одного типа ламп в мире освещения, важно отметить, что прогресс не происходит на пустом месте. Когда в одной области освещения делается новый прогресс, это, естественно, вдохновляет на новые инновации в других областях освещения.Нигде этот принцип инноваций, порождающих инновации, не проявляется более очевидным, чем в истории люминесцентного освещения. Вот краткая история люминесцентного освещения, чтобы еще больше подчеркнуть этот момент.
Дорога к люминесцентному освещению медленно прокладывалась, начиная с 1890-х годов, когда Томас Эдисон испытал прототип. Однако этот прототип, хотя и был успешным, оказался непригодным для более чем кратковременного освещения.
Путь к успеху люминесцентного освещения фактически нашел свое место благодаря появлению ртутных ламп.В лампах этого типа, созданных Питером Купером Хьюиттом в 1890-х годах, использовались стеклянные трубки, которые впоследствии стали моделью для люминесцентного освещения. Хотя этот тип лампы имел решающее значение для успеха люминесцентных ламп, в ней использовались газовые, а не электрические компоненты, поскольку эта технология еще не была внедрена.
В 1926 году идея люминесцентного освещения вышла на первый план благодаря работам Жака Рислера. Он первым разместил флуоресцентное покрытие внутри стеклянной трубки ртутной лампы.Хотя это был шаг в правильном направлении, это все же была ртутная лампа, а не лампа нового типа в целом.
Только в 1934 году на рынке появилось первое коммерчески производимое люминесцентное освещение. Благодаря десятилетиям исследований и команде квалифицированных специалистов компания General Electric представила первые люминесцентные лампы. Они стали основой бизнеса, поскольку предлагали лучшее качество света, лампы с более длительным сроком службы и в целом лучшую окупаемость, чем обычные лампы накаливания того времени.
В 1938 году General Electric представит новые модели, улучшенные по сравнению с первоначальным дизайном. Они представили модели T12 и T8, которые расширили использование ламп в новых областях. T12 предлагал 15 Вт, тогда как T8 предлагал 30 Вт, что делало эти варианты более производительными по сравнению с другими вариантами на рынке в то время.
По мере того, как общественный спрос на этот тип освещения рос, было сделано несколько усовершенствований. Например, в 1980 году Philips разработала первую линейку люминесцентных ламп для магнитных балластов, которые эффективно заменили лампы накаливания на оползне.Доступность ламп в сочетании с высокими эксплуатационными характеристиками сделали их основным продуктом освещения как коммерческих, так и жилых домов на тот день. В 1990-х годах была представлена лампа T5, которая предложила еще более эффективное решение.
Сегодня люминесцентное освещение остается опорой в мире освещения. Это один из самых продаваемых вариантов на рынке, поскольку он по-прежнему остается доступным световым решением, которое предлагает многое взамен.
.