Как правильно рассчитать сечение провода для электропроводки. Какие формулы использовать для расчета по току и мощности. Какие факторы влияют на выбор сечения кабеля. Как подобрать оптимальное сечение провода для домашней электропроводки.
Основные формулы для расчета сечения провода
При проектировании электропроводки одним из ключевых моментов является правильный расчет и выбор сечения проводов. От этого зависит не только эффективность работы электросети, но и ее безопасность. Рассмотрим основные формулы, которые используются для определения необходимого сечения кабеля:
1. Формула расчета по току нагрузки
Самый простой способ рассчитать требуемое сечение — использовать формулу зависимости от максимального тока нагрузки:
S = I / j
Где:
- S — сечение провода, мм²
- I — максимальный ток нагрузки, А
- j — допустимая плотность тока, А/мм² (для медных проводов принимается 8-12 А/мм²)
2. Формула расчета по мощности нагрузки
Если известна мощность потребителей, можно воспользоваться следующей формулой:
S = P / (U * cosφ * j)
Где:
- P — мощность нагрузки, Вт
- U — напряжение сети, В
- cosφ — коэффициент мощности (для бытовых потребителей принимается 0.8-0.9)
3. Формула расчета по длине линии
При большой протяженности кабельной линии необходимо учитывать падение напряжения:
S = (ρ * L * I) / ΔU
Где:
- ρ — удельное сопротивление материала жилы (для меди 0.0175 Ом*мм²/м)
- L — длина кабельной линии, м
- ΔU — допустимое падение напряжения, В (обычно принимается 2-5% от номинального)
Факторы, влияющие на выбор сечения провода
При расчете оптимального сечения кабеля важно учитывать следующие факторы:
- Максимальная токовая нагрузка
- Мощность подключаемых потребителей
- Длина кабельной линии
- Способ прокладки (открытый, в трубе, в земле)
- Материал токопроводящей жилы (медь, алюминий)
- Тип изоляции провода
- Температура окружающей среды
- Требования по механической прочности
Учет всех этих параметров позволяет подобрать оптимальное сечение, обеспечивающее как надежность, так и экономичность электропроводки.
Расчет сечения для бытовой электропроводки
Для типовой квартирной или домашней проводки обычно используются следующие сечения медных проводов:
- 1.5 мм² — для цепей освещения
- 2.5 мм² — для розеточных групп
- 4-6 мм² — для мощных потребителей (электроплита, бойлер)
При этом важно соблюдать следующие рекомендации:
- Не использовать провода сечением менее 1.5 мм² для стационарной проводки
- Учитывать возможность одновременной работы нескольких приборов
- Закладывать запас мощности не менее 20-30%
- Согласовывать сечение провода с номиналом защитного автомата
Пример расчета сечения провода
Рассмотрим пример расчета сечения для розеточной группы в квартире:
- Предполагаемая нагрузка — 3 кВт
- Длина кабельной линии — 15 м
- Напряжение сети — 220 В
Рассчитаем максимальный ток:
I = P / U = 3000 / 220 = 13.6 А
Используем формулу расчета по току:
S = I / j = 13.6 / 8 = 1.7 мм²
С учетом запаса и стандартного ряда сечений выбираем провод 2.5 мм². Это позволит безопасно эксплуатировать линию даже при подключении мощных бытовых приборов.
Таблицы для выбора сечения провода
Для удобства выбора сечения провода можно воспользоваться специальными таблицами. Приведем пример такой таблицы для медных проводов при открытой прокладке:
Сечение, мм² | Допустимый ток, А |
---|---|
1.5 | 19 |
2.5 | 27 |
4 | 38 |
6 | 46 |
10 | 70 |
Подобные таблицы позволяют быстро определить необходимое сечение, зная расчетный ток нагрузки. Однако следует помнить, что они не учитывают все возможные факторы, поэтому для ответственных линий рекомендуется производить полный расчет.
Ошибки при выборе сечения провода
При расчете сечения кабеля нередко допускаются следующие ошибки:
- Недооценка реальной нагрузки на линию
- Игнорирование фактора длины кабеля
- Выбор провода «с запасом» без учета экономической целесообразности
- Использование устаревших данных по допустимым токовым нагрузкам
- Пренебрежение условиями прокладки и эксплуатации
Чтобы избежать этих ошибок, важно тщательно анализировать все исходные данные и при необходимости консультироваться со специалистами.
Заключение
Правильный расчет и выбор сечения провода — важнейший этап проектирования электропроводки. Использование приведенных формул и рекомендаций позволит обеспечить надежную и безопасную работу электросети. При этом следует помнить, что в сложных случаях лучше обратиться к профессиональным электрикам, которые учтут все нюансы конкретного объекта.
Сечение проводов по мощности таблица. Расчет сечения кабеля — примеры расчета, таблицы, калькулятор.
Чем отличается кабель от провода
Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.
Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.
Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.
Расчет сечения провода
Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно определить сечение кабеля по току. Для этого потребуется штангенциркуль и формула.
Если рассмотреть сечение кабеля, то это круг с определенным диаметром.
Существует формула площади круга: S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» — диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².
Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков?
Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.
Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство.
Расчёт сечения кабеля по мощности и длине
Для того чтобы правильно подобрать кабель, в первую очередь необходимо знать его сечение. Наш онлайн калькулятор расчета сечения кабеля по длине и мощности поможет рассчитать сечение кабеля, необходимое для безопасной эксплуатации электропроводки. Кабель с верно выбранным сечением избежит перегревов, коротких замыканий и выхода из строя электротехники.
По какой формуле производится расчет сечения
При проработке алгоритмов:
Площадь кабеля считается по длине и допустимой мощности. Для этого используется формула I = P : U x (COSф), где P — мощность, U — напряжение, а COSф — коэффициент. Если работа производится с бытовой электросетью, то коэффициент обозначается единицей. В случае прокладки промышленной коммуникации, он рассчитывается в виде отношения активной мощности к полной.
- Сечение по току берется из данных ПУЭ.
- Сопротивление кабеля считается по формуле Ro = (P x I):S, где P — сопротивление, I — длина, S — поперечная площадь сечения. Однако нужно учитывать, что ток перемещается в обе стороны, поэтому сопротивление фактически будет равно R = Ro x 2.
- Падение напряжения учитывается в формуле △U = I x R.
- Падения напряжение в процентном отношении отображено в формуле △U ÷ U.
Если вы хотите посчитать все сами, на помощь придут справочный материал или онлайн-калькуляторы, которые доступны на интернет-ресурсах.
Медь или алюминий
В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.
Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.
Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».
Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.
Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.
Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.
ПУЭ таблица расчета сечения кабеля по мощности и току
Позволяет выбрать сечение по максимальному току и максимальной нагрузке.
для медных проводов:
для алюминиевых проводов:
Допустимый длительный ток для проводов с медными жилами.
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой либо резиновой оболочке, бронированных и небронированных.
Сечение токопроводящей жилы, мм | Ток, А, для проводов и кабелей | ||||
Одножильных | Двухжильных | Трехжильных | |||
При прокладке | |||||
В воздухе | В воздухе | В земле | В воздухе | В земле | |
1,5 | 23 | 19 | 33 | 19 | 27 |
2,5 | 30 | 27 | 44 | 25 | 38 |
14 | 41 | 38 | 55 | 35 | 49 |
6 | 50 | 50 | 70 | 42 | 60 |
10 | 80 | 70 | 105 | 55 | 90 |
16 | 100 | 90 | 135 | 75 | 115 |
25 | 140 | 115 | 175 | 95 | 150 |
35 | 170 | 140 | 210 | 120 | 180 |
50 | 215 | 175 | 265 | 145 | 225 |
70 | 270 | 215 | 320 | 180 | 275 |
95 | 325 | 260 | 385 | 220 | 330 |
120 | 385 | 300 | 445 | 260 | 385 |
150 | 440 | 350 | 505 | 305 | 435 |
185 | 510 | 405 | 570 | 350 | 500 |
240 | 605 | — | — | — | — |
* Токи относятся к проводам и кабелям с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой либо пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных.
Сечение токопроводящей жилы, мм | Ток, А, для проводов и кабелей | ||||
Одножильных | Двухжильных | Трехжильных | |||
При прокладке | |||||
В воздухе | В воздухе | В земле | В воздухе | В земле | |
2,5 | 23 | 21 | 34 | 19 | 29 |
4 | 31 | 29 | 42 | 27 | 38 |
6 | 38 | 38 | 55 | 32 | 46 |
10 | 60 | 55 | 80 | 42 | 70 |
16 | 75 | 70 | 105 | 60 | 90 |
25 | 105 | 90 | 135 | 75 | 115 |
35 | 130 | 105 | 160 | 90 | 140 |
50 | 165 | 135 | 205 | 110 | 175 |
70 | 210 | 165 | 245 | 140 | 210 |
95 | 250 | 200 | 295 | 170 | 255 |
120 | 295 | 230 | 340 | 200 | 295 |
150 | 340 | 270 | 390 | 235 | 335 |
185 | 390 | 310 | 440 | 270 | 385 |
240 | 465 | — | — | — | — |
Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Открытая и закрытая прокладка проводов
Как все мы знаем, при прохождении тока по проводнику он нагревается. Чем больше ток, тем больше тепла выделяется. Но, при прохождении одного и того же тока, по проводникам, с разным сечением, количество выделяемого тепла изменяется: чем меньше сечение, тем больше выделяется тепла.
В связи с этим, при открытой прокладке проводников его сечение может быть меньше — он быстрее остывает, так как тепло передается воздуху. При этом проводник быстрее остывает, изоляция не испортится. При закрытой прокладке ситуация хуже — медленнее отводится тепло. Потому для закрытой прокладке — в кабель каналах, трубах, в стене — рекомендуют брать кабель большего сечения.
Выбор сечения кабеля с учетом типа его прокладки также можно провести при помощи таблицы. Принцип описывали раньше, ничего не изменяется. Просто учитывается еще один фактор.
Выбор сечения кабеля в зависимости от мощности и типа прокладки
И напоследок несколько практических советов. Отправляясь на рынок за кабелем, возьмите с собой штангенциркуль . Слишком часто заявленное сечение не совпадает с реальностью. Разница может быть в 30-40%, а это очень много. Чем вам это грозит? Выгоранием проводки со всеми вытекающими последствиями. Потому лучше прямо на месте проверять действительно ли у данного кабеля требуемое сечение жилы (диаметры и соответствующие сечения кабеля есть в таблице выше).
О выборе марки кабеля для домашней электропроводки
Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди. Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.
А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод. Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее. Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.
После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM.
Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.
Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах. Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.
Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм2.
Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской. Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным. Для внутренней проводки удобнее применять плоский кабель ВВГ.
При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».
Общепринятые сечения для проводки в квартире
Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.
Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.
Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.
Одножильный или многожильный
При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.
Здесь мы хотели бы сказать вам одно правило. Если ваша проводка стационарная, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то используют моножилу.
Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.
В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.
Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.
Зачем производится расчет
Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.
Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.
Безопасная эксплуатация заключается в том, что если вы выберете сечение, не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.
Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.
Что нужно знать
Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.
Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры.
Таблица потребляемой мощности/силы тока бытовыми электроприборами
Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 – 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 – 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 – 1200 | 5,0 – 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 630 – 1200 | 3,0 – 5,5 |
Соковыжималка | 240 – 360 | 1,1 – 1,6 |
Тостер | 640 – 1100 | 2,9 – 5,0 |
Миксер | 250 – 400 | 1,1 – 1,8 |
Фен | 400 – 1600 | 1,8 – 7,3 |
Утюг | 900 –1700 | 4,1 – 7,7 |
Пылесос | 680 – 1400 | 3,1 – 6,4 |
Вентилятор | 250 – 400 | 1,0 – 1,8 |
Телевизор | 125 – 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 – 100 | 0,3 – 0,5 |
Приборы освещения | 20 – 100 | 0,1 – 0,4 |
После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:
1) Формула расчета силы тока для однофазной сети 220 В:
расчет силы тока для однофазной сети
где Р — суммарная мощность всех электроприборов, Вт;
U — напряжение сети, В;
КИ= 0.75 — коэффициент одновременности;
cos для бытовых электроприборов- для бытовых электроприборов.
2) Формула для расчета силы тока в трехфазной сети 380 В:
расчет силы тока для трехфазной сети
Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например, расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2.
Какой провод лучше использовать
На сегодняшний день для монтажа, как открытой электропроводки, так и скрытой, конечно же большой популярностью пользуются медные провода.
- Медь, по сравнению с алюминием, более эффективна:
- она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
- меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
- проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.
Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.
Источники
- https://first-apartment.ru/sechenie-provoda.html
- https://kabel-s.ru/info/calc-kabel-sechenie/
- https://Stroylandiya.ru/blog/raschet-secheniya-kabelya-po-moshchnosti-i-toku/
- https://systemlines.ru/tekhnicheskie-i-vspomogatelnye-materialy/tablitsa-zavisimosti-secheniya-kabelya-ot-toka-moshhnosti/
- https://220-help.su/cable-sechenie/
- https://www.calc.ru/Secheniye-Kabelya.html
- https://stroychik.ru/elektrika/vybor-secheniya-kabelya
- https://howelektrik. ru/elektrooborudovanie/provodka/kabeli-i-provoda/raschet-secheniya-kabelya-po-nagruzke-tablicza-dopustimyh-nagruzok-foto-video-urok-kak-rasschitat-neobhodimoe-sechenie-kabelya.html
Как вам статья?
Павел
Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
Площадь сечения проводов. Формулы и таблицы – СамЭлектрик.ру
Расчет сечения провода
Строго говоря, понятие “толщина” для провода используется в разговорной речи, а более научные термины – диаметр и площадь сечения. На практике толщину провода всегда характеризуют площадью сечения.
Рассчитать сечение провода на практике можно очень просто. Зная диаметр (например, измерив его штангенциркулем), можно легко вычислить площадь сечения по формуле
S = π (D/2)2, где
- S – площадь сечения провода, мм2
- π – 3,14
- D – диаметр токопроводящей жилы провода, мм. Его можно измерить, например, штангенциркулем.
Формулу площади сечения провода можно записать в более удобном виде: S = 0,8 D².
Поправка. Откровенно говоря, 0,8 – округленный коэффициент. Более точная формула: π (1/2)2 = π / 4 = 0,785. Спасибо внимательным читателям
Рассмотрим только медный провод, поскольку в 90% в электропроводке и электромонтаже применяется именно он. Преимущества медных проводов перед алюминиевыми – удобство в монтаже, долговечность, меньшая толщина (при том же токе).
Но с ростом диаметра (площади сечения) высокая цена медного провода съедает все его преимущества, поэтому алюминий в основном применяют там, где ток превышает значение 50 Ампер. В данном случае используют кабель с алюминиевой жилой 10 мм2 и толще.
Площадь сечения проводов измеряется в квадратных миллиметрах. Самые распространенные на практике (в бытовой электрике) площади сечения: 0,75 (запрещён в стационарной проводке), 1,5, 2,5, 4 мм2
Есть и другая единица измерения площади сечения (толщины) провода, применяемая в основном в США, – система AWG. На Самэлектрике есть таблица сечений проводов по системе AWG и перевод из AWG в мм2.
По поводу подбора проводов – я обычно пользуюсь каталогами интернет-магазинов, вот пример медного. Там самый большой выбор, какой я встречал. Ещё хорошо, что всё подробно описывается – состав, применения, и т.д.
Рекомендую почитать также мою статью про выбор сечения провода для постоянного тока там много теоретических выкладок и рассуждений о падении напряжения, сопротивлении проводов для разных сечений, и какое сечение выбрать оптимальнее для разных допустимых падений напряжения.
И ещё статья – Падение напряжения на трехфазных кабельных линиях большой длины. приведен реальный пример объекта, приводятся формулы и рекомендации, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине. И обратно пропорциональны сопротивлению.
При выборе площади сечения проводов следует руководствоваться тремя основными принципами.
- Площадь сечения провода (иначе говоря, его толщина) должна быть достаточной для прохождения через него электрического тока. Достаточной – это означает, что при прохождении максимально возможного в данном случае тока нагрев провода будет допустимым (как правило, не более 60 0С)
- Сечение провода должно быть достаточным, чтобы падение напряжения на нём не превышало допустимое значение. Это особенно актуально для длинных кабельных линий (десятки и сотни метров) и больших токов.
- Толщина провода и его защитная изоляция должна обеспечивать его механическую прочность, а значит надежность.
Например, для питания люстры в гостиной используются лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А). Вроде бы, вполне достаточно проводов с площадью сечения 0,5 мм2? Но какой электрик в здравом уме будет закладывать такой провод в потолочную плиту? В данном случае как правило применяют 1,5 мм2.
На самом деле, выбор толщины провода зависит от одного параметра – максимальной рабочей температуры. При превышении этой температуры провод и изоляция на нём начнут плавиться и разрушаться. Иначе говоря, максимальный рабочий ток для провода с определенным сечением ограничивается только максимальной его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.
Ниже дана общеизвестная таблица сечения проводов для подбора площади сечения медных проводов в зависимости от тока. Исходные данные – площадь сечения проводника.
Общие сведения
Площадь — это величина геометрической фигуры в двумерном пространстве. Она используется в математике, медицине, инженерных и других науках, например, в вычислении поперечного сечения клеток, атомов, или труб, таких как кровеносные сосуды или водопроводные трубы. В географии площадь используются для сравнения размеров городов, озер, стран и других географических объектов. При расчетах плотности населения также используется площадь. Плотность населения определяется как количество людей на единицу площади.
Читать также: Длина трубы в ппу изоляции
Максимальный ток для разной толщины медных проводов
Таблица 1
(Данные из таблицы 1. 3.4 ПУЭ)
Сечение токо-проводящей жилы, мм2 | Ток, А, для проводов, проложенных | ||
открыто | в одной трубе | ||
одного двух жильного | одного трех жильного | ||
0,5 | 11 | – | – |
0,75 | 15 | – | – |
1 | 17 | 15 | 14 |
1,2 | 20 | 16 | 14,5 |
1,5 | 23 | 18 | 15 |
2 | 26 | 23 | 19 |
2,5 | 30 | 25 | 21 |
3 | 34 | 28 | 24 |
4 | 41 | 32 | 27 |
5 | 46 | 37 | 31 |
6 | 50 | 40 | 34 |
8 | 62 | 48 | 43 |
10 | 80 | 55 | 50 |
16 | 100 | 80 | 70 |
25 | 140 | 100 | 85 |
35 | 170 | 125 | 100 |
50 | 215 | 160 | 135 |
70 | 270 | 195 | 175 |
95 | 330 | 245 | 215 |
120 | 385 | 295 | 250 |
Выделены номиналы проводов, используемых в бытовой электрике. “Один двужильный” – это кабель с двумя проводами, один из них – Фаза, другой – Ноль. То есть, это однофазное питание нагрузки. “Один Трехжильный” – это при трехфазном питании.
Эта таблица показывает, при каких токах и в каких условиях можно эксплуатировать провод данного сечения.
Животрепещущий пример из практики – если на розетке написано “Max.16A”, то можно для этой одной розетки проложить провод сечением 1,5мм2. Но обязательно защитить розетку автоматическим выключателем на ток не более 13А, а лучше – 10А. На эту тему можно почитать мою статью Про замену и выбор защитного автомата.
В таблице одножильный провод – означает, что рядом (на расстоянии менее 5 диаметров провода) не проходит больше никаких проводов. Двужильный провод – два провода рядом, как правило, в одной общей изоляции. Это более тяжелый тепловой режим, поэтому максимальный ток меньше. И чем больше проводов в кабеле или пучке, тем меньше должен быть максимальный ток для каждого проводника из-за возможного взаимного нагрева.
Эту таблицу я считаю не совсем удобной для практики. Ведь чаще всего исходный параметр – это мощность потребителя электроэнергии, а не ток, и исходя из этого нужно выбирать провод.
Как найти ток, зная мощность? Нужно мощность Р (Вт) поделить на напряжение (В), и получим ток (А):
I = P/U
Как найти мощность, зная ток? Нужно ток (А) умножить на напряжение (В), получим мощность (Вт):
P = I U
Эти формулы – для случая активной нагрузки (потребители в жилах помещениях, типа лампочек и утюгов). Для реактивной нагрузки обычно используется коэффициент от 0,7 до 0,9 (в промышленности, где работают мощные трансформаторы и электродвигатели).
Предлагаю вам вторую таблицу, в которой исходные параметры – потребляемый ток и мощность, а искомые величины – сечение провода и ток отключения защитного автоматического выключателя.
Цилиндр
Круговой цилиндр является фигурой вращения прямоугольника вокруг любой из его сторон. Цилиндр характеризуется двумя линейными параметрами: радиусом основания r и высотой h. Ниже схематически показано, как выглядит круговой прямой цилиндр.
Для этой фигуры существует три важных типа сечения:
- круглое;
- прямоугольное;
- эллиптическое.
Эллиптическое образуется в результате пересечения плоскостью боковой поверхности фигуры под некоторым углом к ее основанию. Круглое является результатом пересечения секущей плоскости боковой поверхности параллельно основанию цилиндра. Наконец, прямоугольное получается, если секущая плоскость будет параллельна оси цилиндра.
Площадь круглого сечения рассчитывается по формуле:
S1 = pi*r2
Площадь осевого сечения, то есть прямоугольного, которое проходит через ось цилиндра, определяется так:
S2 = 2*r*h
Выбор толщины провода и автоматического выключателя, исходя из потребляемой мощности и тока
Ниже – таблица выбора сечения провода, исходя из известной мощности или тока. А в правом столбце – выбор автоматического выключателя, который ставится в этот провод.
Таблица 2
Макс. мощность, кВт | Макс. ток нагрузки, А | Сечение провода, мм2 | Ток автомата, А |
1 | 4.5 | 1 | 4-6 |
2 | 9.1 | 1.5 | 10 |
3 | 13.6 | 2.5 | 16 |
4 | 18.2 | 2.5 | 20 |
5 | 22.7 | 4 | 25 |
6 | 27.3 | 4 | 32 |
7 | 31.8 | 4 | 32 |
8 | 36.4 | 6 | 40 |
9 | 40.9 | 6 | 50 |
10 | 45.5 | 10 | 50 |
11 | 50.0 | 10 | 50 |
12 | 54. 5 | 16 | 63 |
13 | 59.1 | 16 | 63 |
14 | 63.6 | 16 | 80 |
15 | 68.2 | 25 | 80 |
16 | 72.7 | 25 | 80 |
17 | 77.3 | 25 | 80 |
Красным цветом выделены критические случаи, в которых лучше перестраховаться и не экономить на проводе, выбрав провод потолще, чем указано в таблице. А ток автомата – поменьше.
Глядя в табличку, можно легко выбрать сечение провода по току, либо сечение провода по мощности.
А также – выбрать автоматический выключатель под данную нагрузку.
В этой таблице данные приведены для следующего случая.
- Одна фаза, напряжение 220 В
- Температура окружающей среды +30 0С
- Прокладка в воздухе или коробе (в закрытом пространстве)
- Провод трехжильный, в общей изоляции (кабель)
- Используется наиболее распространенная система TN-S с отдельным проводом заземления
- Достижение потребителем максимальной мощности – крайний, но возможный случай. При этом максимальный ток может действовать длительное время без отрицательных последствий.
Если температура окружающей среды будет на 20 0С выше, или в жгуте будет несколько кабелей, то рекомендуется выбрать большее сечение (следующее из ряда). Особенно это касается тех случаев, когда значение рабочего тока близко к максимальному.
Вообще, при любых спорных и сомнительных моментах, например
- возможное в будущем увеличение нагрузки
- большие пусковые токи
- большие перепады температур (электрический провод на солнце)
- пожароопасные помещения
нужно либо увеличивать толщину проводов, либо более детально подойти к выбору – обратиться к формулам, справочникам. Но, как правило, табличные справочные данные вполне пригодны для практики.
Толщину провода можно узнать не только из справочных данных. Существует эмпирическое (полученное опытным путем) правило:
Единицы
Квадратные Метры
Площадь измеряется в системе СИ в квадратных метрах. Один квадратный метр — площадь квадрата, со стороной в один метр.
Единичный квадрат
Единичный квадрат это квадрат со сторонами в одну единицу. Площадь единичного квадрата тоже равна единице. В прямоугольной системе координат этот квадрат находится в координатах (0,0), (0,1), (1,0) и (1,1). На комплексной плоскости координаты — 0, 1, i
и
i
+1, где
i
— мнимое число.
Ар или сотка, как мера площади, используется в странах СНГ, Индонезии и некоторых других странах Европы, для измерения небольших городских объектов таких как парки, когда гектар слишком велик. Один ар равен 100 квадратным метрам. В некоторых странах эта единица называется иначе.
Гектар
В гектарах измеряют недвижимость, особенно земельные участки. Один гектар равен 10 000 квадратных метров. Он используется со времен Французской революции, и применяется в Европейском Союзе и некоторых других регионах. Так же как и ар, в некоторых странах гектар называется иначе.
В Северной Америке и Бирме площадь измеряется в акрах. Гектары там не используются. Один акр равен 4046,86 квадратным метрам. Изначально акр определялся как площадь, которую за один день мог вспахать крестьянин с упряжкой из двух волов.
Барны используются в ядерной физике для измерения поперечного сечения атомов. Один барн равен 10⁻²⁸ квадратным метрам. Барн не является единицей в системе СИ, но принят к использованию в этой системе. Один барн приблизительно равен площади поперечного сечения ядра урана, которое физики в шутку называли «огромным, как амбар». Амбар по-английски «barn» (произносится барн) и из шутки физиков это слово стало названием единицы площади. Эта единица возникла во время Второй мировой войны, и понравилась ученым, потому что ее название можно было использовать как кодовое в переписке и телефонных разговорах в рамках Манхэттенского проекта.
Правило выбора площади сечения провода для максимального тока
Подобрать нужную площадь сечения медного провода исходя из максимального тока можно, используя такое простое правило:
Необходимая площадь сечения провода равна максимальному току, деленному на 10.
Это правило дается без запаса, впритык, поэтому полученный результат необходимо округлять в большую сторону до ближайшего типоразмера. Например, ток 32 Ампер. Нужен провод сечением 32/10 = 3,2 мм2. Выбираем ближайший (естественно, в бОльшую сторону) – 4 мм2. Как видно, это правило вполне укладывается в табличные данные.
Важное замечание. Это правило работает хорошо для токов до 40 Ампер. Если токи больше (это уже за пределами обычной квартиры или дома, такие токи на вводе) – надо выбирать провод с ещё большим запасом – делить не на 10, а на 8 (до 80 А)
То же правило можно озвучить для поиска максимального тока через медный провод при известной его площади:
Максимальный ток равен площади сечения умножить на 10.
И в заключение – опять про старый добрый алюминиевый провод.
Алюминий пропускает ток хуже, чем медь. Этого знать достаточно, но вот немного цифр. Для алюминия (того же сечения, что и медный провод) при токах до 32 А максимальный ток будет меньше, чем для меди всего на 20%. При токах до 80 А алюминий пропускает ток хуже на 30%.
Для алюминия эмпирическое правило будет таким:
Максимальный ток алюминиевого провода равен площади сечения умножить на 6.
Считаю, что знаний, приведенных в данной статье, вполне достаточно, чтобы выбрать провод по соотношениям “цена/толщина”, “толщина/рабочая температура” и “толщина/максимальный ток и мощность”.
Вот в принципе и всё что хотел рассказать про площадь сечения проводов. Если что-то не понятно или есть что добавить – спрашивайте и пишите в комментариях. Если интересно, что я буду публиковать на блоге СамЭлектрик дальше – подписывайтесь на получение новых статей.
Как определить соответствие параметров?
Как правило, избежать подобных казусов во время покупки позволяет предельная внимательность с вашей стороны:
- На нормальном проводе обязательно присутствует его маркировка, которая предоставляет покупателю всю информацию о модели, особенностях эксплуатации, параметрах. В случае столкновения с сомнительной продукцией, можно обнаружить, что данные об изделии представлены не в полном объеме или вовсе отсутствуют.
- Если проводник действительно хорош, на него обязательно должны предоставить сертификаты качества. Техническая документация свидетельствует о том, что такой он не только изготовлен в соответствии с НД, но и прошел соответствующие испытания.
- Хороший провод не может стоить копейки – так как цена материалов достаточно высока, дешевизна должна заставить задуматься о том, не кроется ли в этом какой-то подвох. При желании вы можете прийти в магазин с микрометром или штангенциркулем и выполнить проверку, чтобы развеять сомнения.
Таблица зависимости тока защитного автомата (предохранителя) от сечения
(Дополнение к статье, июнь 2014)
А вот как к максимальному току в зависимости от площади сечения провода относятся немцы. В правом столбце – рекомендация по выбору автоматического (защитного) выключателя.
Таблица 3
Таблица выбора защитного автомата для разного сечения проводов
Как видно, немцы перестраховываются, и предусматривают больший запас по сравнению с нами.
Хотя, возможно, это от того, что таблица взята из инструкции из “стратегического” промышленного оборудования.
По поводу подбора проводов — я обычно пользуюсь каталогами интернет-магазинов, вот пример медного. Там самый большой выбор какой я встречал. Ещё хорошо, что все подробно описывается — состав, применения, и т.д.
Хорошая советская книга на тему статьи:
• Карпов Ф. Ф. Как выбрать сечение проводов и кабелей, 1973 год / Брошюра из Библиотеки электромонтера. Приведены указания и расчеты, необходимые для выбора сечений проводов и кабелей до 1000 В. Полезно для тех, кто интересуется первоисточниками., zip, 1.57 MB, скачан: 4237 раз./
Рекомендации по устройству
Устройство проводки, кроме всего прочего, требует навыков проектирования, что есть не у каждого, кто хочет ее сделать. Недостаточно иметь только хорошие навыки в электромонтаже. Некоторые путают проектирование с оформлением документации по каким-то правилам. Это совершенно разные вещи. Хороший проект может быть изложен на листках из тетрадки.
Прежде всего, нарисуйте план ваших помещений и отметьте будущие розетки и светильники. Узнайте мощности всех ваших потребителей: утюгов, ламп, нагревательных приборов и т. п. Затем впишите мощности нагрузок, наиболее часто потребляемых в разных помещениях. Это позволит вам выбрать наиболее оптимальные варианты выбора кабелей.
Вы удивитесь, сколько тут возможностей и какой резерв для экономии денег. Выбрав провода, подсчитайте длину каждой линии, которую вы ведете. Сложите все вместе, и тогда вы приобретете ровно то, что нужно, и столько, сколько нужно.
Каждая линия должна быть защищена своим автоматом (автоматическим выключателем), рассчитанным на ток, соответствующий допустимой мощности линии (сумма мощностей потребителей). Подпишите автоматы, расположенные в щитке, например: «кухня», «гостиная» и т. д.
Целесообразно иметь отдельную линию на все освещение, тогда вы сможете спокойно чинить розетку в вечернее время, не пользуясь спичками. Именно розетки чаще всего и бывают перегруженными. Обеспечивайте розетки достаточной мощностью – вы не знаете заранее, что вам придется туда включать.
В сырых помещениях используйте кабели только с двойной изоляцией! Используйте современные розетки («евро») и кабели с заземляющими проводниками и правильно подключайте заземление. Одножильные провода, особенно медные, изгибайте плавно, оставляя радиус в несколько сантиметров. Это предотвратит их излом. В кабельных лотках и каналах провода должны лежать прямо, но свободно, ни в коем случае нельзя натягивать их, как струну.
В розетках и выключателях должен быть запас в несколько лишних сантиметров. При прокладке нужно убедиться, что нигде нет острых углов, которые могут надрезать изоляцию. Затягивать клеммы при подключении необходимо плотно, а для многожильных проводов эту процедуру следует сделать повторно, у них есть особенность усадки жил, в результате чего соединение может ослабнуть.
Медные провода и алюминиевые «не дружат» между собой по электрохимическим причинам, непосредственно соединять их нельзя. Для этого можно использовать специальные клеммники или оцинкованные шайбы. Места соединений всегда должны быть сухими.
Фазные проводники должны быть белого (или коричневого) цвета, а нейтрали – всегда синего . Заземление имеет желто-зеленый цвет. Это общепринятые правила расцветки и продажные кабели, как правило, имеют внутреннюю изоляцию именно таких цветов. Соблюдение расцветки повышает безопасность эксплуатации и ремонта.
Предлагаем вашему вниманию интересное и познавательное видео, как правильно рассчитать сечение кабеля по мощности и длине:
Выбор проводов по сечению является главным элементом проекта электроснабжения любого масштаба, от комнаты, до больших сетей. От этого будет зависеть ток, который можно отбирать в нагрузку и мощность. Правильный выбор проводов также обеспечивает электро- и пожарную безопасность, и обеспечивает экономичный бюджет вашего проекта.
Нередко перед приобретением кабельной продукции возникает необходимость самостоятельного замера ее сечения во избежание обмана со стороны производителей, которые из-за экономии и установления конкурентной цены могут незначительно занижать этот параметр.
Разнообразие кабельной продукции и проводов
Также знать, как производится определение сечения кабеля, необходимо, например, при добавлении новой энергопотребляющей точки в помещениях со старой электропроводкой, на которой отсутствует какая-либо техническая информация. Соответственно, вопрос о том, как узнать сечение проводников, остается актуальным всегда.
20.3: Сопротивление и удельное сопротивление — Физика LibreTexts
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 2681
- OpenStax
- OpenStax
Цели обучения
К концу этого раздела вы сможете:- Объяснять понятие удельного сопротивления.
- Используйте удельное сопротивление для расчета сопротивления определенных конфигураций материала.
- Используйте термический коэффициент удельного сопротивления для расчета изменения сопротивления в зависимости от температуры.
Зависимость сопротивления от материала и формы
Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор на рис. 1 легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра \(R\) прямо пропорционально его длине \(L\), аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше столкновений зарядов с его атомами произойдет. Чем больше диаметр цилиндра, тем больший ток он может пропускать (опять же аналогично потоку жидкости по трубе). На самом деле \(R\) обратно пропорциональна площади поперечного сечения цилиндра \(A\).
Для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы оказывают различное сопротивление потоку заряда. Мы определяем удельное сопротивление \(\rho\) вещества так, что сопротивление \(R\) объекта прямо пропорционально \(\rho\). Удельное сопротивление \(\rho\) является внутренним свойством материала, не зависящим от его формы или размера. Сопротивление \(R\) однородного цилиндра длины \(L\), площади поперечного сечения \(A\), сделанного из материала с удельным сопротивлением \(\rho\), равно \[R = \ гидроразрыв {\ Rho L} {A}. \label{20.4.1}\] В таблице ниже приведены репрезентативные значения \(\rho\). Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления.
Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что будет рассмотрено в последующих главах.В таблице \(\PageIndex{1}\) приведены репрезентативные значения ρ. Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что будет рассмотрено в последующих главах. 9{11}\)
Пример \(\PageIndex{1}\): Расчет диаметра резистора: нить накала фары
Нить накала автомобильной фары изготовлена из вольфрама и имеет холодное сопротивление 0,350 Ом . Если нить представляет собой цилиндр длиной 4,00 см (можно свернуть в спираль для экономии места), то каков ее диаметр?
Стратегия
Мы можем изменить уравнение \(R=\frac{ρL}{A}\), чтобы найти площадь поперечного сечения \(A\) нити на основе данной информации. {\circ} C\) или меньше) удельное сопротивление \(\rho\) зависит от изменения температуры \(\Delta T\), как выражается в следующем уравнении \[\rho = \rho_{0} \left( 1 + \alpha \Delta T \right) , \label{20.4.2}\] где \(\rho_{0}\) — исходное удельное сопротивление и \(\alpha\) это
Материал | Коэффициент α (1/°C) |
---|
Обратите внимание, что \(\alpha\) для полупроводников, перечисленных в таблице, отрицательно, а это означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высокой температуре, потому что повышенное тепловое возбуждение увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшаться \(\rho\) с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.
Сопротивление объекта также зависит от температуры, так как \(R_{0}\) прямо пропорционально \(\rho\). Для цилиндра мы знаем \(R = \rho L / A\), и поэтому, если \(L\) и \(A\) не сильно меняются с температурой, \(R\) будет иметь ту же температурную зависимость как \(\ро\). (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на \(L\) и \(A\) примерно на два порядка меньше. чем на \(\rho\).) Таким образом, \[R = R_{0} \left( 1 + \alpha \Delta T \right) \label{20.4.3}\] есть температурная зависимость сопротивления объект, где \(R_{0}\) — исходное сопротивление, а \(R\) — сопротивление после изменения температуры \(\Delta T\). Многие термометры основаны на влиянии температуры на сопротивление. (См. рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для получения его температуры. Устройство маленькое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается. 9{\circ}C\right)\right] \\[4pt] &= 4,8 \Omega \end{align*}\]
Обсуждение
Это значение согласуется с примером сопротивления фары в 20.3.
ИССЛЕДОВАНИЯ PHET: СОПРОТИВЛЕНИЕ В ПРОВОДЕ
Узнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.
Рисунок \(\PageIndex{4}\): Сопротивление в проводеРезюме
- Сопротивление \(R\) цилиндра длиной \(L\) и площадью поперечного сечения \(A\) равно \(R = \frac{\rho L} {A}\), где \(\rho\) — удельное сопротивление материала.
- Значения \(\rho\) в таблице показывают, что материалы делятся на три группы: проводники, полупроводники и изоляторы .
- Температура влияет на удельное сопротивление; при относительно небольших изменениях температуры \(\Delta T\) удельное сопротивление равно \(\rho = \rho_{0}\left(1+\alpha\Delta T\right), где \(\rho_{0}\) равно исходное удельное сопротивление, а \(\alpha\) — температурный коэффициент удельного сопротивления.
- В таблице приведены значения \(\alpha\), температурного коэффициента удельного сопротивления.
- Сопротивление \(R\) объекта также зависит от температуры: \(R = R_{0} \left(1+\alpha \Delta T\right)\), где \(R_{0}\) исходное сопротивление, а \(R\) — сопротивление после изменения температуры.
Сноски
1 Значения сильно зависят от количества и типов примесей
2 Значения при 20°C.
Глоссарий
- удельное сопротивление
- внутреннее свойство материала, не зависящее от его формы или размера, прямо пропорциональное сопротивлению, обозначаемому ρ
- Температурный коэффициент удельного сопротивления
- эмпирическая величина, обозначаемая α , которая описывает изменение сопротивления или удельного сопротивления материала при температуре
Эта страница под названием 20. 3: Resistance and Resistivity распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.
- Наверх
- Была ли эта статья полезной?
- Тип изделия
- Раздел или Страница
- Автор
- ОпенСтакс
- Лицензия
- СС BY
- Версия лицензии
- 4,0
- Программа OER или Publisher
- ОпенСтакс
- Показать оглавление
- нет
- Теги
- удельное сопротивление
- сопротивление
- источник@https://openstax. org/details/books/college-physics
ФИЗИКА ПРОВОДНИКОВ И ИЗОЛЯТОРОВ
Том I — DC » ФИЗИКА ПРОВОДНИКОВ И ИЗОЛЯТОРОВ
Из здравого смысла следует знать, что жидкости текут по трубам большого диаметра легче, чем по трубам малого диаметра (если вам нужна практическая иллюстрация, попробуйте пить жидкость через соломинки разного диаметра). Тот же общий принцип справедлив для потока электронов через проводники: чем шире площадь поперечного сечения (толщина) проводника, тем больше места для протекания электронов и, следовательно, тем легче возникает поток (меньше сопротивление). .
Электрический провод обычно имеет круглое сечение (хотя есть несколько уникальных исключений из этого правила) и бывает двух основных разновидностей: одножильный и многожильный. Сплошной медный провод так и звучит: одна сплошная медная жила по всей длине провода. Многожильный провод состоит из меньших жил сплошной медной проволоки, скрученных вместе, чтобы сформировать один проводник большего размера. Самым большим преимуществом многожильного провода является его механическая гибкость, способность выдерживать многократные изгибы и скручивания намного лучше, чем сплошная медь (которая со временем имеет тенденцию к усталости и поломке).
Размер проволоки можно измерить несколькими способами. Мы могли бы говорить о диаметре провода, но поскольку на самом деле его поперечное сечение 90 607 площадь 90 608 имеет наибольшее значение для потока электронов, нам лучше обозначать размер провода с точки зрения площади.
Изображение поперечного сечения провода, показанное выше, конечно, нарисовано не в масштабе. Диаметр показан равным 0,1019 дюйма. Вычисляя площадь поперечного сечения по формуле Площадь = πr 2 , получаем площадь 0,008155 квадратных дюймов:
Это довольно небольшие числа для работы, поэтому размеры проводов часто выражаются в тысячных долях дюйма, или мил . Для проиллюстрированного примера мы бы сказали, что диаметр проволоки составляет 101,9 мил (0,1019 дюйма, умноженное на 1000). Мы также могли бы, если бы захотели, выразить площадь провода в квадратных милах, рассчитав это значение по той же формуле площади круга: Площадь = πr 2 :
Однако электрики и другие лица, часто занимающиеся размером проводов, используют другую единицу измерения площади, специально предназначенную для круглого поперечного сечения провода. Эта особая единица называется 9.0607 круговой мил (иногда сокращенно смил ). Единственная цель использования этой специальной единицы измерения состоит в том, чтобы исключить необходимость использования коэффициента π (3,1415927…) в формуле для расчета площади, а также необходимости вычислять проволоку 90 607 радиусом 90 608, когда вам дано 90 607 диаметра. . Формула для расчета площади круглого провода в милах очень проста:
Поскольку это единица измерения площади 90 607 90 608, математическая степень числа 2 все еще действует (удвоение ширины круга приведет к 90 608).0607 всегда увеличивает его площадь в четыре раза, независимо от того, какие единицы измерения используются, или если ширина этого круга выражается через радиус или диаметр). Чтобы проиллюстрировать разницу между измерениями в квадратных милах и измерениями в круговых милах, я сравню круг с квадратом, показав площадь каждой формы в обеих единицах измерения:
И для другого размера провода:
Очевидно, что круг данного диаметра имеет меньшую площадь поперечного сечения, чем квадрат, ширина и высота которого равны диаметру круга: это отражают обе единицы измерения площади. Однако должно быть ясно, что единица «квадратный мил» действительно приспособлена для удобного определения площади квадрата, а «круговой мил» приспособлена для удобного определения площади круга: соответствующая формула для каждого проще работать с. Следует понимать, что обе единицы действительны для измерения площади фигуры, какой бы формы она ни была. Преобразование между круговыми милами и квадратными милами представляет собой простое соотношение: существует π (3,1415927 . . .) квадратных милов на каждые 4 круговых мила.
Другой мерой площади поперечного сечения провода является калибр . Шкала датчика основана на целых числах, а не на дробных или десятичных дюймах. Чем больше номер калибра, тем тоньше провод; чем меньше номер калибра, тем толще проволока. Для тех, кто знаком с дробовиками, эта обратно пропорциональная шкала измерений должна показаться знакомой.
Таблица в конце этого раздела приравнивает калибр к диаметру в дюймах, круговым милам и квадратным дюймам для сплошной проволоки. Проволока большего размера достигает конца обычной шкалы калибра (которая, естественно, достигает максимума при значении 1) и представлена серией нулей. «3/0» — это еще один способ представления «000», и он произносится как «тройной долг». Опять же, те, кто знаком с дробовиками, должны знать терминологию, как бы странно это ни звучало. Чтобы еще больше запутать ситуацию, в мире используется более одного «стандарта» манометра. Для размеров электрических проводников American Wire Gauge (AWG), также известный как калибр Brown and Sharpe (B&S), является предпочтительной измерительной системой. В Канаде и Великобритании British Standard Wire Gauge (SWG) является законной системой измерения электрических проводников. В мире существуют другие системы измерения диаметра проволоки, такие как калибр стальной проволоки Stubs и калибр Steel Music Wire Gauge (MWG), но эти системы измерения применимы к неэлектрическому использованию провода.
Система измерения American Wire Gauge (AWG), несмотря на ее странности, была разработана с определенной целью: на каждые три деления шкалы сечения площадь провода (и вес на единицу длины) примерно удваивается. Это удобное правило, которое следует помнить при приблизительной оценке размера проволоки!
Для проводов очень больших размеров (толще 4/0) от системы калибров проводов обычно отказываются для измерения площади поперечного сечения в тысячах круговых мил (MCM), заимствуя старую римскую цифру «M» для обозначения кратности «тысяча» перед «CM» для «круговых мил». В следующей таблице размеров проводов не указаны размеры больше 4/0 калибра, потому что 9Сплошной медный провод 0607 становится непрактичным при таких размерах. Вместо этого предпочтительна конструкция из многожильного провода.
ПРОВОДНОЙ СТОЛ ДЛЯ ЖЕЛТЫХ КРУГЛЫХ МЕДНЫХ ПРОВОДОВ
Размер Диаметр Площадь поперечного сечения Вес AWG дюймы окруж. мил кв. дюйм фунт/1000 футов ================================================== ============== 4/0 -------- 0,4600 ------- 211 600 ------ 0,1662 ------ 640,5 3/0 -------- 0,4096 ------- 167 800 ------ 0,1318 ------ 507,92/0 -------- 0,3648 ------- 133 100 ------ 0,1045 ------ 402,8 1/0 -------- 0,3249 ------- 105 500 ----- 0,08289 ------ 319,5 1 -------- 0,2893 ------- 83 690 ------ 0,06573 ------ 253,5 2 -------- 0,2576 ------- 66 370 ------ 0,05213 ------ 200,9 3 -------- 0,2294 ------- 52 630 ------ 0,04134 ------ 159,3 4 -------- 0,2043 ------- 41 740 ------ 0,03278 ------ 126,4 5 -------- 0,1819 ------- 33 100 ------ 0,02600 ------ 100,2 6 -------- 0,1620 ------- 26 250 ------ 0,02062 ------ 79.46 7 -------- 0,1443 ------- 20 820 ------ 0,01635 ------ 63,02 8 -------- 0,1285 ------- 16 510 ------ 0,01297 ------ 49,97 9 -------- 0,1144 ------- 13 090 ------ 0,01028 ------ 39,63 10 -------- 0,1019 ------- 10 380 ------ 0,008155 ----- 31,43 11 -------- 0,09074 ------- 8,234 ------ 0,006467 ----- 24,92 12 -------- 0,08081 ------- 6 530 ------ 0,005129 ----- 19,77 13 -------- 0,07196 ------- 5,178 ------ 0,004067 ----- 15,68 14 -------- 0,06408 ------- 4,107 ------ 0,003225 ----- 12,43 15 -------- 0,05707 ------- 3,257 ------ 0,002558 ----- 90,858 16 -------- 0,05082 ------- 2,583 ------ 0,002028 ----- 7,818 17 -------- 0,04526 ------- 2,048 ------ 0,001609 ----- 6,200 18 -------- 0,04030 ------- 1,624 ------ 0,001276 ----- 4,917 19 -------- 0,03589 ------- 1 288 ------ 0,001012 ----- 3,899 20 -------- 0,03196 ------- 1,022 ----- 0,0008023 ----- 3,092 21 -------- 0,02846 ------- 810,1 ----- 0,0006363 ----- 2,452 22 -------- 0,02535 ------- 642,5 ----- 0,0005046 ----- 1,945 23 -------- 0,02257 ------- 509. 5 ----- 0,0004001 ----- 1,542 24 -------- 0,02010 ------- 404,0 ----- 0,0003173 ----- 1,233 25 -------- 0,01790 ------- 320,4 ----- 0,0002517 ----- 0,9699 26 -------- 0,01594 ------- 254,1 ----- 0,0001996 ----- 0,7692 27 -------- 0,01420 ------- 201,5 ----- 0,0001583 ----- 0,6100 28 -------- 0,01264 ------- 159,8 ----- 0,0001255 ----- 0,4837 29 -------- 0,01126 ------- 126,7 ----- 0,00009954 ---- 0,3836 30 -------- 0,01003 ------- 100,5 ----- 0,00007894 ---- 0,3042 31 ------- 0,008928 ------- 79,70 ----- 0,00006260 ---- 0,2413 32 ------- 0,007950 ------- 63,21 ----- 0,00004964 ---- 0,1913 33 ------- 0,007080 ------- 50,13 ----- 0,00003937 ---- 0,1517 34 ------- 0,006305 ------- 39,75 ----- 0,00003122 ---- 0,1203 35 ------- 0,005615 ------- 31,52 ----- 0,00002476 — 0,09542 36 ------- 0,005000 ------- 25,00 ----- 0,00001963 — 0,07567 37 ------- 0,004453 ------- 19,83 ----- 0,00001557 — 0,06001 38 ------- 0,003965 ------- 15,72 ----- 0,00001235 — 0,04759 39------- 0,003531 ------- 12,47 ---- 0,000009793 — 0,03774 40 ------- 0,003145 ------- 9,888 ---- 0,000007766 - 0,02993 41 ------- 0,002800 ------- 7,842 ---- 0,000006159 — 0,02374 42 ------- 0,002494 ------- 6,219 ---- 0,000004884 — 0,01882 43 ------- 0,002221 ------- 4,932 ---- 0,000003873 — 0,01493 44 ------- 0,001978 ------- 3,911 ---- 0,000003072 — 0,01184
Для некоторых сильноточных приложений требуются проводники с размерами, превышающими практический предел размера круглого провода. В этих случаях толстые стержни из твердого металла, называемые 9В качестве проводников используются шины 0607 . Шины обычно изготавливаются из меди или алюминия и чаще всего неизолированы. Они физически поддерживаются вдали от любого каркаса или конструкции, удерживающей их, с помощью опорных стоек изолятора. Хотя квадратное или прямоугольное поперечное сечение очень распространено для формы шинопровода, также используются и другие формы. Площадь поперечного сечения шин обычно измеряется в милах круглой формы (даже для квадратных и прямоугольных шин!), скорее всего, для удобства возможности напрямую приравнять размер шины к круглому проводу.
- ОБЗОР:
- Электроны проходят через провода большого диаметра легче, чем через провода малого диаметра, из-за большей площади поперечного сечения, в которой они могут двигаться.
- Вместо того, чтобы измерять размеры небольших проводов в дюймах, часто используется единица «мил» (1/1000 дюйма).
- Площадь поперечного сечения провода может быть выражена в квадратных единицах (квадратных дюймах или квадратных милах), круговых милах или в «калибровочной» шкале.