Как рассчитать трансформатор. Какие формулы используются для расчета обмоток и сердечника. Какие особенности нужно учитывать при проектировании трансформатора. Как правильно выбрать магнитопровод и рассчитать количество витков.
Основы теории трансформаторов
Трансформатор — это статическое электромагнитное устройство, преобразующее переменный ток одного напряжения в переменный ток другого напряжения. Принцип действия трансформатора основан на явлении электромагнитной индукции, открытом Майклом Фарадеем.
Основными элементами трансформатора являются:
- Магнитопровод (сердечник) — замкнутая магнитная цепь из ферромагнитного материала
- Первичная обмотка — создает переменный магнитный поток в сердечнике
- Вторичная обмотка — в ней наводится ЭДС под действием переменного магнитного потока
Как работает трансформатор? При подключении первичной обмотки к источнику переменного напряжения в ней возникает переменный ток, создающий переменный магнитный поток в сердечнике. Этот поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС.
Основные формулы для расчета трансформатора
Расчет трансформатора начинается с определения его полной мощности и выбора сердечника. Основные формулы:
- Мощность трансформатора: P = U1 * I1 = U2 * I2
- Коэффициент трансформации: K = U1 / U2 = w1 / w2
- Число витков на 1 В: w0 = 45 / √S
- Сечение сердечника: S = √P
Где U1, U2 — напряжения обмоток, I1, I2 — токи, w1, w2 — число витков, S — сечение сердечника, P — мощность.
Выбор сердечника трансформатора
Сердечник трансформатора выбирается исходя из требуемой мощности. Чем больше мощность, тем больше должно быть сечение магнитопровода. Основные типы сердечников:
- Ш-образные (ШЛ)
- П-образные (ПЛ)
- Кольцевые (тороидальные)
Для мощностей до 100 Вт обычно используются Ш-образные сердечники, от 100 до 1000 Вт — П-образные. Тороидальные сердечники дают наименьшие потери, но сложнее в намотке обмоток.
Расчет числа витков обмоток трансформатора
Число витков обмоток рассчитывается по формулам:
- Первичная обмотка: w1 = U1 * w0
- Вторичная обмотка: w2 = U2 * w0
Где w0 — число витков на 1 В, U1 и U2 — напряжения обмоток. Для маломощных трансформаторов рекомендуется увеличивать расчетное число витков первичной обмотки на 5-10% для компенсации падения напряжения под нагрузкой.
Выбор сечения провода для обмоток
Сечение провода обмоток выбирается исходя из допустимой плотности тока. Для трансформаторов малой и средней мощности рекомендуемая плотность тока составляет 2-4 А/мм². Диаметр провода рассчитывается по формуле:
d = √(4I / πj)
Где I — ток обмотки, j — допустимая плотность тока. Для первичной обмотки можно использовать меньшую плотность тока, для вторичных — большую, так как они лучше охлаждаются.
Особенности расчета трансформаторов разных типов
При расчете трансформаторов различного назначения нужно учитывать ряд особенностей:
- Силовые трансформаторы большой мощности требуют более точного расчета магнитной системы
- В импульсных трансформаторах важно учитывать индуктивность рассеяния
- Высокочастотные трансформаторы нуждаются в специальных ферритовых сердечниках
- Сварочные трансформаторы должны иметь увеличенное рассеяние и короткую характеристику
Правильный учет этих особенностей позволяет спроектировать трансформатор с оптимальными параметрами для конкретного применения.
Проверка и испытания готового трансформатора
После изготовления трансформатор должен пройти ряд проверок:
- Измерение сопротивления обмоток
- Проверка коэффициента трансформации
- Измерение тока холостого хода
- Испытание электрической прочности изоляции
- Проверка работы под нагрузкой
Важно измерить напряжения на вторичных обмотках при номинальной нагрузке — они не должны отличаться от расчетных более чем на 5%. Также необходимо проконтролировать нагрев трансформатора при длительной работе.
Оптимизация конструкции трансформатора
Для повышения эффективности трансформатора можно применить следующие меры:
- Использование высококачественных электротехнических сталей для сердечника
- Применение секционированных обмоток для снижения емкостных потерь
- Оптимизация воздушных зазоров в магнитопроводе
- Использование качественных изоляционных материалов
- Обеспечение эффективного охлаждения обмоток и сердечника
Расчет трансформатора — правила, формулы и пример
Каждый электроприбор характерен номинальной электрической мощностью. Она обеспечивается источником питания. Он может располагаться либо внутри электроприбора, либо снаружи как внешнее устройство. Наглядный пример — ноутбук, телефон и многие другие приборы. В них содержится батарея, от которой питается устройство в автономном режиме. Но ее ресурс ограничен, и когда он исчерпывается, прибор подключается через адаптер к электросети 220 В.
Некоторые батареи обеспечивают напряжение всего лишь в 3–5 вольт. Поэтому адаптер служит для того, чтобы напряжение уменьшилось и стало равным батарейным параметрам. Основную функцию в изменении величины напряжения выполняют трансформаторы. Эта статья будет полезна тем читателям, у которых появится желание своими руками изготовить источник питания с трансформатором для тех или иных целей.
Немного теории
Напомним вкратце о том, как трансформатор устроен и что в нем происходит. Довольно давно, если судить по меркам человеческой жизни, было открыто явление электромагнитной индукции. Оно основано на принципиальном отличии электрических свойств прямого проводника от витка, если по ним пропускать один и тот же переменный ток. Так появился параметр индуктивности. С каждым новым витком индуктивность увеличивается. Дополнительное ее увеличение достигается заполнением внутреннего пространства витков материалом с магнитными свойствами (сердечником).
Однако влияние сердечника на силу тока ограничено. Как только он полностью намагничивается, эффект от его использования исчезает.
- Граничное состояние сердечника, соответствующее полному его намагничиванию, называется насыщением.
Витки, расположенные поверх сердечника, называются обмоткой. Если на нем расположены две одинаковые обмотки, но переменное напряжение подается только на одну из них (первичную), на выводах другой обмотки (вторичной) будет напряжение по частоте и величине такое же, как и на первой обмотке. В этом проявляется трансформация электроэнергии, а само устройство называется трансформатором. Если между обмотками существует электрический контакт, устройство называется автотрансформатором.
- Основа свойств трансформатора — это его сердечник (магнитопровод). Поэтому расчет трансформатора всегда выполняется в связи с материалом и формой магнитопровода.
Выбор материала определяют вихревые токи и потери, связанные с ними. Они увеличиваются с частотой напряжения на выводах первичной обмотки. На низких частотах (50–100 Гц) применяются пластины из трансформаторной стали. На более высоких частотах (единицы килогерц) — пластины из специального сплава, например, пермаллоя. Десятки и сотни килогерц — это область применения ферритовых сердечников. Виды (форма и размеры, особенно сечение по витку) магнитопровода определяют величину мощности, которую можно получить во вторичной обмотке.
ВИды магнитопроводов у трансформаторов Броневые, тороидальный и стержневой трансформаторыВыбор магнитопровода
Геометрические пропорции промышленно выпускаемых сердечников стандартны. Поэтому их выбирают по размерам сечения внутри витка. Еще один параметр, который влияет на выбор магнитопровода — это индуктивность рассеяния. Она меньше у броневых и тороидальных конструкций. Что-либо вычислять не стоит — в многочисленных справочниках приводятся таблицы, а в интернете на тематических сайтах их аналоги.
Например, необходимо присоединить к сети нагрузку мощностью 100 Вт 12 В. По базовой таблице, показанной далее, выбирается типоразмер магнитопровода. Но учитываем то, что мощность ВТ меньше, чем ВА плюс неполная нагрузка для надежности. Поэтому используем коэффициент 1,43. Искомая мощность и типоразмер получатся как произведение, т.е. 143 ВА. По таблице выбираем ближайшее большее значение габаритной мощности и магнитопровод:
Расчетные данные ряда трансформаторов броневого типаПример расчета
Выбираем 150 ВА и ШЛ25х32. В таблице также приведено рекомендованное число витков на 1 вольт — W0: 3,9. Следовательно, число витков W1 первичной обмотки будет равно произведению напряжения сети на W0:
W1=220*3,9=858.
Раз число витков на 1 вольт известно, легко рассчитать и вторичную обмотку. В рассматриваемом случае три витка мало, а четыре много. Чтобы не ошибиться, наматываем три витка и оставляем запас провода для добавления после испытания трансформатора под нагрузкой. Для провода сетевой обмотки диаметр рассчитываем, используя силу тока. Ее определяем на основе мощности в первичной обмотке и сетевого напряжения. В сетевой обмотке расчетная сила тока составит:
150/220=0,7 А
Во вторичной обмотке сила тока составит:
100/12=8,3 А
Затем по таблице выбираем диаметр провода при плотности тока 2,5 А/мм кв:
ТаблицаДля первичной обмотки диаметр провода получается 0,59 мм, для вторичной — 2,0 мм. После этого надо выяснить, помещаются ли обмотки в окна магнитопровода. Это несложно определить на основе числа витков и диаметров проводов с учетом толщины каркасов катушек и слоев дополнительной изоляции. Рекомендуется сделать эскиз для наглядного расчета.
Если вторичных обмоток несколько, должны быть известны мощности для каждой из них. Они суммируются для получения параметров первичной обмотки. Затем расчет выполняется аналогично рассмотренному выше примеру. Но определение токов делается по мощности каждой вторичной обмотки.
Расчетные данные в виде таблиц приведены в справочниках для всех типов сердечников, но при определенных частотах напряжений первичной обмотки:
Расчетные данные ряда трансформаторов стержневого типаДля рассматриваемой нагрузки 100 Вт выбираем ПЛ20х40-50
Если требуемые параметры не совпадают с табличными значениями, придется использовать формулы:
Формула Формула
S0 – площадь окна в магнитопроводе,
Sc – сечение материала магнитопровода по витку,
Рг – габаритная мощность,
kф – коэффициент формы напряжения на первичной обмотке,
f – частота напряжения на первичной обмотке,
j – плотность тока в проводе обмотки,
Bm – индукция насыщения магнитопровода,
k0 – коэффициент заполнения окна магнитопровода,
kс – коэффициент заполнения стали.
Упрощенные формулы справедливы только для тех случаев, которые эти упрощения определяют. Поэтому они не могут охватить все возможные ситуации и не будут обеспечивать приемлемую точность в большинстве из них.
Похожие статьи:Расчет трансформатора
Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения. Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания. Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.
Трансформатор
Принцип действия и разновидности трансформаторов
Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.
Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).
Типы сердечников
Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.
Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:
- броневые;
- стержневые;
- кольцевые.
Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.
Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.
Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.
Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.
Виды магнитопроводов
Ниже приведена методика расчета трансформатора, где показано:
- как рассчитать мощность трансформатора;
- как выбрать сердечник;
- как определить количество витков и сечение (диаметр) проводов обмоток;
- как собрать и проверить готовую конструкцию.
Исходные данные, необходимые для расчета
Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:
- до 50 Вт – КПД 0.6;
- от 50 Вт до 100 Вт – КПД 0.7;
- от 100 Вт до 150 Вт – КПД 0.8;
- выше 150 Вт – КПД 0.85.
Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.
Выбор магнитопровода сердечника
Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.
Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:
Умножая полученное значение на КПД, завершаем расчет габаритной мощности.
Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:
S=√P.
Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.
Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.
Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.
Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.
Трансформатор телевизора УЛПЦТИ
Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.
Расчет количества витков и диаметра проводов
Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:
где k – коэффициент, зависящий от формы магнитопровода и его материала.
На практике с достаточной точностью приняты следующие значения коэффициента:
- 60 – для магнитопровода из Ш,- и П-образных пластин;
- 50 – для ленточных магнитопроводов;
- 40 – для тороидальных трансформаторов.
Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.
Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:
где U – значение напряжения холостого хода на обмотке.
У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).
Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:
Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.
Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.
После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:
Для тороидальных сердечников c внутренним диаметром D формула имеет вид:
Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0. 3. Если это значение больше, то разместить обмотку не получится.
Тороидальный трансформатор
Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%. Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично. Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.
Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.
Изготовление обмоток
Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.
Сборный каркас обмотки
Пластиковый каркас
Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту. Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки. Особенно этим страдает лента для уплотнения сантехнических изделий.
Фторопластовая лента
В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.
Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.
Обратите внимание! При пайке выводов нельзя оставлять на месте спайки острые концы проводов или застывшего припоя. Такие места нужно аккуратно обрезать бокорезами.
Сборка трансформатора
При сборке нужно учитывать следующие нюансы:
- Пакет сердечника должен собираться плотно, без щелей и зазоров;
- Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
- Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
- Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
- Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.
Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.
При этом можно добиться значительного понижения постороннего звука.
Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.
Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.
Измерение холостого тока
Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут. Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах. Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.
Видео
Оцените статью:Определение коэффициента трансформации силовых трансформаторов | Полезные статьи
Определение коэффициента трансформации силовых трансформаторов производят для определения соответствия трансформатора его паспортным данным. Чаще всего определение коэффициента трансформации проводится после ремонта трансформатора для проверки правильного соотношения витков обмоток и отсутствия между витками коротких замыканий. Методика такой проверки изложена в ГОСТ 3484.1-88. В настоящей статье мы опишем эту процедуру более популярным языком, в отличии от сухого и выверенного «гостовского» изложения.
Коэффициент трансформации трансформатора
Коэффициент трансформации трансформатора – это технический термин с конкретным физическим содержанием. Для дальнейшего изложение напомним читателям идеальную схему трансформатора, как физического устройства. Рисунок 1.
Коэффициентом трансформации Кт называется отношение напряжения первичной обмотки к напряжению вторичной обмотки при холостом режиме работы трансформатора. Прежде, чем записать соответствующую формулу, напомним, какой режим работы трансформатора называется холостым. На Рис.2 размещена схема, иллюстрирующая холостой режим, а величина U2ном – напряжение холостого хода вторичной обмотки трансформатора.
Из приведенной выше формулы понятно, что при Кт >1 трансформатор является понижающим, а при Кт <1 повышающим.
На примере Рис.2 проиллюстрировано понятие коэффициента трансформации однофазного трансформатора. В отличии от однофазного у многофазного трансформатора есть несколько пар первичных и вторичных обмоток. Кт для каждой пары (фазы) определяется аналогично рассмотренному однофазному трансформатора. При этом коэффициент трансформации каждой фазы должны быть одинаковы с допускаемой погрешностью 2%.
Методика определения коэффициента трансформации
Определение коэффициента трансформации может быть проведено по следующими методикам:
- двух вольтметров;
- моста переменного тока
- моста постоянного тока;
- образцового трансформатора.
ГОСТ 3484.1 — 88 указывает на измерение коэффициента трансформации с помощью моста, как на более предпочтительное, но на практике чаще применяют методику двух вольтметров. При этом ГОСТ оговаривает, что класс применяемых вольтметров должен быть не ниже 0,2. Опишем методику двух вольтметров на примере схемы однофазного трансформатора на Рис.3.
- Обесточить трансформатор.
- Перевести трансформатор в режим холостого хода, отключив нагрузку в нагрузочной цепи.
- К выводам обеих обмоток подключить вольтметры соответствующего класса точности.
- К обмотке более высокого напряжения подключить питание. Напряжение питания не должно превышать номинальное, но и не должно быть ниже 1% от номинального.
- Снять показания вольтметров.
- Произвести расчёт Кт по формуле, приведенной выше.
Для многофазных трансформаторов схемы подключения вольтметров и расчёт Кт фаз может быть сложнее в зависимости от сочетания схем соединений первичных и вторичных обмоток (звезда, треугольник, зигзаг).
КПД трансформатора: способы определения и формулы
Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.
Описание и принцип работы трансформатора
Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.
Существуют следующие типы устройств:
- силовые;
- измерительные;
- малой мощности;
- импульсные;
- пик-трансформаторы.
Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.
Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.
Виды потерь в трансформаторе
Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.
В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.
Так, в аппарате присутствуют следующие потери:
- электрические, в меди обмоток;
- магнитные, в стали сердечника.
Энергетическая диаграмма и Закон сохранения энергии
Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .
Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:
P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)
где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.
Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)
Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).
Определение коэффициента полезного действия
С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:
Суммарная мощность, Вт | Коэффициент полезного действия |
---|---|
10-20 | 0,8 |
20-40 | 0,85 |
40-100 | 0,88 |
100-300 | 0,92 |
Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.
Определение КПД методом непосредственных измерений
Формулу для вычисления КПД можно представить в нескольких вариантах:
(3)
Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.
Следующее выражение определяет значение полезной мощности:
P2=U2*J2*cosφ2, (4)
где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.
Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:
(5)
Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:
(6)
В свою очередь:
(7)
где rmp — активное обмоточное сопротивление.
Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:
β=J2/J2н, (8)
где J2н — номинальный ток вторичной обмотки.
Отсюда, запишем выражения для определения тока вторичной обмотки:
J2=β*J2н(9)
Если подставить данное равенство в формулу (5), то получится следующее выражение:
(10)
Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.
Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.
Определение КПД косвенным методом
Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.
Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:
η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)
Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.
Интересное видео: КПД трансформатора 100%
расчёт(формулы) и от чего зависит
КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.
Общие сведения о трансформаторах
Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.
Аппарат состоит из следующих основных элементов:
- первичной и вторичной обмоток;
- сердечника, вокруг которого навиты обмотки.
Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.
Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.
Что такое КПД трансформатора и от чего зависит
Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.
Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.
Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:
- электрического – в проводниках катушек;
- магнитного – в материале сердечника.
Величина указанных потерь при проектировании устройства зависит от следующих факторов:
- габаритных размеров устройства и формы магнитной системы;
- компактности катушек;
- плотности составленных комплектов пластин в сердечнике;
- диаметра провода в катушках.
Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.
В процессе эксплуатации эффективность аппарата определяется:
- поданной нагрузкой;
- диэлектрической средой – веществом, использованным в качестве диэлектрика;
- равномерностью подачи нагрузки;
- температурой масла в агрегате;
- степенью нагрева катушек и сердечника.
Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.
Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.
Методы определения КПД
КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.
Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.
Непосредственное измерение
Формула для вычисления данного показателя может быть представлена в нескольких выражениях:
ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,
в которой:
- ɳ – значение КПД;
- Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
- ΔР – величина суммарных мощностных потерь.
Из указанной формулы видно, что значение показателя КПД не может превышать единицу.
После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:
ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,
в которой:
- U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
- Робм и Рс – величина потерь в обмотках и сердечнике.
Представленная формула содержится в ГОСТе, описывающем определение данного показателя.
Расчёты КПДОпределение косвенным методом
Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.
Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.
Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14):Открыть файл
Задачи на тему «Трансформатор» с решением
Трансформатор – устройство для изменения напряжения или тока. В сегодняшней статье рассмотрим несколько простых задач на расчет трансформаторов.
Подписывайтесь на нас в телеграме, чтобы не пропустить ничего важного. А если хотите получить скидку – загляните на наш второй канал с акциями и бонусами для клиентов.
Задачи на расчет трансформаторов
Специально для тех, кто не знает, как подступиться к задачам по физике, мы подготовили памятку и собрали вместе более 40 формул по разным темам.Задача на трансформатор №1
Условие
Определите напряжение на концах первичной обмотки трансформатора,имеющей N1=2000 витков, если напряжение на концах вторичной обмотки, содержащей N2=5000 витков, равно 50 В. Активными сопротивлениями обмоток трансформатора можно пренебречь.
Решение
Применим форулу для коэффициента трансформации:
k=N1N2=U1U2
Из данной формулы следует, что:
U1=U2·N1N2
Подставим значения и вычислим:
U1=50·20005000=20 В
Ответ: 20 В.
Задача на трансформатор №2
Условие
Первичная обмотка трансформатора находится под напряжением 220 В, по ней проходит ток 0,5 А. На вторичной обмотке напряжение составляет 9,5 В, а сила тока равна 11 А. Определите коэффициент полезного действия трансформатора.
Решение
Формула для коэффициента полезного действия трансформатора:
η=P2P1·100%
Здесь P=UI – мощность тока в обмотке.
Возьмем данные из условия и применим указанную формулу:
η=U2I2U1I1·100%η=9,5·11220·0,5·100%=95%
Ответ: 95%
Задача на трансформатор №3
Условие
Напряжение на первичной обмотке понижающего трансформатора 220 В, мощность 44 Вт. Определите силу тока во вторичной обмотке, если отношения числа витков обмоток равно 5. Потерями энергии можно пренебречь
Решение
Напряжение на вторичной обмотке будет равно:
U2=U1kU2=2205=44 В
Если считать, что потерь энергии нет, то мощность во вторичной обмотке будет такая же, как и в первичной:
I2=P2U2=44 Вт44 В=1 А
Ответ: 1А
При решении задач не забывайте проверять размерности величин!Задача на трансформатор №4
Условие
Понижающий трансформатор включен в сеть с напряжением 1000 В и потребляет от сети мощность, равную 400 Вт. Каков КПД трансформатора, если во вторичной обмотке течет ток 3,8 А, а коэффициент трансформации равен 10?
Решение
Сначала определим напряжение на вторичной обмотке трансформатора:
U2=U1k=100010=100 В
Запишем формулу для КПД трансформатора и рассчитаем:
η=P2P1·100%=U2I2P1·100%η=100·3,8400·100%=95%
Ответ: 95%
Задача на трансформатор №5
Условие
Вторичная обмотка трансформатора, имеющая 95 витков, пронизывается магнитным потоком, изменяющимся со временем через один виток по закону Ф=0,01sin100πt. Напишите формулу, выражающую зависимость ЭДС во вторичной обмотке от времени.
Решение
По закону электромагнитной индукции:
ε=-NdФdt
Продифференцируем магнитный поток по времени:
dФdt=d(0,01sin100πt)dt=0,01·100π·cos100πt=πcos100πt
Подставим результат в формулу для ЭДС:
ε=-Nπcos(100πt)
От минуса в данном выражении можно избавиться с помощью формул тригонометрии. Сделаем это и запишем окончательный результат:
ε=Nπsin(100πt-π2)=95πsin(100πt-π2)
Ответ: 95πsin(100πt-π2)
Вопросы на тему «Трансформаторы»
Вопрос 1. Что такое трансформатор?
Ответ. Трансформатор – статическое устройство, имеющее две или более связанные обмотки на магнитопроводе. Трансформатор предназначен для преобразования одной величины напряжения и тока в другое без изменения частоты посредством электромагнитной индукции.
Основное назначение трансформаторов: изменять напряжение переменного тока.Вопрос 2. Где используются трансформаторы?
Ответ. Трансформатор – очень распространенное устройство в электронике и электротехнике. Трансформаторы используются:
- В сетях передачи электроэнергии.
- В радиоэлектронных приборах (услилители низкой частоты и т.д.)
- В источниках электропитания практически всех бытовых приборов.
Вопрос 3. Какие бывают трансформаторы?
Ответ. Трансформаторы делятся на:
- силовые;
- сварочные;
- измерительные;
- импульсные;
- разделительные;
- согласующие и т.д.
Помимо этого трансформаторы разделяют по числу фаз: однофазные, двухфазные, трехфазные и многофазные.
Вопрос 4. Из чего состоит простейший трансформатор?
Ответ. Основными элементами любого трансформатора являются изолированные обмотки, намотанные на сердечник.
Вопрос 5. Когда изобрели трансформатор?
Ответ. Прообразом трансформатора считается индукционная катушка француза Г. Румкорфа, представленная в 1848-м. В 1876 году русский электротехник П. Н. Яблочков запатентовал трансформатор переменного тока с разомкнутым сердечником. Затем английские братья Гопкинсон, а также румыны К. Циперановский и О. Блати доработали устройство, добавив замкнутый магнитопровод. В таком виде конструкция трансформатора остается актуальной и по сей день.
В основе работы трансформатора лежит явление электромагнитной индукции, открытое Майклом Фарадеем.Проблемы с учебой? Обращайтесь в сервис помощи студентам в любое время!
Как узнать мощность трансформатора?
Определение мощности силового трансформатора
Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.
Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.
Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.
Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.
Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.
Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.
Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.
P=Uн * Iн
,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.
Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.
Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».
Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.
При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.
Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.
Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.
Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.
,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.
После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.
Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.
В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.
Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).
Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.
Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Формулы и уравнения трансформатора — Электротехника
Формулы и уравнения электрического трансформатора
Следующие параметры могут быть рассчитаны с использованием основных формул, уравнений и функций электрического трансформатора при проектировании и анализе цепей и сетей, связанных с трансформаторами.
ЭДС, индуцированная в первичной и вторичной обмотках :Где
- E 1 = ЭДС, индуцированная в первичной обмотке
- E 2 = ЭДС, индуцированная во вторичной обмотке
- N 1 = число число витков первичной обмотки
- N 2 = число витков вторичной обмотки
- f = частота сети
- φ м = максимальный поток в сердечнике
- B м = максимальная плотность потока
- A = Площадь сердечника
Соответствующий пост: Уравнение ЭДС трансформатора
Коэффициент трансформации напряжения:Где
- K = коэффициент трансформации напряжения трансформатора
- В 1 I 1 = Первичное напряжение и ток соответственно
- В 2 I 2 = Вторичное напряжение и ток соответственно
Где
- R 1 ‘ = Сопротивление первичной обмотки во вторичной обмотке
- 78 = Сопротивление вторичной обмотки первичной обмотки
- R 01 = Эквивалентное сопротивление трансформатора со стороны первичной обмотки
- R 02 = Эквивалентное сопротивление трансформатора со стороны вторичной обмотки
- R 1 = Первичная обмотка Сопротивление
- R 2 = Сопротивление вторичной обмотки
Где
- X 1 = Реактивное сопротивление первичной утечки
- X 2 = Реактивное сопротивление вторичной утечки L1 = Самоиндуцированная ЭДС в первичной обмотке 9001 5 e L2 = Самоиндуцированная ЭДС во вторичной обмотке
Где
- X 1 ‘ = Реактивность вторичной обмотки
- X 2 ‘ = Реактивное сопротивление вторичной обмотки в первичной обмотке
- X 01 = Эквивалентное реактивное сопротивление трансформатора со стороны первичной обмотки
- X 02 = Эквивалентное реактивное сопротивление трансформатора со стороны вторичной обмотки
Где
- Z 1 = Импеданс первичной обмотки
- Z 2 = Импеданс вторичной обмотки
- 01 7 Z = Эквивалентное сопротивление трансформатора от первичной обмотки
- 900 07 Z 02 = Эквивалентное сопротивление трансформатора со стороны вторичной обмотки
Уравнения входного и выходного напряжения
Входное и выходное напряжение трансформатора можно найти с помощью следующих уравнений.
Потери в трансформаторе: Потери в сердечнике / железе
Потери внутри сердечника;
Из-за намагничивания и размагничивания сердечника
Из-за наведенной ЭДС, возникающей внутри сердечника, возникает вихревой ток.
Где
- W h = потеря гистерезиса
- W e = потеря вихревого тока
- η = коэффициент гистерезиса Штейнмеца
- K e = постоянная вихревого тока
- B max = максимум магнитный поток
- f = частота потока
- V = объем сердечника
- t = толщина ламинации
Потери из-за сопротивления обмотки
Регулировка напряжения трансформатора:Когда входное напряжение на первичной обмотке трансформатора поддерживается постоянным, а нагрузка подключена к вторичной клемме, вторичное напряжение уменьшается из-за внутреннего импеданса.
Сравнение вторичного напряжения холостого хода с вторичным напряжением полной нагрузки называется регулированием напряжения трансформатора.
- 0 В 2 = Вторичное напряжение без нагрузки
- В 2 = Вторичное напряжение при полной нагрузке
- В 1 = Без нагрузки Первичное напряжение
- В 2 ‘ = В 2 / K = Полная нагрузка Вторичное напряжение с первичной стороны
Регулировка « вниз» обычно обозначается как , регулировка
- Регулирование в терминах первичного напряжения:
- Регулировка, когда вторичное напряжение предполагается постоянным
После подключения нагрузки необходимо увеличить первичное напряжение с В 1 до В 1 ‘ , где регулирование напряжения определяется по формуле:
Сопротивление, реактивное сопротивление и импеданс в процентах:Эти величины измеряются при токе полной нагрузки с падением напряжения и выражается в процентах от нормального напряжения.
- Сопротивление в процентах при полной нагрузке:
- Реактивное сопротивление в процентах при полной нагрузке:
- Сопротивление в процентах при полной нагрузке:
КПД трансформатора определяется делением выходной мощности на входную. Часть входной мощности тратится на внутренние потери трансформатора.
Общие потери = потери меди + потери железа
КПД при любой нагрузке:КПД трансформатора при фактической нагрузке можно определить как;
Где
x = Отношение фактической нагрузки к полной нагрузке, кВА
Эффективность в течение всего дня:Отношение энергии, подаваемой в киловатт-часах (кВтч) к потребляемой мощности в кВтч трансформатора для 24 часа называется круглосуточной эффективностью.
Условия максимальной эффективности:Потери в меди должны быть равны потерям в стали, которые представляют собой комбинацию потерь на гистерезис и потерь на вихревые токи.
Потери меди = потеря железа
W cu = W i
Где
- W i = W h + W e
- W cu = I 1 2 R 01 = I 2 2 R 02
Ток нагрузки, необходимый для максимального КПД трансформатора, составляет;
Связанные формулы и уравнения Сообщений:
Как рассчитать коэффициент трансформации трансформатора
Обновлено 28 декабря 2020 г.
Автор: S.Hussain Ather
Переменный ток (AC) в большинстве бытовых приборов в вашем доме может поступать только от линий электропередач, которые посылают постоянный ток (DC) через трансформатор. Через все различные типы тока, который может протекать через цепь, помогает иметь возможность управлять этими электрическими явлениями. Во всех случаях использования трансформаторов для изменения напряжения в цепях трансформаторы в значительной степени зависят от своего коэффициента трансформации.
Расчет коэффициента витков трансформатора
Коэффициент витков трансформатора — это деление числа витков в первичной обмотке на число витков во вторичной обмотке по уравнению
T_R = \ frac {N_P } {N_S}
Это соотношение также должно равняться напряжению первичной обмотки, деленному на напряжение вторичной обмотки, как указано как В p / В s .Первичная обмотка относится к активной катушке индуктивности, элемент схемы, который индуцирует магнитное поле в ответ на поток заряда трансформатора, а вторичная обмотка — это катушка индуктивности без питания.
Эти соотношения верны при предположении, что фазовый угол первичной обмотки равен фазовым углам вторичной обмотки по уравнению Φ P = Φ S . Этот первичный и вторичный фазовый угол описывает, как ток, который чередуется между прямым и обратным направлениями в первичной и вторичной обмотках трансформатора, синхронизируется друг с другом.
Для источников переменного напряжения, используемых с трансформаторами, форма входящего сигнала является синусоидальной, то есть формой, которую создает синусоидальная волна. Коэффициент трансформации трансформатора показывает, насколько изменяется напряжение через трансформатор при прохождении тока от первичной обмотки ко вторичной обмотке.
Также обратите внимание, что слово «соотношение» в этой формуле относится к дроби , а не является фактическим соотношением. Доля 1/4 отличается от соотношения 1: 4. В то время как 1/4 — это одна часть целого, разделенная на четыре равные части, соотношение 1: 4 означает, что для одного чего-то есть четыре других.«Передаточное число» в соотношении витков трансформатора — это дробная часть, а не соотношение в формуле коэффициента трансформации трансформатора.
Коэффициент трансформации трансформатора показывает, что относительная разница напряжения зависит от количества катушек, намотанных вокруг первичной и вторичной частей трансформатора. Трансформатор с пятью обмотками первичной обмотки и 10 обмотками вторичной обмотки разрезает источник напряжения пополам, как указано в 5/10 или 1/2.
Повышение или понижение напряжения в результате этих катушек определяет, является ли это повышающий трансформатор или понижающий трансформатор, по формуле коэффициента трансформации.Трансформатор, который не увеличивает и не уменьшает напряжение, является «трансформатором полного сопротивления», который может либо измерять импеданс, сопротивление цепи току, либо просто указывать на разрывы между различными электрическими цепями.
Конструкция трансформатора
Основными компонентами трансформатора являются две катушки, первичная и вторичная, которые наматываются на железный сердечник. В ферромагнитном сердечнике или сердечнике из постоянного магнита трансформатора также используются тонкие электрически изолированные пластины, так что эти поверхности могут уменьшать сопротивление току, который проходит от первичных катушек ко вторичным катушкам трансформатора.
Конструкция трансформатора обычно рассчитана на минимальные потери энергии. Поскольку не весь магнитный поток от первичной обмотки проходит во вторичную, на практике будут некоторые потери. Трансформаторы также будут терять энергию из-за вихревых токов , локализованного электрического тока, вызванного изменениями магнитного поля в электрических цепях.
Трансформаторы получили свое название, потому что они используют эту установку намагничивающего сердечника с обмотками на двух отдельных его частях для преобразования электрической энергии в магнитную энергию посредством намагничивания сердечника из тока через первичные обмотки.
Затем магнитный сердечник индуцирует ток во вторичных обмотках, который преобразует магнитную энергию обратно в электрическую. Это означает, что трансформаторы всегда работают от входящего источника переменного напряжения, который переключается между прямым и обратным направлениями тока через равные промежутки времени.
Типы эффектов трансформатора
Помимо формулы напряжения или количества катушек, вы можете изучить трансформаторы, чтобы узнать больше о природе различных типов напряжений, электромагнитной индукции, магнитных полях, магнитном потоке и других свойствах, которые возникают в результате строительство трансформатора.
В отличие от источника напряжения, который посылает ток в одном направлении, источник переменного напряжения , передаваемый через первичную катушку, создает собственное магнитное поле. Это явление известно как взаимная индуктивность.
Напряженность магнитного поля увеличится до максимального значения, равного разнице магнитных потоков, деленной на период времени, dΦ / dt . Имейте в виду, что в этом случае Φ используется для обозначения магнитного потока, а не фазового угла.Эти силовые линии магнитного поля направлены наружу от электромагнита. Инженеры, строящие трансформаторы, также принимают во внимание потокосцепление, которое является произведением магнитного потока Φ и количества витков в проводе N , создаваемых магнитным полем, передаваемым от одной катушки к другой.
Общее уравнение для магнитного потока:
\ Phi = BA \ cos {\ theta}
для площади поверхности, через которую проходит поле A в м 2 , магнитное поле B в теслах и θ как угол между перпендикулярным вектором к площади и магнитным полем.Для простого случая намотки катушек вокруг магнита поток определяется как
\ Phi = NBA
для количества катушек N , магнитного поля B и на определенной площади A . Поверхности, параллельной магниту. Однако для трансформатора магнитная связь заставляет магнитный поток в первичной обмотке равняться магнитному потоку вторичной обмотки.
Согласно закону Фарадея, вы можете рассчитать напряжение, индуцированное в первичной или вторичной обмотке трансформатора, вычислив Н x dΦ / dt .Это также объясняет, почему соотношение витков трансформатора напряжения одной части трансформатора относительно другой равно количеству витков одной части трансформатора по отношению к другой.
Если бы вы сравнили N x dΦ / dt одной части с другой, dΦ / dt компенсировались бы из-за того, что обе части имели одинаковый магнитный поток. Наконец, вы можете рассчитать ампер-витки трансформатора как произведение тока на количество катушек в качестве метода измерения силы намагничивания катушки
Практические трансформаторы
Электрораспределительные сети отправляют электроэнергию от электростанций в здания и дома.Эти линии электропередач начинаются на электростанции, где электрический генератор вырабатывает электрическую энергию из некоторого источника. Это может быть гидроэлектростанция, использующая энергию воды, или газовая турбина, которая использует горение для создания механической энергии из природного газа и преобразования ее в электричество. К сожалению, это электричество вырабатывается как постоянного напряжения , которое для большинства бытовых приборов необходимо преобразовать в переменное напряжение.
Трансформаторы делают это электричество пригодным для использования, создавая однофазные источники питания постоянного тока для домашних хозяйств и зданий из поступающего переменного напряжения переменного тока.Трансформаторы в распределительных сетях также обеспечивают необходимое напряжение для домашней электроники и электрических систем. В распределительных сетях также используются «шины», которые разделяют распределение на несколько направлений рядом с автоматическими выключателями, чтобы отдельные разводки были отделены друг от друга.
Инженеры часто учитывают КПД трансформаторов, используя простое уравнение КПД:
\ eta = \ frac {P_O} {P_I}
f или выходная мощность P O и входная мощность P I .Основываясь на конструкции трансформатора, эти системы не теряют энергию из-за трения или сопротивления воздуха, потому что трансформаторы не содержат движущихся частей.
Ток намагничивания, величина тока, необходимая для намагничивания сердечника трансформатора, обычно очень мала по сравнению с током, который индуцирует первичная часть трансформатора. Эти факторы означают, что трансформаторы обычно очень эффективны с КПД 95% и выше для большинства современных конструкций.
Если вы подали источник переменного напряжения на первичную обмотку трансформатора, магнитный поток, индуцированный в магнитопроводе, будет продолжать индуцировать переменное напряжение во вторичной обмотке в той же фазе, что и напряжение источника.Однако магнитный поток в сердечнике остается на 90 ° ниже фазового угла напряжения источника. Это означает, что ток первичной обмотки, ток намагничивания, также отстает от источника переменного напряжения.
Уравнение трансформатора для взаимной индуктивности
Помимо поля, магнитного потока и напряжения, трансформаторы иллюстрируют электромагнитные явления взаимной индуктивности, которые дают большую мощность первичным обмоткам трансформатора при подключении к источнику питания.
Это происходит как реакция первичной обмотки на увеличение нагрузки, то есть что-то, что потребляет мощность на вторичных обмотках. Если вы добавили нагрузку на вторичные обмотки с помощью такого метода, как увеличение сопротивления проводов, первичные обмотки отреагировали бы потреблением большего тока от источника питания, чтобы компенсировать это уменьшение. Взаимная индуктивность — это нагрузка на вторичную обмотку, которую можно использовать для расчета увеличения тока через первичные обмотки.
Если бы вы написали отдельное уравнение напряжения как для первичной, так и для вторичной обмоток, вы могли бы описать это явление взаимной индуктивности. Для первичной обмотки
V_P = I_PR_1 + L_1 \ frac {\ Delta I_P} {\ Delta t} -M \ frac {\ Delta I_S} {\ Delta t}
для тока через первичную обмотку I P , сопротивление нагрузки первичной обмотки R 1 , взаимная индуктивность M , индуктивность первичной обмотки L I , вторичная обмотка I S и изменить по времени Δt .Отрицательный знак перед взаимной индуктивностью M показывает, что ток источника сразу же испытывает падение напряжения из-за нагрузки на вторичную обмотку, но в ответ первичная обмотка увеличивает свое напряжение.
Это уравнение следует правилам написания уравнений, описывающих, как ток и напряжение различаются между элементами схемы. Для замкнутого электрического контура вы можете записать сумму напряжений на каждом компоненте равной нулю, чтобы показать, как напряжение падает на каждом элементе в цепи.
Для первичных обмоток вы запишите это уравнение, чтобы учесть напряжение на самих первичных обмотках ( I P R 1 ), напряжение из-за индуцированного тока магнитного поля. поле L 1 ΔI P / Δt и напряжение за счет влияния взаимной индуктивности вторичных обмоток M ΔI S / Δt.
Аналогичным образом вы можете написать уравнение, описывающее падение напряжения на вторичных обмотках как
M \ frac {\ Delta I_P} {\ Delta t} = I_SR_2 + L_2 \ frac {\ Delta I_S} {\ Delta t}
Это уравнение включает ток вторичной обмотки I S , индуктивность вторичной обмотки L 2 и сопротивление нагрузки вторичной обмотки R 2 .Сопротивление и индуктивность обозначены индексами 1 или 2 вместо P или S соответственно, поскольку резисторы и индуктивности часто нумеруются, а не обозначаются буквами. Наконец, вы можете рассчитать взаимную индуктивность от катушек индуктивности напрямую как
M = \ sqrt {L_1L_2}
Основная теория и принципы трансформаторов, законы и формулы
Основные трансформаторыПолная теория от electronics-tutorials.ws. Одна из основных причин, по которой мы используем переменные напряжения и токи переменного тока в наших домах и на рабочих местах, заключается в том, что источники переменного тока можно легко генерировать при подходящем напряжении, преобразовывать (отсюда и название трансформатор) в гораздо более высокие напряжения, а затем распространять по стране с помощью национальная сетка пилонов и кабелей на очень большие расстояния.
Причина преобразования напряжения на более высокий уровень заключается в том, что более высокие напряжения распределения подразумевают более низкие токи при той же мощности и, следовательно, более низкие потери I2 * R в сетевой кабельной сети. Эти более высокие напряжения и токи передачи переменного тока затем могут быть снижены до гораздо более низкого, безопасного и пригодного для использования уровня напряжения, где его можно использовать для питания электрического оборудования в наших домах и на рабочих местах, и все это возможно благодаря базовому трансформатору напряжения.
Трансформатор напряжения можно рассматривать как электрический компонент, а не как электронный компонент. Трансформатор в основном представляет собой очень простое статическое (или стационарное) электромагнитное пассивное электрическое устройство, которое работает по принципу закона индукции Фарадея, преобразуя электрическую энергию из одного значения в другое.
Трансформатор делает это путем соединения двух или более электрических цепей с помощью общей колебательной магнитной цепи, которая создается самим трансформатором.Трансформатор работает на принципах «электромагнитной индукции» в форме взаимной индукции.
Взаимная индукция — это процесс, при котором катушка с проволокой индуцирует напряжение в другой катушке, расположенной в непосредственной близости от нее. Тогда мы можем сказать, что трансформаторы работают в «магнитной области», а трансформаторы получили свое название от того факта, что они «преобразуют» один уровень напряжения или тока в другой. Трансформаторы способны либо увеличивать, либо уменьшать уровни напряжения и тока своего источника питания без изменения его частоты или количества электроэнергии, передаваемой от одной обмотки к другой через магнитную цепь.
Однофазный трансформатор напряжения в основном состоит из двух электрических катушек с проволокой, одна из которых называется «Первичная обмотка», а другая — «Вторичная обмотка». В этом руководстве мы определим «первичную» сторону трансформатора как сторону, которая обычно принимает питание, а «вторичную» как сторону, которая обычно подает питание. В однофазном трансформаторе напряжения первичной обмоткой обычно является сторона с более высоким напряжением.
Эти две катушки не находятся в электрическом контакте друг с другом, а вместо этого намотаны вместе вокруг общей замкнутой магнитной железной цепи, называемой «сердечником».Этот сердечник из мягкого железа не является твердым, а состоит из отдельных пластин, соединенных вместе, чтобы помочь уменьшить потери сердечника.
Две обмотки катушки электрически изолированы друг от друга, но магнитно связаны через общий сердечник, что позволяет передавать электрическую мощность от одной катушки к другой. Когда электрический ток проходит через первичную обмотку, создается магнитное поле, которое индуцирует напряжение во вторичной обмотке, как показано.
Однофазный трансформатор напряжения
Другими словами, для трансформатора нет прямого электрического соединения между двумя обмотками катушки, что дало ему также название изолирующий трансформатор.Обычно первичная обмотка трансформатора подключается к источнику входного напряжения и преобразует или преобразует электрическую энергию в магнитное поле. В то время как работа вторичной обмотки заключается в преобразовании этого переменного магнитного поля в электрическую энергию, производящую требуемое выходное напряжение, как показано.
Конструкция трансформатора (однофазный)
Где:
— VP — первичное напряжение
— VS — вторичное напряжение
— NP — количество первичных обмоток
— NS — количество вторичных обмоток
— Φ (phi) — поток Связь
Обратите внимание на то, что две обмотки катушки не связаны электрически, а связаны только магнитно.Однофазный трансформатор может увеличивать или уменьшать напряжение, подаваемое на первичную обмотку. Когда трансформатор используется для «увеличения» напряжения на его вторичной обмотке относительно первичной, это называется повышающим трансформатором. Когда он используется для «уменьшения» напряжения на вторичной обмотке относительно первичной, он называется понижающим трансформатором.
Однако существует третье условие, при котором трансформатор создает на своей вторичной обмотке такое же напряжение, какое прикладывается к его первичной обмотке.Другими словами, его выход идентичен по передаваемому напряжению, току и мощности. Этот тип трансформатора называется «трансформатором импеданса» и в основном используется для согласования импеданса или изоляции прилегающих электрических цепей.
Разница в напряжении между первичной и вторичной обмотками достигается путем изменения количества витков катушки в первичной обмотке (NP) по сравнению с количеством витков катушки во вторичной обмотке (NS).
Поскольку трансформатор в основном является линейным устройством, теперь существует соотношение между количеством витков первичной катушки, деленным на количество витков вторичной катушки.Этот коэффициент, называемый коэффициентом трансформации, более известен как «коэффициент трансформации» трансформаторов (TR). Это значение коэффициента трансформации определяет работу трансформатора и соответствующее напряжение на вторичной обмотке.
Необходимо знать соотношение количества витков провода на первичной обмотке по сравнению с вторичной обмоткой. Передаточное число витков, которое не имеет единиц измерения, сравнивает две обмотки по порядку и записывается с двоеточием, например 3: 1 (3-к-1). В этом примере это означает, что если на первичной обмотке 3 вольта, то на вторичной обмотке будет 1 вольт, а на 1 вольт — 3 вольта.Тогда мы можем видеть, что если соотношение между количеством витков изменяется, результирующие напряжения также должны изменяться в том же соотношении, и это правда.
Трансформаторы — все о «соотношениях». Соотношение первичной и вторичной обмоток, отношение входа к выходу и коэффициент трансформации любого данного трансформатора будет таким же, как и его коэффициент напряжения. Другими словами, для трансформатора: «коэффициент трансформации = коэффициент напряжения». Фактическое количество витков провода на любой обмотке обычно не имеет значения, просто соотношение витков, и это соотношение определяется как:
Коэффициент трансформации трансформаторовПредполагая идеальный трансформатор и фазовые углы: ΦP ≡ ΦS Обратите внимание, что порядок чисел при выражении значения отношения витков трансформатора очень важен, поскольку соотношение витков 3: 1 выражает совсем другое соотношение трансформатора и выходное напряжение, чем то, в котором соотношение витков задано как 1: 3.
Основы трансформатора Пример №1
Трансформатор напряжения имеет 1500 витков провода на первичной обмотке и 500 витков провода на вторичной обмотке. Каким будет коэффициент трансформации (TR) трансформатора.
Это соотношение 3: 1 (3 к 1) просто означает, что на каждую вторичную обмотку приходится три первичные обмотки. По мере того, как соотношение перемещается от большего числа слева к меньшему числу справа, значение первичного напряжения, следовательно, понижается, как показано.
Базовый пример трансформатора №2
Если к первичной обмотке того же трансформатора, описанному выше, приложено среднеквадратичное напряжение 240 В, каким будет результирующее вторичное напряжение холостого хода.
Еще раз подтверждаем, что трансформатор является «понижающим» трансформатором, поскольку первичное напряжение составляет 240 вольт, а соответствующее вторичное напряжение ниже на 80 вольт.
Тогда основная цель трансформатора — преобразовывать напряжения с заданными соотношениями, и мы можем видеть, что первичная обмотка имеет установленное количество или количество обмоток (катушек провода) на ней, чтобы соответствовать входному напряжению.Если вторичное выходное напряжение должно быть таким же, как входное напряжение на первичной обмотке, то на вторичный сердечник должно быть намотано такое же количество витков катушки, как и на первичном сердечнике, что дает равное соотношение витков 1: 1. (1 к 1). Другими словами, одна катушка включает вторичную обмотку, а другая — первичную.
Если выходное вторичное напряжение должно быть больше или выше, чем входное напряжение (повышающий трансформатор), то на вторичной обмотке должно быть больше витков, обеспечивающих соотношение витков 1: N (1-к-N), где N представляет собой число передаточного числа витков.Аналогичным образом, если требуется, чтобы вторичное напряжение было ниже или ниже первичного (понижающий трансформатор), то количество вторичных обмоток должно быть меньше, обеспечивая соотношение витков N: 1 (N-к-1). .
Трансформатор Действие
Мы видели, что количество витков на вторичной обмотке по сравнению с первичной обмоткой, соотношение витков, влияет на величину напряжения, доступного от вторичной обмотки. Но если две обмотки электрически изолированы друг от друга, как создается это вторичное напряжение? Ранее мы говорили, что трансформатор в основном состоит из двух катушек, намотанных на общий сердечник из мягкого железа.Когда к первичной катушке прикладывается переменное напряжение (VP), через катушку протекает ток, который, в свою очередь, создает вокруг себя магнитное поле, называемое взаимной индуктивностью, за счет этого потока тока в соответствии с законом электромагнитной индукции Фарадея. Сила магнитного поля нарастает по мере увеличения тока от нуля до максимального значения, которое задается как dΦ / dt.
По мере того как магнитные силовые линии, устанавливаемые этим электромагнитом, расширяются наружу от катушки, сердечник из мягкого железа формирует путь и концентрирует магнитный поток.Этот магнитный поток связывает витки обеих обмоток, когда он увеличивается и уменьшается в противоположных направлениях под влиянием источника переменного тока.
Однако сила магнитного поля, индуцированного в сердечнике из мягкого железа, зависит от силы тока и количества витков в обмотке. Когда ток уменьшается, напряженность магнитного поля уменьшается.
Когда магнитные линии потока проходят вокруг сердечника, они проходят через витки вторичной обмотки, вызывая наведение напряжения во вторичной катушке.Величина индуцированного напряжения будет определяться: N * dΦ / dt (закон Фарадея), где N — количество витков катушки. Также это индуцированное напряжение имеет ту же частоту, что и напряжение первичной обмотки.
Тогда мы можем видеть, что одно и то же напряжение индуцируется в каждом витке катушки обеих обмоток, потому что один и тот же магнитный поток связывает витки обеих обмоток вместе. В результате общее индуцированное напряжение в каждой обмотке прямо пропорционально количеству витков в этой обмотке. Однако пиковая амплитуда выходного напряжения, доступного на вторичной обмотке, будет уменьшена, если магнитные потери сердечника велики.
Если мы хотим, чтобы первичная катушка создавала более сильное магнитное поле, чтобы преодолеть магнитные потери сердечника, мы можем либо послать больший ток через катушку, либо сохранить тот же ток, и вместо этого увеличить количество витков катушки (NP) обмотки. Произведение ампер на витки называется «ампер-витки», которое определяет силу намагничивания катушки.
Итак, предположим, что у нас есть трансформатор с одним витком в первичной обмотке и только с одним витком во вторичной.Если один вольт приложен к одному витку первичной катушки, при условии отсутствия потерь, должно протекать достаточно тока и генерироваться достаточно магнитного потока, чтобы вызвать один вольт в одном витке вторичной обмотки. То есть каждая обмотка поддерживает одинаковое количество вольт на виток.
Поскольку магнитный поток изменяется синусоидально, Φ = Φmax sinωt, то основное соотношение между наведенной ЭДС, (E) в обмотке катушки из N витков определяется выражением:
ЭДС = количество оборотов x скорость изменения
Где:
— ƒ — частота магнитного потока в герцах, = ω / 2π
— Ν — количество витков катушки.
— Φ — величина потока в сетках
Это известно как уравнение ЭДС трансформатора. Для ЭДС первичной обмотки N будет числом витков первичной обмотки (NP), а для ЭДС вторичной обмотки N будет числом витков вторичной обмотки (NS).
Также обратите внимание, что, поскольку трансформаторы требуют переменного магнитного потока для правильной работы, трансформаторы, следовательно, не могут использоваться для преобразования или подачи постоянного напряжения или тока, поскольку магнитное поле должно изменяться, чтобы индуцировать напряжение во вторичной обмотке.Другими словами, трансформаторы НЕ работают на установившемся постоянном напряжении, только на переменном или пульсирующем напряжении.
Если первичная обмотка трансформатора была подключена к источнику постоянного тока, индуктивное реактивное сопротивление обмотки было бы равно нулю, поскольку постоянный ток не имеет частоты, поэтому эффективное сопротивление обмотки будет очень низким и равным только сопротивлению меди. использовал. Таким образом, обмотка будет потреблять очень высокий ток от источника постоянного тока, что приведет к ее перегреву и, в конечном итоге, сгоранию, поскольку, как мы знаем, I = V / R.
Основы трансформатора Пример №3
Однофазный трансформатор имеет 480 витков на первичной обмотке и 90 витков на вторичной обмотке. Максимальное значение плотности магнитного потока составляет 1,1 Тл, когда на первичную обмотку трансформатора подается напряжение 2200 В, 50 Гц. Вычислить:
а). Максимальный поток в сердечнике.
б). Площадь поперечного сечения сердечника.
в). Вторичная наведенная ЭДС.
Помогите мне, поделившись этим постом
Возможная разница в трансформаторах: соотношение и формулы
Шаг вперед и шаг вниз
Электрический трансформатор представляет собой квадратный или прямоугольный железный сердечник, обернутый двумя разными наборами проводов. Есть два типа трансформаторов: повышающий и понижающий. Повышающий трансформатор изменяет напряжение на большее напряжение. Понижающий трансформатор изменяет напряжение на меньшее.Для обоих трансформаторов в железном сердечнике индуцируется магнитное поле, которое вызывает это изменение напряжения.
Обратите внимание, что в первичной обмотке меньше петель по сравнению с вторичной обмоткой повышающего трансформатора.
Понижающий трансформатор имеет больше петель в первичной обмотке по сравнению с вторичной обмоткой.
Напряжение на входе и выходе
Соотношение катушек вокруг каждой стороны металлического стержня определяет, насколько изменяется напряжение с первичной стороны на вторичную.
- Np — количество витков в первичной катушке.
- Ns — количество витков вторичной обмотки.
- Vp — напряжение первичной обмотки в вольтах.
- Vs — напряжение вторичной обмотки в вольтах.
Давайте посмотрим, как это работает на примере.
Пример 1
Подсказка: 250 вольт поступает на первичную катушку с 20 витками. Вторичная катушка на 100 витков. Какое напряжение во вторичной катушке?
Решение: решим уравнение 1 относительно и .
Теперь мы можем вставить значения.
Мы можем видеть, что увеличение числа витков вторичной катушки увеличивает напряжение в пять раз, потому что во вторичной катушке в пять раз больше витков по сравнению с первичной катушкой.
Передача энергии
Энергия — это способность выполнять работу, измеряемую в джоулях. Передача энергии никогда не бывает 100% эффективной, так как некоторая часть энергии всегда теряется в виде тепла и звука. Если вы находитесь рядом с трансформатором, вы можете услышать его жужжание. Тем не менее, трансформаторы не теряют много энергии в виде тепла и звука, потому что с ними не связаны движущиеся части. Большая часть энергии, теряемой в виде тепла и звука при передаче энергии, может быть связана с трением между движущимися частями. КПД электрического трансформатора обычно превышает 95%.
Power Transfer
Мощность — это скорость использования энергии, измеряемая в ваттах. Поскольку трансформаторы очень эффективны, мы будем делать вид, что нет потерь энергии и, в свою очередь, потерь мощности при повышении или понижении напряжения. Электрическая мощность — это ток (сила тока), умноженный на напряжение. Между током и напряжением в электроэнергии существует обратная зависимость. Если один идет вверх, другой падает.
- Vp и Vs по-прежнему представляют первичные и вторичные напряжения в вольтах (В).
- Ip — первичный ток в амперах (А).
- Is — вторичный ток в амперах (А).
Давайте рассмотрим пример, показывающий передачу энергии в электрическом трансформаторе.
Пример 2
Подсказка: Первичная обмотка понижающего трансформатора составляет 1000 вольт 10 ампер тока. Какая сила тока выходит из вторичной обмотки, если на ней 100 вольт?
Решение: Давайте изменим уравнение электрической мощности, решив для Is .
Теперь мы можем подставить значения, чтобы получить вторичную силу тока.
Мы видим, что сила тока значительно выросла, что показывает обратную зависимость между током и напряжением.
Приложения
При передаче электроэнергии по длинным линиям электропередачи теряется много напряжения. Это означает, что напряжение на выходе из электростанции должно быть значительно увеличено до сотен тысяч вольт, чтобы обеспечить достаточное напряжение на конце линии.Повышающий трансформатор используется для увеличения напряжения.
Напряжение в промышленных приложениях может быть близко к 500 вольт, а типичное домашнее напряжение находится в диапазоне от 120 до 240 вольт. Понижающий трансформатор используется для понижения напряжения в основной линии электропередачи перед его распределением для промышленного и бытового использования.
Краткое содержание урока
Электрические трансформаторы представляют собой квадратные или прямоугольные стальные сердечники, намотанные отдельными витками проволоки с разным числом витков.
Повышающий трансформатор имеет больше витков во вторичной обмотке, чем в первичной обмотке. Напряжение во вторичной катушке выше, чем в первичной катушке.
Понижающий трансформатор имеет больше витков в первичной обмотке, чем во вторичной обмотке. Напряжение во вторичной катушке ниже, чем в первичной катушке.
Соотношение между количеством катушек и напряжением:
Энергия — это способность совершать работу, измеряемая в джоулях.Электрические трансформаторы очень эффективны, потому что у них нет движущихся частей, создающих трение, которое выделяет энергию в виде тепла и звука.
Мощность — это скорость использования энергии, измеряемая в ваттах. Электрическая мощность — это ток, умноженный на напряжение, и, поскольку энергия эффективно передается в электрическом трансформаторе, мощность на входе должна быть равна выходной мощности:
( Vp, ) ( Ip ) = ( Vs ) ( Is )
Повышающие трансформаторы повышают напряжение для передачи по линиям электропередачи на большие расстояния, поскольку такая передача электроэнергии по линиям электропередач на большие расстояния не очень эффективна.Понижающие трансформаторы используются для понижения напряжения до уровня, необходимого для промышленного и бытового использования.
Уравнение ЭДС трансформатора и коэффициент трансформации напряжения
В трансформаторе источник переменного тока подается на первичную обмотку. Из-за этого ток в первичной обмотке (называемый током намагничивания) создает переменный поток в сердечнике трансформатора. Этот переменный поток связан с вторичной обмоткой, и из-за явления взаимной индукции во вторичной обмотке индуцируется ЭДС.Величину этой наведенной ЭДС можно найти, используя следующее уравнение ЭДС трансформатора .Уравнение ЭДС Трансформатора
Пусть,N 1 = Количество витков в первичной обмотке
N 2 = количество витков вторичной обмотки
Φ м = Максимальный поток в сердечнике (в Вт) = (B м x A)
f = частота сети переменного тока (в Гц)
Как показано на рисунке, поток возрастает синусоидально до своего максимального значения Φ м от 0.Он достигает максимального значения за одну четверть цикла, то есть в T / 4 сек (где T — период времени синусоидальной волны подачи = 1 / f).
Следовательно,
средняя скорость изменения потока = Φ м / (T / 4) = Φ м / (1 / 4f)
Следовательно,
средняя скорость изменения потока = 4f Φ м ……. (Вт / с).
Сейчас,
Наведенная ЭДС на оборот = скорость изменения магнитного потока на оборот
Следовательно, средняя ЭДС на оборот = 4f Φ м ………. (Вольт).
Теперь мы знаем, что форм-фактор = среднеквадратичное значение / среднее значение
Следовательно, среднеквадратичное значение ЭДС на оборот = коэффициент формы X средняя ЭДС на оборот.
Поскольку поток Φ изменяется синусоидально, форм-фактор синусоидальной волны составляет 1,11
Следовательно, среднеквадратичное значение ЭДС на оборот = 1,11 x 4f Φ м = 4,44f Φ м .
Действующее значение наведенной ЭДС во всей первичной обмотке (E 1 ) = Действующее значение ЭДС на виток X Число витков в первичной обмотке
E 1 = 4.44f N 1 Φ м ……………………….. eq 1
Аналогично, ЭДС, индуцированная среднеквадратичным значением во вторичной обмотке (E 2 ) может быть задано как
E 2 = 4,44f N 2 Φ м . ………………………. уравнение 2
из приведенных выше уравнений 1 и 2,
Для идеального трансформатора без нагрузки E 1 = V 1 и E 2 = V 2 .
где, В 1 = напряжение питания первичной обмотки
В 2 = напряжение на зажимах вторичной обмотки
Коэффициент трансформации напряжения (K)
Как показано выше,Где, K = постоянная
Эта постоянная K известна как коэффициент преобразования напряжения .
- Если N 2 > N 1 , т.е.е. K> 1, то трансформатор называется повышающим.
- Если N 2
1 , т.е. K <1, то трансформатор называется понижающим.
Уравнение трансформатора — Высшее — Трансформаторы — Edexcel — GCSE Physics (Single Science) Revision — Edexcel
Соотношение разностей потенциалов на катушках трансформатора соответствует отношению количества витков на катушках.
Это уравнение можно использовать для расчета выходного сигнала определенного трансформатора или для определения того, как спроектировать трансформатор для конкретного изменения напряжения:
\ [\ frac {primary ~ Voltage} {вторичное ~ напряжение } = \ frac {число ~ витков ~ на ~ ~ ~ ~ первичной обмотке} {число ~ ~ ~ витков ~ ~ на ~ ~ ~ ~ вторичной обмотке} \]
\ [\ left [\ frac {V_p} {V_s} = \ frac {N_p} {N_s} \ right] \]
Это когда:
- V p — разность потенциалов в первичной (входной) катушке в вольтах (В)
- V s — разность потенциалов вторичной (выходной) катушки в вольтах (В)
- N p — количество витков на первичной катушке
- N s — количество витков на вторичной катушке
В повышающем трансформаторе В с > В p .В понижающем трансформаторе В с < В p .
Пример
Сетевой трансформатор (230 В) имеет 11 500 витков на первичной обмотке и 600 витков на вторичной обмотке. Рассчитайте напряжение, полученное от вторичной обмотки.
\ [\ left [\ frac {V_p} {V_s} = \ frac {N_p} {N_s} \ right] \]
Переставьте, чтобы найти V s :
\ [V_s = V_p \ times \ frac {N_s} {N_p} \]
\ [V_s = 230 \ times \ frac {600} {11,500} \]
напряжение вторичной обмотки, \ (V_s = 12 ~ V \)
Трансформатор в примере выше — понижающий трансформатор.Это потому что на вторичной обмотке меньше витков, и на вторичной обмотке меньше напряжения.
Трансформаторы
Трансформаторыследующий: Согласование импеданса Up: индуктивность Предыдущая: Схема Трансформатор — это устройство для повышения или понижения напряжения переменный электрический сигнал. Без эффективных трансформаторов трансмиссия и распределение переменного тока электричество на большие расстояния было бы невозможно.Рисунок 51 показана принципиальная схема типичного трансформатора. Есть две схемы. А именно, первичная цепь и вторичная цепь . Между двумя цепями нет прямого электрического соединения, но каждая цепь содержит катушку, которая соединяет ее индуктивно, с другой цепью. В реальных трансформаторах две катушки намотаны на один и тот же железный сердечник. Назначение железного сердечника — направлять магнитный поток, генерируемый ток, протекающий вокруг первичной обмотки, так что насколько это возможно, также связывает вторичная обмотка.Общий магнитный поток, связывающий две катушки, обычно обозначается на принципиальных схемах рядом параллельных прямых линий, проведенных между катушками.
Рассмотрим особенно простой трансформатор, в котором первичная и вторичная
катушки — это соленоидов с одним и тем же заполненным воздухом сердечником. Предположим, что
— длина сердечника; — площадь его поперечного сечения.Пусть будет
общее количество витков в первичной катушке, и пусть будет
общее количество витков
во вторичной обмотке. Предположим, что переменное напряжение
(281) |
подается в первичную цепь от некоторого внешнего источника переменного тока. Здесь, — пиковое напряжение в первичной цепи, а — частота чередования (в радианах в секунду). Течение вокруг первичная цепь написана
(282) |
где — пиковый ток.Этот ток генерирует изменение магнитного потока, в сердечнике соленоида, который связывает вторичную катушку, и, таким образом, индуктивно генерирует переменную ЭДС
(283) |
во вторичной цепи, где — пиковое напряжение. Предположим, что это ЭДС управляет переменным током
(284) |
вокруг вторичной цепи, где — пиковый ток.
Записывается уравнение первичной цепи
(285) |
предполагая, что в этой цепи пренебрежимо малое сопротивление. Первый срок в приведенном выше уравнении — это ЭДС, генерируемая извне. Второй член обратная ЭДС из-за самоиндукции первичной катушки. В последний член — ЭДС из-за взаимной индуктивности первичной и вторичные катушки. При отсутствии значительного сопротивления в первичной обмотке В цепи эти три ЭДС должны в сумме равняться нулю.Уравнения (281), (282), (284) и (285) можно объединить, чтобы получить
(286) |
поскольку
(287) |
Возникающая во вторичном контуре переменная ЭДС состоит из
ЭДС, генерируемая самоиндукцией вторичной катушки, плюс
ЭДС, создаваемая взаимной индуктивностью первичной и вторичной катушек.Таким образом,
(288) |
Уравнения (282), (283), (284), (287) и (288) дают
(289) |
Теперь мгновенная выходная мощность внешнего источника переменного тока, который управляет
первичный контур
(290) |
Точно так же мгновенная электрическая энергия в единицу времени индуктивно передается от первичный к вторичному контуру
(291) |
Если резистивные потери в первичной обмотке и вторичные цепи пренебрежимо малы, как предполагается, тогда, за счет сохранения энергии эти две силы должны всегда равняться друг другу.Таким образом,
(292) |
что легко сводится к
(293) |
Уравнения (286), (289) и (293) дают
(294) |
который дает
(295) |
и поэтому,
(296) |
Уравнения (293) и (296) можно объединить, чтобы получить
(297) |
Обратите внимание, что, хотя взаимная индуктивность двух катушек равна несет полную ответственность за передачу энергия между первичной и вторичной цепями, это собственная индуктивность двух катушек, которые определяют соотношение пиковых напряжений и пиковые токи в этих цепях.
Теперь из Разд. 10.2, собственные индуктивности первичной и
вторичные катушки представлены а также
, соответственно. Следует
что
(298) |
и, следовательно, что
(299) |
Другими словами, соотношение пиковых напряжений и пиковых токов в первичном и вторичном контурах определяется соотношением количество витков в первичной и вторичной обмотках.Это последнее соотношение обычно называют передаточным числом трансформатора. Если вторичная обмотка содержит на витков больше, чем первичная обмотка, на витка больше, чем пиковое напряжение во вторичной цепи превышает , что в первичной цепи. Этот тип трансформатора называется повышающим трансформатором , потому что он увеличивает напряжение сигнала переменного тока. Обратите внимание, что в повышении трансформатор пиковый ток во вторичной обмотке цепь на меньше, чем на пиковый ток в первичной цепи (как и должно быть, если необходимо сохранить энергию).Таким образом, повышающий трансформатор фактически понижает ток. Так же, если вторичная обмотка содержит на витков меньше витков, чем первичная обмотка тогда пиковое напряжение во вторичной цепи на меньше, чем на в первичном контуре. Этот тип трансформатора называется понижающим . трансформатор . Обратите внимание, что понижающий трансформатор фактически увеличивает ток ( т.е. , пиковый ток во вторичной цепи превышает значение в первичном контуре).
Электроэнергия переменного тока вырабатывается на электростанциях при довольно низком пиковом напряжении
( я.е. , что-то вроде 440 В), и потребляется внутренним
пользователем при пиковом напряжении 110 В (в США). Однако электричество переменного тока
передается от электростанции к месту потребления
при очень высоком пиковом напряжении (обычно 50 кВ). Фактически, как только сигнал переменного тока
выходит из генератора на электростанции, подается на повышающий
трансформатор, повышающий пиковое напряжение с нескольких сотен вольт до многих десятков
киловольт. Выход повышающего трансформатора подается на
линия электропередачи высокого напряжения, которая обычно транспортирует электроэнергию по
многие десятки километров, и, как только электричество достигнет своего
точка потребления, он питается через серию понижающих трансформаторов
до тех пор, пока к моменту выхода из домашней розетки его пиковое напряжение не станет равным
только 110В.Но если электричество переменного тока генерируется и потребляется на
сравнительно низкие пиковые напряжения, зачем возиться с
повышение пикового напряжения до очень высокого значения на
электростанции, а затем снова понизить напряжение, когда электричество
дошел до своей точки потребления? Почему бы не создавать, передавать и
распределять электричество при пиковом напряжении 110В?
Что ж, рассмотрим электрический
линия электропередачи, по которой передается пиковая электрическая мощность между электростанциями
и город. Мы можем думать о том, что
зависит от количества потребителей в городе и характера
электрические устройства, с которыми они работают, как по существу фиксированное количество.Предположим, что и — пиковое напряжение и пиковый ток
сигнала переменного тока, передаваемого по линии,
соответственно. Мы можем рассматривать эти числа как переменные, поскольку мы можем изменять
их с помощью трансформатора. Однако, поскольку произведение пика
напряжение и пиковый ток должны оставаться постоянными. Предположим, что сопротивление
линии есть. Пиковая скорость потери электроэнергии из-за
к омическому нагреву в строке есть, что можно записать
(300) |
Таким образом, если мощность, передаваемая по линии, является фиксированной величиной, как и сопротивление линии, тогда мощность, потерянная в линии из-за омического нагрева, изменяется как обратный квадрат из пиковое напряжение в линии.Оказывается, даже при очень высоких напряжениях например, 50 кВ, омические потери мощности в линии электропередачи протяженностью десятки километров может составлять до 20% передаваемой мощности. Это легко может быть оценил, что если была сделана попытка передать электрическую мощность переменного тока при пиковом напряжении 110 В омические потери будут настолько значительными, что практически ни один из сила достигнет своей цели. Таким образом, можно только генерировать электроэнергию в центральном месте, передавать ее на большие расстояния, а затем распределить его в точке потребления, если передача выполняется при очень высоких пиковых напряжениях (чем выше, тем лучше).Трансформеры играют жизненно важную роль в этом процессе, потому что они позволяют нам активизировать и понизить напряжение электрического сигнала переменного тока очень эффективно (хорошо продуманный трансформатор обычно имеет потери мощности, которые составляют всего несколько процентов от полная мощность, протекающая через него).
Конечно, трансформаторы не работают на электричестве постоянного тока, потому что магнитный поток, создаваемый первичной катушкой, не меняется во времени, и, следовательно, не вызывает ЭДС во вторичной катушке. На самом деле не существует эффективного метода повышения или понижение напряжения электрического сигнала постоянного тока.Таким образом, это невозможно эффективно передавать электроэнергию постоянного тока на большие расстояния. Это основная причина, почему коммерчески производимая электроэнергия — это переменный ток, а не постоянный.
следующий: Согласование импеданса Up: индуктивность Предыдущая: Схема Ричард Фицпатрик 2007-07-14 .