Фотодиоды применение: описание принципа работы, схема, характеристики, способы применения

Содержание

описание принципа работы, схема, характеристики, способы применения

Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

  • При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
  • Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
  • Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
  • Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
  • Чем выше освещенность, тем больше обратный ток

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

Схема фотодиода

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

  • Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
  • Спектральная. Характеризует влияние длины световой волны на фототок
  • Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
  • Порог чувствительности – минимальный световой поток, на который реагирует диод
  • Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
  • Инерционность

Из чего состоит фотодиод?

Разновидности фотодиодов

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Фотодиод принцип действия, классификация, применение

Привет, Вы узнаете про фотодиод, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое фотодиод , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.

фотодиод — это фоточувствительный полупроводниковый диод с р-n переходом (между двумя типами полупроводника или между полупроводником и металлом).

Под действием света, падающего на p-n переход , в последнем образуются электронно-дырочные пары. Не основные носители, т.е. дырки в n- области и электроны в p- области, диффундируют в область p-n перехода, втягиваются его полем и выбрасываются в область, расположенную за переходом, образуя в ней объемный заряд. По мере перехода не основных носителей из одной области в другую происходит их накопление в одной части рассматриваемой системы, в то время как в другой ее части накапливаются основные носители тока. Это накопление не может продолжаться беспредельно, т.к. одновременно с возрастанием концентрации дырок в p- области и электронов в n- области возрастает создаваемое ими электрическое поле, препятствующее переходу не основных носителей через запирающий слой из одной области в другую. По мере возрастания этого поля возрастает и обратный поток носителей. В конце концов, наступает динамическое равновесие, при котором число не основных носителей, перемещающихся за единицу времени через запирающий слой, равно числу тех же носителей перемещающихся в обратном направлении. При этом, между электродами устанавливается некоторая разность потенциалов

Е, это фото ЭДС. При подключении к выводам фотодиода нагрузки в ее цепи появляется ток, величина которого определяется разностью встречных потоков носителей через p-n переход.

Структура перехода фотодиода показана на Рис.1.а, а семейство вольт-амперных характеристик на Рис.1.б.

Фотодиоды используют в фотодиодном и фотогальваническом режимах. В первом диод смещается в обратном направлении, и фототок является функцией светового потока. Во втором режиме прибор работает в режиме генерации фото ЭДС. По сравнению с фотогальваническим, фотодиодный режим обладает рядом достоинств: пониженной инерционностью, повышенной чувствительностью, к длинноволновой части оптического спектра, широким динамическим диапазоном линейности характеристик. Основной недостаток этого режима — наличие шумового тока, обусловленного флуктуациями ( потока носителей заряда через p-n переход, протекающего через нагрузку. В ряде случаев при н

Рис. 1

еобходимости обеспечения низкого уровня шума фотоприемника фотогальванический режим может оказаться более выгодным, чем фотодиодный.

Вольт-амперные характеристики фотодиода в квадранте I (см. Рис.1.б) соответствуют включению в прямом направлении. Квадрант IV соответствует случаю работы диода в фотогальваническом режиме т.е. фотодиод работает как солнечный преобразователь, ток и напряжение при этом зависят от силы светового потока. Для выделения на нагрузке максимальной мощности берется сопротивление нагрузки равное внутреннему сопротивлению фотодиода. По оси напряжения можно определить фото ЭДС при различной интенсивности принимаемого светового потока

Ф и нулевом сопротивлении нагрузки, а по оси тока — фототок при различных значениях Ф и нулевом сопротивлении нагрузки. Характеристики в квадранте III соответствуют включению прибора в фотодиодном режиме. Напряжение UПР — напряжение электрического пробоя фотодиода. Напряжение UР — рабочее — указывают в паспорте.

Вольт-амперную характеристику при отсутствии облучения называют темновой при этом вольт-амперная характеристика фотодиода проходит через 0 и совпадает с характеристикой обычного диода. Значение темнового тока IТ при заданной температуре окружающей среды и рабочем напряжении указывают в паспорте прибора. Параметры кремниевых и германиевых фотодиодов заметно зависят от температуры окружающей среды. С повышением ее на каждые 10° темновой ток германиевых приборов увеличивается в 2, а кремниевых в 2,5 раза. При этом чувствительность и обнаружительная способность уменьшаются, уровень собственных шумов увеличивается, а максимум спектральной характеристики сдвигается в сторону более коротких волн. Понижение температуры приводит к противоположным изменениям.

принци работы фотодиода

Описание

обозначение на схемах

Структурная схема фотодиода.

  • 1 — кристалл полупроводника;
  • 2 — контакты;
  • 3 — выводы;

Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.

внешний вид фотодиодов

эквивалентная схема фотодиода

Классификация фотодиодов

  • В p-i-n-структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n-переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n-фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр ≈ 0,1 В p-i-n-фотодиод имеет преимущество в быстродействии.

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Фотодиоды — малоинерционные фотоприемники. Инерционность их зависит от временных характеристик процесса фотогенерации носителей, условий разделения электронно-дырочных пар, емкости р-n перехода, а также сопротивления нагрузки. В ряде случаев от фотоприбора требуется высокое быстродействие (несколько наносекунд и менее). Такие приборы необходимы в оптических линиях связи, системах воспроизведения звука с компакт-дисков и др. В подобных устройствах применяют фотодиоды структуры p-i-n (i — диэлектрик) и лавинные фотодиоды.

Рис. 3

p–i–n фотодиоды. Структурная схема p-i-n фотодиода показана на Рис.3.а. На подложке с проводимостью n+ сформирован слаболегированный i- слой и слой с проводимостью р+ толщиной до 0,3 мкм. При подаче обратного смещения обедненным оказывается весь i- слой. В результате емкость перехода уменьшается, расширяется область поглощения падающего излучения и повышается чувствительность прибора. Поглощаемое излучение в структуре затухает по экспоненте (см . Об этом говорит сайт https://intellect.icu . Рис.3) в зависимости от коэффициента поглощения и вызывает появление фото возбужденных носителей. Электрическое поле обедненного слоя (напряженность поля больше или равна 103 В/см) ускоряет их до скорости насыщения дрейфа (около 107 см/с). Эту область называют пространством дрейфа.

За пределами обедненного слоя движение носителей носит диффузионный характер с относительно низкой скоростью — примерно 104 см/с. Это обстоятельство ухудшает быстродействие. Для его повышения необходимо сконцентрировать поглощение излучения в обедненном слое. С этой целью слой р+ делают очень тонким, а толщину слоя i — большей длины поглощения излучения . Длина поглощения для кремния на длине волны 0,8 мкм равна примерно 10…20 мкм и рабочее напряжение, при котором обедненный слой имеет требуемую ширину, не превышает 10…20 В.

Рис. 4

Лавинные фотодиоды (ЛФД). ЛФД (см. Рис.3.б) работают при обратных напряжениях смещения достаточных для размножения носителей. По сравнению с p – i – n фотодиодами они обладают внутренним усилением и в силу этого имеют большую чувствительность при приеме более слабых сигналов. ЛФД изготавливаются на основе Ge, Si, соединений группы АIIIBV и других полупроводников. При выборе материала фотодиода определяющими параметрами являются квантовая эффективность в заданном спектральном диапазоне, быстродействие и шумы. Германиевые ЛФД обеспечивают высокую квантовую эффективность в спектральном диапазоне 1…1,6 мкм, а кремниевые – особенно эффективны на длинах волн 0,6…1 мкм. В лавинном фотодиоде излучение поглощается в обедненном слое. Для создания ударной ионизации фотовозбужденными носителями рядом с р-n переходом формируют область с высокой напряженностью электрического поля (более 105 В/см), в которой происходит лавинное умножение носителей. Коэффициент умножения М при напряжении смещения близком к напряжению пробоя, может достигать 1000. М — показывает во сколько раз увеличивается ток оптически генерируемых носителей. Для кремния эта зависимость представлена на Рис.4. Однако это значение зависит и от температуры. Температурный коэффициент изменения напряжения пробоя до 0,2%/°С. Проектируя цепь смещения лавинного фотодиода, необходимо предусмотреть меры, устраняющие влияние этого фактора.

Рис. 5

На Рис.5.а, б схематически показана конструкция p-i-n и лавинного фотодиода соответственно. Где: 1. – просветляющее покрытие; 2. – металлические контакты; 3. – окись кремния SiO2; 4. – охранное кольцо; 5. – подложка.

Для уменьшения отражения света от поверхности диода ее покрывают пленкой 1. По периметру рабочей поверхности формируют защитное кольцо 2, позволяющее повышать напряжение пробоя. Оптимально выбранные размеры элементов прибора дают возможность получать весьма хорошие параметры. При напряжении 100…150 В быстродействие лавинного фотодиода оказывается равным примерно 0,3 нс.

Рис.6

На Рис.6 показана эквивалентная схема фотодиода, где R1 – последовательное сопротивление, моделирующее сопротивление базы, C – емкость p – n перехода, R2 – внутреннее сопротивление p – n перехода. Быстродействие ограничено временем пробега фотовозбужденных носителей и постоянной времени =R1C(1+R1/R2). Время пробега носителей при скорости 107 см/с и ширине обедненного слоя 100 мкм примерно 1нс. При меньшей ширине обедненного слоя может быть достигнута граничная частота до нескольких гигагерц. Емкость диода — 1…2пФ (сумма паразитной емкости корпуса и емкости перехода). Если сопротивление нагрузки принять равным 50 0м, то постоянная времени t=0,05…0,1нс.

Темновой ток – это ток утечки, который растет при увеличении напряжения обратного смещения. При работе в фотодиодном режиме наблюдаются более высокие значения темнового тока, которые зависят от температуры окружающей среды.

При увеличении температуры на 10 °C величина темнового тока увеличивается примерно в 2 раза, а шунтирующее сопротивление удваивается при увеличении температуры на 6 °C. Чем выше напряжение смещения, тем меньше емкость перехода, но тем больше величина темнового тока.

Темновой ток также зависит от материала полупроводника и размера активной области. Например, у кремниевых фотодиодов значения темнового тока значительно ниже, чем у германиевых. В таблице ниже представлены различные полупроводниковые материалы и их относительные значения темнового тока, чувствительности, быстродействия и стоимости.

Материал

Темновой ток

Быстродействие

Спектральный диапазон

Стоимость

Кремний (Si)

Низкий

Высокое

Видимый – Ближний ИК

Низкая

Германий (Ge)

Высокий

Низкое

Ближний ИК

Низкая

Фосфид галлия (GaP)

Низкий

Высокое

УФ — Видимый

Средняя

Арсенид галлия-индия (InGaAs)

Низкий

Высокое

Ближний ИК

Средняя

Антимонид арсенида индия (InAsSb)

Высокий

Низкое

Ближний – Средний ИК

Высокая

Кадмий-ртуть-теллур (MCT, HgCdTe)

Высокий

Низкое

Ближний – Средний ИК

Высокая

Темновой ток (протекающий через диод независимо от фототока) представляет собой сумму обратного тока и тока поверхностной утечки. Он вызывает дробовой шум. У кремниевых фотодиодов темновой ток мал (около 10-12 А), поэтому и уровень шума относительно невысок. Шумовые характеристики германиевых приборов заметно хуже.

Если мощность падающего излучения равна РО, то соответствующее число падающих фотонов будет РО/h и фототок

(5)

где — квантовый выход, e — заряд электрона, h — постоянная Планка, — частота.

При этом квантовый выход определяется соотношением:

Рис. 7

(6)

где R — коэффициент отражения потока от рабочей поверхности прибора; Lа — ширина области поглощения света; — коэффициент поглощения

На Рис.7 представлена зависимость квантового выхода от длины волны излучения для германия и кремния. Границу чувствительности в области длинных волн определяет ширина запрещенной зоны материала, а падение чувствительности в области коротких волн — уменьшение длины поглощения вблизи поверхности и поверхностная рекомбинация фотовозбужденных носителей. Конструкция и схема включения фотодиода показана на Рис.8.а, б где: а — конструкция, б — схема включения фотодиода. Пластина 1 из монокристалла германия с электропроводимостью n- типа закреплена с помощью кристаллодержателя 2 в коваровом корпусе 3. Эта пластинка является базой фоточувствительного элемента и располагается против окна, закрытого стеклянной собирающей линзой 10. Электронно-дырочный переход образован вплавлением в пластину германия капли индия 8 — сплавной переход. При сплавлении индия с германием в результате диффузии индия в прилегающей области германия образуется слой с электропроводимостью p- типа. Вывод 4 от индиевого электрода пропущен через коваровую трубку 5, закрепленную стеклянным изолятором 6 в ножке 7 корпуса. Другим электродом является корпус фотодиода, так как кристалл германия припаян к кристаллодержателю оловянным кольцом 9. Для защиты p-n перехода от воздействия окружающей среды корпус фотодиода герметизирован. Наибольшее распространение получили фотодиоды на основе германия и кремния. Так же используют полупроводниковые соединения элементов групп AII BV и AII BVI (GaAs, InAs, InSb, InP, CdS, CdTe, HgCdTe и др.) Фотодиоды применяются в качестве приемников лазерных лучей в звуковоспроизводящей аппаратуре.

Рис. 8

Достоинства:

1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области.

2) высокая чувствительность и быстродействие

3) малое рабочее напряжение Uраб

Недостатки:

сложность получения высокой чистоты i-области

  • Фотодиод Шоттки (фотодиод с барьером Шоттки)

    Структура металл- полупроводник . При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.

  • Лавинный фотодиод
  • В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения:

    Для реализации лавинного умножения необходимо выполнить два условия:

    1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещенной зоны:

    2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега:

    Значение коэффициентов внутреннего усиления составляет M = 10—100 в зависимости от типа фотодиодов.

  • Фотодиод с гетероструктурой

    Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещенной зоны. Один слой р+ играет роль «приемного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещенной зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.

Принцип работы:

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода Cp-n

Фотодиод может работать в двух режимах:

  • фотогальванический — без внешнего напряжения
  • фотодиодный — с внешним обратным напряжением

Особенности:

  • простота технологии изготовления и структуры
  • сочетание высокой фоточувствительности и быстродействия
  • малое сопротивление базы
  • малая инерционность

Основные характеристики фотодиодов

Рис. 2

токовая чувствительность Si (А/лм или А/Вт) — определяет значение фототока, создаваемого единичным потоком излучения; Статическую интегральную токовую чувствительность при монохроматическом световом потоке или мощности излучения определяют отношением:

(1)

или

(мА-Вт-1) (2)

где IФ — фототок; Ф — световой поток, Р — мощность излучения.

При работе прибора в фотодиодном режиме удобно использовать понятие интегральной вольтовой чувствительности:

(3)

(4)

где UВЫХ — изменение выходного напряжения; RН — сопротивление нагрузки.

— спектральная характеристика. Показывает распределение чувствительности материала к длине волны падающего на него излучения. На Рис.2 показаны типовые спектральные характеристики кремниевого (2) и германиевого (1) фотодиодов. Как видно из Рис.2, максимум чувствительности германиевых диодов сдвинут в сторону более длинных волн.

— постоянные времени нарастания и спада фототока, они определяют предельные значения рабочей частоты модуляции светового потока, при которых еще не заметно уменьшение фото отклика. Эти параметры характеризуют инерционность приборов. Обычно .

— быстродействие — определяется граничной частотой fГР, соответствующей максимальной частоте модуляции светового потока, на которой статическая чувствительность уменьшается до уровня 0,707 от чувствительности на низкой частоте модуляции.

— номинальное рабочее напряжение UНОМ, темновой ток IТМ и максимально допустимое обратное напряжение UMAX.

Наиболее влияющими оказались такие факторы:
  • Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
  • Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.

Фотодиоды, изготовленные на основе кремния, работают в интервале длин волн 0,5…1,1 мкм. Фотодиоды на основе германия работают в интервале длин волн 0,5…1,9 мкм.

Большинство фотодиодов выпускают в герметичных металлостеклянных корпусах. Фотодиод ФД-1 выпускают в металлокерамическом корпусе, фотодиод ФД-2 — в пластмассовом корпусе. Плюсовый вывод фотодиодов маркируют на корпусе знаком «+», точкой или цветной меткой на вводе. Для ввода оптического излучения на фоточувствительный элемент в корпусе фотодиода встраивают входные окна, линзы, световоды и другие оптические элементы. Без входного встроенного оптического элемента выпускается фотодиод ФД-20-ЗОК. Фотодиоды ФД20-32К и ФД-20-ЗОК имеют по два фоточувствительных элемента ФД-19К, ФД-20КП, ФД-22КП и ФД-20-ЗЗК-по четыре. Фотодиод ФД-246 имеет 64 фоточувствительных элемента. Фотодиод ФД-К-142 имеет координатно-чувствительный квадратный четырехэлементный оптический вход.

Применение фотодиодов

Фотодиоды P−n используются в аналогичных применениях с другими фотоприемниками , такими как фотопроводники , приборы с зарядовой связью и фотоумножители . Они могут использоваться для генерации выходного сигнала, который зависит от освещения (аналоговый; для измерения и т.п.), или для изменения состояния схемы (цифровой; либо для управления и коммутации, либо для цифровой обработки сигналов).

Фотодиоды используются в устройствах бытовой электроники, таких как проигрыватели компакт-дисков , детекторы дыма , медицинские приборы [16] и приемники для инфракрасных устройств дистанционного управления, используемых для управления оборудованием от телевизоров до кондиционеров. Для многих применений могут использоваться либо фотодиоды, либо фоторезисторы. Любой тип фотодатчика можно использовать для измерения освещенности, например, в измерителях освещенности камеры , или для реагирования на уровни освещенности, например, при включении уличного освещения после наступления темноты.

Фотодатчики всех типов могут использоваться для реагирования на падающий свет или источник света, который является частью той же схемы или системы. Фотодиод часто объединяется в один компонент с излучателем света, обычно светодиодом (LED), либо для обнаружения наличия механического препятствия для луча ( щелевой оптический переключатель ), либо для соединения двух цифровых или аналоговых цепи при сохранении чрезвычайно высокой электрической изоляции между ними, часто для обеспечения безопасности ( оптопара ). Комбинация светодиодов и фотодиодов также используется во многих сенсорных системах для характеристики различных типов продуктов на основе их оптического поглощения .

Фотодиоды часто используются для точного измерения интенсивности света в науке и промышленности. Они обычно имеют более линейный отклик, чем фотопроводники.

Они также широко используются в различных медицинских приложениях, таких как детекторы для компьютерной томографии (в сочетании со сцинтилляторами ), инструменты для анализа образцов ( иммуноанализ ) и пульсоксиметры .

PIN-диоды намного быстрее и более чувствительны, чем p-n-переходные диоды, и, следовательно, часто используются для оптической связи и в регулировании освещения.

Фотодиоды P–n не используются для измерения очень низкой интенсивности света. Вместо этого, если требуется высокая чувствительность, лавинные фотодиоды , устройства с усиленной зарядовой связью или фотоумножители используются для таких применений, как астрономия , спектроскопия , приборы ночного видения и лазерное дальномеризация .

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации.

Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

См. также

В общем, мой друг ты одолел чтение этой статьи об фотодиод. Работы в переди у тебя будет много. Смело пишикоментарии, развивайся и счастье окажется в ваших руках. Надеюсь, что теперь ты понял что такое фотодиод и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

ФОТОДИОДЫ

   Фотодиод активно используется в современных электронных устройствах, из названия становится понятно, что прибор из себя представляет конструкцию с применением полупроводника, так давайте рассмотрим, что такое фотодиод Фотодиод — это полупроводниковый диод, который обладает свойством односторонней проводимости при воздействия на него оптического излучения. Фотодиод представляет собой полупроводниковый кристалл, обычно с электронно — дырочным переходом (пн). Он снабжен двумя металлическими выводами и вмонтированный в пластмассовый или же в металлический корпус.

   Различают два режима работы фотодиода. 

 1) фотодиодный — когда во внешней цепи фотодиода содержится источник постоянного тока , который создает на переходе обратное смещение и вентильный, когда такой источник отсутствует. В фотодиодном режиме фотодиод , как и фоторезистор используют для управления током. Фототок фотодиода сильным образом зависит от интенсивности падающего излучения и не зависит от напряжения смещения. 

 2) Вентильный режим — когда фотодиод, как и фотоэлемент, используют в качестве генератора ЭДС. 

   Основные параметры фотодиода — порог чувствительности, уровень шумов, область спектральной чувствительности лежит в пределах от 0,3 до 15 мкм ( микрометров ), инерционность — время восстановления фототока, Существуют также фотодиоды с прямой структурой.Фотодиод является составным элементом во многих опто- электронных устройствах. фотодиоды и фотоприемники широко применяются в опронных парах, приемниках излучения видео — аудио сигналов. Широко применяется для принятия сигнала с лазерных диодов в CD и DVD дисководах. 

   Сигнал от лазерного диода, который в себе содержит кодированную информацию, сначала попадает на фотодиод, который в данных устройствах имеет сложную конструкцию, затем после расшифровки информация поступает на центральный процессор, где после обработки превращается в аудио или видеосигнал. На таком принципе работают все современные дисководы. Так же фотодиоды применяются в различных охранных устройствах, в инфракрасных датчиках движения и присутствия. Очередной обзор для начинающего радиолюбителя подошел к концу, удачи в мире радиоэлектроники — АКА.

   Теория для начинающих

   Форум по обсуждению материала ФОТОДИОДЫ



MINILED И MICROLED ДИСПЛЕИ

Что такое OLED, MiniLED и MicroLED телевизоры — краткий обзор и сравнение технологий.



ПРОСТЕЙШИЙ ГАУСС ГАН

Обзор электромагнитного пистолета из китайского набора для самостоятельной сборки.



Фотодиоды свойства схемы включения применение. Основные характеристики и параметры фотодиода. Включение фотодиода в каскад с общей базой

Фотодиод может работать в фотодиодном и гальваническом режиме.

В фотодиодном режиме p-n переход смещается обратным напряжением величина которого зависит от конкретного фотодиода от единиц до сотни вольт, чем больше смещение тем быстрее он будет работать, и больше токи через него будут течь.
Недостаток фотодиодного режима в том, что с ростом обратного тока, в последствии увеличения напряжения или освещения, увеличивается уровень шумов, а уровень полезного сигнала в целом остается постоянным, считается, что в этом режиме диод имеет меньшую постоянную времени.

Фотодиодная схема включения.

Приведенная схема включения фотодиода является универсальной и подходит для тестирования и выбора, применительно к окончательной схеме своей конструкции.
Изменяя положение подстроечного резистора, в приведенной схеме, можно протестировать и выбрать оптимальный режим работы фотодиода.
Изменяя сопротивление резистора от минимального до максимального, можно подобрать наилучший режим смещения на фотодиоде.
Вывернув резистор на минимум, замкнув подвижный контакт на землю, мы переведем схему в фотогальванический режим.
Можно попробовать работу фотодиода и в прямом смещении (он все равно будет реагировать на свет), для этого надо поменять схему включения, перевернув диод.
Сопротивление в 50 Ком, не должно дать повредить фотодиод, а по переменной составляющей оно оказывается включенным параллельно с нагрузкой (меньше 5 КОм), и полезный сигнал практически не ослабляет. Конденсатор избавляет нас от постоянной составляющей. Если мы принимаеи импульсный сигнал то от постоянной составляющей, которая меняется в зависимости от фоновой засветки, лучше избавится сразу, смысла ее усиливать нет.

Еще одна стандартная схема включения фотодиода показана на рисунке.
В данной установке для уменьшения влияния шумов и наводок в схему добавлены буферные конденсаторы в цепи питания, накопительный конденсатор С3 и интегрирующая цепочка R2С4 на выходе.
C1- электролитический конденсатор большой ёмкости С = 100 мкФ, С2 — быстрый керамический 0,1 мкФ, С3, С4 — керамические по 100 пФ, R1 — 8 кОм, R2- 5,6 кОм.

Нагрузкой для достижения максимального быстродействия должен быть или каскад с общей базой или быстродействующий операционник включенный по схеме преобразователя ток-напряжение. Эти усилители имеют минимальное входное сопротивление.
Практическая схемотехника включения фотодиода со смещением.



Практическая схемотехника включения фотодиода со смещением.

Величина R фильтра подбирается в зависимости от засвечивания фотодиода в рабочем варианте с установленной оптикой, учитывается направление по азимуту (юг,запад и т.д.) в разных направлениях разные засветки от солнца.
Ёмкость Сф=0.1мкФ ещё и замыкает цепь фотодиода по высокой частоте на землю.
Вместо Rн можно поставить дроссель, либо трансформатор, надо смотреть, не будет ли искажений или затяжек импульсов или прочих подводных камней.

Включение фотодиода в каскад с общей базой.



Схема включения фотодиода ФД 263 в каскад с общей базой.

В схеме с ОБ — база разделяет входную и выходную цепи, и практически исключает влияние выходного напряжения на вход схемы (подобно экранной сетке в пентоде) по-этому имеется возможность увеличить нагрузочное сопротивление и получить больший размах напряжения на выходе схемы без ущерба для скорости.

Принцип работы

На рис.2 представлена схема, отражающая принцип работы детекторов с обратно смещенным фотодиодом. Величина генерируемого фототока зависит от светового потока и длины волны излучения. При подключении нагрузочного сопротивления данную величину можно наблюдать с помощью осциллографа. Функция RC-фильтра заключается в подавлении высокочастотного шума источника питания.


Рис.3 Схема детектора с усилителем

При использовании схемы фотоприемников с усилителем пользователь может выбирать режим работы фотодиода (фотогальванический или фотодиодный). Каждый режим обладает своими преимуществами:

Фотогальванический режим: в фотогальваническом режиме к диоду не прикладывается напряжение, и потенциал на входе A операционного усилителя равен потенциалу в точке B. При работе в таком режиме темновой ток пренебрежимо мал.

Фотодиодный режим: в фотодиодном режиме к p-n переходу приложено напряжение обратного смещения, что уменьшает емкость перехода и увеличивает полосу пропускания. Усиление зависит от резистора обратной связи (R f). Ширина полосы пропускания детектора определяется по формуле:


Где GBP – это произведение коэффициента усиления на ширину полосы пропускания ОУ, C D – сумма емкости перехода и усилителя.

Частота модуляции

Спектральная плотность шума большинства детекторов, включая PbS, PbSe, HgCdTe (MCT) и InAsSb, имеет зависимость вида 1/f (шум уменьшается при увеличении частоты), что оказывает значительное влияние на постоянную времени в области низких частот.

Таким образом, частота модуляции (скорость изменения интенсивности) излучения оказывает влияние на чувствительность прибора. Оптимальные значения характеристик фотоприемника достигаются при частоте:

Срок службы батареи

При использовании фотодетектора, работающего от батареи, важно понимать, каков срок службы аккумулятора и как он влияет на работу детектора. Выходной ток детектора прямо пропорционален потоку падающего излучения. Большинство пользователей преобразуют этот ток в напряжение с помощью согласованной нагрузки. Величина сопротивления приблизительно равна коэффициенту усиления схемы. Для высокоскоростных детекторов, например, таких как , необходимо использовать нагрузку с сопротивлением 50 Ом для согласованности с импедансом стандартных коаксиальных кабелей. Это позволит уменьшить обратные отражения и улучшить качество выходного сигнала.

Срок службы батареи напрямую зависит от тока в детекторе. Большинство производителей батареек выражают срок службы батарейки в мА*ч (миллиампер-час). Например, если аккумулятор рассчитан на 190 мА*ч, он будет работать в течении 190 ч при потреблении тока 1.0 мА.

Пусть источник, излучение которого падает на детектор, работает на длине волны 780 нм со средней мощностью 1мВт. Чувствительность детектора на данный длине волны 0.5 А/Вт. Фототок можно рассчитать по формуле:


Таким образом срок службы батареи равен:


или 16 дней непрерывной работы. При уменьшении средней мощности падающего излучения до 10 мкВт, срок службы той же батарейки увеличится до 4 лет непрерывной работы. При использовании рекомендуемой согласованной нагрузки в 50 Ом, фототок (0.5 мА) преобразуется в напряжение:Если величина мощности падающего излучения уменьшится до 40 мкВт, то выходное напряжение станет равно 1 мВт. Для некоторых измерительных устройств, данное значение может оказаться слишком маленьким, поэтому необходимо искать компромисс между сроком службы батареи и точностью проводимых измерений.

При использовании детекторов на батарейках необходимо использовать излучение малой интенсивности, учитывая минимально необходимый уровень напряжения. Также важно помнить, что батарейка перестанет производить ток не сразу, как только приблизится к концу срока своей службы. Сначала напряжение батарейки упадет, и электрический потенциал, прикладываемый к фотодиоду уменьшится. А это в свою очередь приведет к увеличению времени отклика детектора и уменьшению ширины полосы пропускания.

Таким образом, важно убедиться, что батарейка обеспечивает достаточное напряжение для оптимальной работы детектора.

Для задач, в которых детекторы , облучаются непрерывно источником достаточно высокой мощности, или постоянная замена батарей является неприемлемой, компания Thorlabs предлагает адаптер и источник питания. Недостатком этого варианта является шум, который добавится к выходному сигналу и может увеличить погрешность измерений.

Детекторы на основе сульфида свинца (PbS) и селенида свинца (PbSe) широко используются для регистрации излучения в диапазоне от 1000 до 4800 нм. Тогда как фотодиод генерируют ток под воздействием света, у фоторезистора при облучении изменяется величина сопротивления. Хотя PbS и PbSe детекторы можно использовать при комнатной температуре, температурные флуктуации будут оказывать воздействие на темновое сопротивление, чувствительность и быстродействие прибора.

Принцип работы

При поглощении света в фотопроводящем материале возникают избыточные носители заряда, приводящие к увеличению проводимости и уменьшению сопротивления. Изменение сопротивления приведет изменению величина измеряемого напряжения. На рис. представлена схема, отражающая принцип работы детекторов на основе фотопроводящих материалов. Следует отметить, что представленная схема не рекомендуется для применения на практике из-за присутствия низкочастотных шумов.


Механизм детектирования основан на проводимости тонкой пленки светочувствительного элемента. Сигнал на выходе детектора при отсутствии падающего излучения определяется уравнением:

Изменение напряжения на выходе ΔV OUT происходит из-за изменения сопротивления ΔR Dark , когда свет попадает на активную область датчика:

Частотная характеристика

Для детекторов зависимость чувствительности от частоты модуляции света имеет вид:


Где f c – частота модуляции, R 0 – чувствительность при частоте 0 Гц, τ r – время нарастания.

Воздействие температуры

Светочувствительный элемент PbS и PbSe детекторов представляет собой тонкую пленку на стеклянной подложке. Форма и активная область фотопроводящего элемента меняются в зависимости от условий эксплуатации, таким образом изменяя и другие характеристики. В частности, чувствительность детектора будет изменяться в зависимости от рабочей температуры.

Охлаждение детектора сместит спектральный диапазон чувствительности в область более длинных волн. Для получения оптимальных результатов рекомендуется использовать представленные детекторы в условиях контроля параметров окружающей среды.

Схема детектора на основе фотопроводящего материала с усилителем

Из-за шумовых характеристик предпочтительнее включение фоторезистора в цепь переменного тока. При включении фоторезистора в цепь постоянного тока шум, обусловленный приложенным напряжением, будет увеличиваться с ростом напряжения, таким образом, ограничивая чувствительность детектора. Для поддержания стабильности характеристик и получения высоких значений коэффициента усиления сигнала необходимо использовать предусилитель.


Согласно схеме (рис. выше), операционный усилитель (ОУ) стремится сравнять потенциалы в точках A и B с помощью контура обратной связи. Разница напряжений на входе ОУ усиливается и передается на выход. Следует отметить, что высокочастотный фильтр на входе усилителя не пропускает сигнал постоянного тока. Кроме того, нагрузочное сопротивление должно быть равно темновому сопротивлению детектора, чтобы обеспечить получение максимального сигнала. Величина напряжения источника питания (+V) должна быть такой, чтобы величина отношения сигнал/шум была оптимальной и приближалась к единице. Некоторые задачи требуют более высокого уровня напряжения, что приведет к увеличению уровня шума. Напряжение на выходе определяется по формуле:

Отношение сигнал/шум

Поскольку уровень шума детектора обратно пропорционален частоте модуляции сигнала, шум будет возрастать на малых частотах. Сигнал на выходе детектора линейно увеличивается при увеличении напряжения смещения, однако шумовые характеристики мало зависят от напряжения смещения при его низком уровне. При достижении определенного уровня напряжения смещения, шум детектора начнет линейно увеличиваться с ростом напряжения. При высоких значениях напряжения шум начнет расти экспоненциально, уменьшая отношение сигнал шум. Для обеспечения оптимального уровня сигнал/шум необходимо регулировать частоту модуляции сигнала и напряжение смещения.

Темновое сопротивление

Темновое сопротивление – это сопротивление детектора при отсутствии освещения. Следует отметить, что темновое сопротивление будет увеличиваться или уменьшается при изменении температуры. Охлаждение детектора будет снижать величину темнового сопротивления.

Обнаружительная способность (D) и удельная обнаружительная способность (D*)

Обнаружительная способность (D) — это еще одна величина, используемая для оценки эффективности фотоприемника. Обнаружительная способность характеризует чувствительность и обратно пропорциональна эквивалентной мощности шума (NEP):


Чем выше значение обнаружительной способности, тем выше чувствительность, то есть детектор способен регистрировать слабые сигналы. Обнаружительная способность зависит от длины волны падающих фотонов.

NEP детектора, а следовательно и его обнаружительная способность зависят от активной области, поэтому сравнение свойств двух детекторов является непростой задачей. Чтобы избавится от этой зависимости, используют удельную обнаружительную способность (D*), которая не зависит от площади детектора и используется для оценки эффективности фотоприемника. В уравнении ниже, А – площадь фоточувствительной области.

Двумерные позиционно-чувствительные датчики

Обзор

Двумерные позиционно-чувствительные датчики позволяют измерить положение, расстояние перемещения или углы падения пучка, а также они могут использоваться в качестве обратной связи в системах юстирования, например, для контроля положения зеркал, фокусировки микроскопа, и т.д. Детектор определяет положение светового пятна на основе пропорционального распределения фототока, который генерируется в месте падения светового луча. Существует два типа двумерных позиционно-чувствительных датчиков: с двухсторонним расположением электродов и с четырехсторонним расположением электродов.

Датчики с двухсторонним расположением электродов обладают резистивными слоями, нанесенными с обеих сторон подложки. Датчик имеет четыре вывода. Фототок распределяется на две входных и две выходных компоненты. Распределение выходных токов определяет положение координаты Y, а распределение входных –координаты X положения пучка.


Датчики с четырехсторонним расположением электродов обладают одним чувствительным резистивным слоем, расположенным с одной стороны подложки. Такие датчики значительно дешевле датчиков с двухсторонним расположением электродов. Однако линейность отклика этих датчиков падает по мере удаления пучка от центра. Это связано с расположением анодов по периметру сенсора, особенно нелинейность заметна в углах датчика, где аноды приближаются друг к другу. Компания Thorlabs использует один из вариантов датчиков с четырехсторонним расположением электродов – датчик в форме «подушечки». Модель такого датчика представлена на рисунке сверху. Аноды перемещаются в углы датчика, фигурная форма электродов обеспечивает компенсацию искажений сигнала вблизи периметра. Такая модель обладает линейностью на уровне датчиков с двухсторонним расположением электродов, но значительно меньшей стоимостью.

Принцип вычисления положения луча

PDP90A детектор от компании Thorlabs оснащен схемой для вычисления Δx, Δy и суммы сигналов по формулам:


Согласно этим формулам расстояние в единицах измерения длины можно вычислить с помощью уравнений:


где x и y – это расстояния от центра до края сенсора, Lx и Ly – характерные размеры резистивного слоя. Для PDP90A детектора Lx = Ly = 10 мм. Следует отметить, что размеры резистивного слоя не соответствуют размерам активной области датчика. Активная область обозначена на рисунке серым цветом.

Погрешность определения положения

В отличие от квадрантных датчиков, где требуется перекрытие всех четырех активных областей, представленные датчики позволяют получить информацию о нахождении пучка в любой точке детектора не зависимо от формы, размера и распределения мощности в пучке. Датчик определяет положение центра пятна света до тех пор, пока пятно находится на светочувствительной области. Если часть светового пятна покидает светочувствительную поверхность, это приведет к сдвигу центра, и измерения станут ненадежными.

К ошибкам в измерении положения пучка также может привести уровень внешней освещенности. Для уменьшения погрешностей измерения лучше проводить в темноте. Использование фокусирующей оптики и диафрагм, также позволит снизить ошибки, связанные с внешней освещенностью.

Разрешение

Разрешение позиционно-чувствительного детектора – это минимальное детектируемое смещение светового пятна на поверхности сенсора датчика. Разрешение (ΔR) зависит как от размеров резистивного слоя (L x или L y), так и от отношения сигнал/шум (S/N). Отношение сигнал/шум этой системы можно определить как отношение суммы выходных сигналов (V o) к напряжению шума (e n). Шум на выходе детектора PDP90A составляет

Где

ΔR – разрешение,

Lx – характерный размер резистивного слоя,

e n – шумовое напряжение на выходе детектора,

Vo – сумма выходных напряжений.

Для детектора PDP90A:


Для получения оптимальных результатов значение V o необходимо увеличить до 4 В, что обеспечит разрешение детектора на уровне 0.750 мкм. Для этого необходимо следить за суммарным выходным сигналом (SUM) сенсора и одновременно регулировать интенсивность падающего излучения, пока напряжение на выходе не станет равно 4 В. Напряжение более 4 В приведет к насыщению системы и, следовательно, к ошибкам в измерениях. С помощью поставляемого программного обеспечения можно легко осуществлять контроль уровня напряжения. Если суммарное напряжение выше уровня насыщения, то ползунок, отображающий уровень суммарного напряжения, станет красным. В этом случае необходимо уменьшить интенсивность излучения до уровня, при котором цвет ползунка станет зеленым. Данное значение будет соответствовать 4 В выходного напряжения.

Позиционно-чувствительный детектор на основе квадрантных фотодиодов

Сенсор такого детектора состоит из четырех идентичных квадрантных фотодиода, которые разделены зазором ~0.1 мм и вместе образуют круглую зону детектирования для определения положения падающего пучка (в формате 2D). При попадании света на сенсор фототок генерируется в каждой области (на рис. Q1, Q2, Q3 и Q4). На основе этих сигналов с помощью АЦП вычисляются разностные сигналы. Также вычисляется сумма всех четырех сигналов для нормировки. Нормированные координаты (Х, У) положения пучка определяются с помощью уравнений:



Если симметричный пучок падает в центр сенсора, то система на выходе зарегистрирует 4 одинаковых фототока, т.е. разностные сигналы будут равны 0, а нормированные координаты (X, Y) = (0, 0). Фототоки изменятся, если пучок сдвинуть относительно центра. В этом случае разностные токи не будут раны 0.

Детекторы на основе квадрантных фотодиодов очень точные и отлично подходят для систем автоюстировки. Однако необходимо следить за формой и распределением интенсивности в пучке, т.к. данный вид детекторов чувствителен к этим параметрам. Для пучков, распределение мощности в которых не является Гауссовым, центр будет определяется на основе распределения мощности (не геометрический центр пучка). Для таких пучков предпочтительнее использовать детекторы, описанные в предыдущем пункте.

Лавинные фотодиоды в режиме Гейгера обладают способностью детектировать одиночные фотоны. Чувствительность на уровне одиночных фотонов может быть достигнута за счет увеличения напряжения смещения выше напряжения пробоя (т. А на рис.4). Лавинный фотодиод будет оставаться в метастабильном состоянии, пока не поглотиться фотон, который приведет к генерации лавины (т. B). Эта лавина гасится с помощью активной схемы гашения в фотодиоде (т. C), которая понижает напряжение смещения до значений ниже напряжения пробоя (V BR).


Рис.4: Вольтамперная характеристика лавинного фотодиода в режиме Гейгера

После этого высокое значение напряжения смещения может быть восстановлено. В течении описанного процесса, которое известно как мертвое время диода, лавинный фотодиод нечувствителен к любым падающим фотонам. Когда диод находится в метастабильном состоянии, возможно спонтанное формирование лавин. Если спонтанное формирование лавин происходит хаотично, то зарегистрированный сигнал называется темновым отсчетом. Если спонтанное формирование лавин по времени коррелирует с импульсами от падающих фотонов, то такой сигнал называется послеимпульсом. Чтобы избежать регистрации послеимпульсов при проведении измерений, можно ввести дополнительное мертвое время программными средствами (с помощью ПО), что приведет к игнорированию счетчиком всех импульсов, возникших в течении этого времени.

Основные характеристики и понятия

Режим Гейгера

В этом режиме диод работает при напряжении смещения выше напряжения пробоя. Следовательно, одна электрон-дырочная пара (сгенерированная в результате поглощения фотона или тепловых флуктуаций) может вызвать лавинный процесс.

Скорость темнового счета

Это средний показатель зарегистрированных отсчетов при отсутствии падающего излучения, который определяет минимальную скорость счета, при которой зарегистрированный сигнал в основном вызван реальными фотонами. Регистрация ложных фотонов в основном связана с тепловыми флуктуациями и таким образом, ее можно избежать с помощью использования охлаждаемых детекторов

Активное гашение происходит, когда дискриминатор регистрирует возникновение лавинного тока и резко уменьшает напряжение смещения до значений ниже напряжения пробоя. При подготовке к регистрации следующего фотона напряжение смещения снова увеличивается до значений выше напряжения пробоя.

Мертвое время – это временной интервал, который необходим детектору для восстановления состояния, при котором он может регистрировать события без искажений. В течении этого времени он не видит падающих фотонов. Часть мертвого времени, связанная с активной схемой гашения, может быть определена как отношение пропущенных фотонов к падающим.

Послеимпульсы

Во время лавинного процесса некоторые заряды могут быть захвачены ловушками. При освобождении эти заряды могут привести к формированию лавины. Такие «ложные события» называют послеимпульсами (Afterpulses). Время жизни таких захваченных зарядов составляет порядка нескольких десятых микросекунды. Следовательно, возникновение послеимпульсов более вероятно непосредственно после импульса от реального фотона.

Основные модели фотодетекторов от компании Thorlabs

В таблице представлены модели фотодетекторов от компании Thorlabs. Модели, расположенные в одной и той же строке, оснащены одинаковыми светочувствительными элементами.

Диапазон рабочих длин волн

Материал

a Калиброванный фотодиод

b Корпус TO-46

Принцип работы

С момента появления первых коммерческих ФЭУ в 1940 году, этот вид детекторов остается одним из самых популярных при проведении экспериментов, в которых требуется малое время отклика и высокая чувствительность. Сегодня ФЭУ незаменимы при проведении исследований в области аналитической химии, физики элементарных частиц, астрономии, атомной и молекулярной физики, а также в медицине и контроле производственных процессов.

Фотоэлектронные умножители (ФЭУ) – это чувствительные детекторы с высоким коэффициентом усиления, выходной ток которых пропорционален падающему излучению. ФЭУ состоит из стеклянной вакуумной трубки, в которой расположены фотокатод (фотоэмиссионный материал), 8-14 динодов (вторичная эмиссия) и анод (коллектор вторичных электронов). Если фотон с достаточно высокой энергией (т.е. с энергией больше энергии связи электронов материала фотокатода) падает на фотокатод, то он поглощается и испускается электрон (фотоэффект). Поскольку на первом диноде потенциал выше, чем потенциал на катоде (между этими элементами создается разность потенциалов), то выпущенный электрон ускоряется в электрическом поле и направляется на систему динодов, где за счет вторичной (ударной) электронной эмиссии образуют нарастающую от динода к диноду электронную лавину, поступающую на анод. Как правило, каждый динод обладает потенциалом, который на 100 – 200 В выше, чем потенциал предыдущего динода. Ток анода преобразуют в напряжение, для этого нагрузку с малым сопротивлением включают в цепь между анодом и землей. ФЭУ и от компании Thorlabs используют трансимпедансный усилитель (TIA) для преобразования тока анода (нА или мкА) в напряжение (мВ или В). Модули , и не содержат трансимпедансного усилителя.

Например, если ФЭУ состоит из 8 динодов, как показано на рис. ниже и каждый электрон приводит к появлению 4 вторичных электронов, то усиление тока после системы динодов будет составлять 4 8 ≈ 66,000. В приведенном примере, каждый фотоэлектрон приводит к появлению лавины с зарядом Q = 4 8 e, которая приходит на анод. Импульс напряжения при этом равен V = Q/C = 4 8 e /C, где C – емкость анода. Если емкость равна 5 пФ, то напряжение импульса на выходе будет равно 2.1 мВ.


Спектральная чувствительность

При выборе ФЭУ необходимо обратить внимание на материал фотокатода, т.к. он определяет длинноволновую границу спектральной чувствительности. Коротковолновая граница определяется материалом окна. Сегодня изготавливают различные виды ФЭУ для работы в диапазоне от УФ до ИК, при этом используют различные материалы фотокатода, каждый из который предназначен для работы в определенном спектральном диапазоне.

Квантовая эффективность (QE) – это величина, выражаемая в %, которая характеризует способность ФЭУ преобразовывать падающие фотоны в электроны. Например, QE равно 20%. Это означает, что один из 5 фотонов, падающих на фотокатод, приведет к появлению фотоэлектронов. Для задач счета фотонов, желательно иметь ФЭУ с высоким показателем квантовой эффективности. Поскольку QE зависит от длины волны, необходимо подобрать ФЭУ, с максимальной квантовой эффективностью в интересующем спектральном диапазоне. Следует отметить, что фотокатоды для видимой области спектра, как правило, обладают QE

Вычислить квантовую эффективность ФЭУ можно по формуле:


где S – это интегральная чувствительность [А/Вт], λ – длина волны [нм].

Конфигурация ФЭУ

Доступны две основные конфигурации ФЭУ: входное окно располагается на торце или на боковой стенке вакуумной колбы. В случае, когда входное окно расположено на торце, ФЭУ оснащен полупрозрачными фотокатодами и характеризуется большой площадью активной области, пространственной однородностью, и более высокой производительностью в синей и зеленой областях спектра. Такая конфигурация предпочтительнее для применений, требующих широкой спектральной чувствительности, таких как спектроскопия. В ФЭУ с боковым окном используют непрозрачные фотокатоды, такая конфигурация чаще всего используется при работе в УФ и ИК диапазоне. Конфигурация с боковым окном дешевле, чем конфигурация с окном на торце, и часто используется для задач, требующих высокой квантовой эффективности, таких как сцинтилляционные измерения.

8-14 динодов располагают линейно или по кругу. При линейном расположении (как показано на рис.) ФЭУ обладает малым временем отклика, высоким разрешением и линейностью. Диноды располагаются по кругу в ФЭУ с боковым окном и в некоторых ФЭУ с торцевым окном, при этом система обладает компактными размерами и малым временем отклика.

Коэффициент усиления

ФЭУ – уникальны, так как способны усиливать очень слабые сигналы от фотокатода до детектируемого уровня выше шума считывания без внесения существенных помех. За усиление сигнала в ФЭУ отвечают диноды, и коэффициент усиления зависит от прилагаемого напряжения. ФЭУ может работать при напряжениях, превышающих значения, рекомендуемые производителем, обеспечивая при этом коэффициент усиления в 10-100 раз выше указанного в спецификации. При работе в таком режиме на ФЭУ не оказывается негативного влияния, если ток анода ниже предельно допустимых значений.

Темновой ток

В случае идеального ФЭУ, все сигналы, производимые фотокатодом, являются следствием попадания в трубку света. Однако, настоящие ФЭУ генерируют ток даже в отсутствии падающего излучения. Сигнал, генерируемый ФЭУ в отсутствии света, называется темновым током. Этот сигнал сильно снижает отношение сигнал/шум ФЭУ. Темновой ток главным образом обусловлен термоэлектронной эмиссией электронов из фотокатода и нескольких первых динодов, и в меньшей степени космическими лучами и радиацией. ФЭУ, разработанные для применений в красной области спектра, обладают более высокими значениями темнового тока, чем другие ФЭУ, за счет малых значений энергии связи электронов в фотокатодах, обладающих чувствительностью в красной области спектра.

Термоэлектронная эмиссия зависит от температуры фотокатода и работы выхода, а значит охлаждение ФЭУ может значительно снизить темновой ток. При использовании ФЭУ с термоэлектрическим охлаждением следует избегать конденсации на входном окне, так как влага уменьшит количество света, падающего на фотокатод. Кроме того, необходимо избегать чрезмерного охлаждения, так как это может привести к негативным последствиям: уменьшение уровня сигнала или напряжения на катоде, т.к. сопротивление катодной пленки обратно пропорционально температуре.

Время Нарастания

Для экспериментов, требующих высокого временного разрешения, время нарастания должно быть коротким. Время нарастания импульса тока анода чаще всего используется в качестве характеристики быстродействия ФЭУ. В конечном счете, время нарастания импульса определяется временем распространения разных электронов. Оно отличается по нескольким причинам. Во-первых, начальные скорости вторичных электронов различаются. т.к. они выбиваются из разных по глубине мест материала динодов. Некоторые электроны вылетая обладают ненулевой начальной энергией, поэтому достигнут следующего динода за более короткое время. Время пролета электронов также будет зависеть от длины пути. В результате всех этих эффектов, время нарастания импульса анодного тока будет уменьшаться с увеличением напряжения как V -1/2 .

Другие факторы

При работе с ФЭУ следует тщательно выбирать электронику, которая будет использоваться. Даже небольшие флуктуации высокого напряжения, прилагаемого между катодом и анодом могут сильно повлиять на выходной сигнал. Кроме того, условия окружающей среды также могут влиять на работу ФЭУ. Изменения температуры и влажности, а также вибрации негативно влияют на производительность ФЭУ. Корпус ФЭУ также имеет большое значение, он не только защищает трубку от постороннего света, но и снижает влияние внешних магнитных полей. Поле с магнитной индукцией в несколько гауссов, может уменьшить коэффициент усиления. Этого можно избежать путем использования магнитного экрана из материала с высокой магнитной проницаемостью.

Основными характеристиками фотодиода являются: ВАХ, световая и спектральная.

Вольт-амперная характеристика . В общем случае (при любой полярности U) ток фотодиода описывается выражением (1). Это выражение представляет собой зависимость тока фотодиода I ф от напряжения на фотодиоде U при разных значениях потока излучения Ф, т.е. является уравнением семейства вольт-амперных характеристик фотодиода. Графики вольт-амперных характеристик приведены на рис. 1.7.

Рис. 1.7 ВАХ фотодиода.

Семейство вольт-амперных характеристик фотодиода расположено в квадрантах I, III и IV. Квадрант I – это нерабочая область для фотодиода: в этом квадранте к p-n переходу прикладывается прямое напряжение и диффузионная составляющая тока полностью подавляет фототок (I p — n >> I ф). Фотоуправление через диод становится невозможным.

Квадрант III – это фотодиодная область работы фотодиода. К p-n переходу прикладывается обратное напряжение. Следует подчеркнуть, что в рабочем диапазоне обратных напряжений фототок практически не зависит от обратного напряжения и сопротивления нагрузки. Вольт-амперная характеристика нагрузочного резистора R представляет собой прямую линию, уравнение которой имеет вид:

E обр — I ф · R = U,

где U обр – напряжение источника обратного напряжения; U – обратное напряжение на фотодиоде; I ф – фототок (ток нагрузки).

Фотодиод и нагрузочный фоторезистор соединены последовательно, т.е. через них протекает один и тот же ток I ф. Этот ток I ф можно определить по точке пересечения вольт-амперных характеристик фотодиода и нагрузочного резистора (рис 1.7 квадрант III) Таким образом, в фотодиодном режиме при заданном потоке излучения фотодиод является источником тока I ф по отношению к внешней цепи. Значение тока I ф от параметров внешней цепи (U обр, R) практически не зависит (Рис 1.7.).

Квадрант IV семейства вольт-амперных характеристик фотодиода соответствует фотогальваническому режиму работы фотодиода. Точки пересечения вольт-амперных характеристик с осью напряжения соответствуют значениям фото-ЭДС E ф или напряжениям холостого хода U хх (R н = ∞) при разных потоках Ф. У кремниевых фотодиодов фото-ЭДС 0,5-0,55 В. Точки пересечения вольт-амперных характеристик с осью токов соответствуют значениям токов короткого замыкания I кз (R н = 0). Промежуточные значения сопротивления нагрузки определяются линиями нагрузки, которые для разных значений R н выходят из начала координат под разным углом. При заданном значении тока по вольт-амперным характеристикам фотодиода можно выбрать оптимальный режим работы фотодиода в фотогальваническом режиме (Рис. 1.8). Под оптимальным режимом в данном случае понимают выбор такого сопротивления нагрузки, при котором в R н будет передаваться наибольшая электрическая мощность.

Рис.1.8. ВАХ фотодиода в фотогальваническом режиме.

Отимальному режиму соответствует для потока Ф1 линия нагрузки R 1 (площадь заштрихованногопрямоугольника с вершиной в точке А, где пересекаются линии Ф 1 и R 1 , будет наибольшей – рис.1.8). Для кремниевых фотодиодов при оптимальной нагрузке напряжение на фотодиоде U=0,35-0,4 В.

Световые (энергетические) характеристики фотодиода – это зависимость тока от светового потока I = f(Ф):

Рис. 1.9. Световая характеристика ФД.

В фотодиодном режиме энергетическая характеристика в рабочем диапазоне потоков излучений линейна.

Это говорит о том, что практически все фотоносители доходят до p-n перехода и принимают участие в образовании фототока, потери неосновных носителей на рекомбинацию не зависят от потока излучения.

В фотогальваническом режиме энергетические характеристики представляются зависимостями либо тока короткого замыкания I кз, либо фото-ЭДС E ф от потока излучения Ф. При больших потоках Ф закон изменения этих зависимостей существенно отклоняется от линейного (рис. 1.10).

Фотодиодный режим

Рис.1.10.Световые характеристики ФД

Для функции I кз = f(Ф) появление нелинейности связанно с ростом падения напряжения на объемном сопротивлении базы полупроводника. Снижение фото-ЭДС объясняется уменьшением высоты потенциального барьера при накоплении избыточного заряда электронов в n-области и дырок p-области.

Диодный режим имеет по сравнению с генераторным следующие преимущества:

· выходной ток в фотодиодном режиме не зависит от сопротивления нагрузки, в генераторном режиме максимальный входной ток может быть получен только при коротком замыкании в нагрузке.

· фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n перехода уменьшается).

Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n перехода) от температуры.

Основными параметрами являются:

· темновой ток I т.

· рабочее напряжение U раб – напряжение, прикладываемое к диоду в фотопреобразовательном режиме.

· Интегральная чувствительность K ф.

Фотодиод — это светочувствительный диод, который использует энергию света для создания напряжения. Широко используются в бытовых и промышленных автоматических системах управления, где переключателем является количество поступающего света. Например, контроль степени открытия жалюзи в системе умного дома, исходя из уровня освещенности

Когда свет попадает на фотодиод, то энергия света, попавшего на светочувствительный материал, вызывает появление напряжения, которое заставляет электроны двигаться через P-N переход . Существует два типа фотодиодов: фотоэлектрические и фотопроводящие.

Фотопроводящие диоды

Такие диоды используются для управления электрическими цепями, на которые потенциал подается извне, то есть с постороннего источника.

Например, они могут регулировать включение и выключение уличного освещения или же открывать и закрывать автоматические двери.

В типичной цепи, в которой установлен фотодиод, потенциал, подаваемый на диод, имеет смещение в обратном направлении, а его значение немного ниже пробивного напряжения диода. По такой цепи ток не идет. Когда же свет попадает на диод, то дополнительное напряжение, которое начинает двигаться через P-N переход, вызывает сужение обедненной области и создает возможность для движения тока через диод. Количество проходящего тока определяется интенсивностью светового потока, попадающего на фотодиод.

Фотоэлектрические диоды

Фотоэлектрические диоды являются единственным источником напряжения для цепи, в которой они установлены.

Одним из примеров такого фотоэлектрического диода может служить фотоэкспонометр используемый в фотографии для определения освещенности. Когда свет попадает на светочувствительный диод в фотоэкспонометре, то возникающее в результате этого напряжение приводит в действие измерительный прибор. Чем выше освещенность, тем большее напряжение возникает на диоде.

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Е ф ». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы
Фотодиоды способны функционировать в следующих режимах:
  • Режим фотогенератора. Без подключения источника электричества.
  • Режим фотопреобразователя. С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт/м 2 .

При функционировании фотодиода в качестве фотопреобразователя , источник напряжения подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Напряжение и ток на нагрузке R н определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору R н. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p i n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 10 10 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.


Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

I — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность
Факторы, влияющие на эту характеристику:
  • Время диффузии неравновесных носителей заряда.
  • Время прохождения по р-n переходу.
  • Период перезарядки емкости барьера р-n перехода.
Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Наиболее влияющими оказались такие факторы:
  • Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
  • Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.

Фотодиоды | Техника и Программы

Принцип действия фотодиода

Полупроводниковый фотодиод — это полупроводниковый диод обратный ток которого зависит от освещенности.

Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.

Характеристики фотодиодов

Свойства фотодиода можно охарактеризовать следующими характеристиками:

Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.

Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.

Спектральная характеристика фотодиода — это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

Постоянная времени — это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

Темновое сопротивление — сопротивление фотодиода в отсутствие освещения.

Интегральная чувствительность определяется формулой:

где 1ф — фототок, Ф — освещенность.

Инерционность

Существует три физических фактора, влияющих на инерционность:

1.          Время диффузии или дрейфа неравновесных носителей через базу т;

2.           Время пролета через р-n переход т,;

3.          Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.

Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, — 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.

Расчет КПД фотодиода и мощности

КПД вычисляется по формуле:

где Росв — мощность освещенности; I — сила тока;

U — напряжение на фотодиоде.

Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.

Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока

Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

Таблица 2.1. Зависимость мощности от КПД

Мощность освещенности, мВт

Сила тока, мА

Напряжение, В

КПД, %

1

0,0464

0,24

1,1

3

0,1449

0,41

2

5

0,248

0,26

1,3

7

0,242

0,45

1,6

Применение фотодиода в олтоэлектронике

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:

•        Оптоэлектронные интегральные микросхемы.

Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.

•        Многоэлементные фотоприемники.

Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

Как происходит восприятие образов?

Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. • Оптроны.

Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.

Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.

Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель — в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом — чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.

Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.

Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.

Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод — только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 — КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).

В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.

Графическим обозначениям оптронов по ГОСТу присвоен условный код — латинская буква U, после которой следует порядковый номер прибора в схеме.

В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.

Применение фотоприемников

Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.

обладают наилучшим сочетанием фотоэлектрических параметров, основных с точки зрения использования в оптоэлектронике: высокие значения чувствительности и быстродействия, малые значения паразитных параметров (например, тока утечки). Простота их устройства позволяет достигнуть физического и конструктивного оптимума и обеспечить наиболее полное использование падающего света.

В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.

Основной недостаток, на который обычно указывают, — отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.

Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103…104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).

Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.

Возможность двойной — временной и пространственной — модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении — от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.

Важная особенность фотодиодов — высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.

Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.

ИК спектра

Инфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.

В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.

Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.

На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.

Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.

Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.

Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.

Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:

Мощность излучения — Ризл — поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика — зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.

При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.

Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.

Импульсная мощность излучения — Ризл им — амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.

Ширина спектра излучения — интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.

Максимально допустимый прямой импульсный ток 1пр им (ИК диоды в основном используются в импульсном режиме работы).

Таблица 2.2. Излучающие диоды инфракрасного спектра

ИК диод

Мощность излучения, мВт

Длина волны, мкм

Ширина спектра, мкм

Напряжение на приборе, В

Угол излучения, град

АЛ107Б

9

0,94…0,96

0,03

2

60

АЛ107Г

12

0,94…0,96

0,03

2

60

АЛ145Д

20

0,93…0,98

0,06

1,6

40

АЛ156В

12

0,82…0,9

0,04

1,8

35

АЛ161А

8

0,83…0,9

0,07

1,5

10

АЛ165Б

15

0,85…0,89

0,04

2

35

АЛ165В

400

0,85…0,9

нет данных

1,6

нет данных

АЛ170В

100

0,85…0,89

0,1

1,5

4

Время нарастания импульса излучения tHapизл — интервал времени, в течение которого мощность излучения диода нарастает с 10 до 100% от максимального значения.

Параметр времени спада импульса tcnM3J1 аналогичен предыдущему.

Скважность — Q — отношение периода импульсных колебаний к длительности импульса.

В основе предлагаемых к повторению электронных узлов (глава 3 данной книги) лежит принцип передачи и приема модулированного ИК сигнала. Но не только в таком виде можно использовать принцип работы ИК диода. Такие оптореле могут работать и в режиме реагирования на отражение лучей (фотоприемник размещается рядом с излучателем). Этот принцип воплощен в электронные узлы, реагирующие на приближение к объединенному приемо-передающему узлу какого-либо предмета или человека, что также может служить датчиком в системах охраны.

Вариантов применения ИК диодов и устройств на их основе бесконечно много и они ограничиваются только эффективностью творческого подхода радиолюбителя.

Применение фотодиодов в оптоэлектронике

 

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах. И поэтому он находит широкое применение во многих областях.

 

В оптоэлектронных интегральных микросхемах фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств. Почти идеальная гальваническая развязка управляющих цепей при сохранении между ними сильной функциональной связи.

 

Многоэлементные фотоприемники — это приборы сканистор, мишень кремникона, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие. Они относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Сочетая в себе успехи физики дискретных фотоприемников и новейшие технологические достижения больших интегральных схем, многоэлементные фотоприемники вооружают оптоэлектронику твердотельным «глазом», способным реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ. Для успешного выполнения этих функций необходимо, чтобы число элементарных фоточувствительных ячеек в приборе было достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения). Принцип восприятия образов этими системами сводится к следующему. Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. В конечном счете, на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ. При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования.


 

Так же фотодиоды активно используются в оптронах. Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической и электрической связи между ними, конструктивно объединенные и помещенные в один корпус. В электронной схеме оптрон выполняет функцию элемента связи, в одно из звеньев которого информация передается оптически. Это основное назначение оптрона. Если между компонентами оптрона создать электрически обратную связь, то оптрон может стать активным прибором, пригодным для усиления и генерации электрических и оптических сигналов. Принципиальное отличие оптронов как элементов связи заключается в использовании для переноса информации электрически нейтральных фотонов, что обуславливает ряд достоинств оптронов, которые присущи и всем остальным оптоэлектронным приборам в целом. Хотя у оптронов есть, разумеется, и свои недостатки. Оптронная техника базируется на достижениях в области физики и технологии излучателей и фотоприемников.

 

В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, пультах дистанцианного управления, фотокамерах, различных сенсорных устройствах, использующих данную технологию. Так же фотодиоды применяются в медицинских приборах. Например в устройствах для проведения компьютерной томографии.

15.немогу-прочитать-свой-подчерк J

Полупроводники

Полупроводниками называют вещества которые по способности проводить электрический токо занимают место между проводниками и диэлектриками.К классу полупроводников относятся многие из извесных веществ.

ПОЛУПРОВОДНИКИ, в-ва, характеризующиеся увеличением электрич. проводимости с ростом т-ры. Хотя часто полупроводники определяют как в-ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 -104 Ом-1 см-1) и для хороших диэлектриков (s ! 10-12 — 10-10 Ом-1 см-1), сама величина электрич. проводимости не играет определяющей роли в полупроводниковых св-вах в-ва. На электрич. проводимость П оказывает влияние кроме т-ры сильное электрич. поле, давление, воздействие оптич. и ионизирующего излучения, наличие примесей и др. факторы, способные изменять структуру в-ва и состояние электронов. Это обстоятельство играет решающую роль в многочисленном и разнообразном использовании полупроводники

 

Полупроводниковые св-ва могут наблюдаться как в кристаллич. в-вах, так и в неупорядоченных системах — твердых аморфных в-вах (стеклах) и жидкостях. При этом решающим является характер хим. связи между частицами в ближнем порядке (первая координац. сфера). Существуют полупроводники с любым типом хим. связи, кроме чисто металлической и чисто ионной (т.е. ковалентной, ковалентно-металлич., ковалентно-ионной и т.полупроводники), причем ковалентная составляющая связи является обычно преобладающей. Широкое практич. применение получили полупроводники, являющиеся простыми в-вами (Ge, Si и др.), а также хим. соединения элементов III гр. периодич. системы с элементами V гр., напр. GaAs, GaP, InAs, CdTe и т.полупроводники (бинарные полупроводники). Все такие в-ва имеют кристаллич. решетку, подобную решетке алмаза, и наз. алмазоподобными полупроводники В Ge и Si в кристаллич. состоянии реализуется классич. двухэлектронная ковалентная связь. образованная перекрыванием sp3-гибридных орбиталей соседних атомов (см. Гибридизация атомных орбиталей). В соответствии с симметрией sp3-гибридных орбиталей расположение атомов в первой координац. сфере отвечает правильному тетраэдру. Такова же первая координац. сфера и у алмазоподобных полупроводники, однако в их структуре каждая ковалентная связь имеет ковалентно-ионный характер из-за заметной разности электроотрицательностей соседних атомов.

 

Повышение т-ры, а также др. внеш. воздействия (облучение светом или сильное электрич., поле) могут вызвать разрыв ковалентной связи, ионизацию атомного остова и образование своб. электрона. Этот электрон в условиях непрерывного обмена валентными электронами между атомами кристалла может переходить из ячейки в ячейку и переносить с собой отрицат. заряд, к-рый повсюду является избыточным, т.е. своб. электрон становится электроном проводимости. Недостаток электрона у разорванной ковалентной связи становится блуждающей по кристаллу дыркой, с к-рой связан единичный положит. заряд.

 

Электроны проводимости и дырки-два типа своб. носителей заряда в полупроводники В идеальных кристаллах их концентрации равны, т.к. превращение одного из валентных электронов в электрон проводимости неизбежно вызывает появление дырки. Электропроводность полупроводники ст, обусловленная электронами атомов данного в-ва (т. наз. собственная проводимость), определяется помимо концентрации носителей п их подвижностью m-отношением скорости направленного движения, вызванного электрич. полем (дрейфовой скоростью) uдр, к напряженности поля Е:

 

(е-элементарный электрич. заряд).

 

Подвижность разных носителей в идеальном кристалле определяется процессами рассеяния электронов на тепловых колебаниях решетки, поэтому ц сильно зависит от т-ры. При 300 К подвижность носителей в твердых полупроводники варьируется в широких пределах от 105 см2/с до 10-3 см2/с и меньше. В реальных кристаллах при пониж. т-рах, как правило, преобладает рассеяние носителей на дефектах кристаллич. структуры.

 

Примесная проводимость. В реальных кристаллах источниками своб. носителей заряда (носителей тока) м. б. дефекты кристаллич. структуры, напр. междоузельные атомы, вакансии, а также отклонения от стехиометрич. состава. Примеси и дефекты делятся на доноры и акцепторы. Доноры отдают в объем полупроводники избыточные электроны, создавая электронную проводимость (n-типа). Акцепторы захватывают валентные электроны собств. атомов полупроводники, в результате чего образуются дырки и возникает дырочная проводимость (р-типа). Типичными донорами в Ge и Si являются примесные атомы элементов V гр. (Р, As, Sb). В узле кристаллич решетки 4 из 5 валентных электронов такого атома образуют ковалентные связи с соседними атомами Ge или Si, а 5-й электрон оказывается слабо связанным с примесным ионом. Энергия ионизации примеси мала (~0,01 эВ в Ge и 0,04 эВ в Si), поэтому уже при 77 К в полупроводники появляются электроны проводимости в концентрации, определяемой содержанием примеси

 

Аналогично атомы III гр. (В, Al, Ga, In)-типичные акцепторы в Ge и Si. Дырка, к-рая остается в месте захваченного примесью валентного электрона Ge или Si, очень слабо связана с примесным ионом и при не очень низких т-рах легко превращ. в своб. носитель заряда (носитель тока). Во мн. бинарных полупроводники типа AIVBVI источниками дырок являются вакансии атомов AIV, а вакансии BVI источниками электронов проводимости. Электропроводность полупроводники, определяемая электронами примесных атомов, наз. примесной проводимостью, а введение определенных примесей для получения полупроводники с разл. требуемыми св-вами-легированием полупроводники

 

Зонная теория объясняет полупроводниковые св-ва твердых тел на основе одноэлектронного приближения и распределения электронных энергетич. уровней в виде разрешенных и запрещенных зон (см. Твердое тело). Энергетич. уровни электронов, участвующих в ковалентной связи, образуют верхнюю из заполненных разрешенных зон (валентную зону). Следующая по энергии разрешенная зона, уровни к-рой не заполнены электронами,-зона проводимости. Энергетич. интервал между «дном» Ес (минимумом энергии) зоны проводимости и «потолком» Еу (максимумом) валентной зоны наз. шириной запрещенной зоны DE (см. рис.). Для разных полупроводники ширина запрещенной зоны меняется в широких пределах. Так, при T: 0 К DE = 0,165 эВ в PbSe и 5,6 эВ в алмазе.

 

Валентная зона (кружки с плюсом дырки) и зона проводимости (кружки с минусом-электроны проводимости): Eс-дно зоны проводимости, EV-потолок валентной зоны, DE- ширина запрещенной зоны, D и A-донорные и акцепторные уровни соответственно.

 

Тепловое движение переносит часть электронов в зону проводимости; в валентной зоне при этом появляются дырки — квантовые состояния, не занятые электронами. Обычно электроны занимают уровни, расположенные вблизи дна Ес зоны проводимости, а дырки-уровни, расположенные вблизи потолка EV валентной зоны. Расстояния от этих уровней соотв. до Ес и ЕV порядка энергии теплового движения kТ, т. е. гораздо меньше ширины разрешенных зон (k-постоянная Больцмана). Локальные нарушения идеальности кристалла (примесные атомы, вакансии и др. дефекты) могут вызвать образование разрешенных локальных уровней энергии внутри запрещенной зоны.

 

При т-рах вблизи О К все собств. электроны полупроводники находятся в валентной зоне, целиком заполняя ее, а примесные электроны локализованы вблизи примесей или дефектов, так что своб. носители заряда отсутствуют. С повышением т-ры тепловое движение «выбрасывает» в зону проводимости преим. электроны примесных атомов-доноров, поскольку энергия ионизации донора меньше ширины запрещенной зоны. Концентрация электронов в зоне проводимости при этом во много раз больше концентрации дырок в валентной зоне. В таких условиях электроны наз. основными носителями в полупроводники n-типа, аналогично дырки — основными носителями в полупроводники р-типа. После полной ионизации всех доноров доминирующим процессом оказывается выброс из валентной зоны в зону проводимости собств. электронов П При нек-рой т-ре их концентрация в зоне проводимости становится сравнимой с концентрацией примесных электронов, а потом и во мн. раз большей. Это температурная область собств. проводимости полупроводники, когда концентрации электронов п и дырок р практически равны.

 

Возникновение пары электрон проводимости-дырка наз. генерацией носителей заряда. Возможен и обратный процесс-рекомбинация носителей заряда, приводящая к возвращению электрона проводимости в валентную зону и исчезновению дырки. Рекомбинация носителей может сопровождаться выделением избыточной энергии в виде излучения, что лежит в основе полупроводниковых источников света и лазеров

 

Электроны проводимости и дырки, возникновение к-рых явилось следствием тепловых флуктуации в условиях тер-модинамич. равновесия, наз. равновесными носителями заряда. При наличии внеш. воздействия на полупроводники (освещение, облучение быстрыми частицами, наложение сильного электрич. поля) может происходить генерация носителей заряда, приводящая к появлению избыточной (относительно термодинамически равновесной) их концентрации. При появлении в полупроводники неравновесных носителей возрастает число актов рекомбинации и захвата электрона из зоны проводимости на примесный уровень в запрещенной зоне («захват» носителей). После прекращения внеш. воздействия концентрация носителей приближается к равновесному значению.

 

p-n-Переход в полупроводники В объеме одного и того же полупроводники возможно создание двух областей с разными типами проводимости, напр. легированием донорной примесью (p-область) и акцепторной примесью (n-область). Т к. в р-области концентрация дырок выше, чем в n-области, происходит диффузия дырок из р-области (в ней остаются отрицательно заряженные акцепторные ионы) и электронов из л-области (в ней остаются положительно заряженные донорные ионы). На границе областей с р- и n-проводимостью образуется двойной слой пространств, заряда, и возникающая электрич. разность потенциалов препятствует дальнейшей диффузии осн. носителей тока. В условиях теплового равновесия полный ток через p-n-переход равен нулю. Внеш. электрич. поле нарушает равновесие, появляется отличный от нуля ток через переход, к-рый с ростом напряжения экспоненциально возрастает. При изменении знака приложенного напряжения ток через переход может изменяться в 105-106 раз, благодаря чему p-n-переход является вентильным устройством, пригодным для выпрямления переменного тока (полупроводниковый диод). На св-вах p-n-перехода основано применение полупроводники в качестве разл. рода датчиков — т-ры, давления, освещения, ионизирующих излучений (см. Радиометрия).

 

Классификация. В соответствии с зонной теорией различие между полупроводники и диэлектриками чисто количественное — в ширине запрещенной зоны. Условно считают, что в-ва с DE > 2 эВ являются диэлектриками, с DE < 2 эВ — полупроводниками. Столь же условно деление полупроводники на узкозонные (DE < 0,1 эВ) и широкозонные. Важно, что один и тот же по хим. составу материал в зависимости от внеш. условий (прежде всего т-ры и давления) может проявлять разные св-ва. Наблюдается определенная зависимость между концентрацией электронов проводимости и устойчивостью кристаллич. структуры полупроводники В частности, алмазоподобная структура устойчива до тех пор, пока в зоне проводимости еще остаются вакантные энергетич. уровни. Если все они оказываются занятыми и имеет место вырождение энергетических уровней, первая координац. сфера, а за ней и весь кристалл претерпевают перестройку с образованием более плотной структуры, характерной для металлов. При этом концентрация электронов проводимости перестает расти с т-рой и собств. проводимость полупроводники падает. Классич. примером является олово, устойчивая полиморфная модификация к-рого (белое олово) при комнатной т-ре является металлом, а стабильное при т-рах ниже 13°С серое олово (ct-Sn)- узкозонный полупроводники С повышением т-ры и соответствующим изменением концентрации своб. электронов характерная для a-Sn алмазоподобная структура переходит в структуру с более плотной упаковкой атомов, свойственной металлам. Аналогичный переход полупроводники-металл наблюдается при высокой т-ре у Ge, Si и алмазоподобных бинарных полупроводники, к-рые при плавлении теряют полупроводниковые св-ва.\

17.не-могу-рашифровать-подчерк J

Полупроводниковые диоды

В разделе «Электроника» основное внимание следует уделить полупроводниковым приборам, так как на них основана работа большинства электронных схем. Разобравшись в принципе действия этих приборов, легче понять работу схем различных радиотехнических устройств.

 

Работа полупроводниковых диодов основана на изменении свойств p-n перехода под действием приложенного напряжения. Из курса физики известно, что примесный полупроводник, например, четырехвалентный кремний с примесью трехвалентного индия обладает так называемой дырочной проводимостью и называется полупроводником p-типа, а тот же кремний с примесью пятивалентного мышьяка обладает электронной проводимостью и называется полупроводником n-типа. При контакте полупроводников p и n типов образуется электронно-дырочный переход.

 

Чаще всего используются два свойства электронно-дырочных переходов: выпрямляющее действие (см. вольт-амперную характеристику на рисунке 21) и расширение запирающего слоя перехода при подаче на него обратного напряжения.

 

Выпрямительные свойства р-n перехода можно объяснить как с энергетической точки зрения (снижение или увеличение потенциального барьера для основных носителей заряда при подаче прямого или обратного напряжения на р-n переход), так и с точки зрения поведения носителей после приложения напряжения. При прямом напряжении происходит инжекция, т. е. введение носителей в противоположную область, а при обратном напряжении этот процесс прекращается практически полностью, и ток через переход становится насыщенным и равным току неосновных носителей.

 

Расширение обедненного носителями запирающего слоя при возрастании обратного напряжения на электронно-дырочном переходе используется, например, в полевых транзисторах и варикапах. Расширение запирающего слоя происходит сильнее в область, где концентрация основных носителей меньше (меньше концентрация примесей). В полевом транзисторе с р-n переходом специально делают канал с меньшей концентрацией примесей, чем в затворе, поэтому расширение р-n перехода происходит в основном в сторону канала, что используется для изменения сопротивления канала, например, при усилении сигнала. Аналогичным образом поступают при изготовлении биполярных транзисторов.

 

При анализе работы приборов с р-n переходом следует помнить, какая полярность приложенного напряжения будет прямой, а какая – обратной. Предлагается правило: когда к полупроводнику р-типа присоединяют положительный полюс, а к n – отрицательный, р-n переход проводит ток.

 

Вольт-амперная характеристика идеального р-n перехода описывается уравнением . Характеристика диода проходит через начало координат. На рисунке 21 приведены вольт-амперные характеристики одного из кремниевых выпрямительных диодов в разных масштабах. Прямой ток диода возрастает резко уже при напряжении в десятые доли вольта. Попытка приложить большее прямое напряжение к диоду может закончиться протеканием очень большого тока через диод, его перегревом и, в конечном счете, выходом диода из строя.

 

При обратном напряжении через диод протекает малый обратный ток. Однако при достаточно большом напряжении наступает электрический пробой, ток начинает резко возрастать, а это может привести к перегреву диода, который заканчивается также тепловым пробоем и выходом диода из строя.

 

 

Рисунок 21

 

Характеристика диода ассиметрична; ее прямую и обратную ветви невозможно выразить в одном масштабе.

 

При анализе схем обычно считают, что диоды являются идеальными выпрямителями, т. е. не обладают сопротивлением в прямом направлении и имеют бесконечно большое сопротивление при обратном напряжении. Часто такая идеализация является приемлемой.

 

Помимо выпрямительных существуют еще туннельные и обращенные диоды и целый ряд диодов, использующих обратное включение р-n перехода: стабилитроны, варикапы, фотодиоды. Большое распространение получили светоизлучающие диоды, работающие на явлении рекомбинации электронов и дырок.

Электронно лучевая трубка

Общие принципы

 

Устройство чёрно-белого кинескопа

 

В баллоне 9 создан глубокий вакуум — сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер.

 

Для того, чтобы создать электронный луч 2, применяется устройство, именуемое электронной пушкой. Катод 8, нагреваемый нитью накала 5, испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде (модуляторе) 12 можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки 3 с сердечником 11), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом 14, представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт.

 

Далее луч проходит через отклоняющую систему 1, которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.

 

Электронный луч попадает в экран 10, покрытый люминофором 4. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

 

Люминофор от электронов приобретает отрицательный заряд, и начинается вторичная эмиссия — люминофор сам начинает испускать электроны. В результате вся трубка приобретает отрицательный заряд. Для того, чтобы этого не было, по всей поверхности трубки находится соединённый с общим проводом слой аквадага — проводящей смеси на основе графита (6).

 

Кинескоп подключается через выводы 13 и высоковольтное гнездо 7.

 

В чёрно-белых телевизорах состав люминофора подбирают таким, чтобы он светился нейтрально-серым цветом. В видеотерминалах, радарах и т. д. люминофор часто делают жёлтым или зелёным для меньшего утомления глаз.

 

Угол отклонения луча

 

Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40 градусов, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин. У первых советских кинескопов с круглым экраном составлял 50 градусов, у чёрно-белых кинескопов более поздних выпусков был равен 70 градусам, начиная с 60-х годов увеличился до 110 градусов (один из первых подобных кинескопов — 43ЛК9Б). У отечественных цветных кинескопов составляет 90 градусов.

 

Ионный уловитель

 

Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ион, которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 60 гг. применялись ионная ловушка. В начале 60 гг. был разработан новый способ защиты люминофора: алюминирование экрана, кроме того позволившее вдвое повысить максимальную яркость кинескопа.

20.транзисторы.класификация транзисторов

Транзи́стор (от англ. transfer — переносить и resistor — сопротивление) — трёхэлектродный полупроводниковый электронный прибор, в котором ток в цепи двух электродов управляется третьим электродом. Управление током в выходной цепи осуществляется за счёт изменения входного напряжения. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.). В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

 

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем памяти, процессора, логики и т. п. Размеры современных МОПТ составляют от 90 до 32 нм. На одном современном чипе (обычно размером 1—2 см²) размещаются несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров. Каждую секунду сегодня в мире изготавливается полмиллиарда МОП-транзисторов.Содержание [показать]

 

 

[править]

История

 

Фотодиод принцип работы: описание, характеристики

Автор Почемучка На чтение 23 мин. Просмотров 255

Спектральная характеристика фотодиода — это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.

Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.

На принципиальных схемах фотодиод обозначается почти также как диод, только с двумя направленными к нему стрелочками. Стрелки говорят о падающем на элемент световом излучение. Тут главное не перепутать с обозначением светодиода, у которого стрелки направлены в другую сторону.

В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через фотоэлемент протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.

Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.

При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.

При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.

Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.

Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.

В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.

Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.

Световая характеристика фотодиода, зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.

Спектральная характеристика фотодиода — это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

постоянная времени — в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.

темновое сопротивление — сопротивление радиокомпонента при отсутствии освещения.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .

При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.

КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора

Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры , в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.

Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются оптронами (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.

Сделайте небольшой донат на развитие сайта «Школа для электрика»!

В волоконно-оптических системах связи помимо pin фотодиодов применяются лавинные фотодиоды (ЛФД).

Pin-фотодиод


Схема pin-фотодиода

В наше время широко применяются волоконно-оптические системы связи. В них для преобразования света в электрический сигнал применяются pin-фотодиоды. Р и n слои фотодиода изготавливают при помощи легирования (добавления примесей в полупроводник). Плюс говорит о том, что легирование повышенное, то есть добавок больше, чем обычно).

Средняя часть фотодиода – i часть – слаболегированный проводник n-типа. При подачи обратного напряжения, в этом слое возникает обедненная область (мало дырок и электронов). Поэтому сопротивление этой части диода велико, намного больше, чем в р+ и n+ слоях. Как следствие, электрическое поле сосредоточено в и-области. Фотон поглощенный в и-зоне рождает пару: электрон и дырка.

Сильное поле i-области мгновенно разделяет их по электродам: дырка поглощается катодом, электрон – анодом. Возникает электрический ток. Pin фотодиоды очень эффективны. Наибольшая частота, с которой они работают достигает 1010 герц. Что позволяет передавать терабайты информации за 1 секунду.

Как видим из рисунка, ширина и-слоя намного больше, чем ширина р+ и n+ слоев. Это сделано для того, чтобы фотоны поглощались бы в и-зоне, а не в соседних слоях.

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы
Фотодиоды способны функционировать в следующих режимах:
  • Режим фотогенератора. Без подключения источника электричества.
  • Режим фотопреобразователя. С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт/м 2 .

При функционировании фотодиода в качестве фотопреобразователя , источник напряжения подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p i n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 10 10 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.

Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

I — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность
Факторы, влияющие на эту характеристику:
  • Время диффузии неравновесных носителей заряда.
  • Время прохождения по р-n переходу.
  • Период перезарядки емкости барьера р-n перехода.
Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Была ли статья полезна?

Схема фотодиода

Фотопроводящие диоды

Такие диоды используются для управления электрическими цепями, на которые потенциал подается извне, то есть с постороннего источника.

Например, они могут регулировать включение и выключение уличного освещения или же открывать и закрывать автоматические двери.

В типичной цепи, в которой установлен фотодиод, потенциал, подаваемый на диод, имеет смещение в обратном направлении, а его значение немного ниже пробивного напряжения диода. По такой цепи ток не идет. Когда же свет попадает на диод, то дополнительное напряжение, которое начинает двигаться через P-N переход, вызывает сужение обедненной области и создает возможность для движения тока через диод. Количество проходящего тока определяется интенсивностью светового потока, попадающего на фотодиод.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

18 июня 2012 в 10:00

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями.

При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком.

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.

КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора

Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры, в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр 2230

Сегодня существует два подхода к классификации световых диодов. Во-первых, радиокомпоненты различаются по предназначению. В зависимости от этого они могут быть излучательными и индикаторными. Первые используются в оптоволоконных линиях связи в составе оптических пар. Вторые применяются в устройствах индикации. Осветительные светодиоды относятся, кстати, ко второму типу.

Фотодиоды

Эти полупроводниковые радиокомпоненты в противоположность светодиодам фотонов не излучают. Напротив, для исполнения своих функций фотодиоды сами нуждаются в квантах света. Принцип действия элементов заключается в возникновении обратного тока в результате освещения их каким-либо источником света. В темноте при подаче обратного смещения фотодиод остаётся запертым, но стоит только его осветить, и он открывается. По крайней мере, так процесс выглядит внешне.

На самом деле p-n-переход остаётся закрытым, и через него протекает обычный обратный ток, но к нему добавляется так называемый фототок, который возникает из-за воздействия на полупроводник фотонов внешнего освещения. Поглощение световых квантов в переходной зоне приводит к образованию неосновных носителей заряда на расстоянии от p-n-перехода, которое меньше так называемой диффузионной длины. Благодаря этому и возникает фототок.

В некоторых схемах фотодиод используется в качестве источника тока, работая в гальваническом режиме. То есть в радиокомпоненте при его освещении вырабатывается ток, который далее используется в других частях радиоэлектронного устройства. В этом случае фотодиод не нуждается в обратном смещении. Это упрощает принципиальную схему, что является ценным производственным фактором.

В перечень эксплуатационных достоинств фотодиодов входят следующие:
  1. стабильность фототока;
  2. линейный характер зависимости тока от освещённости;
  3. низкое входное сопротивление при прямом включении;
  4. нетребовательность к температурному режиму.

Относительно температурных требований следует заметить, что в этом смысле наилучшими параметрами обладают германиевые фотодиоды. Их электрические характеристики мало зависят от температуры окружающего воздуха. Это делает германиевые радиокомпоненты предпочтительными для использования в мощных устройствах.

Лавинные фотодиоды

Особенной разновидностью этих полупроводниковых элементов являются лавинные фотодиоды. Такое название они получили по наименованию квантового эффекта, используемого для формирования обратного тока. Механизм действия лавинного фотодиода заключается в следующем. При подаче обратного смещения, превышающего некий критический уровень, происходит лавинный пробой p-n-перехода и через радиокомпонент начинает протекать значительный обратный ток.

В общем и целом, таким же образом себя ведут все полупроводниковые диоды, но только в лавинном фотодиоде сила обратного тока сильно зависит от уровня освещённости. Небольшие и еле заметные глазом изменения силы света влекут за собой значительные колебания обратного тока. Это свойство лавинных фотодиодов используется в различных устройствах автоматизации с повышенными требованиями по чувствительности.

Недостатком обычных и лавинных фотодиодов является сильная зависимость от стабильности параметров обратного смещения. Этот фактор вынуждает использовать в фотодиодных схемах стабилизаторы питающего напряжения.

Режим фотогенератора

Фотодиоды. Принцип действия

Фотодиод работает подобно обыкновенному сигнальному диоду. Отличие заключается в том, что фотодиод генерирует фототок, когда свет поглощается в области переходного слоя полупроводника. Это устройство обладает высокой квантовой эффективностью, а потому находит применение в решении многих задач.

При работе с фотодиодами необходимо точно определить значения выходного тока и учесть чувствительность к падающему свету. На рисунке 1 показана схема фотодиода, состоящая из основных компонентов.

Рисунок 1. Простейшая модель фотодиода. Photodetector — фотодетектор. Junction capacitance — емкость перехода. Series resistance – последовательное сопротивление. Shunt resistance – шунтирующее сопротивление. Load resistance – сопротивление нагрузки

Терминология

Чувствительность

Чувствительность фотодиода может быть определена как отношение генерируемого фототока (IPD) к мощности падающего света (P) на заданной длине волны :

Режим работы

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя). Выбор режима зависит от требований к скорости работы и количества допустимого темнового тока (тока утечки).

Режим фотопреобразователя

Режим фотогенератора

В фотогальваническом режиме смещение равняется нулю. Ток от устройства ограничен, напряжение в цепи возрастает. В основе этого режима заложен фотогальванический эффект — на нем же работают солнечные батареи. Количество темнового тока при работе в фотогальваническом режиме минимально.

Темновой ток

Темновым током называют ток утечки, который возникает при приложении напряжения смещения к фотодиоду. При работе в режиме фотопреобразователя наблюдается увеличение темнового тока, и его зависимость от температуры. Теоретически темновой ток удваивается при каждом повышении температуры на 10°C, а сопротивление шунта удваивается при повышении на 6°C. Конечно, большее смещение может уменьшить емкость перехода, но количество присутствующего тока утечки при этом увеличится.

На темновой ток также влияет материал фотодиода и размер активной области. Обычно кремниевые фотодиоды создают низкий темновой ток по сравнению с устройствами из германия. В приведенной ниже таблице перечислены некоторые материалы, используемые в производстве фотодиодов и их относительные темновые токи, скорость, чувствительность и стоимость.

Фотодиод может работать в двух режимах:

Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Ф — поток электромагнитного излучения; Е — источник постоянного тока; Rн — нагрузка.

кремниевый фотодиод 10x10mm

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода Cp-n

Фотодиод может работать в двух режимах:

  • фотогальванический — без внешнего напряжения
  • фотодиодный — с внешним обратным напряжением
  • простота технологии изготовления и структур
  • сочетание высокой фоточувствительности и быстродействия
  • малое сопротивление базы
  • малая инерционность

Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.

Фотодиоды преобразуют световые сигналы прямо в электрические,, используя обрат-лый пр сравнению со светодиодами физический процесс. В p-i-n-фотодиоде есть широкий внутренний (i-) полупроводниковый слой, разделяющий зоны р- и n-типа, как показано на рис. 6.9. На диод подается обратное смещение (5-20 вольт), это помогает удерживать лосители заряда от внутренней области.

Рис. 6.9. p-i-n-фотодиод
6.7.2. Рабочие параметры
Длина волны отсечки

У входящего фотона должно быть достаточно энергии для подъема электрона через запрещенную зону и создания пары электрон — дырка. У различных полупроводниковых материалов ширина запрещенной зоны различная, энергетический барьер в электрон-вольтах (эВ) может быть связан с длиной волны (λ) с помощью того же самого уравнения, как для светодиодов.

Для конкретного типа детектора энергетический барьер W есть величина постоянная, поэтому вышеприведенная формула дает максимальную длину волны, которая может быть зафиксирована, то есть длину волны отсечки.

Чувствительность

Чувствительность ρ есть отношение выходного тока (i) детектора к входной оптической -мощности (Р).

Для 800 нм чувствительность кремния около 0,5 А/Вт, а пиковая чувствительность InGaAs около 1,1 А/Вт для 1700 нм, снижаясь до 0,77 А/Вт для 1300 нм.

Спектральная характеристика

Спектральная характеристика показывает изменение чувствительности в зависимости от длины волны. Типичные кривые спектральной характеристики для кремниевых и InGaAs p-i-n-диодов показаны на рис. 6.10.

Квантовая эффективность

Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.

Рис. 6.10. Спектральные характеристики p-i-n-диодов
Скорость ответа
Вольтамперная характеристика

Типичные вольтамперные (I-U) кривые для кремниевого p-i-n-фотодиода показа, на рис. 6.11. Можно видеть, что даже когда нет оптической мощности, течет небольшой обратный ток, который называется темновым током (dark current). Он вызывается температурным образованием свободных носителей зарядов, обычно удваиваясь через каждые 10°С прироста температуры после 25°С.

Динамический диапазон

Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.

Рис. 6.11. Вольтамперные характеристики кремниевого p-i-n-фотодиода
6.7.3. Конструкция p-i-n-фотодиодов

Конструкция p-i-n-фотодиодов подобна использовавшейся для светодиодов и лазеров, но оптические требования менее критичны. Активная область детекторов обычно гораздо больше, чем сердечник волокна, поэтому поперечное выравнивание не создает проблем.

Источники

Источник — http://www.texnic.ru/books/electronika/017.html
Источник — http://electricalschool.info/spravochnik/eltehustr/696-fotodiody-ustrojjstvo-kharakteristiki-i.html
Источник — http://principraboty.ru/princip-raboty-fotodioda-shema-i-ustroystvo-fotodioda/
Источник — http://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/fotodiody/
Источник — http://www.radioelementy.ru/articles/fotodiody/
Источник — http://kipiavp.ru/pribori/fotodiod.html
Источник — http://energoboard.ru/post/1717/
Источник — http://eandc.ru/news/detail.php?ID=27668
Источник — http://in-science.ru/library/article_post/fotodiody-i-fotoprovodniki
Источник — http://science.wikia.org/ru/wiki/%D0%A4%D0%BE%D1%82%D0%BE%D0%B4%D0%B8%D0%BE%D0%B4
Источник — http://izmer-ls.ru/w/v69.html

Основы фотодиодов, работа и их применение

Фотодиод представляет собой диод особого типа, который преобразует световую энергию в электрическую, когда на него падает падающий свет, а величина протекающего тока прямо пропорциональна интенсивности света и предназначен для работы при обратном смещении. Это означает, что если мы увеличим интенсивность света на PN-переходе фотодиода, обратный ток в фотодиоде также увеличится.

Символ фотодиода выглядит как диод, но на него падает падающий свет, как вы можете видеть на рисунке ниже.

Фотодиод Символ

Как работает фотодиод?

Он имеет P- и N-переход и подключен с обратным смещением, что приводит к очень широкой области обеднения на PN-переходе. В P-типе основными носителями являются дырки, а в n-типе основными носителями являются электроны. Когда мы подключаем фотодиод с обратным смещением, и если в этом состоянии на фотодиоде нет освещения или света, мы получаем очень небольшую величину тока в микроамперах, мы называем этот ток темновым током.

Когда фотон с энергией, превышающей ширину запрещенной зоны, сталкивается с разрывом ковалентной связи диода и генерируются новые пары электронов и дырок.Это создает пару электронов и дырок, называемых внутренним фотоэлектрическим эффектом, и дырки движутся к аноду, а электроны движутся к катоду, что приводит к фототоку. Полный ток через диод представляет собой сумму темнового тока и фототока. Для максимальной чувствительности фотодиода необходимо минимизировать темновой ток

Hv > Например,

Энергия фотона > энергии запрещенной зоны

Фотодиоды могут работать в следующих режимах:

Фотогальванический режим

В фотогальваническом режиме диод не подключен к источнику питания, диод не смещен.Можно сказать, что нет предвзятого источника. Когда свет в таком состоянии падает на фотодиод, он переводит электроны в более высокое энергетическое состояние и приводит к тому, что электроны движутся к катоду, а дырки — к аноду. Этот процесс создает разность потенциалов между двумя клеммами.

Фотопроводящий режим

В фотопроводящем режиме диод подключается к источнику питания, и мы смещаем диод в обратном направлении. Когда свет падает на фотодиод, он создает пару электронов и дырок и движется в противоположном направлении из-за смещенного напряжения.

V-I характеристика фотодиода

Фотодиод работает в режиме обратного смещения. Фототок не зависит от приложенного напряжения обратного смещения. В отсутствие света или, можно сказать, при нулевой освещенности мы получаем почти нулевой фототок и очень небольшое количество темнового тока. В то время как мы увеличиваем интенсивность света, мы также можем испытывать увеличение фототока. Таким образом, фототок увеличивается линейно с увеличением оптической силы.

Е4>Е3>Е2>Е1

(Изображение предоставлено Викимедиа.org)

Преимущества фотодиодов

  • Работа со светом делает его быстрым и пригодным для быстрой связи, такой как связь на основе оптоволокна
  • Очень низкий уровень шума
  • Долгий срок службы
  • Очень низкое сопротивление
  • Может работать при очень низком напряжении

Применение фотодиода

Фотодиоды широко используются в большинстве устройств:

  • Фотодиод, используемый в качестве датчика освещенности. Поскольку ток в нем прямо пропорционален интенсивности света, он также используется для измерения интенсивности света.
  • Мы можем использовать фотодиод в детекторах дыма для обнаружения дыма и огня.
  • Фотодиод в сочетании со светодиодом для изготовления оптоизоляторов и оптронов
  • Используется в солнечной панели в качестве солнечных элементов
  • Используется в сканере штрих-кода, распознавание символов
  • Используется в системе обнаружения препятствий,
  • Может использоваться в принтерах в качестве индикатора присутствия и счетчика страниц
  • Используется для обнаружения приближения, оксиметров
  • Также используется в оптических энкодерах и декодерах
  • Оптическая передача сообщений, оптоволоконная связь
  • Датчик положения

Чтобы прочитать другие интересные статьи по основам:
нажмите здесь

Поставщики и ресурсы RF Wireless

О RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов RF и Wireless.На сайте представлены статьи, учебные пособия, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тесты и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и дисциплинам MBA.

Статьи о системах на основе IoT

Система обнаружения падения для пожилых людей на основе IoT : В статье рассматривается архитектура системы обнаружения падения для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падения IoT. Подробнее➤
Также см. другие статьи о системах на основе IoT:
• Система очистки туалетов AirCraft • Система измерения удара при столкновении • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной розничной торговли • Система мониторинга качества воды • Система интеллектуальной сети • Умная система освещения на основе Zigbee • Умная система парковки на базе Zigbee • Умная система парковки на базе LoRaWAN.


Беспроводные радиочастотные изделия

Этот раздел статей охватывает статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE/3GPP и т. д. .стандарты. Он также охватывает статьи, связанные с испытаниями и измерениями, посвященные испытаниям на соответствие, используемым для испытаний устройств на соответствие RF/PHY. СМ. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH была рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Подробнее➤


Основные сведения о повторителях и типы повторителей : В нем объясняются функции различных типов повторителей, используемых в беспроводных технологиях.Подробнее➤


Основы и типы замираний : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные замирания, быстрые замирания и т. д., используемые в беспроводной связи. Подробнее➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Подробнее➤


Основы помех и типы помех: В этой статье рассматриваются помехи по соседнему каналу, помехи в Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. д.Подробнее➤


Раздел 5G NR

В этом разделе рассматриваются функции 5G NR (новое радио), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. д. 5G NR Краткий справочник Указатель >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • БАЗОВЫЙ НАБОР 5G NR • Форматы 5G NR DCI • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Опорные сигналы 5G NR • 5G NR m-Sequence • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • MAC-уровень 5G NR • Уровень 5G NR RLC • Уровень PDCP 5G NR


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводным сетям.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, беспроводная сеть, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. д. См. ИНДЕКС УЧЕБНЫХ ПОСОБИЙ >>


Учебное пособие по 5G . В этом учебном пособии по 5G также рассматриваются следующие подтемы, посвященные технологии 5G:
Учебное пособие по основам 5G. Диапазоны частот учебник по миллиметровым волнам Рамка волны 5G мм Зондирование канала миллиметровых волн 5G 4G против 5G Испытательное оборудование 5G Архитектура сети 5G Сетевые интерфейсы 5G NR звучание канала Типы каналов 5G FDD против TDD Нарезка сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G ТФ


В этом учебном пособии по GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM или настройка вызова или процедура включения питания, Вызов MO, вызов MT, модуляция VAMOS, AMR, MSK, GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Читать дальше.

LTE Tutorial , описывающий архитектуру системы LTE, включая основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он предоставляет ссылку на обзор системы LTE, радиоинтерфейс LTE, терминологию LTE, категории LTE UE, структуру кадра LTE, физический уровень LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, Voice Over LTE, расширенный LTE, Поставщики LTE и LTE vs LTE advanced.➤Читать дальше.


Радиочастотные технологии

На этой странице мира беспроводных радиочастот описывается пошаговое проектирование преобразователя частоты на примере повышающего преобразователя частоты 70 МГц в диапазон C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, амортизирующие прокладки. ➤Читать дальше.
➤ Проектирование и разработка радиочастотного трансивера ➤Дизайн радиочастотного фильтра ➤Система VSAT ➤Типы и основы микрополосковых ➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются ресурсы по контролю и измерению, контрольно-измерительное оборудование для тестирования тестируемых устройств на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤Система PXI для контрольно-измерительных приборов. ➤ Генерация и анализ сигналов ➤ Измерения физического уровня ➤ Тестирование устройства WiMAX на соответствие ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤ Тест на соответствие TD-SCDMA


Волоконно-оптические технологии

Волоконно-оптический компонент основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. ИНДЕКС оптических компонентов >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤Основы SONET ➤ Структура кадра SDH ➤ SONET против SDH


Поставщики беспроводных радиочастотных устройств, производители

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики ВЧ-компонентов, включая ВЧ-изолятор, ВЧ-циркулятор, ВЧ-смеситель, ВЧ-усилитель, ВЧ-адаптер, ВЧ-разъем, ВЧ-модулятор, ВЧ-трансивер, PLL, VCO, синтезатор, антенну, осциллятор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексер, дуплексер, чип-резистор, чип-конденсатор, чип-индуктор, ответвитель, ЭМС, программное обеспечение RF Design, диэлектрический материал, диод и т. д.Поставщики радиочастотных компонентов >>
➤ Базовая станция LTE ➤ РЧ-циркулятор ➤РЧ-изолятор ➤Кристаллический осциллятор


MATLAB, Labview, Embedded Исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. СМ. УКАЗАТЕЛЬ ИСТОЧНИКОВ >>
➤ Код VHDL декодера от 3 до 8 ➤Скремблер-дескремблер Код MATLAB ➤32-битный код ALU Verilog ➤ T, D, JK, SR триггер коды labview


*Общая медицинская информация*

Сделайте эти пять простых вещей, чтобы помочь остановить коронавирус (COVID-19).
СДЕЛАЙ ПЯТЬ
1. РУКИ: чаще мойте их 90–100 2. ЛОКОТЬ: Кашляй в него
3. ЛИЦО: Не трогай 90-100 4. НОГИ: держитесь на расстоянии более 1 метра друг от друга 90 100 5. ЧУВСТВУЙТЕ: заболели? Оставайтесь дома

Используйте технологию отслеживания контактов >> , следуйте рекомендациям по социальному дистанцированию >> и установить систему наблюдения за данными >> спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таких стран, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


Радиочастотные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Они охватывают беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. д. СМ. КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤ 5G NR ARFCN и преобразование частоты ➤ Калькулятор скорости передачи данных LoRa ➤ LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Yagi ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

В разделе, посвященном IoT, рассматриваются беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth с низким энергопотреблением (BLE), NFC, RFID, INSTEON, X10, KNX, ANT+, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики IoT, компоненты IoT и компании IoT.
См. главную страницу IoT>> и следующие ссылки.
➤РЕЗЬБА ➤EnOcean ➤ Учебник LoRa ➤ Учебник по SIGFOX ➤ WHDI ➤6LoWPAN ➤Зигби RF4CE ➤NFC ➤Лонворкс ➤CEBus ➤УПБ



СВЯЗАННЫЕ ПОСТЫ


Учебники по беспроводным радиочастотам



Различные типы датчиков


Поделиться этой страницей

Перевести эту страницу

Фотодетектор

» Electronics Notes

Фотодиод и фотодетектор могут использовать различные типы диодов, каждый из которых имеет свою собственную технологию, преимущества и области применения.


Учебное пособие по фотодиодам Включает:
Технология фотодиодов Фотодиоды PN и PIN Лавинный фотодиод фотодиод Шоттки Фотодиодные конструкции Теория фотодиода

Другие диоды: Типы диодов


Фотодиодная технология имеет множество применений в электронной промышленности. Фотодиоды используются в качестве светочувствительных фотодетекторов во многих приложениях, начиная от дисководов CD/DVD и заканчивая оптическими коммуникациями, системами охранной сигнализации и обычными датчиками освещенности.

Технология фотодиодов

проста, но при этом обеспечивает очень высокий уровень производительности. Скорости 30 ГГц и выше достижимы при использовании правильной фотодиодной технологии, что позволяет использовать ее для очень высокоскоростной оптической передачи данных.

Проявка фотодиода

Развитие технологии фотодиодов стало результатом основных разработок диодов с PN-переходом, которые всерьез начались в 1940-х годах. Применения для использования диода с PN-переходом были найдены за пределами основного использования выпрямляющих сигналов.Было обнаружено, что их можно использовать для многих фотонных приложений — фотодиодов, солнечных элементов и светового излучения.

Фотодиодная технология была усовершенствована в 1950-х годах, и во второй половине того же десятилетия был разработан PIN-фотодиод. Поглощение света в широкой обедненной области структуры ПИН впервые было исследовано в статье, опубликованной в 1959 г. компанией Gartner. Хотя кремний был предпочтительным материалом для фотодиодов, германий также можно использовать, и его использование было впервые продемонстрировано в 1962 году Риссом.

Хотя технология PIN-фотодиодов была наиболее широко используемым форматом для диодов, были также продемонстрированы другие типы, включая лавинный диод. Первый шаг на этом пути был сделан в 1953 году Макафи и Маккеем, которые впервые обратились к концепции лавинного умножения, а позже в 1963 году и в последующие годы появились работы по лавинным фотодиодам.

Также рассматривалась другая форма фотодиода, называемая фотодиодом Шоттки. Некоторые из первых исследований фотодетекторов с точечным контактом, по-видимому, были предприняты примерно в 1962 году, а позже также изучались диоды с использованием пленок напыленных металлов.

Символ фотодиода

Символ фотодиода использует базовый символ диода, но с добавлением двух показанных стрелок, указывающих на устройство. Это указывает направление света, т.е. попадание на устройство. Символ фотодиода аналогичен символу светоизлучающего диода, но со стрелками в противоположном направлении по понятным причинам.

Символ фотодиода, используемый для принципиальных схем

Типы фотодиодов

Хотя термин «фотодиод» широко используется, на самом деле существует ряд различных типов фотодиодной технологии, которые можно использовать.Поскольку они обладают разными свойствами, разные технологии фотодиодов используются в разных областях.

  • Фотодиод PN: Фотодиод PN был первой разработанной формой фотодиода. Его производительность не так высока, как у некоторых других типов, и поэтому его использование сейчас меньше, чем раньше.     . . . . . Подробнее о фотодиоде PN .
  • Фотодиод с PIN-кодом: Фотодиод с PIN-кодом — это одна из наиболее широко используемых сегодня форм фотодиода.Фотодиод PIN собирает фотоны света более эффективно, чем более стандартный фотодиод PN, поскольку широкая собственная площадь между областями P и N позволяет собирать больше света, и в дополнение к этому он также предлагает меньшую емкость.     . . . . . Узнайте больше о фотодиоде PIN .
  • Лавинный фотодиод:  Лавинный фотодиод используется в местах со слабым освещением из-за высокого коэффициента усиления.На фоне этого он производит высокий уровень шума. Соответственно, эта фотодиодная технология подходит не для всех приложений.     . . . . . Узнайте больше о фотодиоде Avalanche .
  • Фотодиод Шоттки: Фотодиод Шоттки основан на диоде Шоттки. Небольшой диодный переход означает, что емкость перехода очень мала, а это означает, что он может работать на высоких скоростях. В результате эта форма фотодиода часто используется в оптических системах связи с высокой пропускной способностью, например.грамм. оптоволоконные линии связи.     . . . . . Подробнее о фотодиоде Шоттки .

Каждый тип фотодиодной технологии имеет свои преимущества и недостатки, а это означает, что фактический тип фотодиода может быть выбран для конкретного применения. Параметры, включая шум, ограничения обратного смещения, коэффициент усиления, длину волны, можно учитывать при выборе типа фотодиодной технологии, наиболее подходящей для данной ситуации. Имея в наличии PIN-, PN-, лавинные и фотодиоды Шоттки, можно сделать осознанный выбор, чтобы обеспечить использование оптимальной фотодиодной технологии.

Основы фотодиодов

Хотя разные типы фотодиодов работают немного по-разному, основа работы фотодиодной технологии остается неизменной, несмотря на разные типы используемых диодов.

    . . . . . Узнайте больше о теории работы фотодиода .

Чтобы объяснить, как работает фотодиодная технология, необходимо рассматривать свет с точки зрения фотонов или световых пакетов.

Когда фотон достаточной энергии входит в обедненную область полупроводникового диода, он может столкнуться с атомом с достаточной энергией, чтобы высвободить электрон из атомной структуры.Это создает свободный электрон и дырку (то есть атом с пространством для электрона). Электрон заряжен отрицательно, а дырка заряжена положительно.

Электроны и дырки могут оставаться свободными, или другие электроны могут объединяться с дырками, чтобы снова образовать полные атомы в кристаллической решетке. Однако возможно, что электроны и дырки могут остаться свободными и быть вытянутыми из области обеднения внешним полем. Таким образом, ток через диод изменится, и внутри фотодиода возникнет фототок.

Фотодиодная технология хорошо зарекомендовала себя и широко используется. Доступно множество диодов с очень высокими характеристиками, и для любой конкретной ситуации можно выбрать точную технологию фотодиодов. Доступны фотодиоды типа PN, Avalanche, PIN и Schottky.

Другие электронные компоненты:
Резисторы конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор полевой транзистор Типы памяти Тиристор Соединители ВЧ-разъемы Клапаны/трубки Батареи Переключатели Реле Технология поверхностного монтажа
    Вернуться в меню «Компоненты».. .

Измерение температуры с помощью фотодиодов: применение для контроля температуры лазерных диодов

Петер Ф’Олдеси получил докторскую степень. в 2002 году в Будапештском университете технологий и экономики, Венгрия, по теме проектирования интегральных схем для чипов раннего зрения. Он получил докторскую степень. степень в 2019 году, присужденная Венгерской академией наук, Венгрия, за его вклад в сенсорные технологии субтерагерцового и миллиметрового диапазона. С 1996 года по настоящее время он работает в Институте компьютерных наук и управления (SZTAKI), Будапешт, Венгрия, где он является научным сотрудником.С 2007 года он также является членом Католического университета Петера Пазмани, факультета информационных технологий и бионики.

Имре Яноки получил степень бакалавра наук. степень в области молекулярной бионики, и в настоящее время он заканчивает магистратуру. степень в области информационной бионики на факультете информационных технологий и бионики Католического университета им. Петера Пазмани. Он работает инженером в Институте компьютерных наук и управления (SZTAKI), Будапешт, Венгрия. В настоящее время его исследовательский интерес сосредоточен на применении компьютерного зрения, физических датчиков и машинного обучения в бесконтактных системах медицинского мониторинга.

Адам Надь получил степень бакалавра наук. степень в области молекулярной бионики и степень магистра наук. степень в области информационной бионики на факультете информационных технологий и бионики Католического университета им. Петера Пазмани. В настоящее время он является аспирантом Института компьютерных наук и управления в Будапеште, Венгрия. Его исследовательские интересы в настоящее время включают применение компьютерного зрения, физических датчиков и машинного обучения для решения медицинских проблем.

Мате Сикет получил B.наук степень в области мехатроники и степень магистра наук. степень в области биомедицинской инженерии Будапештского университета технологии и экономики. В настоящее время он получает докторскую степень. получил степень в Университете Обуда и работает инженером в Институте компьютерных наук и управления (SZTAKI). Его текущие исследовательские интересы включают контроль и моделирование физиологических систем и бесконтактный мониторинг показателей жизнедеятельности.

Акош Заранди получил докторскую степень. и доктор наук. от Венгерской академии наук в 1997 и 2010 годах соответственно по электротехнике и информатике.Он является научным консультантом в Институте компьютерных наук и управления (SZTAKI), Будапешт, Венгрия, а также профессором Католического университета им. Петера Пазмани. Его научные интересы связаны с компьютерным зрением, физическими датчиками и восприятием изображений с помощью специальных датчиков и оптики.

© 2022 Автор(ы). Опубликовано Elsevier B.V.

Фотодиоды | Хамамацу Фотоникс

Этот веб-сайт или его сторонние инструменты используют файлы cookie, которые необходимы для его функционируют и необходимы для достижения целей, указанных в настоящей политике использования файлов cookie.Закрыв баннер с предупреждением о файлах cookie, прокручивая страницу, нажимая на ссылку или продолжая просмотр другим способом, вы согласиться на использование файлов cookie.

Hamamatsu использует файлы cookie, чтобы сделать ваше пребывание на нашем веб-сайте более удобным и обеспечить работу нашего веб-сайта.

Вы можете посетить эту страницу в любое время, чтобы узнать больше о файлах cookie, получить максимальную отдачу актуальную информацию о том, как мы используем файлы cookie и управляем вашими настройками файлов cookie.Мы не будем использовать файлы cookie для любых целей, кроме указанных, но обратите внимание, что мы оставляем за собой право обновлять наши куки.

Чтобы современные веб-сайты работали в соответствии с ожиданиями посетителей, им необходимо собирать определенную базовую информацию о посетителях. Для этого сайт создаст небольшие текстовые файлы которые размещаются на устройствах посетителей (компьютерных или мобильных) — эти файлы называются куки, когда вы получаете доступ к веб-сайту.Файлы cookie используются для того, чтобы веб-сайты функционировали и работали эффективно. Файлы cookie уникальны для каждого посетителя и могут быть прочитаны только веб-сервером в домене. который выдал куки посетителю. Файлы cookie нельзя использовать для запуска программ или доставки вирусов. на устройство посетителя.

Файлы cookie выполняют различные функции, которые делают работу посетителей в Интернете более удобной. плавнее и интерактивнее.Например, файлы cookie используются для запоминания посетителем предпочтения на сайтах, которые они часто посещают, чтобы запомнить языковые предпочтения и облегчить навигацию между страницами более эффективно. Многие, хотя и не все, собранные данные являются анонимными. некоторые из них предназначены для обнаружения шаблонов просмотра и приблизительного географического местоположения для улучшить впечатления посетителей.

Для некоторых типов файлов cookie может потребоваться согласие субъекта данных перед сохранением их на компьютере.

2. Какие существуют типы файлов cookie?

Этот веб-сайт использует два типа файлов cookie:

  1. Собственные файлы cookie. Для нашего веб-сайта основные файлы cookie контролируются и поддерживается Хамамацу. Никакие другие стороны не имеют доступа к этим файлам cookie.
  2. Сторонние файлы cookie. Эти файлы cookie используются организациями за пределами Hamamatsu. У нас нет доступа к данным в этих файлах cookie, но мы используем эти файлы cookie для улучшения общий опыт работы с сайтом.

3.Как мы используем файлы cookie?

Этот веб-сайт использует файлы cookie для следующих целей:

  1. Некоторые файлы cookie необходимы для работы нашего веб-сайта. Это строго необходимо файлы cookie и необходимы для обеспечения доступа к веб-сайту, поддержки навигации или предоставления соответствующих содержание.Эти файлы cookie направляют вас в нужную страну и поддерживают безопасность и электронную торговлю. Строго необходимые файлы cookie также обеспечивают соблюдение ваших настроек конфиденциальности. Без этих строго необходимые файлы cookie, большая часть нашего веб-сайта не будет работать.
  2. Аналитические файлы cookie используются для отслеживания использования веб-сайта. Эти данные позволяют нам улучшить наш веб-сайт удобство использования, производительность и администрирование веб-сайта. В наших аналитических файлах cookie мы не храним никаких личная идентифицирующая информация.
  3. Функциональные файлы cookie. Они используются для того, чтобы узнавать вас, когда вы возвращаетесь на наш веб-сайт. Этот позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, выбранный вами язык или регион).
  4. Эти файлы cookie записывают ваше посещение нашего веб-сайта, страницы, которые вы посетили, и ссылки, которые вы последовали. Мы будем использовать эту информацию, чтобы сделать наш веб-сайт и рекламу, отображаемую на нем. это больше соответствует вашим интересам.Мы также можем передавать эту информацию третьим лицам для эта цель.

Cookies помогают нам помочь вам. Благодаря использованию файлов cookie мы узнаем, что важно нашим посетителям, и мы разрабатываем и улучшаем содержание и функциональность веб-сайта, чтобы поддерживать ваши опыт. Доступ к большей части нашего веб-сайта возможен, если файлы cookie отключены, однако некоторые веб-сайты функции могут не работать.И мы считаем, что ваши текущие и будущие посещения будут лучше, если файлы cookie включены.

4. Какие файлы cookie мы используем?

Существует два способа управления настройками файлов cookie.

  1. Вы можете настроить параметры файлов cookie на своем устройстве или в браузере.
  2. Вы можете настроить параметры файлов cookie на уровне веб-сайта.

Если вы не хотите получать файлы cookie, вы можете изменить свой браузер, чтобы он уведомляет вас, когда на него отправляются файлы cookie, или вы можете полностью отказаться от файлов cookie. Вы также можете удалить файлы cookie, которые уже были установлены.

Если вы хотите ограничить или заблокировать файлы cookie веб-браузера, установленные на вашем устройстве затем вы можете сделать это через настройки вашего браузера; функция справки в вашем браузере должна расскажи как.В качестве альтернативы вы можете посетить сайт www.aboutcookies.org, который содержит исчерпывающую информацию о том, как это сделать в самых разных настольных браузерах.

5. Что такое интернет-теги и как мы используем их с файлами cookie?

Иногда мы можем использовать интернет-теги (также известные как теги действий, однопиксельные GIF-файлы, прозрачные GIF-файлы, невидимые GIF-файлы и GIF-файлы 1 на 1) на этом сайте и могут использовать эти теги / файлы cookie. через стороннего рекламного партнера или партнера по веб-аналитике, который может находиться и хранить соответствующую информацию (включая ваш IP-адрес) в другой стране.Эти теги/куки-файлы размещаются как в онлайн-рекламе, которая приводит пользователей на этот сайт, так и в разные страницы этого сайта. Мы используем эту технологию для измерения реакции посетителей на наши сайтах и ​​эффективности наших рекламных кампаний (в том числе, сколько раз страница открывается и к какой информации обращаются), а также для оценки использования вами этого веб-сайта. То сторонний партнер или партнер службы веб-аналитики может собирать данные о посетители нашего и других сайтов из-за этих интернет-тегов/куки-файлов могут составлять отчеты относительно деятельности веб-сайта для нас и может предоставлять дополнительные услуги, связанные с использование веб-сайта и Интернета.Они могут предоставлять такую ​​информацию другим сторонам, если является юридическим требованием, чтобы они это сделали, или если они нанимают другие стороны для обработки информации от их имени.

Если вам нужна дополнительная информация о веб-тегах и файлах cookie, связанных с онлайн-рекламы или отказаться от сбора этой информации третьими лицами, пожалуйста, посетите Сайт сетевой рекламной инициативы http://www.networkadvertising.org.

6. Аналитические и рекламные файлы cookie

Мы используем сторонние файлы cookie (например, Google Analytics) для отслеживания посетителей на нашем веб-сайт, чтобы получать отчеты о том, как посетители используют веб-сайт, а также информировать, оптимизировать и показывать рекламу на основе чьих-либо прошлых посещений нашего веб-сайта.

Вы можете отказаться от файлов cookie Google Analytics на веб-сайтах, предоставленных Google:

https://tools.google.com/dlpage/gaoptout?hl=ru

Как указано в настоящей Политике конфиденциальности (статья 5), вы можете узнать больше об отказе файлы cookie веб-сайта, предоставленные Network Advertising Initiative:

http://www.networkadvertising.org

Информируем вас, что в таком случае вы не сможете полностью использовать все функции нашего веб-сайта.

Фотодиоды

  • Изучив этот раздел, вы должны уметь:
  • Описать Различные методы работы фотодиодов:
  • • Фотогальванический.
  • • Фотопроводящий.
  • Опишите базовую конструкцию фотодиодов.
  • Опишите работу различных типов фотодиодов:
  • • Фотопроводящие диоды.
  • • PIN-фотодиоды.
  • • Лавинные фотодиоды.
  • Опишите типичные ограничения в работе фотодиода.
  • • Темновой ток.
  • • Шум.
  • Опишите причину выбора распространенных материалов, используемых в конструкции фотодиодов.
  • • Кремний.
  • • Германий.
  • • Арсенид галлия.
  • • Арсенид индия-галлия.

Рис. 2.7.1 Фотоэлектрические диоды


(солнечные панели)

Основы работы с фотодиодами

Фотодиоды

в основном выполняют эффект, противоположный светодиодам и лазерным диодам.Вместо того, чтобы использовать электрический ток для объединения электронов и дырок для создания фотонов, фотодиоды поглощают световую энергию (фотоны) для создания электронно-дырочных пар, тем самым создавая поток электрического тока.

Рис. 2.7.2 Типовые фотопроводящие диоды


Семейства фотодиодов

Двумя основными методами получения электричества из света с использованием фотодиодов являются фотоэлектрические и фотопроводящие операции. В обоих методах используются светочувствительные полупроводниковые диоды, главное отличие которых состоит в том, что фотоэлектрические устройства, используемые в основном в солнечных панелях (рис.2.7.1) не используют никакого напряжения смещения, подаваемого на диод, но в фотопроводящем режиме (рис. 2.7.2) к фотодиодам прикладывается обратное напряжение смещения от какого-либо внешнего источника.

Применение фотодиодов

Фотопроводящие диоды используются в электронных системах, таких как волоконно-оптическая связь (этот текст был доставлен вам с использованием фотодиодов). В камерах используются фотодиоды для измерения освещенности, а также для управления затвором, фокусировкой и вспышкой. Медицинское использование включает обнаружение рентгеновских лучей и измерение пульса.Фотопроводящие диоды являются предпочтительным датчиком для многих промышленных систем, где необходимо измерять свет, от сканеров штрих-кода и датчиков положения до детекторов дыма и геодезических приборов. В приложениях, связанных с высокочастотными изменениями уровня освещенности, таких как волоконно-оптическая связь, важно поддерживать емкость перехода диода на минимальном уровне, поскольку довольно малая емкость уберет более высокие частоты и серьезно снизит эффективность фотодиодного приемника.Поэтому фотопроводящие диоды изготавливаются небольших физических размеров, которые генерируют очень небольшое количество электрического тока. Фотоэлектрические диоды, напротив, производятся в виде солнечных панелей очень больших размеров, чтобы максимизировать эффективность сбора света. Солнечные панели обязательно имеют гораздо большую емкость перехода, чем фотопроводящие устройства, но их эффективность не снижается, поскольку они предназначены для производства (намного большего) электрического тока при постоянном токе (0 Гц).

Рис.2.7.3 Базовая конструкция фотодиода

Конструкция фотодиода

Типичная конструкция фотодиода показана на рис. 2.7.3. В этом примере используется метод построения, называемый ионной имплантацией, при котором поверхность слоя N-типа бомбардируется ионами кремния P-типа для получения слоя P-типа толщиной около 1 мкм (микрометр). Во время формирования диода электроны из слоя N-типа притягиваются к материалу P-типа, а дырки из слоя P притягиваются к слою N-типа, что приводит к удалению свободных носителей заряда вблизи PN-перехода, создавая таким образом обедненный слой (показан белым цветом на рис.2.7.3).

Верхняя часть диода (обращенная к свету) защищена слоем диоксида кремния (SO 2 ), в котором есть окно для освещения полупроводника. Это окно покрыто тонким антибликовым слоем нитрида кремния (SiN), чтобы обеспечить максимальное поглощение света, а анодное соединение из алюминия (Al) предусмотрено для слоя P-типа. Под слоем N-типа находится более сильно легированный слой N+, обеспечивающий низкоомное соединение с катодом.

Работа с фотодиодом

Рис.2.7.4 Фотоны создают пары электрон/дырка

Рис. 2.7.5 Дырки и электроны притягиваются


обратным смещением

Рис. 2.7.6 Дырки и электроны образуют


Фотоэлектрический ток

Для диода, работающего в фотопроводящем режиме, обычно используется обратное смещение путем подачи постоянного напряжения, чтобы катод был более положительным, чем анод. Это приводит к расширению обедненного слоя, как показано на рис. 2.7.4 и 2.7.5.

Поскольку слои P и N с обедненным слоем между ними эффективно образуют конденсатор, расширение обедненного слоя уменьшает емкость PN-перехода и увеличивает максимальную частоту, на которой может работать диод; желательное свойство, особенно в фотодиодах, которые работают как приемники цифровой информации.

Когда поверхность фотодиода освещена, как показано на рис. 2.7.4, фотоны поглощаются внутри диода и, в основном в слое обеднения, возбуждают отрицательные электроны в валентном слое атомов, чтобы перейти на более высокий энергетический уровень в зона проводимости атома.

Рис. 2.7.7 Диаграмма энергетического диапазона


действия фотодиода

Это оставляет положительно заряженные дырки в валентной зоне, создавая «пары электрон/дырка» в обедненном слое. Некоторые электронно-дырочные пары также образуются в слоях P и N, но, кроме тех, которые образуются в слоях N в области диффузии, большинство из них будет повторно поглощаться в материалах P и N в виде тепла. Затем электроны в обедненном слое смещаются к положительному потенциалу на катоде, а дырки смещаются к отрицательному потенциалу на аноде, создавая таким образом фототок, как показано на рис.2.7.6.

Хотя на фиг. 2.7.4–2.7.6 показывают различные этапы преобразования световой энергии в электрический ток, следует понимать, что все эти этапы происходят одновременно и как непрерывный процесс до тех пор, пока освещается приемная поверхность фотодиода. Альтернативным способом иллюстрации работы фотодиода является использование энергетической диаграммы, как показано на рис. 2.7.7. Это отображает энергетические уровни валентной зоны и зоны проводимости атома (кремния) по вертикальной оси диаграммы в зависимости от расстояния между анодом и катодом фотодиода по горизонтальной оси.

На рис. 2.7.7 фотоны, падающие на атомы в обедненном слое и в диффузионных областях слоев P и N, показаны в виде небольших вспышек энергии, каждая из которых побуждает электрон прыгать (вертикальные синие стрелки) на более высокий энергетический уровень. зона проводимости. Обратите внимание, что электронно-дырочные пары, созданные внутри слоев P и N, повторно поглощаются в виде тепла. Как только электроны и дырки разделены, обратное смещение, приложенное к аноду и катоду диода, берет верх, сдвигая электроны к (положительному) катоду, а дырки к (отрицательному) аноду (большие синие и красные стрелки).

 

Рис. 2.7.8 PIN Фотодиод

Уменьшение емкости перехода


PIN-фотодиод

В этом фотодиоде используется слой собственного (нелегированного или иногда слегка легированного N−) полупроводника между слоями P и N, см. рис. 2.7.8. Это приводит к уменьшению емкости PN-перехода и, следовательно, к повышению максимальной скорости переключения, что особенно подходит для оптоволоконной связи. Сравнительно глубокий собственный слой также обеспечивает больший объем для преобразования фотона в электрон/дырку.

Фотодиоды

PIN используются в фотопроводящем режиме с приложенным обратным смещением, соотношение между количеством полученного света и производимым электрическим током практически линейно, и они также относительно стабильны в своем нормальном температурном диапазоне.

Темный ток и шум

Рис. 2.7.9 Темновой ток и шум

Ток, создаваемый фотодиодным процессом, чрезвычайно мал, в диапазоне от наноампер (нА) до нескольких микроампер (мкА), и хотя зависимость между количеством света, падающего на фотодиод, и производимым током довольно линейна. , в условиях очень низкой освещенности производимый фототок маскируется нормальным обратным током утечки из-за тепловой активности внутри атомной структуры диода.Этот ток называется «темновым током», поскольку он все еще присутствует, когда диод не горит.

Небольшое значение фотоэлектрического тока, создаваемого фотодиодом, и наличие термически создаваемого темнового тока приводит к тому, что полезный диапазон фотодиода значительно ограничен при низких уровнях освещенности.

Из-за чрезвычайно низкого уровня сигнала, получаемого от фотодиодов, термический шум также является проблемой, особенно когда фотодиоды могут использоваться для обнаружения низких уровней освещенности.«Минимальный полезный ток» для обнаружения света — это фототок, который равен темновому току плюс тепловой шум, создаваемый диодом, как показано на рис. 2.7.9.

Рис. 2.7.10 Трансимпедансный фотодиодный усилитель

Как правило, очень небольшой ток сигнала от фотодиода будет каким-то образом усиливаться. На рис. 2.7.10 показана типичная схема усилителя с использованием трансимпедансного операционного усилителя. Этот усилитель имеет низкий входной импеданс и преобразует небольшие изменения тока на входе в гораздо большие изменения напряжения на выходе.Коэффициент усиления задается значением R f , а C f помогает избежать нестабильности. Однако также полезно создать максимально возможную амплитуду тока сигнала в фотодиоде, прежде чем он будет усилен внешней цепью. Поскольку любой электронный усилитель также вносит некоторый шум, одним из ответов на это является использование самого фотодиода для получения полезной степени усиления; это цель лавинного фотодиода.

Рис.2.7.11 Лавинный фотодиод

Лавинные фотодиоды

Лавинный фотодиод предназначен для начального усиления фототока внутри самого диода. Это достигается за счет работы с гораздо большим обратным смещением, чем у других фотодиодов. Это может означать, что диод работает вблизи области обратного пробоя своих характеристик. На рис. 2.7.11 показана одна типичная структура лавинного фотодиода. Обратите внимание, что анод P+ сделан отрицательным, а катодный слой N+ положительным, чтобы обеспечить обратное смещение.

Использование такого высокого напряжения обратного смещения (обычно 20 В или более) обеспечивает широкий обедненный слой, который образует большую область сбора, где фотоны создают пары электрон/дырка. Это высокое напряжение на обедненном слое также создает сильное электрическое силовое поле, которое ускоряет электроны по направлению к положительному потенциалу на катоде (и дырки по направлению к аноду).

Усиление ударной ионизацией

Обратите особое внимание на легирование различных слоев фотодиода.Слой N+ непосредственно под просветляющим слоем сильно легирован. Под ним находится обычно легированный P-слой, образующий PN-переход диода; основная часть диода представляет собой слабо легированный слой P- с сильно легированным слоем P+ рядом с анодным соединением.

Рис. 2.7.12 Ударная ионизация

Уровень легирования полупроводника влияет на его сопротивление, более сильно легированные слои имеют самое низкое сопротивление. Для определенного значения тока, протекающего через диодные слои, которые фактически представляют собой ряд сопротивлений с различными значениями, вызывает разные значения напряжения на разных слоях.Это создает неравномерное электрическое силовое поле на диоде, как показано на рис. 2.7.12.

Чем больше напряженность электрического поля, тем большее ускорение дается электронам в полупроводнике. В нижней части диаграммы (рис. 2.7.9) сильно легированный слой P+ рядом с анодом диода имеет низкое сопротивление, что способствует эффективной связи с металлическим разъемом анода. В области истощения сопротивление полупроводника P- выше, что обеспечивает достаточную напряженность поля для ускорения электронно-дырочных пар, создаваемых фотонами.Из-за глубины этой области необходимо как можно быстрее перемещать носители заряда (электроны и дырки), чтобы фотодиод быстро реагировал на изменения уровня освещенности.

Поскольку электроны притягиваются в лавинную область вокруг более сильно легированного соединения PN+, более высокое сопротивление этих слоев создает более высокое напряжение и, следовательно, более высокую напряженность поля, что еще больше ускоряет электроны. Когда эти сильно ускоренные электроны сталкиваются с валентными электронами в атомах полупроводникового материала, они заставляют эти ранее связанные валентные электроны прыгать в зону проводимости, создавая дополнительные носители заряда.Эти новые носители заряда (электроны) теперь также обладают достаточной энергией, чтобы вытеснить больше электронов ударом и так далее, создавая лавину дополнительных электронов, что, конечно же, создает дополнительный ток.

С помощью этого метода, называемого ударной ионизацией, первоначальный очень малый ток, создаваемый фотонами, был эффективно усилен. Величина усиления зависит от ускоряющего напряжения, которое может варьироваться от 20 до нескольких сотен вольт. Дополнительными факторами, влияющими на усиление, являются толщина лавинной области и количество электронов, участвующих в процессе ударной ионизации.

Поскольку количество ударов является случайным, величина усиления за любой короткий период времени будет варьироваться, поэтому ее можно указать только как среднее значение. Также из-за случайного характера воздействия фотонов выходной ток будет иметь тенденцию быть шумным из-за быстрых колебаний усиления.

Лавинные фотодиоды не имеют такой хорошей линейной зависимости между принимаемым светом и производимым током, как другие уже описанные фотопроводящие диоды, но это не обязательно является серьезным недостатком в их основном применении, а именно в качестве приемника цифровой информации в оптоволокне. связь и другие высокоскоростные коммутационные приложения.

Фотодиодные материалы

В конструкции фотодиодов

используются различные полупроводниковые материалы, главным образом для того, чтобы позволить производителям создавать ряд фотодиодов, которые реагируют на различные части видимого спектра, а также на ультрафиолетовые и инфракрасные длины волн. На рис. 2.7.13 показаны примерные длины волн, покрываемые некоторыми распространенными полупроводниковыми материалами, используемыми для фотодиодов.

Рис. 2.7.13 Приблизительные диапазоны длин волн распространенных материалов для фотодиодов

Кремниевые фотодиоды

Рис.2.7.14 Относительная чувствительность


Photodiode Semiconductors Кремниевые (Si) фотодиоды

популярны для оптических приемников данных, поскольку они могут быть изготовлены с низким значением емкости перехода, что делает их подходящими для приема цифровых данных с частотами до нескольких гигагерц. Они также генерируют относительно небольшое количество шума темнового тока. Однако они также имеют худшую скорость поглощения фотонов, чем некоторые другие материалы, что снижает их чувствительность.

Хотя кремний можно использовать в широком диапазоне длин волн, от ультрафиолетового (с использованием специально разработанных УФ-версий) до инфракрасного, кремниевые фотодиоды наиболее полезны в диапазоне от 800 до 900 нм, как показано на рис.2.7.14.

Германиевые фотодиоды

Хотя германий (Ge) был вытеснен во многих диодных применениях, он полезен в фотодиодах, поскольку обеспечивает светочувствительность на длинах волн более 900 нм, где кремний менее чувствителен, а германий дешевле, чем арсенид индия-галлия (InGaAs), что делает его полезен в фотодиодах с большой площадью обнаружения (до 1 см в диаметре). Однако фотодиоды из германия обычно имеют более высокий уровень темнового тока и создают сравнительно больше шума, чем арсенид кремния или индия-галлия, уровень шума также увеличивается при более высоких температурах.

Фотодиоды на основе арсенида индия и галлия

Фотодиоды

, использующие арсенид индия-галлия, обеспечивают дополнительную чувствительность в условиях низкой освещенности, особенно на длинах волн в инфракрасном диапазоне, по сравнению с кремнием или германием. Они производят вдвое меньше шума и более стабильны в широком диапазоне температур, чем германиевые.

К началу страницы

Что такое фотодиод? — Конструкция, работа и применение

Определение: Фотодиод представляет собой электронное устройство с двумя выводами, в котором при воздействии света через диод начинает течь ток.Он работает только в режиме обратного смещения. Он преобразует световой энергии в электрической энергии. Когда обычный диод смещен в обратном направлении, обратный ток начинает увеличиваться с увеличением обратного напряжения, то же самое может быть приложено к фотодиоду.

Но в случае фотодиода ток может протекать без приложения обратного напряжения, PN-переход фотодиода освещается светом, и световая энергия вытесняет валентные электроны, и диод начинает проводить.

Конструкция фотодиода

Фотодиод состоит из двух слоев полупроводника P-типа и N-типа. При этом материал P-типа формируется за счет диффузии слегка легированной подложки P-типа. Таким образом, слой ионов P+ формируется за счет диффузионного процесса. А эпитаксиальный слой N-типа выращивается на подложке N-типа. Диффузионный слой P+ развит на сильно легированном эпитаксиальном слое N-типа. Контакты состоят из металлов, чтобы сформировать два терминала катода и анода.

Передняя часть диода делится на два типа: активная поверхность и неактивная поверхность. Неактивная поверхность состоит из SiO 2 (диоксид кремния) , а активная поверхность покрыта просветляющим материалом . Активная поверхность называется так потому, что на нее падают световые лучи.

На неактивную поверхность лучи света не падают. Активный слой покрыт антибликовым материалом, чтобы световая энергия не терялась и максимум ее можно было преобразовать в ток.Весь блок имеет размеры порядка 2,5 мм.

Принцип работы фотодиода

Когда обычный диод смещен в обратном направлении, область истощения начинает расширяться, и ток начинает течь из-за неосновных носителей заряда. С увеличением обратного напряжения начинает увеличиваться и обратный ток. Такое же состояние можно получить в фотодиоде без подачи обратного напряжения.

Место соединения фотодиода освещается источником света, фотоны ударяют по поверхности соединения.Фотоны сообщают свою энергию в виде света соединению. За счет чего электроны из валентной зоны получают энергию для перехода в зону проводимости и вклада в ток. Таким образом, фотодиод преобразует световую энергию в электрическую.

Ток, который протекает в фотодиоде до того, как на него падают световые лучи, называется темновым током . Как в обычном диоде течет ток утечки, так и в фотодиоде протекает темновой ток .

Режимы работы фотодиода

Он работает в двух режимах: Фотопроводящий и Фотоэлектрический.

  1. Фотопроводящий: Когда фотодиод работает в режиме обратного смещения, это называется фотопроводящим режимом. При этом ток, протекающий через диод, линейно зависит от интенсивности падающего на него света. Для выключения диода на него должно быть подано прямое напряжение.
  2. Фотогальваника: Когда диод работает без обратного смещения, говорят, что он работает в фотогальваническом режиме.Когда обратное смещение снимается, носители заряда перемещаются по переходу. Барьерный потенциал отрицателен на N-стороне и положителен на P-стороне.

При подключении внешней цепи к фотодиоду после снятия обратного смещения неосновные носители как в P-, так и в N-области возвращаются в исходную область. Это означает, что электроны, которые пересекли переход из N-типа в P-тип, снова перемещаются на N-сторону с помощью внешней цепи.

А отверстия, которые пересекли разветвление и переместились из P-типа в N-тип при изготовлении разветвления, теперь снова переместятся на P-сторону с помощью внешней цепи.

Таким образом, теперь электроны могут вытекать из N-типа, а дырки могут вытекать из P-типа, таким образом, в этом состоянии они ведут себя как ячейки напряжения, имеющие N-тип в качестве отрицательного вывода и P-тип в качестве положительного вывода. Таким образом, фотодиод можно использовать в качестве фотопроводящего устройства или фотогальванического устройства.

V-I Характеристики фотодиода

Характеристическую кривую фотодиода можно понять с помощью приведенной ниже диаграммы. Характеристики показаны в отрицательной области, поскольку фотодиод может работать только в режиме обратного смещения.

Обратный ток насыщения в фотодиоде обозначается I 0.  Он изменяется линейно в зависимости от интенсивности фотонов, попадающих на поверхность диода. Ток при большом обратном смещении представляет собой сумму обратного тока насыщения и тока короткого замыкания.

I = I sc + I 0 (1 – e V/ ɳVt )

Где Isc — ток короткого замыкания, V — положительное значение для прямого напряжения и отрицательное — для обратного смещения, Vt — вольтовый эквивалент температуры, ɳ — единица для германия и 2 для кремния.

Преимущества фотодиодов

  1. Обратный ток составляет десятки микроампер.
  2. Время нарастания и спада в случае фотодиодов очень мало, что делает их подходящими для высокоскоростных счетных и коммутационных приложений.

Недостатки фотодиодов

Фотодиоды имеют более низкую светочувствительность, чем LDR на сульфиде кадмия (светозависимые резисторы), поэтому они считаются более подходящими для некоторых приложений.

Применение фотодиодов

  1. Используется для обнаружения как видимых, так и невидимых световых лучей.
  2. Фотодиоды
  3. используются в системе связи для целей кодирования и демодуляции.
  4. Он также используется для цифровых и логических схем, требующих быстрого переключения и высокоскоростной работы.
  5. Эти диоды также находят применение в технике распознавания символов и схемах ИК-пульта дистанционного управления.

Фотодиоды считаются одним из важных устройств оптоэлектроники, широко используемых в системе оптоволоконной связи.

.

Добавить комментарий

Ваш адрес email не будет опубликован.