Фототранзистор принцип работы – Фототранзистор — Википедия

Содержание

Фототранзистор — Википедия

Фототранзистор Схематическое изображение фототранзистора на электрических схемах

Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения.

Отличается от фотодиода тем, что обладает внутренним усилением фототока и поэтому большей чувствительностью к потокам оптического излучения.

Фототранзистор может иметь полупроводниковую структуру как n-p-n, так и p-n-p транзистора.

Большинство промышленных типов фототранзисторов не имеют электрического вывода базы, но в некоторых моделях такой вывод имеется и обычно служит для смещения начальной рабочей точки прибора посредством подачи в базу некоторого тока.

Фототранзистор изобрёл Джон Нортроп Шив (

John Northrup Shive) в 1948 г., во время его работы в Bell Laboratories[1], но об этом изобретении было заявлено только в 1950 г.[2] Тогда же фототранзисторы были впервые применены в считывателе перфокарт в автоматической телефонной станции.

Биполярный фототранзистор — полупроводниковый прибор с двумя p-n переходами и тремя слоями полупроводника чередующегося типа проводимости — аналог обычного биполярного транзистора с управлением базовым током. Но в фототранзисторе базовым током является фототок. При освещении базового слоя фототранзистора в его базе за счет внутреннего фотоэффекта генерируются электронно-дырочные пары, порождая фототок. Этот процесс снижает потенциальный барьер от контактной разности потенциалов в эмиттерно-базовом переходе, что увеличивает диффузию неосновных носителей (для базы) из эмиттера в базу, то есть можно считать, что в этом приборе фототок является базовым током обычного транзистора. Можно сказать, что фототранзистор подобен обычному биполярному транзистору, между выводами коллектора и базы которого включен обратносмещенный фотодиод.

Как известно, транзистор обладает способностью усиливать базовый ток IB{\displaystyle I_{B}}, коэффициент усиления β=IC/IB>>1{\displaystyle \beta =I_{C}/I_{B}>>1}, поэтому ток коллектора IC{\displaystyle I_{C}} и равный ему ток эмиттера IE{\displaystyle I_{E}} в β{\displaystyle \beta } раз больше исходного фототока. Таким образом, светочувствительность фототранзистора больше светочувствительности фотодиода с равной площадью фотоприемной поверхности в несколько десятков и до нескольких сотен раз.

Чувствительность[править | править код]

Токовая чувствительность Si,Φ{\displaystyle S_{i,{\Phi }}} по световому потоку фототранзистора определяется отношением тока через прибор IΦ{\displaystyle I_{\Phi }} к вызвавшему этот ток световому потоку Φ{\displaystyle \Phi }:

Si,Φ=IΦΦ{\displaystyle S_{i,{\Phi }}={\frac {I_{\Phi }}{\Phi }}}

Токовая чувствительность современных фототранзисторов достигает нескольких сотен мА/лм.

Темновой ток[править | править код]

Даже в отсутствие освещения, через прибор протекает некоторый ток, называемый темновым током. Этот ток вреден для регистрации слабых световых потоков, так как «маскирует» полезный сигнал и при изготовлении фототранзисторов его стремятся уменьшить разными технологическими приемами. Кроме того, величина темнового тока существенно зависит от температуры полупроводниковой структуры и нарастает при её повышении приблизительно так же, как и обратный ток p-n перехода в любом полупроводниковом приборе. Поэтому для снижения темнового тока иногда применяют принудительное охлаждение прибора.

При прочих равных, величина темнового тока сильно зависит от ширины запрещённой зоны полупроводника и снижается при её увеличении. Поэтому характерные значения темнового тока при комнатной температуре германиевых фототранзисторов порядка единиц мкА, кремниевых — долей мкА, арсенидо-галлиевых — десятков пкА.

Спектральная чувствительность[править | править код]

Типовая спектральная чувствительность кремниевого фототранзистора

Чувствительность фототранзистора зависит от длины волны падающего излучения. Например, для кремниевых приборов максимум чувствительности находится в диапазоне 850—930 нм — красный и ближний инфракрасный диапазоны. Для ближнего ультрафиолетового излучения (~400 нм) чувствительность снижается в ~10 раз от максимальной. Также чувствительность снижается при увеличении длины волны и для длин волн свыше ~1150 нм — край оптической полосы поглощения кремния, снижается до нуля.

Быстродействие[править | править код]

Фототранзисторы по сравнению с фотодиодами имеют относительно низкое быстродействие. Это обусловлено конечным временем рассасывания неосновных носителей в базе при снижении освещённости. Кроме того, если напряжение между коллектором и эмиттером изменяется при изменении освещенности, что имеет место в некоторых схемах электрического включения прибора, дополнительно снижает быстродействие эффект Миллера, обусловленный емкостью коллекторно-базового p-n перехода. Практически диапазон рабочих частот фототранзисторов ограничен, в зависимости от схемы включения, несколькими сотнями кГц — единицами МГц.

Включение фототранзисторов в электрические цепи[править | править код]

Классическое включение прибора — с обратносмещенным коллекторным переходом, то есть для прибора со структурой n-p-n на коллектор подается положительное относительно эмиттера напряжение и наоборот для структуры p-n-p.

Для приборов, имеющих третий электрический вывод базы, возможно включение по любой из схем включения обычного биполярного транзистора — с общим эмиттером, базой или коллектором. При этом ток базы задает положение «темновой рабочей точки» на вольт-амперной характеристике.

Иногда трёхвыводные фототранзисторы для увеличения быстродействия включают как обычный фотодиод, проигрывая при этом в чувствительности.

Преимущества и недостатки фототранзисторов[править | править код]

Основное преимущество фототранзисторов по сравнению с фотодиодами — высокая чувствительность к потоку излучения.

Недостатки — низкое быстродействие, поэтому эти приборы непригодны для применения в качестве приемников излучения в высокоскоростных оптоволоконных линиях связи. Также недостаток фототранзисторов — относительно большой темновой ток.

Приборы, предназначенные для приема внешнего излучения заключают в пластмассовый, металлостеклянный или металлокерамический корпус с прозрачным окошком или линзой, изготовленных из пластмассы или стекла. Исключение составляют фототранзисторы, входящие в состав оптронов, заключенные совместно с источником излучения в непрозрачный корпус.

Приборы, оформленные в металлостеклянных и металлокерамических корпусах, обычно имеют электрический вывод базы.

Так как фототранзисторы более чувствительны чем фотодиоды их удобно применять в качестве приемников излучения в различных системах автоматики безопасности, системах охранной сигнализации, считывателях перфокарт и перфолент, датчиках положения и расстояния и др. применениях, где некритично быстродействие.

Часто фототранзисторы применяют в оптопарах в качестве приёмников излучения в оптронах.

ru.wikipedia.org

Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов. Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора

Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фототранзистор насыщается, и выходной сигнал уже не будет увеличиваться, даже при дальнейшем увеличении освещения. Этот режим работы фототранзистора полезен в устройствах, где необходимо различить для сравнения два порога освещенности.
  • Работа в режиме переключения означает, что фототранзистор в ответ на его освещение будет либо «выключен» (отсечка), либо включен (насыщенные). Этот режим полезен, когда необходимо получить цифровой выходной сигнал.

Изменяя сопротивление резистора нагрузки в цепи усилителя, можно выбрать один из двух режимов работы. Необходимое значение резистора может быть определено с помощью следующих уравнений:

  • Активный режим: Vcc> R х I
  • Переключатель режима: Vcc <R х I 

Для работы в режиме переключения обычно используют резистор сопротивлением 5 кОм или выше. Выходное напряжение высокого уровня (лог.1) в режиме переключения будет равно напряжению питания. Выход низкого уровня (лог.0) должно быть не более 0,8 вольт.

www.joyta.ru

Фототранзисторы. Устройство и работа. Применение и особенности

Фототранзисторы являются твердотельными полупроводниками с внутренним усилением, применяемым для передачи цифровых и аналоговых сигналов. Этот прибор выполнен на основе обычного транзистора. Аналогами фототранзисторов являются фотодиоды, которые уступают ему по многим свойствам, и не сочетаются с работой современных электронных приборов и радиоустройств. Их принцип действия похож на работу фоторезистора.

Чувствительность фототранзистора гораздо выше, чем у фотодиода. Они нашли применение в различных устройствах, в которых применяется зависимость от светового потока. Такими устройствами являются лазерные радары, пульты дистанционного управления, датчики дыма и другие. Фототранзисторы могут реагировать как на обычное освещение, так и на ультрафиолетовое и инфракрасное излучение.

Устройство

Наиболее популярны биполярные фототранзисторы структуры n-p-n.

Ф-транзисторы имеют чувствительность к свету больше, чем простые биполярные, так как они оптимизированы для лучшего взаимодействия с лучами света. В их конструкции зона коллектора и базы имеет большую площадь. Корпус выполнен из темного непрозрачного материала, с окошком для пропускания света.

Большинство таких полупроводников изготавливают из монокристаллов германия и кремния. Существуют также фототранзисторы на основе сложных материалов.

Принцип действия

Транзистор включает в себя базу, коллектор и эмиттер. При функционировании фототранзистора база не включена в работу, так как свет создает электрический сигнал, который дает возможность протекать току по полупроводниковому переходу.

При нерабочей базе переход коллектора транзистора смещается в обратном направлении, а переход эмиттера в прямом направлении. Прибор остается без активности до тех пор, пока луч света не осветит его базу. Освещение активизирует полупроводник, при этом создавая пары дырок и электронов проводимости, то есть носители заряда. В итоге через коллектор и эмиттер проходит ток.

Свойство усиления

Фототранзисторы имеют рабочий диапазон, размер которого зависит от интенсивности падающего света, так как это связано с положительным потенциалом его базы.

Ток базы от падающего света подвергается усилению в сотни и тысячи раз. Дополнительное усиление тока обеспечивается особым транзистором Дарлингтона, который представляет собой полупроводник, эмиттер которого соединен с базой другого биполярного транзистора. На схеме изображен такой вид фототранзистора.

Это дает возможность создать повышенную чувствительность при слабом освещении, так как происходит двойное усиление двумя полупроводниками. Двумя транзисторами можно добиться усиления в сотни тысяч раз. Необходимо учитывать, что транзистор Дарлингтона медленнее реагирует на свет, в отличие от обычного фототранзистора.

Схемы подключения
Схема с общим эмиттером

По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.

Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.

Схема с общим коллектором

Усилитель, подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.

Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.

В обоих вариантах транзистор может работать в 2-х режимах:
  1. Активный режим.
  2. Режим переключения.
Активный режим

В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.

Режим переключения

Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.

Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.

Проверка фототранзистора

Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора. Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт. Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.

Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.

Применение
  • Системы охраны (чаще применяются инфракрасные ф-транзисторы).
  • Фотореле.
  • Системы расчета данных и датчики уровней.
  • Автоматические системы коммутации осветительных приборов (также применяются инфракрасные ф-транзисторы).
  • Компьютерные управляющие логические системы.
  • Кодеры.
Преимущества
  • Выдают ток больше, чем фотодиоды.
  • Способны создать мгновенную высокую величину тока выхода.
  • Основное достоинство – способность создания повышенного напряжения, в отличие от фоторезисторов.
  • Невысокая стоимость.
Недостатки

Ф-транзисторы являются аналогом фотодиодов, однако имеют серьезные недостатки, которые создают условия для узкой специализации этого полупроводника.

  • Многие виды фототранзисторов изготавливают из силикона, поэтому они не могут работать с напряжением более 1 кВ.
  • Такие светочувствительные полупроводники имеют большую зависимость от перепадов напряжения питания в электрической цепи. В таких режимах фотодиод ведет себя гораздо надежнее.
  • Ф-транзисторы не сочетаются с работой в лампах, по причине малой скорости носителей заряда.
Обозначения на схемах

Управляемые световым потоком транзисторы, на схемах обозначаются как обычные транзисторы.

VТ1 и VТ2 – ф-транзисторы с базой, VТ3 – транзисторы без базы. Цоколевка изображена как у простых транзисторов.

Так же, как и другие приборы на основе полупроводников с переходом n-p-n, применяющиеся для преобразования светового потока, фототранзисторы можно назвать оптронами. Их на схемах изображают в виде светодиода в корпусе, или в виде оптронов со стрелками. Усилитель во многих схемах обозначается в виде базы и коллектора.

Похожие темы:

electrosam.ru

Фототранзисторы принцип работы основные характеристики, оптотранзистор схема включения

Фототранзисторы: принцип действия, основные режимы

  • •Основные сведения из истории развития электроники.
  • •Электропроводность полупроводников.
  • •Удельная проводимость пп
  • •Примесная проводимость
  • •Зонная диаграмма пп с донорной примесью
  • •Зонная диаграмма пп с акцепторной примесью
  • •Понятие о потенциале и уровне Ферми для пп материалов.
  • •Электрические переходы между двумя различными материалами
  • •Электрические переходы между металлом и пп.
  • •Процессы в p-n-переходе.
  • •Прямое смещение pn перехода.
  • •Обратное смещение pn перехода.
  • •Вах pn-перехода
  • •Емкость pn- перхода
  • •Пробой pn перхода.
  • •Устройство: принцип действия и вах полупроводникового диода.
  • •Классификация и система обозначения Диодов
  • •Устройство, принцип действия и вах стабилитрона.
  • •Классификация и система обозначения стабилитронов.
  • •Биполярный транзистор: устройство, принцип действия.
  • •Типы транзисторов: устройство, принцип действия.
  • •Схемы включения транзисторов.
  • •Основные соотношения для токов в структуре
  • •Математическая модель транзистора.
  • •Уравнения Эберса-Молла
  • •Эквивалентная схема транзистора для постоянного тока об: основные соотношения и характеристики
  • •Эквивалентная схема транзистора для постоянного тока оэ: основные соотношения и характеристики
  • •Базовые характеристики биполярного транзистора, включенного по схеме об.
  • •Выходные характеристики биполярного транзистора, включенного по схеме об.
  • •Базовые характеристики биполярного транзистора, включенного по схеме оэ.
  • •Выходные характеристики биполярного транзистора, включенного по схеме оэ.
  • •Основные режимы работы биполярного транзистора
  • •Биполярный транзистор как активный 4-х полюсник
  • •H-параметры для биполярного транзистора, характеристики, и способ определения.
  • •Основные параметры биполярного транзистора.
  • •Эквивалентные схемы биполярных транзисторов для переменного тока.
  • •Зависимость основных параметров биполярного транзистора от температуры.
  • •Классификация и система обозначения биполярных транзисторов.
  • •Структура и принцип работы полевого транзистора с управляемым p-n переходом
  • •Основные характеристики полевого транзистора с управляемым p-n переходом
  • •Основные параметры полевого транзистора с управляемым p-n переходом
  • •Соотношения между параметрами полевого транзистора с управляемым p-n переходом
  • •Эквивалентные схемы полевого транзистора для переменного тока.
  • •Основные схемы включения полевого транзистора
  • •Зависимость параметров полевого транзистора с управляющим p-n переходом от температуры
  • •Моп-транзисторы: структура и принцип действия
  • •Моп-транзистор с индуцированным каналом
  • •Моп-транзистор со встроенным каналом
  • •Стоко-затворные характеристики моп транзисторов с индуцированным каналом
  • •Статические стоковые характеристики моп-транзисторов с индуцированным каналом
  • •Влияние потенциала подложки на характеристики управления моп-транзистора
  • •Структура мноп: принцип действия и область использования.
  • •Моп-транзистор с плавающим затвором: принцип действия и область применения.
  • •Классификация, система обозначения и характеристики полевого транзистора
  • •Структура, принцип действия и вах туннельного диода
  • •Структура, принцип действия и вах двухбазового диода
  • •Основные соотношения для токов и напряжений однопереходного транзистора
  • •Транзисторный аналог двухбазового диода.
  • •Лавинный транзистор: схема включения и основные параметры
  • •Вах лавинного транзистора, область использования
  • •Динистор: структура и принцип действия
  • •Динистор: вах , основные соотношения для токов
  • •Тиристор: структура, принцип действия
  • •Тиристор: вах при управлении по катоду, и основные соотношения для токов
  • •Классификация и система обозначений тиристоров.
  • •Основные достоинства оптоэлектронных приборов
  • •Светодиоды: принцип действия, основные характеристики, эквивалентные схемы
  • •Основные параметры светодиодов
  • •Основные параметры и характеристика фоторезисторов
  • •Фотодиоды: структура, принцип действия, основные режимы работы
  • •Основные параметры и характеристики фотодиодов
  • •Фототранзисторы: принцип действия, основные режимы
  • •Основные характеристики и параметры фототранзисторов.
  • •Фоторезисторы: структура, классификация, основные параметры
  • •Устройства отображения информации: назначение, классификация.
  • •Принцип действия и способы управления вакуумными люминесцентными индикаторами.
  • •Устройство, принцип действия и область использования жидко-кристаллических индикаторов (жки)
  • •Разновидности и способы управления ими
  • •Пп знакосинтезирующие индикаторы: устройство, принцип действия
  • •Многоэлементные пп зси устройство, область использования.
  • •Принцип работы лазера, свойства лазерного излучения
  • •Основные типы лазеров, основные области использования лазерного излучения
  • •Пп приборы с зарядовой связью: устройство, принцип действия, режимы работы, область применения
  • •Усилители электрических сигналов: основные параметры и характеристики
  • •Принцип действия усилительного каскада на транзисторе
  • •Усилительный каскад на транзисторе, включенном по схеме оэ
  • •Определение коэффициентов усиления тока и напряжения в схеме каскада оэ
  • •Температурная компенсация каскада оэ
  • •Эмиттерный повторитель: схемы и основные соотношения.
  • •Определение коэффициентов усиления тока и напряжения в схеме ок
  • •Усилительный каскад с общей базой (об схема и основные соотношения)
  • •Усилительные каскады на полевых транзисторах: схемы и основные соотношения
  • •Истоковый повторитель: схема и основные соотношения
  • •Режимы усилительных каскадов
  • •Графо-аналитический анализ работы усилительного каскада

ТРАНЗИСТОРЫ

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов . Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:

Малой мощности


Средней мощности

Большой мощности

В металлическом корпусе

На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема с общим эмиттером

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Фототранзистор — фотография

Полевые транзисторы

Как ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:

Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) — это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:

С общим истоком


С общим стоком

С общим затвором

Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

otdelkagres.ru

Фототранзистор принцип работы

Электрика и электрооборудование, электротехника и электроника — информация! Фототранзисторы являются твердотельными полупроводниками с внутренним усилением, применяемым для передачи цифровых и аналоговых сигналов. Этот прибор выполнен на основе обычного транзистора. Аналогами фототранзисторов являются фотодиоды, которые уступают ему по многим свойствам, и не сочетаются с работой современных электронных приборов и радиоустройств. Их принцип действия похож на работу фоторезистора.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Фототранзисторы

Фототранзисторы. Устройство и работа. Применение и особенности


Дмитрий Компанец. Принцип работы фототранзистора Чип и Дип. Фототранзистор — принцип работы и проверка Автоматизация и Электрика. Полезная информация про фототранзисторы есть у нас на странице www. Фотодиод GetAClass — Физика в опытах и экспериментах. Фототранзисторы Чип и Дип. Тема 3. Кафедра КЕОА. Лекция Электротехника и электроника для программистов. Оптрон в источнике питания. Схемотехника Чип и Дип. Светодиод и фототранзистор Alex Zhukov. Автоматическое включение светодиода в темноте.

Простая схема. Детали: резистор на 1К, красный светодиод, выпаянный откуда-то NPN транзисто.. Простое фотореле своими руками Чип и Дип. Принцип работы фотодиода. Азы электроники Чип и Дип. Индикатор ик излучения Pavel Pavek. Решил собрать схему индикатора ик излучения, тем более, что используется всего 3 детали Подключение фототранзистора из шариковой мыши к Ардуино. ЗВК ТВ. Обзор фоточувствительных элементов Чип и Дип.

Видео создано по материалам сайта: www. Как работает фотодиод Кирилл Збруенко. Изучаем электронные компоненты Как правильно, полезные советы, совет, полезное, познавательно, познавательный канал, как научиться, к.. Усилители для фотодиодов на операционных Чип и Дип. Фотоприемник и его особенности. Простая схема Инфракрасный барьер. Простая конструкция Чип и Дип. Фототранзистор mecha nic. Работа фототранзистора. Что внутри советского транзистора мп37 или как не сделать фототранзистор.

Обзоры посылок и самоделки от jakson. Новая Группа в ВК: club Фототранзистор: goo. Фотодиоды Чип и Дип. Подключаем щелевой фотопрерыватель к arduino arduinoLab.

Подключаем щелевой фотопрерыватель к ардуине поддержать канал материально. Простая схема сумеречного детектора. Сделай сам Чип и Дип. Фоторезистор: «А каковы Ваши намерения? Осциллограмма выходного сигнала с фототранзистора Алексей Макаров. Сдвоенный фототранзистор из старой шариковой мышки Диск от той же мышки 36 секторов.

Осциллограмма одного транзистора, второй работает в.. Как сделать Диод или Фотодиод? Да нет ничего проще! Кусочек медной проволоки отожженный на огне и шуруп или гвоздь — Фотодиод Готов!

Фототранзистор bosimrcajevci. Самая простая схема фото реле. Andrey Frolov. Фотореле на одном транзисторе. Съём солнечной энергии. Что похожего и что разного в работе Фотодиода и Светодиода? Проведем простые тесты и посмотрим на результаты.

Выводы каждый сможет сдела.. Светодиодный маячок. Конструкции начинающим Чип и Дип. Датчик освещенности, как работает? Фоторезистор www. Датчик освещенности фоторезистор — www. В видео один из самых простых и н..

Осциллограмма оцифрованного сигнала с фототранзистора Алексей Макаров. Тот же фототранзистор, сигнал которого пропущен через операционный усилитель подключенный как компаратор. Изготовление датчика скорос..

Фоторезистор, фотореле. Что такое фоторезистор и как он работает. Как собрать устройство фотореле своими руками. Фотореле на NE Arduino Фоторезисторы проверка и особенности Анатолий Т. Как проверить работоспособность фоторезистора для Ардуино и особенности работы с ним.

Простые устройства управления освещением Чип и Дип. Подключение энкодера к Ардуино. Часть 1 «Изучаем Ардуино». Фотодатчик на фотортранзисторе electronicsakoe. Собран простой фотодатчик на фототранзисторе, в видео есть описание принципов работы. Материал полной статьи смотри на akoe. Тиристор- принцип работы Наш быт. Тиристор- принцип работы, динистор делитесь clip-share.

Не стесняйтесь обращаться, ставьте лайки, подписывайтесь на канал. Фотоэлектронный умножитель Чип и Дип. Фоторезисторы 3 мм диаметром с небольшим презентом от продавца. Михаил Майоров. Принцип работы фототиристора Чип и Дип. Урок Датчик свет на фоторезисторе ElectronicsClub.

Фотодиод Логика и Фантастика.


Фототранзисторы и фототиристоры: работа, свойства, применение

Фототранзистором называют полупроводниковый управляемый оптическим излучением прибор с двумя p—n переходами. Фототранзисторы, как и обычные транзисторы могут быть p—n—р и n—p—n типа. Конструктивно фототранзистор выполнен так, что световой поток облучает область базы. Наибольшее практическое применение нашло включение фототранзистора в схеме с ОЭ, при этом нагрузка включается в коллекторную цепь.

Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от классического.

Устройство, принцип действия

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Как применять фоторезисторы, фотодиоды и фототранзисторы. Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами. Основные виды фотоэлектронных приборов.

32. Фототранзистор. Принцип действия. Параметры.

Отличается от классического варианта тем, что область базы доступна для светового облучения, за счёт чего появляется возможность управлять усилением электрического тока с помощью оптического излучения. Фототранзистор имеет структуру n-p-n или p-n-p транзистора и может усиливать ток. Дырки электронно-дырочных пар, рождённых излучением, находятся в базе, а электроны переходят в эмиттер или коллектор. При увеличении положительного потенциала базы происходит усиление фототока за счёт инжекции электронов из эмиттера в базу. Недостатком фототранзисторов является большая инерционность, что ограничивает их применение в качестве быстродействующих выключателей.

Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения.

Фототранзистор

Разделы естественных наук используемых естественнонаучных эффектов. Применяются в микроэлектронике наряду с фотодиодами для детектирования оптического излучения. Выходные токи фототранзистора гораздо выше, чем у фотодиода, что разделяет сферы применения этих устройств. Фототранзисторы используются как составная часть оптрона — электрического устройства, состоящего из приемника и источника излучения с тем или иным видом оптической и электрической связи между ними. Такой прибор выполняет функцию элемента связи, в котором осуществлена электрическая гальваническая развязка входа и выхода.

Фототранзисторы

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов. Фототранзистор — это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы. Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ :.

Рассмотрим принцип работы фототранзистора при включении с плавающей базой. При освещении фототранзистора под действием.

Курсовая работа: Проектирование и испытание фототранзистора

Фототранзистор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от классического варианта тем, что область базы доступна для светового облучения, за счёт чего появляется возможность управлять усилением электрического тока с помощью оптического излучения. Фототранзистор имеет структуру n-p-n или p-n-p транзистора и может усиливать ток.

Оптоэлектроника является одним из самых актуальных направлений современной электроники. Оптоэлектронные приборы характеризуются исключительной функциональной широтой, они успешно используются во всех звеньях информационных систем для генерации, преобразования, передачи, хранения и отображения информации. При создании оптоэлектронных приборов используется много новых физических явлений, синтезируются уникальные материалы, разрабатываются сверхпрецизионные технологии. Оптоэлектроника достигла стадии промышленной зрелости, но это только первоначальный этап, так как перспективы развития многих ее направлений практически безграничны. Новые направления чаще всего возникают как слияние и интеграция ряда уже известных достижений оптоэлектроники и традиционной микроэлектроники: таковы интегральная оптика и волоконно-оптические линии связи; оптические запоминающие устройства, опирающиеся на лазерную технику и голографию; оптические транспаранты, использующие успехи фотоэлектроники и нелинейной оптики; плоские безвакуумные средства отображения информации и др.

Фототранзисторами называются полупроводниковые приборы с трёхслойной структурой типа n-p-n или p-n-p с двумя запирающими p-n переходами при отключенной базе, освещаемой через окно в корпусе. На рис.

Питанием данного устройства может служить обыкновенная крона с напряжением 9 вольт или два последовательно соединенных литий — ионные аккумулятора от мобильного телефона. Все конденсаторы в устройстве можно заменить на неполярные емкости 0,1 микрофарад. Возможно, и даже очень удобно использование транзисторов типа п, п, п, поскольку у этиx транзисторов кристалл расположен горизонтально, а не вертикально как у МП-шек, следовательно пилить транзистор нужно сверxу, а не боковую часть как у серии МП. Про области применения такиx устройств поговорим позже, а пока советую новичкам взять паяльник и начать работу. Удачи — АКА. Диод Шоттки. Полупроводниковые элементы являются основной части любого прибора, без ниx уже никак не возможно представить работу какого-либо бытового прибора или отдельной микросxемы.

Дмитрий Компанец. Принцип работы фототранзистора Чип и Дип. Фототранзистор — принцип работы и проверка Автоматизация и Электрика.


all-audio.pro

Фототранзистор Википедия

Фототранзистор Схематическое изображение фототранзистора на электрических схемах

Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения.

Отличается от фотодиода тем, что обладает внутренним усилением фототока и поэтому большей чувствительностью к потокам оптического излучения.

Фототранзистор может иметь полупроводниковую структуру как n-p-n, так и p-n-p транзистора.

Большинство промышленных типов фототранзисторов не имеют электрического вывода базы, но в некоторых моделях такой вывод имеется и обычно служит для смещения начальной рабочей точки прибора посредством подачи в базу некоторого тока.

История

Фототранзистор изобрёл Джон Нортроп Шив (John Northrup Shive) в 1948 г., во время его работы в Bell Laboratories[1], но об этом изобретении было заявлено только в 1950 г.[2] Тогда же фототранзисторы были впервые применены в считывателе перфокарт в автоматической телефонной станции.

Принцип работы фототранзистора

Биполярный фототранзистор — полупроводниковый прибор с двумя p-n переходами и тремя слоями полупроводника чередующегося типа проводимости — аналог обычного биполярного транзистора с управлением базовым током. Но в фототранзисторе базовым током является фототок. При освещении базового слоя фототранзистора в его базе за счет внутреннего фотоэффекта генерируются электронно-дырочные пары, порождая фототок. Этот процесс снижает потенциальный барьер от контактной разности потенциалов в эмиттерно-базовом переходе, что увеличивает диффузию неосновных носителей (для базы) из эмиттера в базу, то есть можно считать, что в этом приборе фототок является базовым током обычного транзистора. Можно сказать, что фототранзистор подобен обычному биполярному транзистору, между выводами коллектора и базы которого включен обратносмещенный фотодиод.

Как известно, транзистор обладает способностью усиливать базовый ток IB{\displaystyle I_{B}}, коэффициент усиления β=IC/IB>>1{\displaystyle \beta =I_{C}/I_{B}>>1}, поэтому ток коллектора IC{\displaystyle I_{C}} и равный ему ток эмиттера IE{\displaystyle I_{E}} в β{\displaystyle \beta } раз больше исходного фототока. Таким образом, светочувствительность фототранзистора больше светочувствительности фотодиода с равной площадью фотоприемной поверхности в несколько десятков и до нескольких сотен раз.

Основные параметры фототранзистора

Чувствительность

Токовая чувствительность Si,Φ{\displaystyle S_{i,{\Phi }}} по световому потоку фототранзистора определяется отношением тока через прибор IΦ{\displaystyle I_{\Phi }} к вызвавшему этот ток световому потоку Φ{\displaystyle \Phi }:

Si,Φ=IΦΦ{\displaystyle S_{i,{\Phi }}={\frac {I_{\Phi }}{\Phi }}}

Токовая чувствительность современных фототранзисторов достигает нескольких сотен мА/лм.

Темновой ток

Даже в отсутствие освещения, через прибор протекает некоторый ток, называемый темновым током. Этот ток вреден для регистрации слабых световых потоков, так как «маскирует» полезный сигнал и при изготовлении фототранзисторов его стремятся уменьшить разными технологическими приемами. Кроме того, величина темнового тока существенно зависит от температуры полупроводниковой структуры и нарастает при её повышении приблизительно так же, как и обратный ток p-n перехода в любом полупроводниковом приборе. Поэтому для снижения темнового тока иногда применяют принудительное охлаждение прибора.

При прочих равных, величина темнового тока сильно зависит от ширины запрещённой зоны полупроводника и снижается при её увеличении. Поэтому характерные значения темнового тока при комнатной температуре германиевых фототранзисторов порядка единиц мкА, кремниевых — долей мкА, арсенидо-галлиевых — десятков пкА.

Спектральная чувствительность

Типовая спектральная чувствительность кремниевого фототранзистора

Чувствительность фототранзистора зависит от длины волны падающего излучения. Например, для кремниевых приборов максимум чувствительности находится в диапазоне 850—930 нм — красный и ближний инфракрасный диапазоны. Для ближнего ультрафиолетового излучения (~400 нм) чувствительность снижается в ~10 раз от максимальной. Также чувствительность снижается при увеличении длины волны и для длин волн свыше ~1150 нм — край оптической полосы поглощения кремния, снижается до нуля.

Быстродействие

Фототранзисторы по сравнению с фотодиодами имеют относительно низкое быстродействие. Это обусловлено конечным временем рассасывания неосновных носителей в базе при снижении освещённости. Кроме того, если напряжение между коллектором и эмиттером изменяется при изменении освещенности, что имеет место в некоторых схемах электрического включения прибора, дополнительно снижает быстродействие эффект Миллера, обусловленный емкостью коллекторно-базового p-n перехода. Практически диапазон рабочих частот фототранзисторов ограничен, в зависимости от схемы включения, несколькими сотнями кГц — единицами МГц.

Включение фототранзисторов в электрические цепи

Классическое включение прибора — с обратносмещенным коллекторным переходом, то есть для прибора со структурой n-p-n на коллектор подается положительное относительно эмиттера напряжение и наоборот для структуры p-n-p.

Для приборов, имеющих третий электрический вывод базы, возможно включение по любой из схем включения обычного биполярного транзистора — с общим эмиттером, базой или коллектором. При этом ток базы задает положение «темновой рабочей точки» на вольт-амперной характеристике.

Иногда трёхвыводные фототранзисторы для увеличения быстродействия включают как обычный фотодиод, проигрывая при этом в чувствительности.

Преимущества и недостатки фототранзисторов

Основное преимущество фототранзисторов по сравнению с фотодиодами — высокая чувствительность к потоку излучения.

Недостатки — низкое быстродействие, поэтому эти приборы непригодны для применения в качестве приемников излучения в высокоскоростных оптоволоконных линиях связи. Также недостаток фототранзисторов — относительно большой темновой ток.

Конструкция корпусов

Приборы, предназначенные для приема внешнего излучения заключают в пластмассовый, металлостеклянный или металлокерамический корпус с прозрачным окошком или линзой, изготовленных из пластмассы или стекла. Исключение составляют фототранзисторы, входящие в состав оптронов, заключенные совместно с источником излучения в непрозрачный корпус.

Приборы, оформленные в металлостеклянных и металлокерамических корпусах, обычно имеют электрический вывод базы.

Применение

Так как фототранзисторы более чувствительны чем фотодиоды их удобно применять в качестве приемников излучения в различных системах автоматики безопасности, системах охранной сигнализации, считывателях перфокарт и перфолент, датчиках положения и расстояния и др. применениях, где некритично быстродействие.

Часто фототранзисторы применяют в оптопарах в качестве приёмников излучения в оптронах.

См. также

Примечания

wikiredia.ru

Фототранзистор — Википедия

Фототранзистор Схематическое изображение фототранзистора на электрических схемах

Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения.

Отличается от фотодиода тем, что обладает внутренним усилением фототока и поэтому большей чувствительностью к потокам оптического излучения.

Фототранзистор может иметь полупроводниковую структуру как n-p-n, так и p-n-p транзистора.

Большинство промышленных типов фототранзисторов не имеют электрического вывода базы, но в некоторых моделях такой вывод имеется и обычно служит для смещения начальной рабочей точки прибора посредством подачи в базу некоторого тока.

История

Фототранзистор изобрёл Джон Нортроп Шив (John Northrup Shive) в 1948 г., во время его работы в Bell Laboratories[1], но об этом изобретении было заявлено только в 1950 г.[2] Тогда же фототранзисторы были впервые применены в считывателе перфокарт в автоматической телефонной станции.

Принцип работы фототранзистора

Биполярный фототранзистор — полупроводниковый прибор с двумя p-n переходами и тремя слоями полупроводника чередующегося типа проводимости — аналог обычного биполярного транзистора с управлением базовым током. Но в фототранзисторе базовым током является фототок. При освещении базового слоя фототранзистора в его базе за счет внутреннего фотоэффекта генерируются электронно-дырочные пары, порождая фототок. Этот процесс снижает потенциальный барьер от контактной разности потенциалов в эмиттерно-базовом переходе, что увеличивает диффузию неосновных носителей (для базы) из эмиттера в базу, то есть можно считать, что в этом приборе фототок является базовым током обычного транзистора. Можно сказать, что фототранзистор подобен обычному биполярному транзистору, между выводами коллектора и базы которого включен обратносмещенный фотодиод.

Как известно, транзистор обладает способностью усиливать базовый ток IB{\displaystyle I_{B}}, коэффициент усиления β=IC/IB>>1{\displaystyle \beta =I_{C}/I_{B}>>1}, поэтому ток коллектора IC{\displaystyle I_{C}} и равный ему ток эмиттера IE{\displaystyle I_{E}} в β{\displaystyle \beta } раз больше исходного фототока. Таким образом, светочувствительность фототранзистора больше светочувствительности фотодиода с равной площадью фотоприемной поверхности в несколько десятков и до нескольких сотен раз.

Основные параметры фототранзистора

Чувствительность

Токовая чувствительность Si,Φ{\displaystyle S_{i,{\Phi }}} по световому потоку фототранзистора определяется отношением тока через прибор IΦ{\displaystyle I_{\Phi }} к вызвавшему этот ток световому потоку Φ{\displaystyle \Phi }:

Si,Φ=IΦΦ{\displaystyle S_{i,{\Phi }}={\frac {I_{\Phi }}{\Phi }}}

Токовая чувствительность современных фототранзисторов достигает нескольких сотен мА/лм.

Темновой ток

Даже в отсутствие освещения через прибор протекает некоторый ток, называемый темновым током. Этот ток вреден для регистрации слабых световых потоков, так как «маскирует» полезный сигнал и при изготовлении фототранзисторов его стремятся уменьшить разными технологическими приемами. Кроме того, величина темнового тока существенно зависит от температуры полупроводниковой структуры и нарастает при её повышении приблизительно так же, как и обратный ток p-n перехода в любом полупроводниковом приборе. Поэтому для снижения темнового тока иногда применяют принудительное охлаждение прибора.

При прочих равных, величина темнового тока сильно зависит от ширины запрещённой зоны полупроводника и снижается при её увеличении. Поэтому характерные значения темнового тока при комнатной температуре германиевых фототранзисторов порядка единиц мкА, кремниевых — долей мкА, арсенидо-галлиевых — десятков пкА.

Спектральная чувствительность

Типовая спектральная чувствительность кремниевого фототранзистора

Чувствительность фототранзистора зависит от длины волны падающего излучения. Например, для кремниевых приборов максимум чувствительности находится в диапазоне 850—930 нм — красный и ближний инфракрасный диапазоны. Для ближнего ультрафиолетового излучения (~400 нм) чувствительность снижается в ~10 раз от максимальной. Также чувствительность снижается при увеличении длины волны и для длин волн свыше ~1150 нм — край оптической полосы поглощения кремния, снижается до нуля.

Быстродействие

Фототранзисторы по сравнению с фотодиодами имеют относительно низкое быстродействие. Это обусловлено конечным временем рассасывания неосновных носителей в базе при снижении освещённости. Кроме того, если напряжение между коллектором и эмиттером изменяется при изменении освещенности, что имеет место в некоторых схемах электрического включения прибора, дополнительно снижает быстродействие эффект Миллера, обусловленный емкостью коллекторно-базового p-n перехода. Практически диапазон рабочих частот фототранзисторов ограничен, в зависимости от схемы включения, несколькими сотнями кГц — единицами МГц.

Включение фототранзисторов в электрические цепи

Классическое включение прибора — с обратносмещенным коллекторным переходом, то есть для прибора со структурой n-p-n на коллектор подается положительное относительно эмиттера напряжение и наоборот для структуры p-n-p.

Для приборов, имеющих третий электрический вывод базы, возможно включение по любой из схем включения обычного биполярного транзистора — с общим эмиттером, базой или коллектором. При этом ток базы задает положение «темновой рабочей точки» на вольт-амперной характеристике.

Иногда трёхвыводные фототранзисторы для увеличения быстродействия включают как обычный фотодиод, проигрывая при этом в чувствительности.

Преимущества и недостатки фототранзисторов

Основное преимущество фототранзисторов по сравнению с фотодиодами — высокая чувствительность к потоку излучения.

Недостатки — низкое быстродействие, поэтому эти приборы непригодны для применения в качестве приемников излучения в высокоскоростных оптоволоконных линиях связи. Также недостаток фототранзисторов — относительно большой темновой ток.

Конструкция корпусов

Приборы, предназначенные для приема внешнего излучения заключают в пластмассовый, металлостеклянный или металлокерамический корпус с прозрачным окошком или линзой, изготовленных из пластмассы или стекла. Исключение составляют фототранзисторы, входящие в состав оптронов, заключенные совместно с источником излучения в непрозрачный корпус.

Приборы, оформленные в металлостеклянных и металлокерамических корпусах, обычно имеют электрический вывод базы.

Применение

Так как фототранзисторы более чувствительны чем фотодиоды их удобно применять в качестве приемников излучения в различных системах автоматики безопасности, системах охранной сигнализации, считывателях перфокарт и перфолент, датчиках положения и расстояния и др. применениях, где некритично быстродействие.

Часто фототранзисторы применяют в оптопарах в качестве приёмников излучения в оптронах.

См. также

Примечания

wikipedia.green

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *