Что представляют собой газоразрядные лампы с цифрами. Как устроены газоразрядные индикаторы. Какие бывают виды газоразрядных ламп. Где применяются газоразрядные индикаторы. Как работают газоразрядные лампы с цифрами.
История создания газоразрядных ламп с цифрами
Газоразрядные лампы с цифрами, также известные как газоразрядные индикаторы, были изобретены в середине XX века. Первые образцы таких ламп появились в 1950-х годах и быстро нашли применение в различных электронных устройствах того времени.
Основные этапы развития газоразрядных индикаторов:
- 1955 год — компания Burroughs Corporation создает первую газоразрядную лампу с цифрами Nixie
- 1960-е годы — активное внедрение газоразрядных индикаторов в электронные приборы и вычислительную технику
- 1970-е годы — пик популярности газоразрядных ламп с цифрами
- 1980-е годы — постепенное вытеснение газоразрядных индикаторов светодиодными и жидкокристаллическими дисплеями
Чем обусловлена популярность газоразрядных ламп в середине XX века? Газоразрядные индикаторы обладали рядом важных преимуществ:

- Высокая яркость свечения
- Хорошая видимость под разными углами
- Длительный срок службы
- Возможность отображения цифр и символов большого размера
Устройство и принцип работы газоразрядных индикаторов
Газоразрядная лампа с цифрами представляет собой стеклянную колбу, наполненную инертным газом (обычно неоном) под низким давлением. Внутри колбы размещены катоды в форме цифр или символов и общий анод.
Принцип работы газоразрядного индикатора основан на явлении тлеющего разряда в газе. При подаче высокого напряжения между анодом и одним из катодов происходит ионизация газа и возникает свечение вокруг выбранного катода-символа.
Основные компоненты газоразрядной лампы с цифрами:
- Стеклянная колба
- Инертный газ (неон или смесь газов)
- Катоды в форме цифр/символов
- Общий анод
- Выводы для подключения
Как формируется изображение в газоразрядном индикаторе? При подаче напряжения на определенный катод вокруг него возникает характерное оранжево-красное свечение, образуя видимую цифру или символ. Переключая напряжение между катодами, можно отображать различные цифры и формировать нужную информацию.

Виды газоразрядных ламп с цифрами
Существует несколько основных разновидностей газоразрядных индикаторов:
1. Одноразрядные индикаторы
Отображают одну цифру или символ. Имеют простую конструкцию и широко применялись в ранних электронных устройствах.
2. Многоразрядные индикаторы
Содержат несколько цифровых разрядов в одной колбе. Позволяют отображать числа и короткие надписи.
3. Матричные индикаторные панели
Представляют собой массив газоразрядных ячеек, образующих матрицу. Применяются для вывода графической информации.
4. Индикаторные тиратроны
Особый вид газоразрядных индикаторов с внутренней памятью. Отличаются низким энергопотреблением в режиме хранения информации.
Какой тип газоразрядных ламп выбрать? Это зависит от конкретной задачи:
- Для отображения простой цифровой информации подойдут одноразрядные или многоразрядные индикаторы
- Для вывода графики или текста оптимальны матричные панели
- Если важна энергоэффективность, стоит обратить внимание на индикаторные тиратроны
Применение газоразрядных индикаторов
Газоразрядные лампы с цифрами нашли широкое применение в различных областях электроники и приборостроения. Основные сферы использования газоразрядных индикаторов:

Измерительные приборы
Газоразрядные индикаторы часто применялись в вольтметрах, амперметрах, частотомерах и других измерительных устройствах. Они обеспечивали хорошую видимость показаний в различных условиях освещения.
Вычислительная техника
Ранние компьютеры и калькуляторы использовали газоразрядные лампы для отображения результатов вычислений. Яркое свечение цифр обеспечивало удобство считывания информации.
Радиоприемники и музыкальные центры
Многие аудиоустройства были оснащены газоразрядными индикаторами для отображения частоты настройки, уровня громкости и других параметров.
Телекоммуникационное оборудование
В телефонных станциях и коммутаторах газоразрядные лампы применялись для индикации состояния линий и отображения служебной информации.
Транспорт
Газоразрядные индикаторы использовались в бортовых компьютерах автомобилей, самолетов и кораблей для вывода важных параметров.
Почему газоразрядные лампы были так популярны в этих областях? Они обеспечивали:
- Высокую яркость и контрастность отображаемой информации
- Хорошую видимость под различными углами обзора
- Надежность работы в широком диапазоне температур
- Длительный срок службы
Преимущества и недостатки газоразрядных ламп с цифрами
Газоразрядные индикаторы обладают рядом достоинств и ограничений, которые определяют области их применения.

Преимущества газоразрядных ламп:
- Высокая яркость свечения, хорошая видимость при ярком освещении
- Широкий угол обзора
- Длительный срок службы (до 200 000 часов)
- Устойчивость к механическим воздействиям
- Работоспособность в широком диапазоне температур
Недостатки газоразрядных индикаторов:
- Высокое рабочее напряжение (150-180 В)
- Ограниченная цветовая гамма (обычно оранжево-красное свечение)
- Относительно большие размеры
- Хрупкость стеклянной колбы
- Сложность формирования графической информации
Как выбрать оптимальный тип индикатора? Необходимо учитывать следующие факторы:
- Условия эксплуатации (освещенность, температура, вибрации)
- Требования к энергопотреблению
- Необходимость отображения графической информации
- Допустимые габариты устройства
Современное состояние и перспективы газоразрядных индикаторов
В настоящее время газоразрядные лампы с цифрами практически вытеснены более современными технологиями отображения информации. Однако они по-прежнему находят применение в некоторых специфических областях.

Области современного применения газоразрядных индикаторов:
- Ретро-дизайн электронных устройств
- Художественные инсталляции и арт-объекты
- Специализированное измерительное оборудование
- Реставрация и поддержка старой техники
Несмотря на ограниченное применение, интерес к газоразрядным лампам с цифрами сохраняется. Это связано с их уникальным внешним видом и «теплым» аналоговым свечением, которое привлекает любителей винтажной электроники.
Перспективы развития газоразрядных индикаторов:
- Создание современных стилизованных газоразрядных ламп
- Разработка гибридных технологий, сочетающих газоразрядные и светодиодные элементы
- Применение в дизайнерских решениях и уникальных проектах
Сохранят ли газоразрядные лампы свою нишу в будущем? Вероятно, они останутся востребованными в узкоспециализированных областях и среди энтузиастов ретро-электроники. Однако массового возвращения этой технологии ожидать не стоит.
Газоразрядные индикаторы в категории «Электрооборудование»
Конструктор «Часы на газоразрядных индикаторах IN-12»
На складе в г. Одесса
Доставка по Украине
1 560 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-14»
На складе в г. Одесса
Доставка по Украине
2 600 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-14» неон без индикаторов
На складе в г. Одесса
Доставка по Украине
1 690 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-14» без индикаторов
На складе в г. Одесса
Доставка по Украине
1 560 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-14/IN16»
На складе в г. Одесса
Доставка по Украине
5 018 грн
Купить
Craft Electronics
Лампа 95СГ9 1Ш-12 индикатор сигнальный газоразрядный
На складе в г. Киев
Доставка по Украине
24 грн
Купить
«Світло» интернет-магазин
Конструктор «Часы на газоразрядных индикаторах ИН-8-2»
На складе в г. Одесса
Доставка по Украине
2 860 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах ИН-8-2» без индикаторов
На складе в г. Одесса
Доставка по Украине
1 820 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-12» неон
На складе в г. Одесса
Доставка по Украине
1 755 грн
Купить
Craft Electronics
Плата часов на газоразрядных индикаторах IN-12 неон
На складе
Доставка по Украине
624 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-12» неон без индикаторов
На складе в г. Одесса
Доставка по Украине
1 365 грн
Купить
Craft Electronics
Тестер для газоразрядных индикаторов ИН
На складе в г. Одесса
Доставка по Украине
1 560 грн
Купить
Craft Electronics
Плата в сборе часов на газоразрядных индикаторах ИН 8-2
На складе в г. Одесса
Доставка по Украине
3 055 грн
Купить
Craft Electronics
Индикаторная лампа FP L AC/DC12V зеленая
Под заказ
Доставка по Украине
60 грн
Купить
ЭЛЕКТРОЛИК
Индикаторная лампа FP L AC/DC12V красная
Под заказ
Доставка по Украине
60 грн
Купить
ЭЛЕКТРОЛИК
Смотрите также
Индикаторная лампа FP L AC/DC12V синяя
Под заказ
Доставка по Украине
60 грн
Купить
ЭЛЕКТРОЛИК
Индикаторная лампа FP L AC/DC12V белая
Под заказ
Доставка по Украине
60 грн
Купить
ЭЛЕКТРОЛИК
Индикаторная лампа FP L AC/DC12V желтая
Под заказ
Доставка по Украине
60 грн
Купить
ЭЛЕКТРОЛИК
Плата с газоразрядными индикаторами ИН-1 для часов Nixie Clock
Доставка из г. Одесса
642 грн
Купить
Craft Electronics
Индикаторная лампа
Доставка по Украине
150 грн
Купить
ТОВ «Всеплюс»
Индикаторная лампа
Доставка по Украине
150 грн
Купить
ТОВ «Всеплюс»
Индикаторная лампа
Доставка по Украине
150 грн
Купить
ТОВ «Всеплюс»
Индикаторная лампа
Доставка по Украине
150 грн
Купить
ТОВ «Всеплюс»
Индикаторная лампа
Доставка по Украине
150 грн
Купить
ТОВ «Всеплюс»
Конструктор «Часы на газоразрядных индикаторах IN-14» неон
Доставка из г. Одесса
2 730 грн
Купить
Craft Electronics
Конструктор «Часы на газоразрядных индикаторах IN-14/IN16» без индикаторов
Доставка по Украине
3 367 грн
Купить
Craft Electronics
Индикаторная лампа для плиты Gorenje 386484 (538462) original
Доставка по Украине
265 грн
Купить
Мир Запчастей — — — Работаем в военное время!
Плата часов на газоразрядных индикаторах IN-12
Доставка из г. Одесса
624 грн
Купить
Craft Electronics
Индикаторная лампа бойлера Ariston Europrisma 570077
На складе в г. Мукачево
Доставка по Украине
180 грн
Купить
ЗакСервис
Газоразрядные индикаторы, схема, параметры, принци работы
Содержание:
Газоразрядные индикаторы имеют свечение, возникающее при появлении электрического разряда в среде из газа. Как правили они работают в тлеющем разряде при функционировании холодного катода. Газоразрядный индикатор представляет собой стеклянную колбу, заполненную каким-либо инертным газом. Давление внутри колбы может быть совершенно разным – от 0,1атм до более 100 атм.
Когда давление высокое, возникает явление называемое ионизация газа. При столкновении электронов и атомов возникает ионизация и свечение. Излучение происходит как результат рекомбинации атомов в другое состояние. Такие приборы имеют высокую инерционность. В статье будут разобраны все вопросы устройства и использования этих устройств. Дополнением служат несколько видеороликов и одна подробная научная статья.
Устройство газоразрядных индикаторов
К сожалению малогабаритные лампочки накаливания не отличаются надёжностью, так как при включении питания через них протекает значительный ток, в результате воздействия которого на нить накаливания лампа может выйти из строя. Кроме того они боятся ударов.
Все эти причины, а также большой потребляемый ток привели к тому, что в настоящее время эти индикаторы практически не используются. Эти индикаторы в отличие от ламп накаливания управляются не напряжением, а током. Поэтому в схему приходится вводить токоограничивающий резистор. Напоминаю, что подобные индикаторы применяются для подсвечивания либо надписей, либо символических рисунков (пиктрограмм).
В этой схеме транзистор требуется в основном для согласования по напряжению, так как газоразрядные индикаторы питаются от источника напряжением 180 … 300 В (напряжение зажигания газоразрядной лампы). Поэтому транзистор должен выдерживать напряжение 300 В. Что касается сопротивления R3, то оно рассчитывается по закону Ома.
Необходимо от напряжения питания отнять падение напряжения на зажженной индикаторной лампе, которое можно взять из справочника по индикаторным лампам (обычно 80 В) и поделить на ток этой лампы. Падением напряжения на открытом транзисторе VT1 можно пренебречь. Например:
R3 = (Uп — UHL1)/Iл = (200 В — 80 В)/1 мА = 120 кОм.
Старые газоразрядные индикаторы.Для уменьшения габаритов цифрового устройства и упрощения его принципиальной схемы были разработаны специальные микросхемы дешифраторов, выдерживающие напряжение до нескольких сотен вольт, например отечественная микросхема К155ИД1. На вход этой схемы подается двоично-десятичный код. Он преобразуется микросхемой D1 в инверсный линейный десятичный код.
Инверсия нужна для того, чтобы ток протекал только через тот вывод, двоично-десятичный код которого подан на вход схемы. В результате светится только тот катод, который подключен к этому выводу, а так как катод выполнен в форме десятичной цифры, то именно эта цифра и отображается на газоразрядном индикаторе.
Газоразрядные индикаторы используются как для индикации битовой информации, так и для отображения десятичной информации. При построении десятичных индикаторов катод газоразрядных индикаторов выполняется в виде десятичных цифр.
Резистор R1 требуется для ограничения тока газоразрядного индикатора до допустимой величины. Одним резистором в схеме можно обойтись потому, что ток может протекать только через один из десяти катодов. Расчет ограничивающего ток резистора не отличается от расчета резистора R3 в схеме подключения одиночного газоразрядного индикатора. В настоящее время газоразрядные индикаторы с холодным катодом практически не используются.
Основные технические характеристики разработанных ГИП и модулей на их основеОбычно применяются более эффективные семисегментные газоразрядные индикаторы с подогревным катодом. Применение катода с подогревом позволяет снизить анодное напряжение подобного газоразрядного индикатора до 20 … 27 В, а семисегментный анод позволяет увеличить угол обзора индикатора.
[stextbox id=’info’]В описанных индикаторах газ светится не около катода, а в промежутке между управляющей сеткой и анодом. На рисунке 2.5 аноды четко видны в виде белых сегментов. Управляющая сетка видна как фиолетовая поверхность, а катод выполнен в виде двух тонких проводников, которые почти незаметны на переднем плане индикатора. Если индикатор поместить за зеленым светофильтром, то ни нить накала, ни управляющая сетка видны не будут.[/stextbox]
Если на нить накаливания подать постоянное напряжение, то на ней возникнет падение напряжения. Это напряжение будет суммироваться с анодным напряжением, в результате яркость свечения сегментов в индикаторе будет неравномерной. Конструктивно нить проложена так, чтобы этот эффект свести к минимуму, однако на нить накала подогревного катода желательно подавать переменное напряжение. Так как ток в этом случае будет протекать в различном направлении, то средняя яркость свечения сегментов будет равномерной.
Газоразрядный индикатор советского производстваВ практических схемах чаще используется схема подключения газоразрядного индикатора с отрицательным напряжением питания. В этом случае дешифратор должен обеспечить вытекающий ток ключей. В этой схеме транзистор VT1 и резистор R1 образуют генератор тока с большим входным и выходным сопротивлением. В результате яркость свечения индикатора будет слабо зависеть от напряжения питания 27 В.
Так как задача подключения газоразрядных индикаторов является распространенной, то промышленностью были разработаны и выпускаются до настоящего времени специализированные микросхемы К176ИД3, где показанные на рисунке 3.7 генераторы тока входят в состав микросхемы. В результате данного схемотехнического решения выход дешифратора можно подключать к газоразрядному индикатору непосредственно.
В приведенных схемах подключения семисегментного газоразрядного индикатора управляющая сетка подключена непосредственно к питанию. Однако при создании схемы динамической индикации, которая будет рассмотрена несколько позднее, эта сетка используется для зажигания и гашения отдельных разрядов многоразрядного газоразрядного индикатора.
Это интересно! Все о полупроводниковых диодах.
Расчетная часть
Практически все типы газоразрядных индикаторов представляют собой комбинацию диодных промежутков. Обычно ток в таком промежутке ограничивается резистивной нагрузкой. В этом случае рабочая точка прибора определяется пересечением нагрузочной прямой с вольт-амперной характеристикой. Если это пересечение приходится на горизонтальный участок характеристики, в приборе устанавливается нормальный тлеющий разряд, если на возрастающий – аномальный. Основные динамические характеристики газоразрядного промежутка иллюстрируются показывающим возникновение в газоразрядном промежутке тока i под действием напряжения u.
Так как время запаздывания возникновения разряда обусловлено появлением у холодного катода индикатора электронов, что является статистическим процессом, то оно характеризуется средним значением τСТ и его дисперсией. Для уменьшения и одновременно стабилизации этого времени с помощью вспомогательного разряда у катода создают начальную концентрацию электронов.
После появления начального электрона нарастание лавин в промежутке и установление тока также требует определенного времени формирования τФ. Для возвращения промежутка в первоначальное состояние после окончания импульса анодного напряжения заряженные частицы должны рекомбинировать, на что уходит время деионизации τД.
Излучателем в газоразрядных индикаторах часто является отрицательное тлеющее свечение – область, непосредственно примыкающая к отрицательному электроду (катоду) прибора. В качестве газового наполнения, как правило, применяют инертный газ, слабо реагирующий с деталями внутренней структуры и мало поглощаемый, чем обеспечиваются высокий срок службы и малая скорость деградации характеристик.
Достаточно высокую яркость свечения в видимой области спектра дают только неон и его смеси с другими инертными газами (до 10 000 кд/м2 и выше). Так как основные линии излучения неона лежат в оранжево-красной части спектра, то ею и ограничивается цвет свечения многих газоразрядных индикаторов.
[stextbox id=’warning’]Перечисленные динамические параметры τСТ, τФ, τД газоразрядных индикаторов определяют минимальные длительности управляющих импульсов, подаваемых на прибор, и предельную частоту его работы.[/stextbox]
Несколько газоразрядных индикаторов в одном корпусеЗнаковые индикаторы
Наиболее простые по конструкции и принципу действия знаковые (цифровые) индикаторы содержат множество катодов, окруженных общим анодом. Электродная структура содержит набор из десяти катодов, каждый из которых имеет форму цифры, окруженной, со всех сторон анодным электродом. Для вывода излучения верхняя часть анода выполнена в виде оптически прозрачной сетки. Прибор работает в режиме слабо аномального тлеющего разряда, т. е. при токах, чуть превышающих ток полного покрытия катода свечением IП. Так как давление газа в приборе составляет несколько тысяч паскаль, то свечение тлеющего разряда образует тонкую (толщиной в десятые доли миллиметра) область, плотно окружающую катод. В связи с этим область свечения имеет форму, достаточно близкую к контуру катода, т. е. отображаемой цифры.
Знакомоделирующие индикаторы были широко распространены благодаря привычности начертания символов. Но постепенно начали проявляться их недостатки, связанные с тем, что экранирование одних символов другими затрудняло наблюдение, а большая толщина катодного пакета уменьшала угол обзора и ограничивала число используемых знаков (длину алфавита).
Поэтому в последующих разработках знакомоделирующие индикаторы заменены знакосинтезирующими, которые выполнялись многоразрядными. Конструктивно такие индикаторы напоминают вакуумные люминесцентные, однако в отличие от последних они имеют не три, а два электрода. В газоразрядных индикаторах на месте анодов вакуумного люминесцентного индикатора располагаются холодные катоды, а на месте сеток – аноды, выполняемые путем напыления прозрачного проводящего покрытия на внутреннюю поверхность лицевой части прибора. Газоразрядные знаковые индикаторы применяются в основном для отображения символов больших размеров.
Индикаторные тиратроны отличаются малой управляющей мощностью, наличием нескольких входов, что позволяет эффективно организовать матричную адресацию, и внутренней памятью. Электродная структура типичного индикаторного тиратрона ТХ19А и распределение потенциала в его рабочем пространстве по оси изображены на рис. 7.12. Подготовительный разряд на подкатод ПК существует постоянно и плазма ПЛ этого разряда, примыкающая к первой сетке C1 и второй сетке С2, образует так называемый плазменный катод ПЛ.
Управление возникновением основного разряда на вспомогательный анод А1 и анод индикации А2 осуществляется с помощью сеток C1 и С2, которые воздействуют на потенциал плазменного катода (последний определяется наиболее положительной из сеток, а если потенциалы сеток одинаковы – сеткой, ближайшей к анодам). При положительном потенциале хотя бы на одной из сеток C1, С2 между плазменным катодом ПЛ и катодом К возникает тормозящее электрическое поле, препятствующее прохождению электронов в пространство К–A1, А2 . Напротив, если и C1 и С2 находятся под потенциалом, близким к катодному, то электроны проникают в промежуток К–A1, А2, в котором становится возможным возбуждение разряда.
Распределение потенциала после возникновения разряда на А1, А2 показывает наличие еще одной плазменной области – положительного столба ПС, примыкающего к анодам. Ультрафиолетовое излучение положительного столба возбуждает люминофор Л, излучающий видимый свет. Из сказанного следует, что для возникновения разряда в индикаторном тиратроне необходимо иметь низкие уровни напряжения на его сетках при высоких уровнях на анодах А1 и А2.
По включению тиратрон может работать как четырехвходовая схема совпадения. Однако низкие значения управляющих напряжений получаются только по C1 и С2, по А1 и А2 они значительно выше, так что большей частью используют сеточное управление. Удобство сеточного управления связано и с тем, что входы C1 и С2 почти независимы, а изменение напряжений на них после включения не влияет на яркость ЭО. Индикаторные тиратроны обладают способностью запоминать информацию, т.е. анодный разряд в них сохраняется, пока есть напряжение хотя бы на одном из анодов, А1 или А2, даже если на C1 и С2 – запирающее напряжение.
Важной особенностью индикаторных тиратронов является то, что для управляющих сеток они представляют собой источник тока, направление которого меняется в зависимости от состояния тиратрона. При возбуждении разряда на А1, А2 потенциал пространства выше потенциала сеток и на них собираются ионы. В отсутствие разряда сетки коллектируют электроны и принимают электронный ток.
Индикаторные тиратроны применяются как единичные элементы отображения при создании матричных полей большого размера. Так как размер баллона прибора составляет около 10 мм, то получить индикаторное поле с высокой разрешающей способностью на их базе не удается. Кроме того, каждый элемент отображения присоединяется к схеме с помощью шести выводов, что создает большие конструктивные и технологические трудности. Для устранения этих недостатков созданы тиратронные матричные индикаторы, содержащие в одном баллоне несколько однотипных ячеек, а также встроенных резисторов RПK.
Газоразрядные индикаторные панели (ГИП) называют также матричными индикаторами, так как они представляют собой множество светоизлучающих элементов, образуемых на пересечениях ортогональных электродов. ГИП делятся на три основные подгруппы:
- постоянного тока с внешней адресацией;
- с самосканированием;
- переменного тока.
Образующиеся в местах пересечения анодов и катодов светоизлучающие ячейки электрически и оптически изолированы друг от друга с помощью диэлектрической матрицы, отверстия в которой совмещены с местами пересечения электродов. Пространство между подложками заполнено газом. Одновременное включение ячеек, у которых один из электродов (на рисунке электроды, расположенные по столбцу) подключен к общему резистору, невозможно.
[stextbox id=’warning’]Действительно, после возникновения в одной из таких ячеек разряда напряжение на общем электроде падает до напряжения поддержания UП, которое всегда меньше напряжения возникновения разряда UB, и другие ячейки пробиться не могут. Напротив, ток в ячейках, подключенных к одной строке, ограничивается разными резисторами, и они могут включаться одновременно.[/stextbox]
ГИП постоянного тока, как и большинство других матричных индикаторов, не обладают внутренней памятью и должны работать в режиме с регенерацией изображения при кадровой частоте fK выше критической частоты мельканий fКЧМ. В общем случае можно записать для режима регенерации
где tB – время выборки ЭО.
Наиболее часто используется построчный режим выборки ячеек, когда одновременно адресуются все ЭО одной строки и последовательно включается строка за строкой. В этом случае
где NС – число строк, по которым производится развертка.
Нормальное формирование изображения в схеме рис. 7.14 обеспечивается, когда при совпадении импульсов по строке и столбцу промежуток пробивается, т. е. а при подаче импульса только по строке или по столбцу разряд в нем не поддерживается:
ECМ + UC < UП; ECМ + UCБ < UП.
Заметим, что напряжение возникновения разряда UB нарастает с уменьшением времени выборки ЭО tB.
Если принять, что UC = UCБ = UH, то
ЕСМ +2UИ ≥ UВ;
ЕСМ +UИ < UП.
Большим NС соответствуют малые tВ, что приводит к росту UВ и, следовательно, UИ. Кроме того, tВ может оказаться сравнимым с τСТ, что вызывает нестабильность возникновения разряда. Для уменьшения τСТ и его стабилизации в ячейках ГИП создается небольшая предварительная ионизация либо с помощью так называемого рамочного разряда (вспомогательного разряда на периферии индикаторного поля, где ячейки не видны наблюдателю), либо разряда в виде координатной сетки, при котором возбуждена часть ячеек индикаторного поля по вертикальным и горизонтальным линиям, либо в виде слабого разряда по всему индикаторному полю. Для создания предыонизации также используют повышение кадровой частоты регенерации изображения.
Так как практически не удается неограниченно увеличивать путем увеличения тока из-за насыщения излучения разряда и люминофора, то можно принять максимальное значение = 10 000 кд/м2. Если необходимо =50 – 100 кд/м2, то максимальное число строк для ГИП с внешней адресацией оказывается равным 100 – 200. В связи с указанным ограничением основное применение ГИП постоянного тока нашли либо в качестве экранов индивидуального пользования с ограниченной информационной емкостью (ГИП 10 000), либо в качестве элементов большого экрана (ИГПП-32х32).
ГИП постоянного тока присуща нестабильность возникновения разряда из-за отсутствия достаточной по величине и однородной по индикаторному полю предварительной ионизации. Этот недостаток удалось устранить в ГИП с самосканированием.
Как работает газоразрядный индикатор
В рабочем состоянии между системами вертикальных и горизонтальных электродов приложено знакопеременное поддерживающее напряжение ЕП, меньшее напряжения возникновения разряда. Возбуждение разряда в ячейке («Запись») производится подачей на вертикальный Y и горизонтальный X электроды полуимпульсов записи UY, UX, суммарная амплитуда которых достаточна для пробоя. В результате протекания тока i емкости структуры МДГДМ заряжаются до напряжения UC1, значение приложенного к газовому промежутку напряжения UГ падает и первый импульс разрядного тока прекращается. После этого газовый промежуток возвращается к непроводящему состоянию, благодаря чему на емкостях сохраняется накопленное напряжение UC1.
В следующий временной интервал к промежутку прикладывается положительное поддерживающее напряжение. В сумме с напряжением UC1, сохранившимся на емкостях, оно достаточно для повторного возбуждения разряда. Протекание в интервале импульса тока приводит к перезарядке емкости до напряжения UC2 противоположной полярности. При этом изменение напряжения на ячейке равно ΔUC2. Таким образом, пока к ГИП приложено поддерживающее напряжение, в ячейке, возбужденной импульсами записи, существуют серии разнополярных импульсов тока разряда. Наличие емкостей в структуре МДГДМ каждой ячейки обеспечивает электрическую развязку и возможность параллельного существования разряда в любом числе ячеек. Однако в ГИП переменного тока, как и в любой матричной системе, выборка одновременно может осуществляться только для ограниченного числа ЭО (например, ЭО строки или столбца).
Для прекращения разряда на данную ячейку (т. е. на ее строку и столбец) подаются импульсы «Стирание» UY, UX с амплитудой меньшей, чем при записи. Импульсы вызывают более слабую перезарядку емкостей ячеек, чем при записи, так что конечное значение напряжения на емкости UC ОСТ оказывается близким к нулю. В результате очередной импульс поддерживающего напряжения не может вызвать повторного пробоя и серия разрядов в ячейке прекращается.
[stextbox id=’warning’]Качественное описание процессов, происходящих в ячейке, можно развить, использовав так называемую перезарядную характеристику (рис. 7.18). Она позволяет определить изменение напряжения на емкостях ячейки ΔUC в результате протекания импульса разрядного тока в зависимости от приложенного к газоразрядному промежутку в момент пробоя напряжения.[/stextbox]
Изменение заряда ячейки (при условии постоянства емкостей в структуре МДГДМ ΔUC пропорциональна этому заряду) определяется суммой внутреннего (накопленного на диэлектрических слоях) и внешнего (поддерживающего, записывающего или стирающего) напряжений, существующей на ячейке к моменту начала развития разряда в газе. Изменение напряжения на емкостях в два раза больше начального напряжения на емкостях, так как именно тогда новое значение напряжения на емкостях по модулю оказывается равным старому:
ΔUC = 2 UC.
Уравнение (7.1) позволяет найти рабочую точку на перезарядной характеристике. Прямая А, проведенная на рис. 7.18, пересекает перезарядную характеристику в точках α, β. Любая параллельная А прямая в области между В и С, касательными к перезарядной характеристике, также удовлетворяет условию (7.1). Легко видеть, что при ЕП < ЕПmin устойчивая разрядная серия не может существовать независимо от того, какое начальное UC было на ячейке. При ЕП > ЕПmax разрядная серия существует всегда независимо от наличия или отсутствия на ячейке UC, т. е. ячейка перестает быть управляемой. Таким образом, перезарядная характеристика позволяет определить диапазон поддерживающих напряжений, при котором обеспечивается нормальная работа ячейки.
Перезарядную характеристику можно использовать и для анализа переходных режимов работы, в частности перехода от записи к запоминанию. Хотя перезарядная характеристика чрезвычайно удобна для понимания процессов, происходящих в ГИП переменного тока, однако, анализировать ее не очень просто. Кроме того, для выбора режимов работы надо иметь характеристику не одной, а всего массива ячеек. Поэтому для выбора режима используют динамическую характеристику.
Перезарядная и динамическая рабочая характеристики сильно зависят от параметров поддерживающего напряжения и управляющих импульсов: частоты повторения, длительности, крутизны фронтов. Оптимальная частота повторения поддерживающего напряжения составляет 40–50 кГц, при уменьшении или увеличении этой частоты сужается диапазон поддерживающих напряжений из-за стекания емкостных зарядов. Нарастание фронтов поддерживающих напряжений должно происходить за десятые доли микросекунды, в противном случае разряд в ячейке формируется как слаботочный, из-за чего емкости заряжаются меньше, чем обычно. Этому случаю соответствует более пологая перезарядная характеристика, которая в соответствии с проведенным анализом дает более узкий диапазон поддерживающих напряжений.
Материал по теме: Как подключить конденсатор
Как и в других типах ГИП, в панелях переменного тока для стабилизации используется подготовительный разряд в виде рамки по краю индикаторного поля, который должен быть сфазирован во времени с импульсами записи.
Заключение
Рейтинг автора
Написано статей
Принцип работы газоразрядного индикатора можно более подробно изучить из статьи Газоразрядные буквенно-цифровые индикаторы. Если у вас остались вопросы, можно задать их в комментариях на сайте.
Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:
www.life-prog.rul
www.bigenc.ru
www.libraryno.ru
www.knigorazvitie.ru
Предыдущая
ИндикаторыКак устроен семисегментный индикатор и для чего он применяется
Следующая
ИндикаторыКак проверить аккумулятор автомобиля с помощью мультиметра
Газоразрядные лампы — Купить онлайн!
На этой странице вы можете найти различные газоразрядные лампы. Эти лампы содержат благородные газы, такие как: аргон, неон, криптон и ксенон. Они бывают трех различных форм: разряд высокого давления, разряд низкого давления и разряд высокой интенсивности. Убедитесь, что используете правильный патрон при замене газоразрядной лампы. Газоразрядные лампы имеют высокую светоотдачу на ватт и имеют длительный срок службы. Предлагаем Вам газоразрядные лампы по низким ценам с быстрой доставкой! В Any-Lamp мы поможем вам найти подходящую газоразрядную лампу.
Показать больше
Слишком большой выбор?
Найдите продукт за 3 шага!
Помогите выбрать!
Филипс 195
Осрам 105
ГЭ Освещение 26
Сильвания 3
Ледванс 1
10 Вт — 19 Вт 1
20 Вт — 29 Вт 14
30 Вт — 39 Вт 46
40 Вт — 49 Вт 2
50 Вт — 59 Вт 16
70 58
35 44
150 30
250 24
100 15
Да 79
№ 189
3000K — теплый белый 92
4200K — холодный белый 60
2000K — очень теплый белый 40
1800K — очень теплый белый 11
2800K — очень теплый белый 11
ЦДМ-Т 37
Другое HID 32
ЦДМ-Р 31
ЦДМ-ТД 30
ЦДМ-Э 26
Трубчатый 129
Эллиптический 41
Пятно 23
Двойной конец 21
156 15
95 13
103 12
85 11
149 7
№ 274
HQI-Т 14
СОН-Т 14
HQI-ТС 13
HQI-Е 11
Постоянный цвет 6
Слишком большой выбор?
Помогите выбрать!
Текущий поиск
На этой странице вы можете найти различные газоразрядные лампы. Эти лампы содержат благородные газы, такие как: аргон, неон, криптон и ксенон. Они бывают трех различных форм: разряд высокого давления, разряд низкого давления и разряд высокой интенсивности. Убедитесь, что используете правильный патрон при замене газоразрядной лампы. Газоразрядные лампы имеют высокую светоотдачу на ватт и имеют длительный срок службы. Предлагаем Вам газоразрядные лампы по низким ценам с быстрой доставкой! В Any-Lamp мы поможем вам найти подходящую газоразрядную лампу.
Показать больше
Газоразрядная лампа открытого доступа Журналы · OA.mg
Газоразрядная лампа представляет собой искусственный источник света, работающий от электрического разряда ионизированного газа
Журналы открытого доступа публикуют статьи, которые читатель может скачать бесплатно. Статьи в открытом доступе прошли рецензирование и не являются более или менее строгими, чем статьи в закрытых журналах — основное отличие заключается в бизнес-модели.
Мы надеемся, что этот список журналов с открытым доступом по газоразрядным лампам облегчит вам выбор места публикации рукописи по газоразрядным лампам.
У нас в списке тысячи журналов газоразрядных ламп с высокой ударной вязкостью. Во многих случаях вы видите только списки журналов газоразрядных ламп, тем не менее, в нашем случае мы составили список с открытым доступом для газоразрядных ламп учитывайте журналы. Используйте наши различные столбцы — количество статей, количество цитирований и релевантность — чтобы найти лучшее место для газоразрядной лампы для вашей рукописи.
Столбцы DOAJ относятся к The Directory of Open Access Journals , список журналов открытого доступа, поддерживаемых Infrastructure Services for Open Access.
Существуют определенные критерии, которым журнал должен соответствовать, чтобы быть проиндексированным DOAJ, поэтому включение в индекс DOAJ рассматривается учеными как знак качества.
Все находящиеся в открытом доступе журналы по газоразрядным лампам в этом списке проиндексированы в OA. mg.
Если вы обнаружите какие-либо ошибки в этой таблице журналов OA для газоразрядных ламп, не стесняйтесь присылать нам электронное письмо.
Name | ISSN | DOAJ | Publisher | No. of Papers | Citations | Relevance▼ | Website |
---|
Frequently Asked Questions
What is Open Access (OA)?
Открытый доступ означает свободный доступ к информации и неограниченное использование электронных ресурсов для всех. В открытом доступе может находиться любой вид цифрового контента, от текстов и данных до программного обеспечения, аудио и видео.
Что означает «релевантность» в таблице?
Относится к силе связи между указанным журналом и концепцией, от 0 до 100. Например, Journal Of Research In Machine Engineering имеет релевантность «0» в списке «Журналы по компьютерным наукам с открытым доступом», потому что он не имеет отношения к области компьютерных наук.
Как вы считаете общее количество цитирований?
Цитаты показывают, как часто публикации из этого журнала цитируются в других статьях. Мы получаем эту информацию через OpenAlex. Хотя точность сомнительна, она, тем не менее, может помочь вам понять, насколько престижна публикация в целом.
Где я могу найти другие списки, подобные этому?
Для поиска дополнительных открытых списков журналов по различным темам см. OA.mg
Как я могу опубликовать свою статью на OA.mg?
В настоящее время мы не предлагаем издательские услуги, поэтому мы составили эти списки, чтобы вы могли найти подходящий журнал для публикации своей статьи.