Где на конденсаторе плюс и минус: Определение полярности электролитического конденсатора по внешнему виду

Содержание

Как определить полярность конденсатора и не перепутать?

Все конденсаторы имеют высокий показатель удельной емкости. Это объяснятся применением оксидной пленки в качестве диэлектрика, который располагается между обкладками. Этот слой появляется на поверхности металла – AL, Ta, Nb. Она характеризуется большой электрической прочностью, а также своими вентильными свойствами. Ее толщина колеблется от 0,01 до 1мкм.

Если создается напряжение в 100 вольт, создается напряженность на этом слое в 107В на см. Таким образом приближается к максимальному пределу своей прочность, исходя из теории ионной кристаллов.

В статье разобраны все аспекты как определить полярность конденсаторы и что такое полярность конденсаторов. В качестве дополнения есть ролик и скачиваемый файл на эту тему.

Полярность конденсаторов.

Параметры, которыми характеризуется конденсаторы

Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности.  Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.

Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.

Маркировка конденсаторов.

Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.

Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

Параллельное соединение

Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

Материал в тему: все о переменном конденсаторе.

На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

Соединения конденсаторов.

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут  корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Как определить полярность электролитического конденсатора

Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.

Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.

В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.

Как определить полярность электролитического конденсатора.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Интересный материал для ознакомления: что такое вариасторы.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Полярный и неполярный конденсатор

Полярные (электролитические) конденсаторы

Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.

полярный и неполярный конденсатор

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с большим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

В данной статье были рассмотрены основные особенности трансформаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике Электрические конденсаторы В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.nauchebe.net

www.masterkit.ru

www.radiostorage.net

www.texnic.ru

www.radioelementy.ru

Предыдущая

КонденсаторыЧто такое плоские конденсаторы

Следующая

КонденсаторыСколько стоят керамические конденсаторы?

Как определить полярность конденсатора и не перепутать


Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).
  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Параметры, которыми характеризуется конденсаторы

Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.

Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.


Маркировка конденсаторов.

Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.

Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

С помощью чего измеряют полярность у конденсатора

Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

  • Переключатель прибора ставят в положение измерения сопротивления.
  • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
  • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
  • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

Вам это будет интересно Особенности кабеля Frls

Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции.

Как определить полярность электролитического конденсатора

Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.

Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.

В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.


Как определить полярность электролитического конденсатора.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт — знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

Будет интересно➡ Чем отличаются параллельное и последовательное соединение конденсаторов

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Интересный материал для ознакомления: что такое вариасторы.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Будет интересно➡ Что такое ионистор?

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Полярный и неполярный конденсатор

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

Будет интересно➡ Чем отличаются параллельное и последовательное соединение конденсаторов

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки – между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения – термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Замена конденсаторов

Дорожки и контактные площадки на современных платах становятся все меньше, а сами платы зачастую являются многослойными. Все это значительно усложняет процесс отсоединения элемента с целью контроля его работоспособности. Потому актуальным становится вопрос: как проверить конденсатор мультиметром не выпаивая его? Попробуем найти решение.

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы.

Определение ёмкости конденсатора

Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.

Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе

Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры

Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.

Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.

Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.

На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

Что такое полярность в химии

Полярность

– свойство, показывающее изменение распределения электронной плотности около ядер, если сравнивать с изначальным ее распределением в образующих данную связь нейтральных частицах.

Поляризуемость

— способность поляризоваться под воздействием электрического поля.

Мерой полярности

называется электрический момент диполя. В нейтральных соединениях он равен нулю. Его значение зависит от разности электроотрицательностей элементов.

Длина диполя

— расстояние между его полюсами. Данная характеристика также влияет на степень полярности.

Любое соединение состоит из ядра (положительные частицы) и электронов (отрицательные частицы). И положительные, и отрицательные частицы имеют свой электрический центр тяжести.

Если центры тяжести частиц совпадают, то соединение считается неполярным. Если же полюса не накладываются друг на друга, то в этом случае речь идет о дипольной связи.

Их чего состоят

Больших емкостей можно добиться только с помощью химических источников.

Электролитические конденсаторы являются химическими источниками тока. У них, как и у аккумуляторов, есть катод, анод и электролит. А также те же самые недостатки, что и у аккумуляторов.

Поэтому, такие конденсаторы и называются электролитическими. Среди радиолюбителей и электронщиков они сокращенно называются электролитами.

По составу электролита они бывают: жидкого и сухого типа. Еще есть оксидно-полупроводниковые, а также оксидно-металлические. Обозначаются на принципиальных схемах также, как и обычный, но только с указанием полярности в виде знака +.

Как сделать неполярный конденсатор из полярного

Как подобрать конденсатор

Порой случаются ситуации, когда для усилителя или иного прибора нужно применить неполярный конденсаторный элемент, но под рукой присутствуют исключительно полярные. Заменить неполяризованный конденсатор можно парой изделий с полюсами с емкостью, вдвое превышающей ту, которая требуется в схеме. Они соединяются друг с другом встречно-последовательно: идентичные (положительные или отрицательные) выводы соединяются между собой, другие два запаиваются в схему.

Схожий принцип имеет строение НЭК с окисями на обеих обкладках. За счет этого такие продукты имеют более крупные габариты, чем полярные изделия с тем же параметром электролитической емкости. Базируясь на этом же механизме, производят НЭК с опцией пуска, заточенные под эксплуатацию в цепях переменного тока.


Соединение неполярных устройств с целью получения полярного

ESR конденсатора

ESR – оно же эквивалентное последовательное сопротивление – это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Реальные параметры конденсатора

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем “Прогресс”. Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

r – это сопротивление диэлектрика и корпуса между обкладками конденсатора

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (чаще его называют ESL) – эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r – сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С – емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) – последовательная индуктивность – это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

Где “прячется” ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладок

Как вы знаете, сопротивление проводника можно узнать по формуле:

ρ – это удельное сопротивление проводника

l – длина проводника

S – площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок

Как определить полярность электролитического конденсатора

Электролитический конденсатор является необычным электронным компонентом, сочетающим в себе свойства пассивного элемента и полупроводникового прибора. В отличие от обычного конденсатора, он является полярным элементом.

У электролитических конденсаторов отечественного производства, выводы которых расположены радиально или аксиально, для определения полярности найдите знак плюса, расположенный на корпусе. Тот из выводов, ближе к которому он расположен, является положительным. Аналогичным образом промаркированы и некоторые старые конденсаторы чешского производства.

Конденсаторы коаксиальной конструкции, у которых корпус рассчитан на соединение с шасси; обычно предназначены для использования в фильтрах анодного напряжения устройств, выполненных на лампах. Поскольку оно является положительным, минусовая обкладка у них в большинстве случаев выведена на корпус, а плюсовая — на центральный контакт. Но из этого правила могут быть и исключения, поэтому в случае любых сомнений поищите на корпусе прибора маркировку (обозначение плюса или минуса) либо, при отсутствии таковой, проверьте полярность способом, описанным ниже.

Особый случай возникает при проверке электролитических конденсаторов типа К50-16. Такой прибор имеет пластмассовое дно, а маркировка полярности размещена прямо на нем. Иногда знаки минуса и плюса расположены таким образом, что выводы проходят прямо через их центры.

Конденсатор устаревшего типа ЭТО непосвященный может принять за диод. Обычно полярность на его корпусе указана способом, описанным в шаге 1. При отсутствии маркировки знайте, что вывод, расположенный со стороны утолщения корпуса, подключен к положительной обкладке. Ни в коем случае не разбирайте такие конденсаторы — в них содержатся ядовитые вещества!

Полярность современных электролитических конденсаторов импортного производства, независимо от их конструкции, определяйте по полосе, расположенной рядом с минусовым выводом. Она нанесена цветом, контрастным к цвету корпуса, и является прерывистой, т.е. как бы состоит из минусов.

Для определения полярности конденсатора, не имеющего маркировки, соберите цепь, состоящую из источника постоянного напряжения в несколько вольт, резистора на один килоом и микроамперметра, соединенных последовательно. Полностью разрядите прибор, и лишь затем включите в эту цепь. После полной зарядки прочитайте показания прибора. Затем отключите конденсатор от цепи, снова полностью разрядите, включите в цепь, дождитесь полной зарядки и прочитайте новые показания. Сравните их с предыдущими. При подключении в правильной полярности утечка заметно меньше.

КОНДЕНСАТОР

   Конденсаторы  являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Разные конденсаторы рисунок

   Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Устройство простейшего конденсатора

   Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Формулы соединение конденсаторов

   Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

Полярный конденсатор изображение на схеме

   К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

Фото электролитический конденсатор

   У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Фото конденсатора с насечками

   Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

   На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный

Керамический


   Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

Расшифровка цифровой маркировки конденсаторов

   На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Таблица номиналов конденсаторов

   Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Фото SMD конденсатора

   Далее показано фото электролитических SMD конденсаторов:

Фото электролитических SMD конденсаторов

   Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы


   Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Рисунок как устроен переменный конденсатор

   Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей. 

Фото переменный конденсатор

   На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

Переменный конденсатор изображение на схеме

   На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом: 

Подстроечный конденсатор изображение на схеме

   Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

Фото подстроечный конденсатор

   На следующем рисунке изображено строение подстроечного конденсатора:

Рисунок строение подстроечного конденсатора

   Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV.

   Форум по различным радиоэлементам

   Форум по обсуждению материала КОНДЕНСАТОР

ESR конденсатора — Описание, как измерить, таблица ESR

ESR  – оно же эквивалентное последовательное сопротивление – это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Реальные параметры конденсатора

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем “Прогресс”. Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

где

r – это сопротивление диэлектрика  и корпуса между обкладками конденсатора

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (чаще его называют ESL)  – эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r – сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С – емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) – последовательная индуктивность – это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

Где “прячется” ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладок

Как вы знаете, сопротивление проводника можно узнать по формуле:

где

ρ – это удельное сопротивление проводника

l – длина проводника

S – площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок 😉 Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Почему вредно большое значение ESR

Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импульсных блоков питания все чаще стали говорить о ESR. Чем же столь безобидное сопротивление не понравилось импульсным блокам питания?

На нулевой частоте (постоянный ток) и низких частотах, как вы помните из статьи конденсатор в цепи постоянного и переменного тока, конденсатор сам оказывает большое сопротивление электрическому току. В этом случае какие-то паразитные доли Ома сопротивления ESR не будут влиять на параметры электрической цепи. Все самое интересное начинается тогда, когда конденсатор работает в высокочастотных цепях (ВЧ).

Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:

где, ХС  – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14 

F – частота, измеряется в Герцах

С – емкость,  измеряется в Фарадах

Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется! Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:

P=I2xR

где

I – это сила тока, в Амперах

R – сопротивление резистора ESR, в Омах

Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.

Догоняете о чем я вам толкую? 😉

Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться. Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость! Есть даже такой интересный параметр конденсатора,  как

ТКЕ или Температурный Коэффициент Емкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже “плавает” емкость, то вслед за ней “плывет” и схема.

[quads id=1]

ESR электролитических конденсаторов

В основном параметр ESR касается именно электролитических конденсаторов. Электролит, который там есть, теряет часть своих свойств при нагреве и конденсатор меняет свою емкость, что, конечно же, нежелательно. После приличного нагрева конденсатор начинает тупить, вздувается и быстро стареет.

У вздувшихся конденсаторов в первую очередь как раз ESR и растёт, тогда как ёмкость до определённого времени может оставаться практически номинальной ( ну той, которая написана на самом конденсаторе)

Чаще всего они вспухают в импульсных блоках питания и на материнках, обычно рядом с процессором (там выше на них нагрузка, да и тепло от процессора, вероятно, свою роль играет). Один из характерных симптомов: техника (комп, монитор) начинает включаться всё хуже и хуже. Либо с паузой (до нескольких часов после включения в сеть), либо с -дцатой попытки.

Ещё симптом: если отрубить питание на некоторое время (сетевой фильтр выключить, или из розетки выдернуть) – то снова начинает включаться не с первой попытки, или после паузы. А если не выключать питание, то комп может включаться сразу (но это тоже до поры, до времени, разумеется). Но бывает, что конденсаторы не вспухли, а ESR уже в десятки раз выше нормы. Тогда, понятно, заменяем. По опыту – очень частая проблема. И весьма легко диагностируемая (особенно, при наличии чудо-приборчика от китайских товарищей).

Таблица ESR

Как я уже сказал, ESR в основном проверяют именно у электролитических конденсаторов, потому что они используются в импульсных блоках питания. Вот небольшая табличка для максимально допустимых значений ESR для новых электролитических конденсаторов в зависимости от их рабочего напряжения:

Как измерить ESR

Давайте замеряем некоторые наши китайские конденсаторы на ESR. Для этого берем наш многофункциональный универсальный R/L/C/Transistor-metr и проведем несколько замеров:

Первым в бой идет конденсатор на 22 мкФ х 25 Вольт:

Емкость близка к номиналу. ESR=1,9 Ом. Если посмотреть по табличке, то максимальный ESR=2,1 Ом. Наш конденсатор вполне укладывается в этот диапазон. Значит его можно использовать в высокочастотных цепях.

Следующий конденсатор 100 мкФ х 16 Вольт

ESR=0,49 Ом, смотрим табличку… 0,7 максимальный. Значит тоже все ОК. Можно тоже использовать в ВЧ цепях.

И возьмем конденсатор емкостью побольше 220 мкФ х 16 Вольт

Максимальный ESR для него 0,33 Ом. У нас же высветило 0,42 Ома. Такой конденсатор уже не пойдет в ВЧ часть радиоаппаратуры. А в простые схемки, где гуляют низкие частоты (НЧ)  сгодится в самый раз! ;-).

Конденсаторы с низким ESR

В нашем бурно-развивающемся мире электроника все больше строится именно на ВЧ части. Импульсные блоки питания почти полностью одержали победу над громоздкими трансформаторными блоками питания. Это мы, радиолюбители, до сих пор пользуемся самопальными блоками питания, сделанные из трансформаторов, которые нашли на помойке.

Но раз почти вся техника уходит в ВЧ диапазон, то и разработчики радиокомпонентов тоже не спят. Они создают  конденсаторы, у которых низкий ESR и называются такие конденсаторы LOW ESR, что значит кондеры с низким ESR. На некоторых это пишут прямо на корпусе:

Отличительной чертой таких конденсаторов является то, что они вытянуты в длину. Также, по моим наблюдениям, на них чаще всего есть полоска золотого цвета:

Сейчас все чаще используют миниатюрные полимерные алюминиевые конденсаторы с низким ESR:

Где же их можно чаще всего увидеть?  Конечно же, разобрав свой персональный компьютер. Можно найти их в блоке питания, а также на  материнской плате компьютера.

На фото ниже мы видим материнскую плату компа , которая сплошь утыкана  конденсаторами с LOW ESR, некоторые из них я отметил в красном прямоугольнике:

Самым маленьким ESR обладают керамические и SMD-керамические конденсаторы

Интересное видео по теме:

Заключение

Ну что еще можно сказать про ESR? В настоящее время идет битва среди производителей за рынок. Кто предложит конденсатор с минимальным ESR и хорошей емкостью, тот молоток ;-). Не поленитесь также купить или собрать прибор ESR-метр. Особенно он будет очень актуален для ремонтников радиоэлектронной аппаратуры. Мультиметр может показать вам емкость и ток утечки, но вот внутреннее сопротивление покажет именно ESR-метр.

Бывало очень много случаев, когда аппаратура ну никак не хотела работать, хотя все элементы в ней были целые. В этом случае просто замеряли ESR-метром конденсаторы и выявляли их сопротивление. После замены дефектных конденсаторов  с большим ESR на конденсаторы с низким ESR (LOW ESR), аппаратура оживала и работала долго и счастливо.

Конденсаторы с маленьким ESR по ссылке.

ESR-метр тоже по ссылке на алиэкспресс.

Как проверить конденсатор мультиметром

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.
Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.
Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.
Проверка конденсатора мультиметром
Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.
Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.
Существует два вида конденсаторов:

  • 1) полярные;
  • 2) неполярные.
  • Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.
    Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.
    Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).
    Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.
    Как проверить конденсатор с помощью приборов
    Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.
    Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.
    Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.
    Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».
    При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.
    Проверяем конденсатор мультиметром в режиме омметра
    В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

    Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.
    Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

    Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

    Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.
    Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.
    Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

    В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.
    Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

    Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).
    Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

    На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

    По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.
    Как проверить емкость конденсатора мультиметром

    Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.
    Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?
    Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

    Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (10000 пФ = 100 нФ = 0.1 мкФ).
    Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

    Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

    Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

    Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

    Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

    Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.
    Как проверить конденсатор тестером (стрелочным прибором)
    Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

    Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.
    Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

    Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

    На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.
    Похожие материалы на сайте:

  • 1) Как работать с мультиметром
  • 2) Конусное сверло для электрика
  • 3) Прозвонка для проводов своими руками
  • Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

    выбор типа конденсатора

    Поскольку вы сказали, что это для аудио, ответ на самом деле более сложный, чем вы, возможно, предполагали. Электрически, вам нужен неполяризованный конденсатор, что означает не электролитический или танталовый на практике.

    Однако у различных типов конденсаторов есть другие компромиссы, которые имеют значение в аудио приложениях. Многослойная керамика хороша тем, что имеет хорошую емкость для размера и не поляризована. Однако, в зависимости от диэлектрического материала, они могут быть совершенно нелинейными и иметь другой эффект, который часто называют микрофонным .

    Микрофоника объясняется тем, что материал обладает небольшим пьезоэффектом. Вибрация вызовет небольшие изменения напряжения, что означает, что конденсатор будет действовать как микрофон. Эффект более тонкий, чем пьезомикрофоны, специально предназначенные для этой цели, но он все же может быть значительным, учитывая высокое отношение сигнал / шум хорошего звука.

    Нелинейность также является функцией диэлектрического материала. Идеальный конденсатор увеличивает свое напряжение на ту же величину, когда добавляется фиксированный заряд, независимо от других условий. Эти нелинейные диэлектрики будут иметь разное изменение напряжения при одинаковом изменении заряда в зависимости от напряжения. Это обычно определяется количественно как емкость, изменяющаяся как функция напряжения. Например, конденсатор «10 мкФ 10 В» может действовать как 10 мкФ в области ± 2 В, но действовать больше как конденсатор 5 мкФ для постепенного изменения в области 8–10 В. Этот нелинейный отклик в звуковых цепях может привести к появлению гармоник, которых не было в исходном сигнале, что означает добавление искажения.

    Керамические типы диэлектриков, начинающиеся с «X» или «Y» в их названии, демонстрируют оба этих эффекта больше, чем керамические, такие как «NP0». Во многих приложениях любой эффект не имеет значения, а керамика X и Y полезна, потому что они дают вам большую емкость на объем. Для аудиоприложений это имеет значение, поэтому вы придерживаетесь других типов и понимаете, что не сможете использовать конденсаторы с кажущимися большими комбинациями емкости и напряжения на пути прохождения сигнала. Сильное снижение диапазона напряжения также помогает избежать диэлектрической нелинейности. Например, вы можете получить ограничение 20 В, когда схема гарантирует, что напряжение на ней всегда будет в пределах ± 3 В.

    Другие диэлектрики, такие как майлар, полистирол и тому подобное, имеют менее нежелательный эффект в тракте аудиосигнала, но также будут иметь гораздо меньшую доступную емкость и будут физически более громоздкими и, вероятно, более дорогими.

    Все это компромисс.

    Определение поляризации конденсатора | DigiKey

    Поляризованные конденсаторы всегда имеют какой-то обозначение, указывающее полярность. Это важно, потому что подключать один назад может быть опасно.

    Алюминиевые колпачки можно маркировать разными способами. Радиальные банки со сквозным отверстием обычно имеют линию на отрицательной стороне корпуса, причем отрицательный вывод также короче. Радиальные банки для поверхностного монтажа будут иметь сверху цветную часть, обозначающую отрицательную площадку.На осевых банках с одной стороны будет линия со стрелками, указывающими на отрицательный вывод, или полоса с отступом, обозначающая положительный вывод.

    Танталовые чипы для поверхностного монтажа будут иметь линию и / или выемку на положительном конце. У Axial будет выемка с положительной стороны. Радиальный имеет стрелку или положительный индикатор над положительным выводом.

    Ниже приведены некоторые изображения приведенных выше примеров с полным описанием каждого из них. Если вы работаете с этими продуктами и не уверены или затрудняетесь расшифровать их, вы всегда можете обратиться к таблице данных или обратиться за помощью к кому-нибудь.

    Рисунок 1: Линия и короткий провод указывают на отрицательный провод

    Рисунок 2: Цветной блок сверху указывает отрицательный провод

    Рисунок 3: Линия со стрелками указывает на отрицательный вывод

    Рисунок 4: Зубчатая полоса и знаки + указывают на положительный вывод

    Рисунок 5: Край со скошенной кромкой и линия указывают на плюсовой провод

    Рисунок 6: Скошенная кромка указывает на положительный вывод

    Рис. 7: Линия и символ + здесь трудно увидеть, но если вы видите их на изображении, они указывают на положительный вывод.

    Об авторе

    Эшли Аволт (Ashley Awalt) — разработчик технического контента, работающая в Digi-Key Electronics с 2011 года. Она получила степень младшего специалиста по прикладным наукам в области электронных технологий и автоматизированных систем в Общественном и техническом колледже Northland через стипендиальную программу Digi-Key. В настоящее время ее роль заключается в оказании помощи в создании уникальных технических проектов, документировании процесса и, в конечном итоге, в участии в создании видеоматериалов, освещающих эти проекты.В свободное время Эшли любит — подожди, а есть ли свободное время, когда ты мама?

    Что такое конденсатор — типы, формула, символ, принцип работы, блок

    Узнайте, что такое конденсатор — типы, формула, символ, принцип работы, единицы измерения.

    Здесь мы узнаем , что такое конденсатор — типы, формула, символ, принцип работы, единицы измерения, электролитический конденсатор, подробное объяснение применения и функции.

    Различные типы конденсаторов

    Что такое конденсатор?

    Конденсатор — это электронный компонент, способный накапливать электрический заряд.Конденсатор — это пассивный электрический компонент, который может накапливать энергию в электрическом поле между парой проводников (, называемых «пластинами» ).

    Проще говоря, мы можем сказать, что конденсатор — это устройство, используемое для хранения и высвобождения электричества, обычно в результате химического воздействия. Также называется аккумуляторной ячейкой, вторичной ячейкой, конденсатором или аккумулятором. Лейденская банка была ранним примером конденсатора.

    Конденсаторы — еще один элемент, используемый для управления потоком заряда в цепи.Название происходит от их способности накапливать заряд, как у небольшой батареи.

    Конденсаторы состоят из двух проводящих поверхностей, разделенных изолятором; к каждой поверхности подсоединяется проволочный вывод.

    Что такое конденсатор и как работают конденсаторы

    Обозначение конденсатора и блок

    В электронике обычно используются два обозначения конденсатора. Один символ обозначает поляризованные конденсаторы, а другой — неполяризованные конденсаторы.

    Символ конденсатора поляризованных и неполяризованных конденсаторов

    На приведенной выше диаграмме символ с одной изогнутой пластиной представляет поляризованный конденсатор. Изогнутая пластина представляет собой катод ( отрицательный ) конденсатора, а другая пластина является анодом ( положительный ). Иногда к положительной стороне добавляют еще и знак плюса.

    Единица измерения СИ емкости составляет фарад ( символ : F ). Отделение названо в честь великого английского физика Майкла Фарадея.

    Конденсатор емкостью 1 фарад, заряженный 1 кулоном электрического заряда, имеет разность потенциалов между пластинами в 1 вольт.

    Типы конденсаторов

    Существует несколько типов конденсаторов для разных применений и функций. Ниже приведены основные и наиболее распространенные типы:

    1. Конденсаторы керамические

    Керамический конденсатор со сквозным отверстием и SMD

    Это неполяризованные конденсаторы, изготовленные из двух или более чередующихся слоев керамики и металла.Керамика действует как диэлектрик, а металл — как электроды.

    Керамические конденсаторы

    также называются «дисковыми конденсаторами ».

    Трехзначный код обычно печатается на корпусе конденсаторов этого типа, чтобы указать их емкость в пикофарадах. Первые две цифры представляют собой номинал конденсатора, а третья цифра представляет количество добавляемых нулей.

    2. Конденсатор электролитический

    Электролитический конденсатор со сквозным отверстием и SMD

    Конденсаторы этого типа обычно используются там, где требуется большая емкость.Анод электролитических конденсаторов выполнен из металла и покрыт окисленным слоем, используемым в качестве диэлектрика. Другой электрод может быть влажным нетвердым или твердым электролитом.

    Электролитические конденсаторы поляризованы. Это означает, что при подаче на него постоянного напряжения необходимо соблюдать полярность. Проще говоря, положительный вывод конденсатора должен быть соединен с положительной клеммой, а отрицательный вывод — с отрицательной клеммой. Несоблюдение этого правила приведет к повреждению конденсатора.

    Эти конденсаторы сгруппированы в следующие 3 типа в зависимости от их диэлектрической проницаемости:

    1. Конденсаторы алюминиевые электролитические.
    2. Конденсаторы электролитические танталовые.
    3. Конденсаторы электролитические ниобиевые.

    3. Пленочный конденсатор

    Пленочный конденсатор со сквозным отверстием и SMD

    Это наиболее распространенный тип конденсаторов, используемых в электронике.

    Пленочные конденсаторы или пластиковые пленочные конденсаторы неполяризованы. Здесь изолирующая пластиковая пленка действует как диэлектрик. Электроды этих типов конденсаторов могут быть из металлического алюминия или металла, реагирующего с цинком. Они наносятся на одну или обе стороны пластиковой пленки, образуя металлизированный пленочный конденсатор.Иногда поверх пленки используют отдельную металлическую фольгу, образуя пленочный или фольгированный конденсатор.

    Пленочные конденсаторы

    доступны в различных формах и размерах и имеют несколько преимуществ перед конденсаторами бумажного типа. Они очень надежны, долговечны и имеют меньшие допуски. Они также хорошо работают в условиях высоких температур.

    4. Конденсатор переменной емкости

    Переменный конденсатор со сквозным отверстием и SMD

    Это неполяризованные конденсаторы переменной емкости.У них есть подвижные и неподвижные пластины для определения емкости. Обычно они используются в передатчиках и приемниках, транзисторных радиоприемниках и т. Д.

    Эти конденсаторы сгруппированы как:

    1. Конденсаторы настроечные; и
    2. Подстроечные конденсаторы

    Как работает конденсатор?

    Вы можете представить конденсатор в виде двух больших металлических пластин, разделенных воздухом, хотя на самом деле они обычно состоят из тонкой металлической фольги или пленок, разделенных пластиковой пленкой или другим твердым изолятором и скрученных в компактный корпус.Рассмотрите возможность подключения конденсатора к батарее.

    Простой конденсатор, подключенный к батарее через резистор

    Как только соединение установлено, заряд течет от клемм аккумулятора по проводу к пластинам, положительный заряд на одной пластине, отрицательный заряд на другой.

    Почему? Обвинения со знаком «Like-Sign» на каждом терминале хотят уйти друг от друга. В дополнение к этому отталкиванию существует притяжение к заряду противоположного знака на другой соседней пластине.Первоначально ток большой, потому что в некотором смысле заряды не могут сразу сказать, что провод на самом деле никуда не идет, что нет полной цепи провода.

    Начальный ток ограничен сопротивлением проводов или, возможно, настоящим резистором. Но по мере того, как заряд накапливается на пластинах, отталкивание заряда сопротивляется потоку большего заряда, и ток уменьшается. В конце концов, сила отталкивания заряда на пластине становится достаточно сильной, чтобы уравновесить силу заряда на клемме аккумулятора, и весь ток прекращается.

    Зависимость тока в цепи от времени

    Наличие разделенных зарядов на пластинах означает, что между пластинами должно быть напряжение, и это напряжение должно быть равно напряжению батареи, когда весь ток прекращается. Ведь поскольку точки соединены проводниками, они должны иметь одинаковое напряжение; даже если в цепи есть резистор, напряжение на резисторе отсутствует, если ток равен нулю, согласно закону Ома.

    Количество заряда, который собирается на пластинах для создания напряжения, является мерой емкости конденсатора, его емкости, измеряемой в фарадах (ф).Соотношение C = Q / V, где Q — заряд в кулонах.

    У больших конденсаторов есть пластины с большой площадью для удержания большого количества заряда, разделенные небольшим расстоянием, что подразумевает небольшое напряжение. Конденсатор на один фарад чрезвычайно велик, и обычно мы имеем дело с микрофарадами (мкФ), одной миллионной фарада, или пикофарадами (пФ), одной триллионной (10–12) фарад.

    Рассмотрим приведенную выше схему еще раз. Предположим, мы перерезаем провода после того, как весь ток перестал течь. Заряд на пластинах теперь задерживается, поэтому между клеммами все еще есть напряжение.Заряженный конденсатор теперь чем-то похож на батарею.

    Если мы подключим к нему резистор, ток будет течь, так как положительный и отрицательный заряды мчатся, чтобы нейтрализовать друг друга. В отличие от батареи, здесь нет механизма для замены заряда на пластинах, снятых током, поэтому напряжение падает, ток падает, и, наконец, не остается никакого общего заряда и нет разницы напряжений где-либо в цепи.

    Поведение во времени тока, заряда на пластинах и напряжения выглядит так же, как на графике выше.Эта кривая является экспоненциальной функцией: exp (-t / RC). Напряжение, ток и заряд падают примерно до 37% от их начальных значений за время R × C секунд, которое называется характеристическим временем или постоянной времени цепи.

    Постоянная времени RC — это мера того, насколько быстро схема может реагировать на изменения условий, например, подсоединение батареи к незаряженным конденсаторам или присоединение резистора к заряженному конденсатору. Напряжение на конденсаторе не может измениться немедленно; для протекания заряда требуется время, особенно если этому потоку препятствует большой резистор.Таким образом, конденсаторы используются в цепи для гашения быстрых изменений напряжения.

    Комбинации конденсаторов

    Как и резисторы, конденсаторы можно соединять двумя основными способами: параллельно и последовательно .

    Как рассчитать емкость конденсатора?

    Из физической конструкции конденсаторов должно быть очевидно, что соединение двух вместе параллельно приводит к большему значению емкости. Параллельное соединение приводит к увеличению площади пластины конденсатора, что означает, что они могут удерживать больший заряд при том же напряжении.Таким образом, формула для полной емкости в параллельной цепи: CT = C1 + C2… + Cn.

    Та же форма уравнения для резисторов, соединенных последовательно, что может сбивать с толку, если вы не задумываетесь о физике происходящего.

    Емкость последовательного соединения ниже, чем у любого конденсатора, потому что для данного напряжения во всей группе будет меньше заряда на каждой пластине. Общая емкость в последовательной цепи составляет: CT = {1 {1C1} + {1C2}… + {1Cn}} .

    Опять же, это легко спутать с формулой для параллельных резисторов, но здесь есть хорошая симметрия.

    Похожие сообщения:

    Положение синхронизирующих конденсаторов A-100

    Данный документ предназначен для опытных пользователей A-100, которые хотят изменить временной диапазон некоторых модули (например, генераторы огибающей, LFO, ограничители нарастания). Картины показать положение (а) конденсатора (ов), который (несут) ответственность за сроки рассматриваемого модуля.Чтобы продлить время или период емкость конденсатора должна быть увеличена, и наоборот. Емкость конденсатора пропорционально времени или периоду (например, удвоение емкости конденсатора даже удваивает время или период, когда емкость конденсатора увеличивается в десять раз даже время или период увеличиваются в десять раз). Если электролитический конденсатор необходимо соблюдать полярность (минус и / или знак плюса).

    Все модули, которые можно модифицировать таким образом будут постепенно добавляться на эту страницу.Пожалуйста, отправьте сообщение на [email protected] если вам нужна позиция конденсатора модуля, который все еще отсутствует.


    A-118 Шум / случайный Напряжение

    Конденсаторы синхронизирующие (сглаживающие) для случайного напряжения: C8 + C8 ‘, C9 + C9’
    Стандартное значение: 4.7 мкФ (электролитический)
    Полярность C8: минус = верх
    Полярность C8 ‘: минус = низ
    Полярность C9: минус = верх
    Полярность C9 ‘: минус = низ

    Примечание:

    Для C8 и C8 должны использоваться одинаковые значения
    Для C9 и C9 должны использоваться одинаковые значения


    A-119 Внешний вход / Привод конверта

    Конденсаторы синхронизирующие (сглаживающие) для толкателя конвертов: C6
    Стандартное значение: 100 нФ = 0,1 мкФ (фольга / майлар)
    Полярность: нет

    Примечание : Если электролитический конденсатор используется, требуется биполярный вариант.Альтернативно два стандартных электролитических конденсатора с одинаковым номиналом соединены вместе в противоположном направлении ( результирующая емкость составляет половину стоимости каждого конденсатора). Для пример относится к C8 / C8 ‘и C9 / C9’ из A-118.


    А-140 ADSR

    Конденсаторы синхронизирующие (дальний): C4
    Стандартное значение: 100 мкФ (электролитический)
    Полярность: минус = левая

    Конденсатор синхронизации (средний диапазон): C3
    Стандартное значение: 2.2 мкФ (электролитический)
    Полярность: минус = правая

    Конденсатор синхронизации (короткий диапазон): C2
    Стандартное значение: 100 нФ = 0,1 мкФ (фольга / майлар)
    Полярность: нет


    A-141 VCADSR

    Конденсатор времени: C2
    Стандартное значение: 100 нФ = 0.1 мкФ (фольга / майлар)
    Полярность: нет
    если используются электролитические конденсаторы, минусовой полюс должен быть подключен к GND (то есть к выводу, который подключен к GND плоскость печатной платы)

    A-142 Затухание / затвор VC

    Конденсатор времени: C3
    Стандартное значение: 100 нФ = 0.1 мкФ (фольга / майлар)
    Полярность: нет
    если используются электролитические конденсаторы, минусовой полюс должен быть подключен к GND (то есть к выводу, который подключен к GND плоскость печатной платы)

    A-142-4 Quad Decay

    Конденсаторы времени: C2, C4, C6, C8
    Стандартное значение: 470 нФ = 0.47 мкФ
    Полярность: нет
    если используются электролитические конденсаторы, минусовой полюс должен быть подключен к GND (то есть к выводу, который подключен к GND плоскость печатной платы)

    A-143-1 Quad AD

    Конденсатор времени: C1
    Стандартное значение: 2.2 мкФ (электролитический), соответствует примерно 5 мс кратчайшее время атаки / затухания
    Полярность: плюс = левая

    A-143-2 Quad ADSR

    Конденсатор времени (дальний): C1
    Стандартное значение: 100 мкФ (электролитический)
    Полярность: плюс = левая

    Конденсатор синхронизации (средний диапазон): C9
    Стандартное значение: 2.2 мкФ (электролитический)
    Полярность: плюс = левая

    Конденсатор синхронизации (короткий диапазон): C10
    Стандартное значение: 100 нФ (фольга / майлар)
    Полярность: отсутствует


    A-143-3 Quad LFO

    Конденсаторы синхронизирующие (дальний): C3 + C4
    Стандартное значение: 2.2 мкФ (электролитический)
    Полярность (верхняя): минус = левая
    Полярность (нижняя): плюс = левая

    Примечание: при замене C3 и C4 должны использоваться одинаковые значения (например, 2 x 1 мкФ)

    Конденсатор синхронизации (средний диапазон): C2
    Стандартное значение: 100 нФ (фольга / майлар)
    Полярность: нет

    Конденсатор синхронизации (короткий диапазон): C1
    Стандартное значение: 470 пФ (фольга / майлар)
    Полярность: отсутствует


    A-145 Стандартный LFO (LFO I)

    Конденсаторы синхронизирующие (дальний): C3 + C4
    Стандартное значение: 2.2 мкФ (электролитический)
    Полярность C3: минус = верх
    Полярность C4: минус = низ

    Примечание: если C3 и C4 заменяются, должны использоваться те же значения. (например, 2 x 10 мкФ)

    Конденсатор синхронизации (средний диапазон): C2
    Стандартное значение: 100 нФ = 0,1 мкФ (фольга / майлар)
    Полярность: нет

    Конденсатор синхронизации (короткий диапазон): C1
    Стандартное значение: 470 пФ (фольга / майлар)
    Полярность: нет


    A-146 Переменная Форма волны LFO (LFO II)

    Конденсаторы синхронизирующие (дальний): C3 + C4
    Стандартное значение: 2.2 мкФ (электролитический)
    Полярность C3: минус = правая
    Полярность C4: минус = левая

    Примечание: при замене C3 и C4 необходимо использовать одинаковые значения. (например, 2 x 10 мкФ)

    Конденсатор синхронизации (средний диапазон): C2
    Стандартное значение: 47 нФ (фольга / майлар)
    Полярность: нет

    Конденсатор синхронизации (короткий диапазон): C1
    Стандартное значение: 470 пФ (фольга / майлар)
    Полярность: нет


    A-147 VCLFO

    Конденсатор времени: C2
    Стандартное значение: 100 нФ = 0.1 мкФ (фольга / майлар)
    Полярность: отсутствует


    A-162 Dual Trigger (Двойной спусковой крючок) Задержка

    Конденсаторы времени:
    C2 (время задержки)
    C5 (длина)
    Стандартное значение: 10 мкФ
    Полярность: минус = левая


    Учебное пособие по полярности машины — Фабио Мендес, тату-машины ручной работы

    Тату-машинка будет работать в любом случае, если вы подсоедините к ней зажимной шнур, но вы должны позаботиться о том, чтобы подключить ее правильно, из-за конденсатора, который установлен в электрической цепи машины.Осевые конденсаторы чаще всего используются в тату-машинах, и они поляризованы. У них есть положительный и отрицательный концы выводов, и если вы инвертируете напряжение, это вызовет дисфункцию, которая может разрушить центральный слой диэлектрического материала и вызвать короткое замыкание, даже нагрев и разрыв.

    Чтобы избежать такого рода проблем, научитесь правильно прикреплять зажимной шнур: большинство производителей тату-машин обычно размещают конденсатор положительным концом вниз, подсоединенным к задней клеммной стойке, а отрицательным концом вверх, и подключен к переднему переплетному столбу.Это означает, что вам необходимо подсоединить положительный крючок зажимного шнура (обычно отмечен красным) к задней крепежной стойке машины (внизу), а отрицательный (отмеченный черным) — к отверстию на нижней стороне части пружинной деки (вверху). ), как показано на следующем рисунке:

    ВСЕ МОИ МАШИНЫ настроены таким образом, так что помните: черный сверху, красный снизу, всегда. В некоторых случаях, когда я размещаю столбики для привязки горизонтально, положительный столбик — это левый столбик, а правый столбик — отрицательный.Всегда подключайте зажимной шнур правильно, и ваша машина будет работать лучше, что значительно продлит срок службы конденсатора.

    Кто-то из вас скажет… «но у моего зажима нет никаких различий между красным и черным» . Да, некоторые производители не оставляют на них никаких знаков. Чтобы определить положительный и отрицательный, вы можете отвинтить крышку разъема jack (часть шнура, который вы подключаете к источнику питания) и проверить два контакта, к которым припаяны два кабеля, составляющие зажимной шнур.Один в центре — положительный, поэтому следуйте по этому кабелю, и вы найдете положительный конец на другой стороне зажима (я бы посоветовал пометить его, чтобы вам больше не приходилось проверять). Отрицательный штифт — более длинный, или «гильза»; проверьте эту диаграмму для лучшего понимания:

    В завершение этого урока, если у вас есть другие машины (не созданные мной) и вы хотите проверить, правильно ли подключен конденсатор к цепи машины, взгляните на него: на конденсаторах обычно видны бороздки. положительный конец, и он должен указывать вниз.Также на конденсаторе обычно печатается стрелка, указывающая отрицательной стороной вверх. Если вы обнаружите, что конденсатор перевернут (желоб, положительный вверху, отрицательный внизу), вам просто нужно подключить шнур с зажимом в обратном порядке (красный вверху, черный внизу).

    Конденсатор электролитический

    Конденсатор обзор

    Электролитические конденсаторы в основном используются при требуется хранение большого количества заряда в небольшом объеме.В электролитические конденсаторы, жидкий электролит действует как один из электроды (в основном действуют как катод). Чтобы лучше понять концепция электролитического конденсатора сначала нам нужно знать работа общего конденсатора.

    Конденсатор — это электронное устройство, которое хранит электрический заряд. Он состоит из двух токопроводящих пластин. разделены изоляционным материалом, называемым диэлектриком.Другой типы изоляционных материалов используются для строительства диэлектрик в зависимости от использования.

    Проводящие пластины конденсатора хорошие проводники электричества. Поэтому они легко позволяют электрический ток через них. С другой стороны, диэлектрик Среда или материал плохо проводят электричество. Следовательно, он не пропускает через него электрический ток.

    При подаче напряжения на конденсатор в таким образом, чтобы отрицательная клемма аккумулятора была подключен к правой боковой пластине и положительной клемме батарея подключена к левой боковой пластине, конденсатор начинает заряжаться.

    Из-за этого напряжения питания, электроны начинают течь с отрицательной клеммы аккумулятор и дотянитесь до правой боковой пластины.Дойдя вправо боковой пластине, электроны испытывают сильное сопротивление со стороны диэлектрический материал, потому что диэлектрический материал плохой проводник электричества.

    В результате большое количество электронов попала в ловушку на правой боковой пластине конденсатора. Однако эти большие количество электронов прикладывает силу или электрическое поле к левая боковая пластина.Следовательно, электроны на левой боковой пластине испытывать силу отталкивания от избыточных электронов справа пластина. В результате электроны удаляются от левой боковой пластины и тянется к плюсовой клемме аккумулятора.

    Следовательно, правая боковая пластина становится больше отрицательно заряжен (отрицательный заряд создается) из-за получение лишних электронов. С другой стороны, левая сторона пластина становится более положительно заряженной (накапливается положительный заряд) из-за потери электронов.В результате напряжение устанавливается между пластинами. Вот так нормальный конденсатор работает.

    Электролитический конденсатор также заряжается в основном аналогичным образом. Однако материал, используемый в конструкция электролитического конденсатора отличается.

    Электролитический определение конденсатора

    Электролитический конденсатор — это разновидность конденсатор, который использует электролит (ионную проводящую жидкость) в качестве одна из его проводящих пластин для достижения большей емкости или хранение высокого заряда.

    Что такое электролит?

    Электролит — жидкий электрический проводник. в котором электрический ток переносится движущимися ионами. Для Например, в нашей крови электролиты или минералы несут электрический ток. плата. Наиболее распространенные электролиты — это натрий, калий, хлорид, кальций и фосфор.

    В электролитах ионы бывают двух типов, а именно: анионы (-) и катионы (+).Анион — это ион с большим числом электронов, чем протонов. Мы знаем, что электроны отрицательно заряжены, а протоны заряжены положительно. Из-за количество электронов больше, чем протонов, общий заряд атом или анион становятся отрицательными. Поэтому анионы называют отрицательно заряженные ионы. Эти отрицательно заряженные анионы несут отрицательный заряд.

    С другой стороны, катион имеет меньшее количество электронов, чем протонов.Из-за меньшего количества электронов, чем протонов, общий заряд атома или катиона становится положительным. Поэтому катионы называют положительно заряженные ионы. Эти положительно заряженные катионы несут положительный плата.

    Типы электролитических конденсаторов

    Электролитические конденсаторы классифицируются по три типа в зависимости от материала, из которого изготовлен диэлектрик:

    • Конденсаторы алюминиевые электролитические
    • Конденсаторы электролитические танталовые
    • Конденсаторы ниобиевые электролитические

    В этом уроке алюминиевый электролитический конденсатор объяснен.Алюминий, тантал и ниобий электролитические конденсаторы работают аналогичным образом. Однако материал, из которого изготовлены электроды, разный.

    Алюминий электролитический конденсатор

    Алюминиевый электролитический конденсатор изготовлен из две алюминиевые фольги, слой оксида алюминия, электролитическая бумага или бумажная прокладка, пропитанная электролитической жидкостью или растворами и жидкий или твердый электролит.Электролитическая жидкость содержит атомы или молекулы которые потеряли или приобрели электроны.

    В алюминиевом электролитическом конденсаторе, анод (+) и катод (-) изготовлены из чистой алюминиевой фольги. Анодная алюминиевая фольга покрыта тонким слоем изоляционный оксид алюминия (алюминиевый элемент с кислородом элемент). Эта изолирующая алюминиевая фольга действует как диэлектрик электролитический конденсатор, блокирующий прохождение электрического тока.Катод и анод с оксидным покрытием разделены электролитическая бумага (пропитанная электролитической жидкостью).

    Катодная алюминиевая фольга также покрыта очень тонкий изолирующий оксидный слой или диэлектрик естественной формы самолетом. Однако этот оксидный слой очень тонкий по сравнению с оксидный слой сформирован на аноде.

    Следовательно, конструкция из алюминия электролитический конденсатор выглядит как два конденсатора, соединенные в серия с анодной емкостью C A и катодом емкость C K .

    Общая емкость конденсатора составляет полученная таким образом из формулы последовательного соединения двух конденсаторы.

    Где, C A = Емкость анода

    C K = Емкость катода

    C ecap = Общая емкость электролитического конденсатора

    Мы знаем, что емкость или заряд емкость конденсатора прямо пропорциональна поверхности площадь токопроводящих пластин или электродов и наоборот пропорциональна толщине диэлектрика.Другими словами, конденсаторы с большими электродами хранят большой заряд в то время как конденсаторы с небольшими электродами хранят небольшое количество заряда. Аналогичным образом конденсаторы с очень толстым диэлектрик сохраняет небольшое количество заряда, в то время как конденсаторы с очень тонким диэлектриком хранит очень большое количество заряда.

    В обычных конденсаторах диэлектрик очень толстый, что приводит к низкой емкости на единицу объема.В электролитические конденсаторы, электролит действует как настоящий катод с большой площадью поверхности и очень прочным диэлектриком. тонкий. Поэтому из-за большой площади поверхности электрод и тонкий диэлектрик, большой запас заряда достигается в электролитических конденсаторах.

    Электропроводность электролитический конденсатор увеличивается при повышении температуры и уменьшается при понижении температуры.В результате емкость или накопитель заряда алюминиевого электролитического конденсатор также увеличивается при повышении температуры и уменьшается при понижении температуры. Следовательно емкость алюминиевого электролитического конденсатора в значительной степени влияет изменение температуры.

    Большинство электролитических конденсаторов поляризованный, то есть напряжение, подаваемое на клеммы, должно быть в правильной полярности (положительный вывод подключен к положительному выводу и отрицательный подключен к отрицательной клемме).Если он подключен в обратное или неправильное направление, конденсатор может быть коротким замкнут, то есть большой электрический ток течет через конденсатор, и это может привести к необратимому повреждению конденсатора.

    В поляризованных конденсаторах знак минус (-) или Знак плюс (+) четко обозначен на любом из двух выводов. Эта полярность должна соблюдаться.

    Символ электролитического конденсатора

    Показан символ электролитического конденсатора. на рисунке ниже.Электролитический конденсатор представлен двумя параллельными прямыми или одной прямой и одной изогнутая линия.

    Знак плюс или минус пишется рядом с любым линий, чтобы обозначить, является ли он положительным или отрицательным клемма (анод или катод). Напряжение должно подаваться на правильный терминал. В противном случае конденсатор может выйти из строя.

    Преимущества электролитических конденсаторов

    • Достигнут большой накопитель заряда
    • Низкая стоимость

    Недостатки электролитических конденсаторов

    • Большой ток утечки
    • Короткий срок службы

    Приложения электролитических конденсаторов

    Различные применения электролитических конденсаторы включают:

    • Фильтры
    • Цепи постоянной времени

    Полярность

    в электронных компонентах | Компоненты Западной Флориды

    Существует несколько различных способов маркировки компонентов для обозначения полярности.

    Для определения полярности в КОНДЕНСАТОРАХ:

    Электролитические конденсаторы часто маркируются полосой. Эта полоса указывает на ОТРИЦАТЕЛЬНЫЙ вывод.

    Если это конденсатор с осевыми выводами (выводы выходят из противоположных концов конденсатора), полоса может сопровождаться стрелкой, указывающей на отрицательный вывод.

    Иногда можно посмотреть на длину проводов как на показатель полярности. Положительный вывод обычно длиннее, но будьте осторожны, если вы повторно используете старые или бывшие в употреблении конденсаторы — выводы могли быть обрезаны.

    Танталовые конденсаторы часто обозначаются знаком +. Кроме того, есть и другие конденсаторы, которые не поляризованы, например керамические, полиэфирные, пленочные, полистирольные и бумажные.

    Всегда будьте осторожны, пытаясь определить положительный и отрицательный выводы конденсатора. Если вы ошиблись с электролитическим конденсатором и подключили его в обратном направлении, конденсатор все еще может работать, если напряжение на конденсаторах достаточно низкое. Если напряжение на конденсаторах недостаточно низкое, вы можете взорвать крышку (или, что еще хуже), неправильно определив полярность перед установкой.

    Для определения полярности в ДИОДАХ:

    На диодах в пластиковом корпусе на одном конце диода выбита белая или серебряная полоса, указывающая полярность диода. Стеклянные диоды могут иметь черную полосу. На любом из них положительный ток течет от клеммы, наиболее удаленной от полосы, к клемме, ближайшей к полосе (и блокируется в противоположном направлении). На схематическом чертеже полоса представлена ​​буквой «Т». Полосчатая сторона — это катодная сторона.

    Если у вас есть диод в корпусе TO-220, два внешних вывода имеют маркировку «+» или «-».

    Наконец, на диодах-шпильках конец с резьбой является катодом, а вывод для пайки — анодом.

    Для определения полярности в светодиодах (светодиодах):

    Самый простой способ определить полярность светодиода — это посмотреть на длину проводов. Более длинный вывод — это анод; чем короче катод.

    Другой метод, который вы можете использовать, — это поиск плоского пятна на краю светодиода.Плоское пятно указывает катодную сторону лампы.

    Что произойдет, если мы неправильно подключим полярный конденсатор?

    Что происходит, когда вы подключаете электролитический поляризованный конденсатор с обратной полярностью?

    Существуют различные типы конденсаторов, такие как полярные (конденсаторы постоянной емкости, например, электролитические, псевдоконденсаторы, ELD и суперконденсаторы) и неполярные конденсаторы (керамические, слюдяные, пленочные, бумажные и переменные конденсаторы). Конденсаторы играют активную и важную роль в цепях переменного и постоянного тока (т.е. фильтры, RC-цепи, связь и развязка, повышение коэффициента мощности, генераторы, демпфер, пускатели двигателей и т. д.). Остановимся на теме поляризованных электролитических конденсаторов.

    Электролитический полярный конденсатор — это тип полярного конденсатора, полярность которого на выводах обозначена катодом и анодом (положительный и отрицательный выводы).

    В электролитическом конденсаторе есть изолирующий слой, используемый в качестве диэлектрика (твердый, жидкий или газовый материал), расположенный между двумя электродами.Есть две металлические пластины, где первая пластина в качестве положительного «анода» покрыта изолирующим оксидным слоем посредством анодирования, а электролит используется в качестве второй клеммы, известной как «катод». Существует три типа электролитических конденсаторов: алюминиевые, танталовые и ниобиевые.

    В алюминиевых электролитических конденсаторах электроды состоят из чистого алюминия, однако анодный (положительный) электрод выполнен путем формирования изолирующего слоя оксида алюминия (Al 2 O 3 ) путем анодирования.Электролит (твердый или нетвердый) помещается на изолирующую поверхность анода. Этот электролит технически действует как катод. Второй алюминиевый электрод помещается поверх электролита, который действует как его электрическое соединение с отрицательной клеммой конденсатора.

    Алюминиевая фольга с бумагой между ними наматывается. Они пропитываются электролитом, а затем покрываются алюминиевым кожухом. Хватит брифинга, давайте сосредоточимся на теме прямо сейчас.

    Что происходит с конденсатором, если он подключен к обратному напряжению?

    Мы знаем, что конденсатор блокирует постоянный ток и пропускает переменный ток.Полярный, т.е. электролитический конденсатор, должен быть подключен к правым клеммам источника питания постоянного тока для правильной работы при использовании в цепях постоянного тока. Другими словами, положительный и отрицательный источники постоянного тока должны быть подключены к положительной и отрицательной клеммам конденсатора соответственно.

    Несчастные случаи реальны и часто происходят намеренно или случайно. Теперь давайте посмотрим, что произойдет, если полярный или электролитный конденсатор подключен к обратному выводу источника питания постоянного тока, т. Е. От отрицательного к положительному и наоборот.

    Полярный электролитический конденсатор взорвется с обратной полярностью

    Давайте обсудим последний сценарий как первый, чтобы обезопасить себя в первую очередь. В случае обратного подключения конденсатор не будет работать вообще, а если приложенное напряжение выше номинального значения конденсатора, начнет протекать больший ток утечки и нагревать конденсатор, что приведет к повреждению диэлектрической пленки (алюминий слой очень тонкий и его легко сломать) по сравнению с приложенным постоянным напряжением) даже конденсатор взорвать.

    Следует соблюдать осторожность при подключении поляризованного конденсатора к источнику питания постоянного тока с соответствующими клеммами. В противном случае обратное напряжение может повредить конденсатор в целом за очень короткое время (несколько секунд). Это может привести к серьезным травмам или опасному возгоранию (танталовые конденсаторы прекрасно справляются с этим).

    Алюминиевые слои в электролитическом конденсаторе выдерживают только прямое напряжение постоянного тока (то же, что и диод прямого смещения). Обратное постоянное напряжение на полярном конденсаторе приведет к выходу конденсатора из строя из-за короткого замыкания между его двумя выводами через диэлектрический материал (то же самое, что и диод обратного смещения, работающий в области пробоя).Это явление известно как эффект клапана.

    Имейте в виду, что электролит, используемый в фольге и электролитическом конденсаторе, может залечить и вернуть конденсатор в нормальное положение, если через конденсатор пройдет очень низкое обратное напряжение. Поэтому, если вы применили обратное напряжение к полярному конденсатору и используете его для хобби-проектов, вы должны протестировать и проверить конденсатор перед включением в схему или заменить его новым в случае коммерческого и промышленного использования.

    Поляризованный конденсатор взорвется с обратным напряжением

    В случае обратного напряжения (отрицательный источник на положительный вывод и наоборот) взорвет алюминиевый электролитический конденсатор в соответствии с теорией ионов водорода.В этом неправильном подключении проводки на электролитическом катоде возникает положительное напряжение, а на оксидном слое появляется отрицательное напряжение. В этой ситуации ионы водорода (H 2 ), собранные в оксидном слое, пройдут через диэлектрическую среду между двумя пластинами и достигнут металлического слоя, где они преобразуются в газообразный водород. Давление, создаваемое газообразным водородом, достаточно, чтобы сломать конденсатор, и корпус может разорваться от взрыва и пара.

    Удельное сопротивление электролитического конденсатора становится меньше при перестановке клемм

    При обратном подключении положительной и отрицательной клемм.Водород будет генерироваться без образования оксидной пленки, которая необходима для диэлектрической среды. По этой причине удельное сопротивление электролитического конденсатора с обратным подключением меньше по сравнению с правильным подключением, то есть положительным и отрицательным источником к положительной и отрицательной клеммам соответственно. Весь этот процесс выйдет из строя и повредит весь конденсатор.

    Полярный конденсатор действует как короткое замыкание при обратной установке

    Диэлектрическая среда, используемая между двумя электродами электролитического конденсатора, является однонаправленной i.е. он будет пропускать ток только и только в одном направлении, как и диод с PN переходом. В случае обратного подключения диэлектрическая среда не будет действовать как сопротивление или изоляционный материал. Газообразный водород будет генерироваться в течение нескольких секунд, и конденсатор будет действовать как короткое замыкание для источника постоянного тока, что приведет к выходу конденсатора из строя (с выпуклым верхом или общим износом компонента).

    Полезно знать:

    • Поляризованный и электролитический конденсатор не будут подключаться к источнику переменного тока (как прямое, так и обратное соединение), поскольку они специально разработаны для правильной эксплуатации только и только в цепях постоянного тока .В этом случае конденсатор немедленно взорвется. Мы обсудим весь сценарий в следующей статье.
    • Неполярный электролитический конденсатор на самом деле представляет собой два последовательно соединенных друг с другом электролитических конденсатора (то же самое, что и последовательно соединенные диоды или две батареи). Эти конденсаторы используются иногда из-за низкой надежности и эффективности, большого количества потерь и способности выдерживать низкое напряжение.

    Связанное сообщение: Разница между переменным и постоянным током (ток и напряжение)

    Внимание:

    Всегда проверяйте положительную и отрицательную клеммы электролитических и полярных конденсаторов.Тот, на котором напечатан знак «-» (отрицательная полоса или полоса стрелки) или короткая ножка, называется «катодом» или отрицательной клеммой, а другая с длинной ножкой называется «анодом» или положительной клеммой.

    Маленький чувак, как поляризованный конденсатор, очень опасен и радостно взрывается и вытягивает кровь в случае изменения и обратного направления его клемм или большей утечки или прямого тока и напряжения, отличных от номинального напряжения.

    Добавить комментарий

    Ваш адрес email не будет опубликован.