Как узнать, где плюс и минус на электролитическом конденсаторе. Какие бывают способы маркировки полярности конденсаторов. Как определить полярность конденсатора по внешнему виду. Как проверить полярность конденсатора мультиметром.
Как определить полярность электролитического конденсатора
Электролитические конденсаторы имеют полярность — положительный и отрицательный выводы. При их подключении важно соблюдать правильную полярность, иначе конденсатор может выйти из строя. Существует несколько способов определить, где у конденсатора плюс, а где минус:
- По маркировке на корпусе
- По внешнему виду конденсатора
- С помощью мультиметра
Рассмотрим каждый из этих методов подробнее.
Определение полярности конденсатора по маркировке
Маркировка полярности на корпусе — самый простой и надежный способ узнать, где у конденсатора плюс и минус. Однако маркировка может отличаться у разных производителей:
Маркировка плюса конденсатора
На отечественных конденсаторах советского производства обычно маркировался только положительный вывод знаком «+». Этот знак наносился на корпус рядом с положительной клеммой.
На современных SMD конденсаторах для поверхностного монтажа плюс часто обозначается серебристой полоской со знаком «+» на одной из сторон.
Маркировка минуса конденсатора
На большинстве импортных конденсаторов маркируется отрицательный вывод. Это может быть:
- Серая или черная полоса вдоль корпуса со стороны отрицательного вывода
- Знак «-» рядом с отрицательной клеммой
- Вытянутые эллипсы или штриховые линии
- Угловые скобки, направленные к отрицательному выводу
На алюминиевых цилиндрических SMD конденсаторах отрицательный вывод часто обозначается окрашенным сегментом на верхнем торце.
Как определить полярность конденсатора по внешнему виду
Если маркировка на корпусе отсутствует или плохо различима, можно попробовать определить полярность конденсатора по его внешнему виду:
- У многих конденсаторов положительный вывод длиннее отрицательного
- Некоторые старые конденсаторы имеют форму двух цилиндров разного диаметра — положительный вывод расположен на стороне большего цилиндра
- У мощных конденсаторов отрицательный вывод часто соединен с корпусом
Однако внешний вид не всегда позволяет однозначно определить полярность, поэтому в сложных случаях лучше использовать инструментальную проверку.
Проверка полярности конденсатора мультиметром
Наиболее надежный способ определить полярность конденсатора — проверка с помощью мультиметра. Для этого понадобятся:
- Мультиметр
- Источник постоянного тока (батарея, блок питания)
- Резистор 100 Ом
- Соединительные провода
Порядок проверки:
- Разрядите конденсатор, замкнув его выводы.
- Подключите мультиметр параллельно резистору для измерения тока.
- Если ток не протекает — вывод конденсатора, подключенный к резистору, положительный.
- Если ток протекает — поменяйте подключение конденсатора и повторите проверку.
Важно использовать напряжение питания не более 70-75% от номинального напряжения конденсатора, чтобы не повредить его при проверке.
Почему важно соблюдать полярность конденсатора
Правильное подключение электролитических конденсаторов с соблюдением полярности крайне важно по нескольким причинам:
- При неправильном подключении конденсатор может выйти из строя
- Возможен перегрев и даже взрыв конденсатора
- Нарушается работа всей электрической схемы
- Сокращается срок службы конденсатора
Поэтому перед монтажом электролитических конденсаторов обязательно нужно убедиться в правильности их полярности одним из описанных выше способов.
Типы конденсаторов и их полярность
Не все конденсаторы имеют полярность. Полярными являются:
- Электролитические конденсаторы
- Танталовые конденсаторы
- Некоторые типы пленочных конденсаторов
Неполярные конденсаторы можно подключать в схему любым способом:
- Керамические конденсаторы
- Пленочные конденсаторы (большинство типов)
- Слюдяные конденсаторы
- Бумажные конденсаторы
При работе с конденсаторами важно изучить их технические характеристики и уточнить наличие полярности.
Маркировка емкости и напряжения конденсаторов
Помимо полярности, на корпусе конденсатора обычно указываются его основные параметры:
Емкость конденсатора
Емкость может указываться:
- В пикофарадах (пФ)
- В микрофарадах (мкФ)
- Кодом из нескольких цифр
Максимальное рабочее напряжение
Указывается в вольтах, например:
- 16V
- 25V
- 50V
Превышение этого напряжения может привести к пробою конденсатора.
Проверка исправности конденсатора
Кроме определения полярности, с помощью мультиметра можно проверить исправность конденсатора:
- Переключите мультиметр в режим измерения емкости
- Подключите щупы к выводам конденсатора
- Сравните показания с номинальной емкостью
Если измеренная емкость сильно отличается от номинала или прибор показывает обрыв цепи — конденсатор неисправен.
Заключение
Правильное определение полярности электролитических конденсаторов — важный навык для работы с электронными схемами. Используя описанные методы маркировки, визуального осмотра и инструментальной проверки, можно безошибочно определить расположение положительного и отрицательного выводов конденсатора. Это позволит корректно подключать конденсаторы в схемы и избежать их повреждения из-за неправильной полярности.
где плюс, а где минус
Содержание статьи:
- 1 Как узнать, где плюс, а где минус у электролитического конденсатора
- 1.1 Какой вывод у конденсаторов длиннее — плюсовой или отрицательный?
- 2 Как определить полярность конденсатора мультиметром
Как определить полярность конденсатора: где плюс, а где минус
Большинство существующих видов конденсаторов не имеют полярности, то есть, нет абсолютно никакой разницы, как их включать в схему. Однако данное правило не распространяется на электролитические конденсаторы тока, ведь они имеют строго положительные и отрицательные вывода. И если по каким-то причинам не удалось определить плюс и минус такого конденсатора, впаяв его неправильно в цепь, произойдёт разрыв корпуса со всеми вытекающими отсюда последствиями.
Следует заметить, что существует несколько простых способов узнать полярность электролитического конденсатора. Сделать это можно визуально, а также посредством специальных средств, о которых вы и сможете узнать в данной статье сайта https://samelektrikinfo. ru/. Итак, как определить полярность электролитического конденсатора, какие способы и средства на это существуют?
Как узнать, где плюс, а где минус у электролитического конденсатора
При определении полярности конденсатора в первую очередь нужно обратиться к маркировкам на его корпусе, если конечно они не затёртым или не замазаны клеем. Следует знать, что на отечественных конденсаторах плюсовой вывод так и обозначался знаком «+». Позже произошли кое-какие изменения в маркировке конденсаторов.
Как узнать, где плюс, а где минус у электролитического конденсатора
Итак, плюс на конденсаторе или на самой плате обозначает положительный вывод, то есть, анод. Практически такое же обозначение имеют и современные SMD (Surface Mounted Device) конденсаторы, предназначенные для поверхностного монтажа. На одну из сторон таких конденсаторов наносится серебристая полоска со знаком «+».
Как узнать, где плюс, а где минус у электролитического конденсатора
Совсем иную маркировку имеют импортные конденсаторы. Вместо обозначения плюсового вывода, на них, наоборот, указывается отрицательный вывод. Чаще всего это небольшая чёрная либо серая полоска со стороны отрицательного вывода конденсатора — катода. Также это может быть вытянутый эллипс или знак минуса.
Какой вывод у конденсаторов длиннее — плюсовой или отрицательный?
Если по каким-то причинам цветовую маркировку конденсаторов не определить на корпусе, она может быть затёрта или закрыта, то сделать это можно путём осмотра выводов элемента. По всем правилам и стандартам плюсовой вывод конденсатора немного длинней, чем отрицательный.
Как узнать полярность конденсатора
В том случае если перед вами старые конденсаторы цилиндрической формы, то положительный контакт на них, как правило, находится внутри торца, а всё что с краю, это отрицательный вывод. В любом случае, прежде чем найти контакты в таких конденсаторах, лучше всего обратиться к специализированной технической литературе.
Как определить полярность конденсатора мультиметром
Перед определением полярности электролитического конденсатора, он должен быть полностью разряжен. Для этого следует подключить к выводам конденсатора небольшую лампу накаливания или резистор. Замыкать вывода при помощи металлической отвёртки или пинцета не рекомендуется, поскольку это может привести к обрыву контакта внутри конденсатора.
Как определить полярность конденсатора мультиметром
После того, как конденсатор полностью разрядился, нужно внимательно осмотреть его корпус на предмет вздутия или каких-либо других повреждений. Особое внимание следует обратить на верхнюю часть электролитического конденсатора, где находится так называемый «защитный клапан». Сверху корпуса не должно быть абсолютно никаких повреждений, выпуклостей и т. д.
Осуществить проверку можно двумя способами: зарядив конденсатор и подключив к нему мультиметр либо же протестировать конденсатор через цепь. В первом случае необходимо зарядить конденсатор мультиметром в режиме измерения сопротивлений, а после проверит напряжения на выводах. Как правило, мультиметр должен сам показать, где плюс, а где минус на конденсаторе, отобразив соответствующий знак на дисплее.
Однако такой способ определения полярности электролитических конденсаторов не совсем точный и может не сработать. Поэтому лучше всего будет собрать небольшую самоделку для определения полярности конденсаторов. Для этого понадобится блок питания на 12-16 Вольт с регулировкой напряжения на выходе, резистор на 100 Ом, паяльник и олово к нему.
Как определить полярность конденсатора мультиметром
Важно! Блок питания должен выдавать несколько большее напряжение, чем напряжение проверяемого электролитического конденсатора. Схема для проверки представлена выше. При определении полярности мультиметр подсоединяется параллельно сопротивлению и переключается в режим измерения.
В том случае, когда ток не будет протекать по цепи, это значит, что конденсатор соединён с резистором плюсовым выводом. Когда на дисплее мультиметра отобразилось значение выше от нуля, то есть, конденсатор начнёт заряжаться, это говорит что на выводе отрицательная полярность.
Поделиться с друзьями
Замена неполярных конденсаторов полярными конденсаторами
Разделы статьи:
Замена неполярных конденсаторов полярными конденсаторами
Если вы занимаетесь ремонтом радиотехники, то должны знать о том, что конденсаторы бывают полярными и неполярными. И если у мастеров своего дела проблем с заменой конденсаторов не возникает, то вот у новичков, чаще всего всё наоборот.
Многие из них задаются вопросами о том, можно ли заменить неполярный конденсатор полярным, и что будет? Как известно, основное отличие полярных конденсаторов от неполярных заключается в том, что у них присутствует плюс и минус. То есть, полярный конденсатор нужно впаивать только строго с соблюдением полярности, а иначе он обязательно взорвётся.
В свою очередь при установке неполярных конденсаторов нет нужды придерживаться полярности. Такие конденсаторы не имеют плюса и минуса, в схеме они обозначаются буквами «NP» – неполярный конденсатор. Соответственно назревает вопрос, а можно ли заменить неполярные конденсаторы полярными?
Замена неполярных конденсаторов полярными — что нужно знать?
На самом деле, если под рукой нет неполярного конденсатора, а есть только полярные конденсаторы, то можно произвести их замену по следующей схеме:
- Сначала нужно определить, где именно на плате плюс, а где минус, и затем уже впаивать полярный конденсатор, соблюдая полярность;
- Использовать схему из двух полярных конденсаторов, вместо одного неполярного конденсатора.
Второй способ наиболее предпочтителен, ведь именно он позволяет новичку не углубляться слишком далеко в изучение схемы питания. Достаточно соединить два полярных конденсатора вместе, чтобы получить один неполярный конденсатор.
Соединяются два полярных конденсатора плюсами, а минусу уходят в схему. В итоге получается один неполярный конденсатор.
Например, нам нужно заменить один неполярный конденсатор на 5 мкФ, но его нет под рукой. Тогда мы берём два полярных конденсатора по 10 мкФ, соединяем их плюсами, а минусами впаиваем в плату. Соблюдать при этом полярность нет необходимости, ведь мы из двух полярных конденсаторов получили один неполярный конденсатор.
Как проверить неполярные конденсаторы мультиметром
Ранее в статьях я рассказывал о том, как проверить конденсатор мультиметром. Речь шла о проверке именно полярных конденсаторов, но ничего не говорилось о проверке неполярных конденсаторов.
Проверка неполярных конденсаторов осуществляется практически по той же самой схеме, но с некоторым отличием. В первую очередь, необходимо используя мультиметр произвести зарядку конденсатора, не забыв перед этим его разрядить.
Для этого переводим мультиметр в режим проверки сопротивления на 20 kOm и несколько секунд заряжаем конденсатор, приложив щупы мультиметра к его ножкам. Далее переводим мультиметр в режим измерения постоянного напряжения и смотрим, набрал ли неполярный конденсатор свою емкость.
На самом деле всё достаточно просто, и если конденсатор совсем нерабочий, то на табло мультиметра ничего не высветится.
Также еще раз оговорюсь и скажу, что неполярные конденсаторы обозначаются буквами «NP», и не имеют каких-либо обозначений в виде «+» на старых, еще советских платах или на корпусе. В случае же с использованием полярных конденсаторов, плюс на плате всегда указывался.
Поделиться статьей в социальных сетях
плюс-минус по внешнему виду
Многие типы электрических конденсаторов не имеют полярности и поэтому их включение в цепь не составляет труда. Электролитические аккумуляторы заряда составляют особый класс, т.к. имеют положительный и отрицательный выводы, поэтому при их подключении часто возникает проблема, как определить полярность конденсатора.
Содержание
- 1 Как определить полярность электролитического конденсатора?
- 2 По маркировке
- 3 Плюс конденсатора
- 4 Маркировка минуса
- 5 По снимку
- 6 С помощью мультиметра
Как определить полярность электролитического конденсатора?
Проверить расположение плюса и минуса на устройстве можно несколькими способами. Полярность конденсатора определяется следующим образом:
- по маркировке, т. е. по надписям и рисункам на его корпусе;
- по внешнему виду;
- с помощью универсального измерительного прибора — мультиметра.
Важно правильно определить положительный и отрицательный контакты, чтобы после установки при подаче напряжения цепь не вышла из строя.
По маркировке
Маркировка аккумуляторов заряда, в том числе электролитических, зависит от страны, фирмы-производителя и стандартов, которые со временем меняются. Поэтому вопрос, как определить полярность на конденсаторе, не всегда имеет однозначный ответ.
Обозначение плюса конденсатора
На отечественных советских изделиях маркировался только положительный контакт — знаком «+». Этот знак был нанесен на корпус рядом с плюсовой клеммой. Иногда в литературе положительный вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и служат для фильтрации переменного тока, т. е. обладают свойствами активного полупроводникового прибора. В некоторых случаях знак «+» ставится на печатной плате рядом с плюсовым выводом размещенного на ней запоминающего устройства.
На изделиях серии К50-16 маркировка полярности нанесена на днище, выполненное из пластика. Другие модели серии К50, такие как К50-6, имеют знак «плюс», нарисованный на нижней части алюминиевого корпуса, рядом с плюсовой клеммой. Иногда на дне маркируется и импортная продукция, произведенная в бывшем соцлагере. Современная отечественная продукция соответствует мировым стандартам.
Маркировка конденсаторов SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обычной. Плоские модели имеют черный или коричневый корпус в виде небольшой прямоугольной пластины, с серебристой полосой со знаком «плюс» на плюсовой клемме.
Маркировка минуса
Принцип маркировки полярности импортной продукции отличается от традиционных стандартов отечественной промышленности и заключается в алгоритме: «чтобы знать, где плюс, надо сначала найти, где минус». Расположение минусового контакта показано как специальными знаками, так и цветом корпуса.
Например, черный цилиндрический корпус имеет светло-серую полосу по всей высоте цилиндра со стороны отрицательного вывода, иногда называемого катодом. Полоска печатается штриховой линией, или вытянутыми эллипсами, или знаком «минус», и 1 или 2 угловыми скобками с острым углом, направленным к катоду. Диапазон с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне минусового контакта.
Другие цвета также используются для маркировки по общему принципу: темное тело и светлая полоса. Эта маркировка никогда полностью не стирается и поэтому всегда можно определить полярность «электролита», как для краткости называют электролитические конденсаторы на радиотехническом жаргоне.
Корпус конденсаторов SMD, выполненный в виде алюминиевого металлического цилиндра, остается неокрашенным и имеет натуральный серебристый цвет, а сегмент круглого верхнего торца окрашивается в насыщенный черный, красный или синий цвет и соответствует положению отрицательный терминал. После установки элемента на поверхность печатной платы на схеме хорошо виден частично окрашенный конец корпуса, обозначающий полярность, так как он имеет большую высоту, чем плоские элементы.
На поверхность платы нанесена соответствующая полярность маркировка цилиндрического SMD устройства: это круг с заштрихованным белыми линиями сегментом, где расположен минусовой контакт. Однако учтите, что некоторые производители предпочитают маркировать плюсовой контакт устройства белым цветом.
По внешнему виду
Если маркировка стерта или нечеткая, иногда можно определить полярность конденсатора по внешнему виду корпуса. У многих конденсаторов с клеммами на одной стороне, которые не были собраны, плюсовая сторона длиннее, чем отрицательная. Продукты ETO, ныне устаревшие, имеют вид двух цилиндров, установленных друг на друга: большего диаметра и меньшей высоты, и меньшего диаметра, но значительно выше. Контакты центрируются на концах цилиндров. Положительный вывод установлен на конце цилиндра большего диаметра.
Некоторые мощные электролиты имеют катодный вывод, выведенный на корпус, который припаивается к корпусу схемы. Соответственно плюсовая клемма изолирована от корпуса и расположена сверху на нем.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов определяется по светлой полоске, связанной с отрицательным полюсом прибора. Если ни по маркировке, ни по внешнему виду электролита полярность определить не удается, то и тогда проблема «как узнать полярность конденсатора» решается с помощью универсального тестера – мультиметра.
С помощью мультиметра
Перед проведением опытов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИПТ) не превышало 70-75% номинального значения, указанного на футляре для хранения или в справочнике книга. Например, если электролит рассчитан на 16 В, блок питания должен выдавать не более 12 В. Если номинал электролита неизвестен, начните эксперимент с малых значений в диапазоне 5-6 В, а затем постепенно увеличить напряжение на выходе блока питания.
Конденсатор должен быть полностью разряжен — для этого соедините его ножки или выводы, закороченные на несколько секунд металлической отверткой или пинцетом. К ним можно подключить лампу накаливания от карманного фонаря, пока не погаснет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и комплектующие:
- ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- принадлежности для сборки: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Далее необходимо собрать электрическую цепь:
- параллельно резистору с помощью «крокодилов» (т.е. щупов с зажимами) подключить мультиметр, установленный для измерения постоянного тока;
- Подключите плюсовую клемму источника питания к клемме резистора;
- подключите другой вывод резистора к выводу конденсатора, а его второй вывод подключите к минусовой клемме источника питания.
При правильной полярности подключения электролита мультиметр не будет регистрировать ток. Значит, контакт, подключенный к резистору, будет положительным. В противном случае мультиметр покажет ток. При этом плюсовой контакт электролита был соединен с минусовой клеммой источника питания.
Другой способ проверки отличается тем, что мультиметр, подключенный параллельно резистору, переводится в режим измерения постоянного напряжения. В этом случае, если емкость подключена правильно, прибор покажет напряжение, значение которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала упадет, но затем зафиксируется на ненулевом значении.
По способу 3 прибор для измерения постоянного напряжения подключают параллельно не сопротивлению, а проверяемой емкости. Если полюса емкости подключены правильно, напряжение достигнет значения, установленного на источнике питания. Если минус блока питания соединить с плюсом емкости, т.е. неправильно, то напряжение на конденсаторе поднимется до значения, равного половине значения, выдаваемого блоком питания. Например, если клеммы источника питания 12 В, емкость будет 6 В.
После завершения испытаний конденсатор следует разрядить так же, как и в начале эксперимента.
Статьи по теме:
Конденсаторы: все, что вам нужно знать
Узнайте все, что вам нужно знать о конденсаторах, включая емкость, измерение электрического заряда и различные типы конденсаторов.
Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их применение повсеместно.
Помните вспышку в своем цифровом фотоаппарате? Конденсаторы делают это возможным. Или возможность изменить канал на вашем телевизоре? Снова конденсаторы. Эти ребята — маленькие батарейки, которые «могут», и вам нужно знать о них все, что нужно знать, прежде чем вы начнете работать над своим первым проектом в области электроники.
Это как бутерброд с мороженым
Проще говоря, конденсатор накапливает электрический заряд , как батарея. Также упоминается как колпачки , вы найдете этих ребят в приложениях, требующих накопления энергии, подавления напряжения и даже фильтрации сигналов. И как они выглядят? Ну, бутерброд с мороженым!
Подумайте о вкусном бутерброде с мороженым. У вас есть корочка с двух сторон и плитка ванильного мороженого посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя и есть то, как выглядит конденсатор.
Видите сходство?Вот из чего они сделаны:
- Запуск снаружи. В верхней и нижней части конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
- Сидя посередине. Среди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком, и он может быть изготовлен из бумаги, стекла, резины, пластика и т. д.
- Соединяем вместе. Две металлические пластины сверху и снизу крышки соединены двумя электрическими клеммами, которые соединяют ее с остальной частью цепи. Один конец конденсатора подключается к питанию, а другой течет к земле.
Конденсаторы всех форм и размеров
КонденсаторыКерамические конденсаторы
Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом проекте электроники с использованием макетной платы. В отличие от своих электролитических аналогов, керамические конденсаторы держат меньший заряд, но и пропускают меньше тока. Они также оказались самыми дешевыми конденсаторами из всех, так что запасайтесь! Вы можете быстро идентифицировать сквозной керамический конденсатор, глядя на маленькие желтые или красные лампочки с двумя торчащими выводами.
Электролитические конденсаторы
Эти ребята выглядят как маленькие жестяные банки, которые вы найдете на печатной плате, и могут удерживать огромный электрический заряд в своей крошечной площади. Это также единственный тип поляризованных конденсаторов, а это означает, что они будут работать только при определенной ориентации. На этих электролитических конденсаторах есть положительный контакт, называемый анодом, и отрицательный контакт, называемый катодом. Анод всегда должен быть подключен к более высокому напряжению. Если вы подключите его наоборот, с катодом, получающим более высокое напряжение, то приготовьтесь к взрыву колпачка!
Несмотря на способность удерживать большое количество электрического заряда, электролитические конденсаторы также хорошо известны тем, что они пропускают ток быстрее, чем керамические конденсаторы. Из-за этого они не лучший выбор, когда вам нужно сохранить энергию.
Суперконденсаторы
Supercaps — супергерои семейства конденсаторов, которые могут хранить большое количество энергии! К сожалению, суперконденсаторы не очень хорошо справляются с избыточным напряжением, и вы окажетесь без конденсатора, если превысите максимальное напряжение, указанное в техническом описании. ПОП!
В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разрядки энергии, как батарея. Но, в отличие от батареи, суперконденсаторы высвобождают весь свой заряд сразу, и вы никогда не получите от них срок службы, который вы бы получили от обычной батареи.
Символы конденсаторов
Определить конденсатор на вашей первой схеме очень просто, так как они бывают только двух типов: стандартные и поляризованные. Посмотрите на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые строки с пробелом между ними. Это две металлические пластины, которые вы найдете сверху и снизу физического конденсатора.
Поляризованный конденсатор выглядит немного по-другому и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Эта положительная клемма очень важна и указывает, как должен быть подключен этот поляризованный конденсатор. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.
Кто изобрел эти штуки?
Хотя многие считают английского химика Майкла Фарадея пионером современного конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические образцы конденсатора и способы его использования для накопления электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость и измеряемый в фарадах!
До Майкла Фарадея некоторые записи указывают на то, что покойный, покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Несколько месяцев спустя голландский профессор по имени Питер ван Мусшенбрук придумал аналогичный конструкции, ныне известной как Лейденская банка. Странное время, верно? Однако все это было просто совпадением, и оба ученых получили равные заслуги в своих первоначальных изобретениях конденсатора.
Знаменитый Бенджамин Франклин позже продолжил улучшать дизайн лейденской банки, созданный Мусшенбруком. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой использованию целой банки. Так родился первый плоский конденсатор, получивший название «Площадь Франклина».
Конденсаторы в действии
Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы уже пользовались цифровой камерой, верно? Тогда вы знаете, что есть несколько коротких моментов между тем, когда вы нажимаете кнопку, чтобы сделать снимок, и тем, когда выключается вспышка.
Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжается от батареи камеры, вся эта энергия вырывается наружу ослепляющей вспышкой света!
Как они работают
Так как же все это произошло? Вот взгляд изнутри на таинственный мир конденсатора:
- Запускается с зарядки. Электрический ток от источника питания сначала поступает в конденсатор и застревает на первой пластине. Почему он застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
- Накопление зарядов. По мере того, как все больше и больше электронов прилипают к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми не может справиться, на другую пластину. Затем эта вторая пластина становится положительно заряженной.
- Заряд сохранен. Пока две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот надоедливый изолятор в середине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
- Заряд высвобождается. Рано или поздно две пластины нашего конденсатора не смогут удерживать заряд, так как они на пределе своих возможностей. Но что происходит сейчас? Если в вашей цепи есть путь для протекания электрического заряда в другое место, тогда все электроны в вашей шапке разрядятся, в конце концов прекратив свое напряжение, поскольку они будут искать другой путь друг к другу.
Измерение этого заряда
Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Измеряется в фарадах в честь английского химика Майкла Фарадея. Поскольку один фарад удерживает тонну электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах. Вот полезная диаграмма, показывающая, как распределяются эти измерения:
Наименование | Аббревиатура | Фарады |
Пикофарад 9 0238 | пФ | 0,000000000001 Ф |
Нанофарад | нФ | 0,000000001 Ф | Микрофарад | мкФ | 0,000001 Ф |
Миллифарад | мФ | 0,001 Ф |
Килофарад | кФ 90 238 | 1000 F |
Теперь, чтобы выяснить, сколько заряда в данный момент хранится в конденсаторе, вам понадобится следующее уравнение:
В этом уравнении общий заряд представлен как (Ом) , и отношение этого заряда можно найти, умножив емкость конденсатора ( C ) на приложенное к нему напряжение ( В ). Здесь следует отметить одну вещь: емкость конденсатора напрямую связана с его напряжением. Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больше или меньше заряда будет иметь ваш конденсатор.
Емкость в параллельных и последовательных цепях
При параллельном соединении конденсаторов в цепи общую емкость можно найти, сложив вместе все емкости по отдельности.
При последовательном соединении конденсаторов общая емкость вашей цепи пропорциональна сумме всех емкостей. Вот краткий пример: если у вас есть два конденсатора по 10 Ф, соединенных последовательно, то их общая емкость составит 5 Ф.
Ввод колпачков в работу
мужчина чинит электроникуТеперь, когда у нас есть четкое представление о том, что такое конденсаторы, как они работают и как их измеряют, давайте рассмотрим три распространенных приложения, в которых используются конденсаторы. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.
Развязывающий конденсатор
В наши дни вам будет трудно найти схему, которая не включает интегральную схему или ИС. В этих типах схем конденсаторы выполняют важную работу, удаляя все высокочастотные шумы, присутствующие в сигналах источника питания, которые питают ИС.
Почему это необходимая работа для нашего конденсатора? Любое колебание напряжения может быть фатальным для микросхемы и даже привести к неожиданному отключению питания микросхемы. Размещая конденсаторы между ИС и источником питания, они гасят колебания напряжения, а также действуют как второй источник питания, если первичный источник питания падает достаточно, чтобы отключить ИС.
Аккумулятор энергии
Конденсаторы имеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не могут удерживать такую же мощность. Но хотя они не могут угнаться за количеством, они компенсируют это своим энтузиазмом, чтобы разрядиться как можно быстрее! Конденсаторы могут отдавать энергию намного быстрее, чем батарея, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.
Емкостные сенсорные датчики
Одно из последних достижений в области применения конденсаторов связано с бурным развитием технологий сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это создает падение напряжения, определяя точное местоположение вашего пальца!
Практичность — выбор конденсатора
Давайте перейдем к сфере практичности и поговорим о том, на что следует обратить внимание при выборе следующего конденсатора. Необходимо учитывать пять переменных, в том числе:
- Размер. Сюда входят как физический размер вашего конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор является самой большой частью вашей печатной платы, так как чем больше емкость вам нужна, тем больше они получаются.
- Допуск — Как и их аналоги резисторов, конденсаторы также имеют переменный допуск. Вы найдете допуск для конденсаторов в диапазоне от ± 1% до ± 20% от его рекламируемого значения.
- Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, которое он может выдержать. Иначе он взорвется! Вы найдете максимальное напряжение от 1,5 В до 100 В.
- Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, выводы конденсатора имеют очень небольшое сопротивление. Это может стать проблемой, если вам нужно помнить о тепле и потерях мощности.
- Ток утечки — В отличие от наших батарей, конденсаторы будут пропускать накопленный заряд. И хотя он разряжается медленно, вы должны обратить внимание на то, насколько сильно протекает ваш конденсатор, если его основная функция заключается в хранении энергии.
Все заряжено
Вот и все, что вам нужно знать о конденсаторах, чтобы полностью зарядиться для вашего следующего проекта в области электроники! Конденсаторы — это очаровательная небольшая группа, способная накапливать электрический заряд для различных приложений, и они могут даже выступать в качестве вторичного источника питания для этих чувствительных интегральных схем.