Как работает генератор импульсов на таймере NE555. Каковы основные компоненты схемы генератора на 555 таймере. Как регулируется частота и скважность выходных импульсов. Какие преимущества у генератора на NE555. Где применяется генератор импульсов на 555 таймере.
Принцип работы генератора импульсов на NE555
Генератор импульсов на микросхеме NE555 является одной из самых популярных и универсальных схем среди радиолюбителей. Рассмотрим принцип работы такого генератора:
- Микросхема NE555 содержит два компаратора, RS-триггер и выходной каскад.
- При подаче питания конденсатор C1 начинает заряжаться через резисторы R1 и R2.
- Когда напряжение на C1 достигает 2/3 напряжения питания, срабатывает верхний компаратор.
- Это переключает RS-триггер, и на выходе микросхемы появляется низкий уровень.
- Конденсатор C1 начинает разряжаться через R2 и внутренний транзистор NE555.
- При разряде до 1/3 питания срабатывает нижний компаратор.
- Процесс повторяется, формируя непрерывную последовательность импульсов.
Таким образом, за счет попеременного заряда и разряда конденсатора C1 генерируются прямоугольные импульсы на выходе микросхемы.
Основные компоненты схемы генератора на NE555
Рассмотрим ключевые элементы типовой схемы генератора импульсов на таймере 555:
- Микросхема NE555 — основа генератора
- Резистор R1 — задает ток заряда конденсатора C1
- Резистор R2 — определяет ток разряда C1
- Конденсатор C1 — времязадающий элемент
- Диоды VD1, VD2 — разделяют цепи заряда и разряда C1
- Резистор R3 — токоограничивающий резистор для светодиода
- Светодиод LED1 — индикатор работы генератора
Дополнительно могут использоваться потенциометры для регулировки частоты и скважности.
Регулировка частоты и скважности генератора
В генераторе на NE555 можно регулировать два основных параметра выходных импульсов:
Регулировка частоты
Частота импульсов определяется суммарным сопротивлением R1+R2 и емкостью C1:
F = 1 / (0.693 * (R1 + 2R2) * C1)
Изменяя сопротивление R1 или емкость C1, можно регулировать частоту в широких пределах.
Регулировка скважности
Скважность импульсов зависит от соотношения R1 и R2:
Q = (R1 + R2) / R2
Для изменения скважности обычно используют переменный резистор R2. Это позволяет регулировать длительность импульсов при постоянной частоте.
Преимущества генератора на NE555
Генератор импульсов на таймере 555 обладает рядом достоинств:
- Простота схемы — требуется минимум внешних компонентов
- Широкий диапазон частот — от долей Гц до сотен кГц
- Возможность регулировки частоты и скважности
- Стабильность параметров при изменении напряжения питания
- Высокая нагрузочная способность выхода (до 200 мА)
- Низкая стоимость компонентов
Благодаря этим преимуществам генераторы на NE555 широко применяются радиолюбителями и в промышленной электронике.
Области применения генератора импульсов на 555
Генераторы на базе таймера NE555 используются во многих областях:
- Формирование тактовых сигналов для цифровых устройств
- Генерация звуковых сигналов в системах оповещения
- ШИМ-регуляторы для управления двигателями
- Преобразователи напряжения
- Измерительные приборы
- Системы освещения с мигающими огнями
- Радиолюбительские конструкции
Универсальность и простота делают генератор на NE555 отличным выбором для многих применений.
Расчет параметров генератора импульсов
При проектировании генератора на NE555 важно правильно рассчитать номиналы компонентов. Рассмотрим основные формулы:Расчет частоты
Частота генерации определяется по формуле:
F = 1 / (0.693 * (R1 + 2R2) * C1)
Отсюда можно выразить требуемое сопротивление или емкость:
R1 + 2R2 = 1 / (0.693 * F * C1)
C1 = 1 / (0.693 * F * (R1 + 2R2))
Расчет скважности
Скважность импульсов вычисляется как:
Q = (R1 + R2) / R2
Для заданной скважности сопротивления рассчитываются:
R1 = R2 * (Q — 1)
R2 = R1 / (Q — 1)
Используя эти формулы, можно подобрать номиналы компонентов для получения требуемых параметров выходных импульсов.
Практические рекомендации по сборке генератора
При сборке генератора импульсов на NE555 следует учитывать несколько моментов:
- Используйте качественные компоненты с малым разбросом параметров
- Применяйте керамические конденсаторы для C1 при высоких частотах
- Установите блокировочный конденсатор 0.1 мкФ у выводов питания NE555
- Минимизируйте длину проводников в высокочастотных цепях
- Обеспечьте надежное заземление схемы
- При необходимости используйте экранирование
Соблюдение этих рекомендаций позволит собрать стабильно работающий генератор импульсов на базе таймера 555.
Модификации схемы генератора на NE555
Базовую схему генератора можно модифицировать для улучшения характеристик:
Стабилизация частоты
Для повышения стабильности частоты применяют:
- Термостабильные резисторы и конденсаторы
- Кварцевый резонатор в цепи обратной связи
- Внешний источник опорного напряжения
Расширение диапазона частот
Для генерации очень низких или высоких частот используют:
- Дополнительные делители частоты на выходе
- Каскадное включение нескольких генераторов
- Внешние формирователи импульсов
Улучшение формы импульсов
Для получения более качественных прямоугольных импульсов применяют:
- Триггеры Шмитта на выходе
- Компараторы с гистерезисом
- Быстродействующие логические элементы
Эти модификации позволяют адаптировать базовую схему генератора под конкретные требования.
Регулировка частоты и скважности на 555. Генератор прямоугольных импульсов на NE555
555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.
В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.
Схема включения в астабильном режиме. На рисунке ниже это показано.
Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t2 = 0.693R2C;
С теорией закончили так что приступим к практике.
Разработал простенькую схему с доступными всем деталями.
Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.
Вид сверху, видны переключатели рабочей частоты.
Снизу прикрепил памятку.
Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).
Сбоку выключатель питания и выход сигнала.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
IC1 | Программируемый таймер и осциллятор | NE555 | 1 | Поиск в LCSC | В блокнот | |
Т1 | Биполярный транзистор | КТ805А | 1 | Поиск в LCSC | В блокнот | |
D1 | Выпрямительный диод | 1N4148 | 1 | Поиск в LCSC | В блокнот | |
С1 | Конденсатор | 1 нФ | 1 | Поиск в LCSC | В блокнот | |
С2 | Конденсатор | 100 нФ | 1 | Поиск в LCSC | В блокнот | |
С3 | Конденсатор | 1000 нФ | 1 | Поиск в LCSC | В блокнот | |
C4 | Электролитический конденсатор | 100 мкФ | 1 | Поиск в LCSC | В блокнот | |
R1 | Резистор | 500 Ом | 1 |
Электрический импульс — это кратковременный всплеск напряжения или силы тока.
А что в электронике? В электронике импульсы применяются повсеместно. Например, в микроконтроллерах или даже в полноценных процессорах домашнего компьютера электрические импульсы задают ритм его работы. Они еще называются тактовыми, или синхро-импульсами. Порой быстродействие вычислительных машин сравнивают именно при помощи значений тактовой частоты.
Все данные внутри электронных устройств тоже передаются при помощи импульсов. Наш интернет, проводной и беспроводной, сотовая связь и даже пульт от телевизора — все используют импульсный сигнал. Попробуем выполнить несколько заданий и на собственном опыте понять особенности генерации электрических импульсов. А начнем мы со знакомства с их важными характеристиками.
1. Период и скважность импульсного сигнала
Представим себе, что мы готовимся к встрече Нового Года и нам просто необходимо сделать мигающую гирлянду. Поскольку мы не знаем, как заставить её мигать самостоятельно, сделаем гирлянду с кнопкой. Будем сами нажимать на кнопку, соединяя тем самым цепь гирлянды с источником питания и заставляя лампочки зажигаться.
Принципиальная схема гирлянды с ручным управлением будет выглядеть так:
Внешний вид макет
Собираем схему и проводим небольшой тест. Попробуем управлять гирляндой согласно нехитрому алгоритму:
- нажимаем на кнопку;
- ждем 1 секунду;
- отпускаем кнопку;
- ждем 2 секунды;
- переходим к пункту 1.
Это алгоритм периодического процесса. Нажимая на кнопку по алгоритму мы тем самым генерируем настоящий импульсный сигнал! Изобразим на графике его временную диаграмму.
У данного сигнала мы можем определить период повторения и частоту. Период повторения (T) — это отрезок времени, за который гирлянда возвращается в исходное состояние. На рисунке хорошо виден этот отрезок, он равен трем секундам. Величина обратная периоду повторения называется частотой периодического сигнала (F) . Частота сигнала измеряется в Герцах. В нашем случае:
F = 1/T = 1/3 = 0.33 Гц
Период повторения можно разбить на две части: когда гирлянда горит и когда она не горит. Отрезок времени, в течение которого гирлянда горит называется длительностью импульса (t) .
А теперь самое интересное! Отношение периода повторения (T) к длительности импульса (t) называется скважностью .
S = T / t
Скважность нашего сигнала равна S = 3/1 = 3. Скважность величина безразмерная.
В англоязычной литературе принят другой термин — коэффициент заполнения (Duty cycle) . Это величина, обратная скважности.
D = 1 / S = t / T
В случае нашей гирлянды коэффициент заполнения равен:
D = 1 / 3 = 0. 33(3) ≈ 33%
Этот параметр более нагляден. D = 33% означает, что треть периода занята импульсом. А, например, при D = 50% длительность высокого уровня сигнала на выходе таймера будет равна длительности низкого уровня.
2. Генерация импульсного сигнала при помощи микросхемы 555
Теперь попробуем заменить человека и кнопку, ведь мы не хотим весь праздник включать и выключать гирлянду каждые 3 секунды.
В качестве автоматического генератора импульсов используем очень известную микросхему семейства 555. Микросхема 555 — это генератор одиночных или периодических импульсов с заданными характеристиками. По-другому данный класс микросхем называют таймерами.
Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов.
Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим, именно в нем таймер будет непрерывно генерировать импульсы с заданными параметрами.
Для примера, подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так.
Принципиальная схема
Внешний вид макета
Примечание.
В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала. Делается это с помощью несложных формул, взятых из технической документации к микросхеме.
T = 1/F = 0.693*(Ra + 2*Rb)*C; (1)
t = 0.693*(Ra + Rb)*C; (2)
Ra = T*1.44*(2*D-1)/C; (3)
Rb = T*1.44*(1-D)/C. (4)
Здесь F — частота сигнала; T — период импульса; t — его длительность; Ra и Rb — искомые сопротивления. Исходя из этих формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления). Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%.
Чтобы обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые позволяют варьировать параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера!
Собственно, в предложенной выше схеме мы это уже и сделали. Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень.
Раз так, то нам нужно настроить сопротивления Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0.66, получаем:
Ra = 3*1.44*(2*0.66 — 1)/0.0001 = 13824 Ом
Rb = 3*1.44*(1-D)/0.0001 = 14688 Ом
На самом деле, если мы будет использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется поставить последовательно несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности можем добавить еще два резистора по 200 Ом.
В результате должно получиться что-то подобное:
В этой схеме используются резисторы на 15 КОм.
3. Подключение группы светодиодов к таймеру 555
Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду. В новой схеме пять светодиодов будут включаться на 0.5 сек каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку.
Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, используем биполярный транзистор, работающий с режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000.
Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельно соединенных светодиодов должен быть равен I = 20 мА*5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид:
100 мА = (9В-2В)/R;
отсюда R2 = 7В/0.1А = 70 Ом.
Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом. А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее.
Принципиальная схема
Внешний вид макета
Примечание. Конденсатор C2 в схеме можно не использовать.
Собираем схему, подключаем батарейку и наблюдаем за результатом. Если все работает как надо, закрепим полученные знания, сделав несколько забавных устройств.
Задания
- Генератор звука. В схеме гирлянды заменить группу светодиодов на пьезодинамик. Увеличить частоту звука, например, до 100 Гц. Если поднять частоту до 15 кГц, то можно будет отпугивать комаров!
- Железнодорожный светофор. Подключить к таймеру два светодиода таким образом, чтобы один соединялся с таймером катодом, а второй анодом. Установить частоту импульсов — 1 Гц.
Заключение
Как уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что большинству электронных устройств свойственны периодические процессы. Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже периодический, причем с изменяющимся коэффициентом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора основана на тактовом сигнале, имеющем очень точную частоту.
На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее!
Путь в радиолюбительство начинается, как правило, с попытки сборки несложных схем. Если сразу же после сборки схема начинает подавать признаки жизни, — мигать, пищать, щелкать или разговаривать, то путь в радиолюбительство почти открыт. Насчет «разговаривать», скорее всего, получится не сразу, для этого придется прочитать немало книг, спаять и наладить некоторое количество схем, может быть, сжечь большую или маленькую кучу деталей (лучше маленькую).
А вот мигалки и пищалки получаются практически у всех и сразу. И лучшего элемента, чем найти для этих опытов, просто не удастся. Для начала рассмотрим схемы генераторов, но перед этим обратимся к фирменной документации — DATA SHEET. Прежде всего, обратим внимание на графическое начертание таймера, которое показано на рисунке 1.
А на рисунке 2 показано изображение таймера из отечественного справочника. Здесь оно приведено просто для возможности сравнения обозначений сигналов у них и у нас, к тому же «наша» функциональная схема показана более подробно и понятно.
Рисунок 1.
Рисунок 2.
Одновибратор на базе 555
На рисунке 3 изображена схема одновибратора. Нет, это не половинка мультивибратора, хотя сам он вырабатывать колебания не может. Ему требуется посторонняя помощь, пусть даже небольшая.
Рисунок 3. Схема одновибратора
Логика действия одновибратора достаточно проста. На вход запуска 2 подается кратковременный импульс низкого уровня, как показано на рисунке. В результате на выходе 3 получается прямоугольный импульс длительностью ΔT = 1,1*R*C. Если подставить в формулу R в омах, а C в фарадах, то время T получится в секундах. Соответственно при килоомах и микрофарадах результат будет в миллисекундах.
А на рисунке 4 показано, как сформировать запускающий импульс с помощью простой механической кнопки, хотя это вполне может быть полупроводниковый элемент, — микросхема или транзистор.
Рисунок 4.
В целом одновибратор (иногда называют моновибратор, а у бравых военных в ходу было слово кипп-реле) работает следующим образом. При нажатии на кнопку, импульс низкого уровня на выводе 2 приводит к тому, что на выходе таймера 3 устанавливается высокий уровень. Неспроста этот сигнал (вывод 2) в отечественных справочниках называется запуском.
Транзистор, соединенный с выводом 7 (DISCHARGE) в этом состоянии закрыт. Поэтому, ничто не мешает заряжаться времязадающему конденсатору C. Во времена кипп-реле, конечно, никаких 555 не было, все делалось на лампах, в лучшем случае на дискретных транзисторах, но алгоритм работы был такой же.
Пока конденсатор заряжается, на выходе удерживается напряжение высокого уровня. Если в это время на вход 2 подать еще импульс, состояние выхода не изменится, длительность выходного импульса таким образом уменьшить или увеличить нельзя, повторного запуска одновибратора не произойдет.
Другое дело, если подать импульс сброса (низкий уровень) на 4 вывод. На выходе 3 сразу же появится низкий уровень. Сигнал «сброс» имеет высший приоритет, и поэтому может быть подан в любой момент.
По мере заряда напряжение на конденсаторе возрастает, и, в конце концов, достигает уровня 2/3U. Как было рассказано в предыдущей статье, это есть уровень срабатывания, порог, верхнего компаратора, который приводит к сбросу таймера, что является окончанием выходного импульса.
На выводе 3, появляется низкий уровень и в этот же момент открывается транзистор VT3, который разряжает конденсатор C. На этом формирование импульса заканчивается. Если после окончания выходного импульса, но не раньше, подать еще один запускающий импульс, то на выходе сформируется выходной, такой же, как и первый.
Конечно, для нормальной работы одновибратора запускающий импульс должен быть короче, чем импульс, формирующийся на выходе.
На рисунке 5 показан график работы одновибратора.
Рисунок 5. График работы одновибратора
Как можно использовать одновибратор?
Или как говаривал кот Матроскин: «А какая от этого одновибратора польза будет?» Можно ответить, что достаточно большая. Дело в том, что диапазон выдержек времени, который можно получить от этого одновибратора, может достигать не только несколько миллисекунд, но и доходить до нескольких часов. Все зависит от параметров времязадающей RC цепочки.
Вот, пожалуйста, почти готовое решение для освещения длинного коридора. Достаточно дополнить таймер исполнительным реле или нехитрой тиристорной схемой, а в концах коридора поставить пару кнопок! Кнопку нажал, прошел коридор, и не надо заботиться о выключении лампочки. Все произойдет автоматически по окончании выдержки времени. Ну, это просто информация к размышлению. Освещение в длинном коридоре, конечно, не единственный вариант применения одновибратора.
Как проверить 555?
Проще всего спаять несложную схему, для этого почти не понадобится навесных деталей, если не считать таковыми единственный переменный резистор и светодиод для индикации состояния выхода.
У микросхемы следует соединить выводы 2 и 6 и подать на них напряжение, изменяемое переменным резистором. К выходу таймера можно подсоединить вольтметр или светодиод, конечно же, с ограничительным резистором.
Но можно ничего и не паять, более того, провести опыты даже при «наличии отсутствия» собственно микросхемы. Подобные исследования можно проделать с помощью программы — симулятора Multisim. Конечно, такое исследование очень примитивно, но, тем не менее, позволяет познакомиться с логикой работы таймера 555. Результаты «лабораторной работы» показаны на рисунках 6, 7 и 8.
Рисунок 6.
На этом рисунке можно увидеть, что входное напряжение регулируется переменным резистором R1. Около него можно рассмотреть надпись «Key = A», говорящую о том, что величину резистора можно изменять, нажимая клавишу A. Минимальный шаг регулировки 1%, вот только огорчает, что регулирование возможно лишь в сторону увеличения сопротивления, а уменьшение возможно только «мышкой».
На этом рисунке резистор «уведен» до самой «земли», напряжение на его движке близко к нулю (для наглядности измеряется мультиметром). При таком положении движка на выходе таймера высокий уровень, поэтому выходной транзистор закрыт, и светодиод LED1 не светится, о чем говорят его белые стрелки.
На следующем рисунке показано, что напряжение несколько увеличилось.
Рисунок 7.
Но увеличение происходило не просто так, а с соблюдением некоторых границ, а, именно, порогов срабатывания компараторов. Дело в том, что 1/3 и 2/3, если выразить в десятичных дробях в процентах будут 33,33… и 66,66… соответственно. Именно в процентах показана введенная часть переменного резистора в программе Multisim. При напряжении питания 12В это получится 4 и 8 вольт, что достаточно удобно для исследования.
Так вот, на рисунке 6 показано, что резистор введен на 65%, а напряжение на нем 7,8В, что несколько меньше расчетных 8 вольт. При этом светодиод на выходе погашен, т.е. на выходе таймера до сих пор высокий уровень.
Рисунок 8.
Дальнейшее незначительное увеличение напряжения на входах 2 и 6, всего на 1 процент (меньше не дают возможности программы) приводит к зажиганию светодиода LED1, что и показано на рисунке 8, — стрелочки возле светодиода приобрели красный оттенок. Такое поведение схемы говорит о том, что симулятор Multisim работает достаточно точно.
Если продолжить увеличивать напряжение на выводах 2 и 6, то никакого изменения на выходе таймера не произойдет.
Генераторы на таймере 555
Диапазон частот, генерируемый таймером, достаточно широк: от самой низкой частоты, период которой может достигать нескольких часов, до частот в несколько десятков килогерц. Все зависит от элементов времязадающей цепи.
Если не требуется строго прямоугольная форма сигнала, то можно сгенерировать частоту до нескольких мегагерц. Иногда такое вполне допускается, — форма не важна, но импульсы присутствуют. Чаще всего такая небрежность по поводу формы импульсов допускается в цифровой технике. Например, счетчик импульсов реагирует на фронт или спад импульса. Согласитесь, в этом случае «прямоугольность» импульса никакого значения не имеет.
Генератор импульсов формы меандр
Один из возможных вариантов генератора импульсов формы меандр показан на рисунке 9.
Рисунок 9. Схема генераторов импульсов формы меандр
Временные диаграммы работы генератора показаны на рисунке 10.
Рисунок 10. Временные диаграммы работы генератора
Верхний график иллюстрирует сигнал на выходе (вывод 3) таймера. А на нижнем графике показано, как изменяется напряжение на времязадающем конденсаторе.
Все происходит точно так же, как уже было рассмотрено в схеме одновибратора показанной на рисунке 3, только не используется запускающий одиночный импульс на выводе 2.
Дело в том, что при включении схемы на конденсаторе C1 напряжение равно нулю, именно оно и переведет выход таймера в состояние высокого уровня, как показано на рисунке 10. Конденсатор C1 начинает заряжаться через резистор R1.
Напряжение на конденсаторе возрастает по экспоненте до тех пор, пока не достигнет порога верхнего порога срабатывания 2/3*U. В результате таймер переключается в нулевое состояние, поэтому конденсатор C1 начинает разряжаться до нижнего порога срабатывания 1/3*U. По достижении этого порога на выходе таймера устанавливается высокий уровень и все начинается сначала. Формируется новый период колебаний.
Здесь следует обратить внимание на то, что конденсатор C1 заряжается и разряжается через один и тот же резистор R1. Поэтому время заряда и разряда равны, а, следовательно, форма колебаний на выходе такого генератора близка к меандру.
Частота колебаний такого генератора описывается очень сложной формулой f = 0,722/(R1*C1). Если сопротивление резистора R1 при расчетах указать в Омах, а емкость конденсатора C1 в Фарадах, то частота получится в Герцах. Если же в этой формуле сопротивление будет выражено в килоомах (КОм), а емкость конденсатора в микрофарадах (мкФ) результат получится в килогерцах (КГц). Чтобы получился генератор с регулируемой частотой, то достаточно резистор R1 заменить переменным.
Генератор импульсов с регулируемой скважностью
Меандр, конечно, хорошо, но иногда возникают ситуации, требующие регулирования скважности импульсов. Именно так осуществляется регулирование частоты вращения двигателей постоянного тока (ШИМ регуляторы), это которые с постоянным магнитом.
Меандром называют прямоугольные импульсы, у которых время импульса (высокий уровень t1) равно времени паузы (низкий уровень t2). Такое название в электронику пришло из архитектуры, где меандром называют рисунок кирпичной кладки. Суммарное время импульса и паузы называют периодом импульса (T = t1 + t2).
Скважность и Duty cycle
Отношение периода импульса к его длительности S = T/t1 называется скважностью. Это величина безразмерная. У меандра этот показатель равен 2, поскольку t1 = t2 = 0,5*T. В англоязычной литературе вместо скважности чаще применяется обратная величина, — коэффициент заполнения (англ. Duty cycle) D = 1/S, выражается в процентах.
Если несколько усовершенствовать генератор, показанный на рисунке 9, можно получить генератор с регулируемой скважностью. Схема такого генератора показана на рисунке 11.
Рисунок 11.
В этой схеме заряд конденсатора C1 происходит по цепи R1, RP1, VD1. Когда напряжение на конденсаторе достигнет верхнего порога 2/3*U, таймер переключается в состояние низкого уровня и конденсатор C1 разряжается по цепи VD2, RP1, R1 до тех пор, пока напряжение на конденсаторе не упадет до нижнего порога 1/3*U, после чего цикл повторяется.
Изменение положения движка RP1 дает возможность регулировать длительность заряда и разряда: если длительность заряда возрастает, то уменьшается время разряда. При этом период следования импульса остается неизменным, меняется только скважность, или коэффициент заполнения. Ну, это как кому удобней.
На основе таймера 555 можно сконструировать не только генераторы, но и еще много полезных устройств, о которых будет рассказано в следующей статье. Кстати, существуют программы — калькуляторы для расчета частоты генераторов на таймере 555, а в программе — симуляторе Multisim для этих целей есть специальная закладка.
Борис Аладышкин,
Продолжение статьи:
Поделиться ссылкой: |
|
Существует довольно много схем генераторов импульсов. Многие радиолюбители их переделывают с целью улучшения характеристик. Для тех, кому нужна простая, но функциональная схема генератора прямоугольных импульсов с регулировкой частоты и скважности в довольно широких пределах схема представлена ниже. Кроме того эту схему можно использовать как ШИМ для регулировки мощности нагрузки или регулятор оборотов двигателя, увеличив мощность выходного каскада. У меня такая схема применяется для регулировки оборотов лодочного электромотора, который потребляет 30 ампер. Схема генератора основана на одной из самых распространенных микросхем — таймер NE555. Ее отечественный и импортный аналоги КР1006ВИ1 и LM555.Рассмотрим работу схемы более подробно. Сама схема генератора организована в соответствии со стандартом по даташиту. Резистором R2 регулируется частота импульсов, а с помощью R3 ширина. При этом диапазон регулировки периода длительности лежит в пределах 10-100 микросекунд, а период следования в пределах 50-100 микросекунд. Кроме того эти параметры можно изменять с помощью задающего конденсатора C1. Электролитический конденсатор C3 сглаживает пульсации от источника питания, если же для питания используется аккумулятор или батарейки, то необходимость в нем отпадает и его можно не устанавливать. После сборки ни требуется, ни какой наладки, и в случае безошибочной сборки схемы она начинает работать сразу, как только будет подано питание. Питание генератора то же можно установить в довольно широких пределах без стабилизатора. Оно составляет от 4,5 вольт до 16. Но есть все-таки один недостаток, при изменении напряжения питания немного изменяется частота, если это критично для применяемой схемы, то следует поставить стабилизатор. Для осуществления более точной и плавной регулировки выходных параметров резисторы R2 и R3 следует использовать многооборотные с линейной характеристикой. Максимальный выходной ток таймера составляет 250 миллиампер. Если этого недостаточно, то для умощнения выхода целесообразно установить мощный полевой транзистор рассчитанный на необходимый ток. Они характеризуются малым проходным сопротивление в открытом состоянии, порядка нескольких млОм. Что позволяет при малых размерах коммутировать мощную нагрузку до сотен ампер. И кроме того требуется малое управляющее напряжение. В случае если нагрузка будет индуктивной, например коллекторный двигатель, на выходе нужно установить быстродействующий диод Шоттки в обратной полярности рассчитанный на выходной ток.
Анекдот: Вовочка подходит к бабушке и говорит: |
png»> |
Генератор импульсов сигналов NE555, модуль Arduino
Генератор импульсов сигналов NE555, модуль Arduino используется в проектах на микроконтроллерах для регулирования параметров выходных импульсов в широких приделах или как задающий генератор в настройке и тестировании различного электронного оборудования. Модуль генерирует последовательность прямоугольных импульсов, определяемых RC цепочкой.
Для использования модуля нужно создать на его основе макет – подключить питание и подключить к контроллеру или другому электронному устройству. После подачи на модуль напряжения питания на корпусе платы должен загореться светодиод, обозначенный D1. Частота выходных прямоугольных импульсов регулируется с помощью ручки потенциометра (настроечного резистора), обозначенного RP1, в диапазоне 1 Гц – 100 кГц. Другие параметры выходного сигнала не регулируются. Амплитуда выходных импульсов пропорциональна напряжению источника питания (4,5 – 18 В).
Генератор импульсов сигналов NE555, модуль Arduino имеет один 3-х контактный штыревой разъем с расстоянием между контактами 2,54 мм (совместимо с Arduino).
Обозначение контактов:
- GND – общий контакт;
- OUT – выходной сигнал;
- VCC – напряжение питания.
Питание модуля осуществляется или от Arduino контроллера, или от внешнего источника питания. Напряжение питания модуля 4,5 – 18 В постоянного тока. Ток потребления около 225 мА. Выходной ток генератора не превышает 200 мА, поэтому для управления более мощной нагрузкой необходим усилитель тока выходного каскада.
Характеристики:
генератор собран на таймере: NE555;
модуль совместим: с Arduino;
форма генерируемых импульсов: прямоугольные импульсы;
регулировка частоты выходных импульсов в диапазоне: 1 Гц – 100 кГц;
напряжение питания: 4,5 – 18 В постоянного тока;
потребляемый ток: 225 мА;
выходной ток: 200 мА;
рабочая температура: 0 – 70°C;
размеры: 29 х 12 х 10 мм;
вес: 3 г.
Даташит
Автор: Павел Назаров
Конструкции на интегральном таймере 555
Для начинающих радиолюбителей переход от создания простейших схем с применением резисторов, конденсаторов, диодов к созданию печатных плат с различными микросхемами, означает переход на новый уровень мастерства. Однако при этом схемы основываются на базе простейших микросхем, одной из которых является микросхема интегрального таймера NE555.Изучение любой микросхемы следует начинать с фирменной документации — DATA SHEET. Для начала следует обратить внимание на расположение выводов и их назначение для таймер NE555 (рисунок 1). Иностранные компании, как правило, не предоставляют принципиальные схемы своих устройств. Однако микросхема таймера NE555 является достаточно популярной и имеет свой отечественный аналог КР1006ВИ1, схема которого представлена на рисунке 2.
Рисунок 1
Рисунок 2
Далее рассмотрим простейшие схемы на базе микросхемы интегрального таймера NE555.
1. Одновибратор на базе NE555 (рисунок 3).
Рисунок 3
Работа схемы: на вывод 2 микросхемы подается импульс низкого уровня. На выходе 3 микросхемы получается прямоугольный импульс, длительность которого определяется времязадающей RC-цепочкой (ΔT = 1,1*R*C). Сигнал высокого уровня на выводе 3 формируется до тех пор, пока не зарядится времязадающий конденсатор С до напряжения 2/3Uпит. Диаграммы работы одновибратора показаны на рисунке 4. Для формирования импульса запуска работы микросхемы можно воспользоваться механической кнопкой (рисунок 5) или полупроводниковым элементом.
Рисунок 4
Рисунок 5
Назначение схемы одновибратора на базе микросхемы интегрального таймера NE555 – создание временных выдержек от нескольких миллисекунд до нескольких часов.
2 Генераторы на базе интегрального таймера NE555
Генератор на базе NE555 способен вырабатывать импульсы с максимальной частотой в несколько килогерц для прямоугольных импульсов и с частотой в несколько мегагерц для импульсов не прямоугольной формы. Частота, как и в случае с одновибратором, будет определяться параметрами времязадающей цепи.
2.1 Генератор импульсов формы меандр на базе NE555
Схема такого генератора представлена на рисунке 6, а временные диаграммы работы генератора на рисунке 7. Отличительной особенностью генератора импульсов формы меандр является то, что время импульса и время паузы равны между собой.
Рисунок 6
Рисунок 7
Принцип действия схемы аналогичен схеме одновибратора. Исключение составляет лишь отсутствующий импульс запуска работы микросхемы таймера на выводе 2. Частота вырабатываемых импульсов определяется выражением f = 0,722/(R1*C1).
2.2 Генератор импульсов с регулируемой скважностью на базе NE555
Регулирование скважности вырабатываемых импульсов позволяет строить на базе NE555 широтно-импульсные генераторы. Скважность определяется отношением времени импульса к длительности импульса. Обратной величиной скважности является коэффициент заполнения (англ. Duty cycle). Схема генератора импульсов с регулируемой скважностью на базе NE555 представлена на рисунке 8.
Рисунок 8
Принцип работы схемы: время импульса и время паузы определяется временем заряда конденсатора С1. Сигнал высокого уровня формируется при заряде С1 по цепи R1-RP1-VD1. При достижении напряжения 2/3Uпит таймер переключается и конденсатор С1 разряжается по цепи VD2-RP1-R1. По достижению 1/3Uпит таймер снова переключается и цикл повторяется.
Регулировка времени заряда и разряда конденсатора С1 осуществляется переменным резистором RP1. При этом происходит изменение скважности выходных импульсов при постоянном периоде следования импульса.
Для проверки работоспособности микросхемы интегрального таймера NE555 можно собрать схему, представленную на рисунке 9 (схема в симуляторе Multisim).
Рисунок 9
Регулировка выходного напряжения осуществляется переменным резистором R1. На приведенной схеме достаточно просто разобраться в алгоритме работы таймера. При величине питающего напряжения 12В опорное значение напряжения для переключения микросхемы составляет 4В и 8В. При напряжении 7,8В (Рисунок 10) на выходе таймера – высокий уровень сигнала (светодиод LED1 не горит). При достижении 8В (рисунок 11) произойдет переключение микросхемы – загорается светодиод LED1. Дальнейшее увеличение напряжение никаких изменений в работе таймера не вызовет.
Всего комментариев: 0
Генераторы на интегральном таймере
Генераторы электрических сигналов составляют довольно многочисленную группу устройств, входящих в состав медицинских приборов и аппаратов. Прежде всего, это генераторы стимулирующих сигналов для различных типов электрофизиологической аппаратуры, воздействующей на биологические объекты колебаниями различной формы и интенсивности. Кроме того, генераторы используются для обеспечения работы и создания требуемых режимов функционирования различных электронных схем медицинской аппаратуры.Рисунок 1 – Внутренняя структура таймера 1006ВИ1
Интегральный таймер-это интегральная микросхема, предназначенная специально для создания генераторов напряжения прямоугольной формы. Внутренняя структура таймера 1006ВИ1 (аналог микросхемы типа 555) показана на рис. 1. Два компаратора DA1 и DA2 управляют работой RS – триггера, причем на инвертирующий вход DA1 подается напряжение с резистивного делителя , равное 2/3Uп. На неинвертирующий вход DA2 подается напряжение , равное 1/3Uп. Транзистор VT1 работает в ключевом режиме, а элемент DD2 выполняет роль буфера. Простейший генератор на таймере показан на рис.2.
Рисунок 2 – Генератор прямоугольных импульсов на таймере
Рисунок 3 – Эпюры напряжений генератора на таймере
При включении напряжения питания емкость С разряжена, триггер находится в состоянии «0», транзистор VT1 заперт и на выходе формируется напряжение высокого уровня. Начинается заряд конденсатора от источника питания через резисторы Ra и Rb (Рис.3). При достижении напряжения на емкости величины 2/3Uп , срабатывает компаратор DA1 , триггер переходит в состояние «1» и транзистор VT1 входит в режим насыщения. На выходе появляется напряжение низкого уровня, а конденсатор начинает разряжаться через резистор Rb и транзисторный ключ VT1. Как только напряжение на емкости достигает значения 1/3Uп срабатывает компаратор DA2 и переводит триггер в состояние «0». Ключ VT1 запирается и на выходе вновь формируется напряжение высокого уровня. Схема переходит в периодический режим работы, причем период колебаний определяется как
Коэффициент нестабильности генератора не превышает 1%, причем напряжение может изменяться в пределах от 4,5 до 16В с сохранением неизменной частоты колебаний. Интегральный таймер оказался очень удачным функциональным элементом и к настоящему времени разработано огромное количество схем на его основе.
Рисунок 4 – Генератор с регулируемой длительностью импульсов
На рис. 4 представлен генератор, в котором за счет включения диодов VD1 и VD2 разделены цепи заряда и разряда емкости. Таким образом можно раздельно регулировать интервалы t1 и t2 (рис.3).При таком способе регулировки одновременно с изменением скважности изменяется и частота колебаний.
Рисунок 5 – Генератор с регулируемой скважностью импульсов
В схеме рис.5 интервалы t1 и t2 регулируются таким образом, что их сумма, а значит и частота колебаний, остается практически неизменной. Следовательно, скважность выходных импульсов можно регулировать, не меняя их частоты.
Рисунок 6 – Ждущий мультивибратор на таймере
При конструировании электронных схем часто приходится решать задачу формирования одиночного управляющего сигнала , длительность которого устанавливается внешней RC-цепью. Для этих целей используются ждущие мультивибраторы или одновибраторы (ОВТ). Схема ОВТ на таймере представлена на рис.6.
Рисунок 7 – Эпюры напряжений ОВТ
При положительном входном напряжении, большем 1/3Uп, RS-триггер таймера удерживает транзистор VT1 в насыщенном состоянии и напряжение на времязадающем конденсаторе близко к нулю. Выходное напряжение также близко к нулю (рис.6). При подаче на триггерный вход напряжение менее 1/3Uп , компаратор DA2 (рис.1) срабатывает и переключает триггер, транзистор VT1 закрывается и на выходе устанавливается высокий уровень напряжения. Начинается заряд емкости. Как только напряжение на емкости достигает значения 2/3Uп, срабатывает DA1, триггер таймера переключается в исходное состояние и емкость быстро разряжается через транзисторный ключ. Длительность импульса t = 1,1 CRa.
28-02-2007 Принципиальная электрическая схема генератора прямоугольных импульсов показана на рисунке. Используя ШИМ-регулятор KA7500В (TL494 немного хуже, так как нет 100% регулировки ШИМ), можно изготовить неплохой генератор прямоугольных импульсов (20 Гц…200 кГц) с регулировкой скважности 0…100%. При этом можно использовать две независимых схемы коммутации с применением схемы с общим эмиттером или общим коллектором (до 250 мА и 32 В), или параллельное включение (до 500 мА). Если вывод 13 переключить с «земляного» на 14-й (стабилизированное 5 В), то выходы будут включаться попеременно. Согласно документации, КА7500В должна работать при напряжении от 7 до 42 В и токе на каждом выходе до 250 мА. Однако у автора при напряжении выше 35 В микросхемы «стреляли». По току микросхемы на верхних пределах не проверялись из-за боязни сжечь их. Имевшиеся экземпляры микросхем работали и в диапазоне частот от долей герц до 500…1000 кГц (в верхнем диапазоне ШИМ, естественно, хуже из-за увеличения общей доли времени на переключение компараторов и выходных ключей). Сопротивление резистора на входе генератора должно быть в пределах от 1 кОм до 100 МОм, но изменение частоты нелинейное. А вот изменение частоты от емкости на входе линейное, по крайней мере, до 10 мкФ большие значения автор не пробовал). Точность установки или больший диапазон (от долей герц до 500…1000 кГц) можно расширить, применив большее количество диапазонов.
|
28-02-2007 Принципиальная электрическая схема генератора прямоугольных импульсов показана на рисунке. Используя ШИМ-регулятор KA7500В (TL494 немного хуже, так как нет 100% регулировки ШИМ), можно изготовить неплохой генератор прямоугольных импульсов (20 Гц…200 кГц) с регулировкой скважности 0…100%. При этом можно использовать две независимых схемы коммутации с применением схемы с общим эмиттером или общим коллектором (до 250 мА и 32 В), или параллельное включение (до 500 мА). Если вывод 13 переключить с «земляного» на 14-й (стабилизированное 5 В), то выходы будут включаться попеременно. Согласно документации, КА7500В должна работать при напряжении от 7 до 42 В и токе на каждом выходе до 250 мА. Однако у автора при напряжении выше 35 В микросхемы «стреляли». По току микросхемы на верхних пределах не проверялись из-за боязни сжечь их. Имевшиеся экземпляры микросхем работали и в диапазоне частот от долей герц до 500…1000 кГц (в верхнем диапазоне ШИМ, естественно, хуже из-за увеличения общей доли времени на переключение компараторов и выходных ключей). Сопротивление резистора на входе генератора должно быть в пределах от 1 кОм до 100 МОм, но изменение частоты нелинейное. А вот изменение частоты от емкости на входе линейное, по крайней мере, до 10 мкФ большие значения автор не пробовал). Точность установки или больший диапазон (от долей герц до 500…1000 кГц) можно расширить, применив большее количество диапазонов.
|
ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ ЧАСТОТЫ
Как-то попросили меня сделать простую мигалку, чтоб реле управлять или маломощной лампочкой мигать. Собирать простейший мультивибратор, будь то симметричный или не симметричный, как-то банально, да и схема нестабильна и не совсем надежна, при том что работать она должна при напряжении 24 в грузовом автомобиле, да и еще размеры иметь не слишком большие.
Схема
Поиск по сети схемы, решил по даташиту включить популярную микросхему NE555N.Прецизионный таймер, стоимость которого очень мала — порядка 10 рубликов за микросхему в дип корпусе! Нам нужен какой-то ключ, которым и будет управлять сам таймер.
Можно взять обычный транзистор, но он будет греться из-за больших потерь из-за больших падений на переходах — поэтому взял высоковольтный полевой транзистор на несколько ампер тока, такому ключу при токе даже в 2 ампера не потребуется радиатор вообще.
Сам таймер 555 имеет ограничения в питающем напряжении — порядок 18 вольт, хотя уже и при 15 может смело вылететь, поэтому собираем цепочку из ограничительного резистора и стабилитрона с фильтрующим конденсатором по входу питания!
В схеме введен регулятор, дабы можно было вращать ручку регулятора изменения частоту импульсов вспышки лампочки или срабатывания реле. Если же регулировка не требуется, можно подстроить частоту на нужные, замерить сопротивление и впаять потом готовое. На приведённой выше — сразу 2 регулятора, меняется скважность (отношение включенного состояния выхода к выключенному). Если требуется соотношение 1: 1 — убираем всё кроме одного переменного резистора.
Видео
Часть элементов выполнена в дип корпусах, часть в смд — для компактности и лучшей компоновки в целом. Схема генератора импульсов заработала после включения практически сразу, осталось только подстроить под нужную частоту.Плату желательно залить термоклеем или поставить в корпус из пластика, дабы автовладельцы не догадались ее прикрутить напрямую в корпус или положить на что-то металлическое.
Регулировка частоты и скважности на 555. Генератор прямоугольных импульсов на NE555
555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модулей, реле времени, пороговых устройств и прочих узлов электронной аппаратуры.В качестве примеров микросхемы-таймера можно указать функции восстановления цифрового сигнала, искажения в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, преобразователи мощности, устройства широтно-импульсного, регулирования таймеры и др.
В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше, микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками.
Схема включения в астабильном режиме. На рисунке ниже это показано.
Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого сигнала называется обозна буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. т = т1 + т2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1 / t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0,693 (R1 + R2) C;
t2 = 0,693R2C;
С теорией закончили так что приступим к практике.
Разработал простенькую схему с доступными всем деталями.
Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты.Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности (можно вообще исключить). Присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока (можно использовать также светодиод со встроенным ограничителем тока). Собственно это выглядит все, далее покажу как рабочее устройство.
Вид сверху, видны переключатели рабочей частоты.
Снизу прикрепил памятку.
Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).
Сбоку выключатель питания и выход сигнала.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
IC1 | Программируемый таймер и осциллятор | NE555 | 1 | Поиск в LCSC | В блокнот | |
Т1 | Биполярный транзистор | КТ805А | 1 | Поиск в LCSC | В блокнот | |
D1 | Выпрямительный диод | 1N4148 | 1 | Поиск в LCSC | В блокнот | |
С1 | Конденсатор | 1 нФ | 1 | Поиск в LCSC | В блокнот | |
С2 | Конденсатор | 100 нФ | 1 | Поиск в LCSC | В блокнот | |
С3 | Конденсатор | 1000 нФ | 1 | Поиск в LCSC | В блокнот | |
C4 | Электролитический конденсатор | 100 мкФ | 1 | Поиск в LCSC | В блокнот | |
R1 | Резистор | 500 Ом | 1 |
Электрический импульс — это кратковременный всплеск напряжения или силы тока. То есть это такое событие в цепи, при котором напряжение резко повышается в несколько раз, а затем так же резко падает к исходной величине. Самый понятный пример — электрический импульс, заставляющий наше сердце биться. Самое же большое количество импульсов у нас в нервных клетках головного и спинного мозга возникает. Мы мыслим и решаем уроки электрический импульсам!
А что в электронике? В электронике импульсы применяются повсеместно. Например, в микроконтроллерах или даже в полноценных процессорах домашнего компьютера электрические импульсы задают ритм его работы.Они еще называются тактовыми, или синхро-импульсами. Порой быстродействие вычислительных машин сравнивают именно при помощи значений тактовой частоты.
Все данные внутри электронных устройств тоже передаются при помощи импульсов. Наш интернет, проводной и беспроводной, сотовая связь и даже пульт от телевизора — все используют импульсный сигнал. Попробуем выполнить несколько заданий и на собственном опыте понять особенности генерации импульсов. А начнем мы со знакомства с их важными характеристиками.
1. Период и скважность импульсного сигнала
Представим себе, что мы готовимся к встрече Нового Года и нам просто необходимо сделать мигающую гирлянду. Мы не знаем, как заставить ее мигать самостоятельно, сделаем гирлянду с помощью кнопки. Будем сами нажимать на кнопку, соединяя тем цепь гирлянды с помощью устройства питания и заставляя лампочки зажигаться.
Принципиальная схема гирлянды с ручным управлением будет выглядеть так:
Внешний вид макет
Собираем схему и проводим небольшой тест.Попробуем управлять гирляндой согласно нехитрому алгоритму:
- нажимаем на кнопку;
- ждем 1 секунду;
- отпускаем кнопку;
- ждем 2 секунды;
- переходим к пункту 1.
Это алгоритм периодического процесса. Нажимая на кнопку по алгоритму мы тем генерируем настоящий импульсный сигнал! Изобразим на графике его временную диаграмму.
У данного сигнала мы можем определить период повторения и частоту. Период повторения (T) — это отрезок времени, за который гирлянда возвращается в исходное состояние. На рисунке хорошо виден этот отрезок, он равен трем секундам. Величина обратная периоду повторения называется период периодического сигнала (F) . Частота сигнала измеряется в Герцах. В нашем случае:
F = 1 / T = 1/3 = 0,33 Гц
Период повторения можно разбить на две части: когда гирлянда горит и когда она не горит. Отрезок времени, в течение которого гирлянда горит называется длительностью импульса (t) .
А теперь самое интересное! Отношение повторения периода (T) к длительности импульса (t) называется скважностью .
S = Т / т
Скважность нашего сигнала равна S = 3/1 = 3. Скважность величины безразмерная.
В русскоязычной литературе принят другой термин — коэффициент заполнения (Продолжительность включения) . Это величина, обратная скважины.
D = 1 / S = т / т
В случае нашей гирлянды коэффициент заполнения равен:
D = 1/3 = 0.33 (3) ≈ 33%
Этот параметр более нагляден. D = 33% означает, что третьем периоде занята импульсом. А, например, при D = 50% длительность высокого уровня сигнала на выходе таймера будет равна длительности низкого уровня.
2. Генерация импульсного сигнала при помощи микросхемы 555
Теперь попробуем заменить человека и кнопку, потому что мы не хотим весь праздник и выключать гирлянду каждые 3 секунды.
В качестве автоматического генератора спецсов используем очень известную микросхему семейства 555.Микросхема 555 — это генератор одиночных или периодических сигналов с заданными характеристиками. По-другому данному классу микросхем называют таймерами.
Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов.
Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим.
Для примера подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так.
Принципиальная схема
Внешний вид макета
Примечание.
В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала.Делается это с помощью несложных формул, взятых из технической кладки микросхеме.
T = 1 / F = 0,693 * (Ra + 2 * Rb) * C; (1)
t = 0,693 * (Ra + Rb) * C; (2)
Ra = T * 1,44 * (2 * D-1) / C; (3)
Rb = Т * 1,44 * (1-Д) / С. (4)
Здесь F — частота сигнала; Т — период импульса; т — его длительность; Ra и Rb — искомые сопротивления. Исходя из этой формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления).Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%.
обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые можно включить в параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера!
Собственно, в предложенной выше схеме мы это уже и сделали.Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень.
Раз так, то нам нужно настроить сопротивление Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0,66, получаем:
Ra = 3 * 1,44 * (2 * 0,66 — 1) /0,0001 = 13824 Ом
Rb = 3 * 1,44 * (1-D) /0,0001 = 14688 Ом
На самом деле, если мы будем использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется установить несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности добавить еще два резистора по 200 Ом.
В результате должно получиться что-то подобное:
В этой схеме используются резисторы на 15 КОм.
3. Подключение группы светодиодов к таймеру 555
Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду.В новой схеме пять светодиодов будут включаться на 0,5 сек в каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку.
Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, использовать биполярный транзистор, работающий в режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000.
Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельных светодиодов должен быть равен I = 20 * 5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид:
100 мА = (9В-2В) / R;
отсюда R2 = 7В / 0.1А = 70 Ом.
Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом.А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее.
Принципиальная схема
Внешний вид макета
Примечание. Конденсатор C2 в схеме можно не использовать.
Собираем схему, подключаем батарейку и наблюдаем за результатом. Если все работает как надо, закрепим полученные знания, сделав несколько забавных устройств.
Задания
- Генератор звука.В схеме гирлянды заменить группу светодиодов на пьезодинамик. Увеличить частоту звука, например, до 100 Гц. Если поднять частоту до 15 кГц, то можно будет отпугивать комаров!
- Железнодорожный светофор. Подключить к таймеру два светодиода таким образом, чтобы один соединялся с таймером катодом, а второй анодом. Установить частоту импульсов — 1 Гц.
Заключение
Как уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что периодству электронных устройств свойственны процессы.Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже с изменяющимся периодом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора на тактовом сигнале, имеющем очень точную частоту.
На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее!
Путь в радиолюбительство начинается, как правило, с попытки сборки несложных схем.Если сразу же после сборки схема начинает подавать признаки жизни, мигать, пищать, щелкать или разговаривать, то путь в радиолюбительство почти открыт. Насчет «разговаривать», скорее всего, получится не сразу, для этого придется прочитать немало книг, спаять и наладить некоторое количество, может быть, сжечь большую или маленькую кучу деталей (лучше маленькую).
А вот мигалки и пищалки получаются практически у всех и сразу. И лучший элемент, чем найти для этих опытов, просто не удастся.Для начала рассмотрим схемы генераторов, но перед этим обратимся к фирменной документации — ПАСПОРТ. Прежде всего, обратим внимание на графическое начертание таймера, которое показано на рисунке 1.
А на рисунке 2 показано изображение таймера из отечественного справочника. Здесь оно приведено просто для возможности обозначения сигналов у них и у нас, к тому же «наша» функциональная схема более подробно и понятно.
Рисунок 1.
Рисунок 2.
Одновибратор на базе 555
На рисунке 3 изображена схема одновибратора. Нет, это не половинка мультивибратора, хотя сам он вырабатывать колебания не может. Ему требуется посторонняя помощь, пусть даже небольшая.
Рисунок 3. Схема одновибратора
Логика действия одновибратора достаточно проста. На вход запуска 2 подается кратковременный импульс низкого уровня, как показано на рисунке. В результате на выходе 3 получается прямоугольный импульс длительностью ΔT = 1,1 * R * C.Если подставить в формулу R в омах, а C в фарадах, то время T получится в секундах. Соответственно при килоомах и микрофарадах результат будет в миллисекундах.
А на рисунке 4 показано, как сформировать запускающий импульс с помощью простой механической кнопки, хотя это вполне может быть полупроводниковый элемент, микросхема или транзистор.
Рисунок 4.
В целом одновибратор (иногда называют моновибратор, а у бравых военных в ходу было слово кипп-реле) работает следующим образом.При нажатии на кнопку, импульс низкого уровня на выводе 2 приводит к тому, что на выходе таймера 3 устанавливается высокий уровень. Неспроста этот сигнал (вывод 2) в отечественных справочниках называется запуском.
Транзистор, соединенный с выводом 7 (РАЗРЯД) в этом состоянии закрыт. Поэтому, ничто не мешает заряжаться времязадающему конденсатору C. Во времена кипп-реле, конечно, никаких 555 не было, все делалось на лампах, в лучшем случае на дискретных транзисторах, но алгоритм работы был такой же.
Пока конденсатор заряжается, на выходе удерживается напряжение высокого уровня. Если в это время на вход 2 подать еще импульс, состояние выхода не изменится, длительность выходного сигнала таким образом уменьшить или увеличить нельзя, повторного режима запуска одновибратора не произойдет.
Другое дело, если подать импульс сброса (низкий уровень) на 4 вывод. На выходе 3 сразу же появится низкий уровень. Сигнал «сброс» имеет высший приоритет, и поэтому может быть подан в любой момент.
По мере заряда напряжение на конденсаторе возраст, и, в конце, достигает уровня 2 / 3U. Как было рассказано в предыдущей статье, это есть уровень срабатывания, порог, верхний компаратора, который приводит к сбросу таймера, что является окончанием выходного импульса.
На выводе 3 появляется низкий уровень и в этот же момент открывается транзистор VT3, который разряжает конденсатор C. На этом формирующем напряжении заканчивается. Если после окончания выходного импульса, но не раньше, подать еще один запускающий импульс, то на выходе сформируется выходной, такой же, как и первый.
Конечно, для нормальной работы одновибратора запускающий импульс должен быть короче, чем импульс, формирующийся на выходе.
На рисунке 5 показан график работы одновибратора.
Рисунок 5. График работы одновибратора
Как можно использовать одновибратор?
Или как говаривал кот Матроскин: «А какая от этого одновибратора польза будет?» Можно ответить, что достаточно большая. Дело в том, что диапазон выдержек времени, который можно получить от этого одновибратора, может достичь не только несколько миллисекунд, но и доходить до нескольких часов.Все зависит от параметров временизадающей RC цепочки.
Вот, пожалуйста, почти готовое решение для освещения длинного коридора. Достаточно дополнить таймер исполнительным реле или нехитрой тиристорной схемой, а в концах коридора поставить пару кнопок! Кнопку нажал, прошел коридор, и не надо заботиться о выключении лампочки. Все произойдет автоматически по окончании выдержки времени. Ну, это просто информация к размышлению. Освещение в длинном коридоре, конечно, не единственный вариант одноибратора.
Как проверить 555?
Проще всего спаять несложную схему, для этого почти не понадобится навесных деталей, если не считать таковыми переменный резистор и светодиод для индикации состояния выхода.
У микросхемы следует соединить выводы 2 и 6 и подать на них напряжение, изменяемое переменным резистором. К выходу таймера можно подключить вольтметр или светодиод, конечно же, с ограничительным резистором.
Но можно ничего и не паять, более того, провести опыты даже при «наличии» собственно микросхемы.Похожие исследования можно проделать с помощью программы — симулятора Multisim. Конечно, такое исследование очень примитивно, тем не менее, позволяет познакомиться с логикой работы таймера 555. Результаты «лабораторной работы» показаны на рисунках 6, 7 и 8.
Рисунок 6.
На этом рисунке можно увидеть, что входное напряжение регулируется переменным резистором R1. Около него можно рассмотреть надпись «Key = A», говорящую о том, что включение можно усиливать, нажимая резистор A.Минимальный шаг регулировки 1%, вот только огорчает, что регулирование возможно лишь в сторону увеличения сопротивления, уменьшение возможно только «мышкой».
На этом рисунке резистор «уведен» до самой «земли», напряжение на его движке близко к нулю (для наглядности измеряется мультиметром). При таком положении движка на выходе таймера высокий уровень, поэтому выходной транзистор закрыт, и светодиод LED1 не светится, о чем говорят его белые стрелки.
На следующем рисунке показано, что напряжение несколько увеличилось.
Рисунок 7.
Увеличение происходило не просто так, а с соблюдением некоторых границ, а, именно, порогов срабатывания компараторов. Дело в том, что 1/3 и 2/3, если выразить в десятичных дробях в процентах будут 33,33… и 66,66… соответственно. Именно в процентах введенная часть переменного резистора в программе Multisim. При напряжении питания 12В это получится 4 и 8 вольт, что достаточно удобно для исследования.
Так вот, на рисунке 6 показано, что резистор введен на 65%, а напряжение на нем 7,8В, что несколько меньше расчетных 8 вольт.При этом светодиод на выходе погашен, т.е. на выходе таймера до сих пор высокий уровень.
Рисунок 8.
Дальнейшее незначительное увеличение напряжения на входах 2 и 6, всего на 1 процент (не дает возможности программы) приводит к зажиганию светодиода LED1, что и показано на рисунке 8, — стрелочки возле светодиода приобрели красный оттенок. Такое поведение схемы говорит о том, что симулятор Multisim работает достаточно точно.
Если продолжить увеличение напряжения на выводе 2 и 6, то никакого изменения на выходе таймера не произойдет.
Генераторы на таймере 555
Диапазон частот, генерируемый таймером, достаточно широк: от самой низкой частоты, период которой может достигать нескольких часов, до частот в несколько десятков килогерц. Все зависит от элементов времязадающей цепи.
Если не требуется строго прямоугольная форма сигнала, то можно сгенерировать частоту до нескольких мегагерц. Иногда такое вполне допустим, — форма не важна, но импульсы присутствуют. Чаще всего такая небрежность по форме формсов разрешений в цифровой технике.Например, счетчик импульсов реагирует на фронт или спад импульса. Согласитесь, в этом случае «прямоугольность» значенияса никакого не имеет.
Генератор импульсов формы меандр
Один из возможных вариантов генератора импульсов формы меандр показан на рисунке 9.
Рисунок 9. Схема генераторов импульсов формы меандр
Временные диаграммы работы генератора показаны на рисунке 10.
Рисунок 10.Временные диаграммы работы генератора
Верхний графикет сигнал на выходе (вывод 3) таймера. А на нижнем графике показано, как изменяется напряжение на времязадающем конденсаторе.
Все происходит точно так же, как уже было рассмотрено в схеме одновибратора на рисунке 3, только не используется запускающий одиночный импульс на выводе 2.
Дело в том, что при включении схемы на конденсаторе C1 напряжение равно нулю, именно оно и переведет выход таймера в состояние высокого уровня, как показано на рисунке 10.Конденсатор C1 начинает заряжаться через резистор R1.
Напряжение на конденсаторе возрастает по экспоненте до тех пор, пока не достигнет порога верхнего порога срабатывания 2/3 * U. В результате таймер переключается в нулевое состояние, поэтому конденсатор C1 начинает разряжаться до нижнего порога срабатывания 1/3 * U. По достижении этого порога на выходе таймера устанавливается высокий уровень и все начинается сначала. Формируется новый период колебаний.
Здесь следует обратить внимание на то, что конденсатор C1 заряжается и разряжается через один и тот же резистор R1.Поэтому время заряда и разряда равны, а, следовательно, форма колебаний на выходе такого генератора близка к меандру.
Частота колебаний такого генератора описывается очень сложной формулой f = 0,722 / (R1 * C1). Если сопротивление резистора R1 при расчетах указать в Омах, а емкость конденсатора C1 в Фарадах, то частота получится в Герцах. Если же в этой формуле сопротивление будет выражено в килоомах (КОм), а емкость конденсатора в микрофарадах (мкФ) результат получится в килогерцах (КГц).Чтобы получился генератор с регулируемой настройкой, то достаточно резистор R1 заменить переменным.
Генератор импульсов с регулируемой скважностью
Меандр, конечно, хорошо, но иногда возникают ситуации, требующие регулирования скважности импульсов. Именно так осуществляется регулирование частоты вращения двигателей постоянного тока (ШИМ регуляторы), это которые с постоянным магнитом.
Меандром называют прямоугольные импульсы, у которых время импульса (высокий уровень t1) равно времени паузы (низкий уровень t2).Такое название в электронику пришло из архитектуры, где меандром называют рисунок кирпичной кладки. Суммарное время импульса и паузы называют моментом импульса (T = t1 + t2).
Скважность и Рабочий цикл
Отношение периода импульса к его длительности S = T / t1 называется скважностью. Это величина безразмерная. У меандра этот показатель равен 2, поскольку t1 = t2 = 0,5 * T. В русскоязычной литературе вместо скважности чаще используемая обратная величина, — коэффициент заполнения (англ.Продолжительность включения) D = 1 / S, выражается в процентах.
Если несколько усовершенствований генератора, показанный на рисунке 9, можно получить генератор с регулируемой скважностью. Схема такого генератора на рисунке 11.
Рисунок 11.
В этой схеме зарядника C1 происходит по цепи R1, RP1, VD1. Когда напряжение на конденсаторе достигнет верхнего порога 2/3 * U, таймер переключается в состояние низкого уровня и конденсатор C1 разряжается по цепи VD2, RP1, R1 до тех пор, пока напряжение на конденсаторе не упадет до нижнего порога 1/3 * U, после чего цикл повторяется.
Изменение положения движка RP1 дает возможность регулировать длительность заряда и разряда: если длительность заряда возрастает, то уменьшается время разряда. При этом периоде следования импульса остается неизменным, меняется только скважность, или коэффициент заполнения. Ну, это как кому удобней.
На основе таймера 555 можно сконструировать не только генераторы, но и еще много полезных устройств, которые будут использоваться в следующей статье. Кстати, программы — калькуляторы для расчета частоты генераторов на таймере 555, в программе — симуляторе Multisim для этих целей есть специальная закладка.
Борис Аладышкин,
Продолжение статьи:
Генератор на базе таймера NE555
Микросхема интегрального таймера 555 была популярна 44 года назад, в 1971 году и до сих порна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 — это число вариантов её применения 🙂 Одно из классических применений 555 таймера — регулируемый генератор прямоугольных импульсов.В этом обзоре будет описание генератора, конкретное применение будет в следующем раз.
Плату прислали запечатанную в антистатический пакетик, но микросхема очень дубовая и статика ее так просто не убить.
Качество монтажа нормальное, флюс не отмыт
Схема генератора стандартная для получения скважности импульсов ≤2
Даташит NE555
Красный светодиод подключен на выход генератора и при малой выходной частоте — мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником.Согласно спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально работает и при меньшем сопротивлении — до 200 Ом, при происходит срыв генерации. Добавить ограничивающий резистор на затруднительно из-за особенностей разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец неверно.
Реально измеренные частоты генератора при питающем напряжении 12В
1 — от 0,5Гц до 50Гц
2 — от 35Гц до 3,5кГц
3 — от 650Гц до 65кГц
4 — от 50кГц до 600кГц
Онлайн расчёт цепей ( примерный)
Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе — 200мА
Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов сегнетоэлектрической керамики типа Y5V — частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильности импульсов приемлемая.
Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников
В режиме меандр (верхний 300 Ом, нижний на максимуме)
В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)
В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)
Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ / 50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема
Себе генератор не переделывал, т. к. основные недостатки для моего применения не критичны.
Вывод: полезность устройства электрический разрядняется, когда какая-либо самоделка потребует подать на ее импульссы 🙂
Продолжение следует…
Модуль NE555 — генератор прямоугольных импульсов — Arduino для вашего увлечения
Модуль YL-107 NE555 — генератор прямоугольных импульсов с регулировкой частоты и скважности
Описание:
YL-107 NE555 Предназначен для генерирования импульсов импульсов.Данный модуль является улучшенным аналогом NE555 с регулировкой частоты . Особенностью YL-107 является не только регулирование частоты, но изменения скважности импульсов. Модуль можно использовать в качестве генератора импульсов для шагового двигателя, для тестирования оборудования и т.д.
Плата модуля спроектирована на базе таймера NE555 . Микросхема NE555 имеет 8 выводов и выполнен в корпусе «SO-8». Ток потребления микросхемы без нагрузки составляет до 20 мА.Диапазон рабочей частоты составляет от 1Гц до 200 КГц. Диапазон частот выходных импульсов можно измерить с помощью перемычек:
Перемычка 1 (L): | от 1 Гц до 50 Гц |
Перемычка 2: | от 50 Гц до 1 КГц |
Перемычка 3: | от 1 КГц до 10 КГц |
Перемычка 4 (В): | от 10 КГц до 200 КГц |
При необходимости более точной настройки нужно использовать подстроечный резистор.Настройка частоты импульсов осуществляется с помощью потенциометра R1 , а скважность сигнала задается с помощью переменного резистора R2 . При изменении диапазона следует отключать питание от модуля.
Подключается модуль к устройствам с помощью 3 выводов:
VCC: | напряжение питания от 5 до 15 В |
ЗЕМЛЯ: | «земля» |
ВЫХ: | управляющий сигнал |
Подавать питание можно от внешнего источника питания, платформы Arduino или любого другого микроконтроллерного устройства. О наличии питания сигнализирует светодиод, который подключен к шине питания. Диапазон напряжения питания модуля составляет от 5 до 15 В.
Технические характеристики модуля:
Микросхема | NE555 |
Напряжение питания, В | 5… 15 |
Диапазон рабочих частот, КГц | 0,001… 200 |
Ток потребления без нагрузки, мА | 20 |
Рабочая температура, ° С | 0… +70 |
Размеры модуля, мм | 23 х 31 |
Поделиться ссылкой: | png»> | Существует довольно много схем генераторов импульсов.Многие радиолюбители их переделывают с целью улучшения характеристик. Для тех, кому нужна простая, но функциональная схема генератора прямоугольных импульсов с регулировкой частоты и скважности в довольно широких рамках представлена ниже. Кроме этой схемы можно использовать как ШИМ для регулировки мощности нагрузки или регулятор оборотов двигателя, увеличив мощность выходного каскада. У меня такая схема применяет для регулировки оборотов лодочного электромотора, который потребляет 30 ампер. Схема генератора на одной из самых распространенных микросхем — таймер NE555. Ее отечественный и импортный аналоги КР1006ВИ1 и LM555.Рассмотрим работу схемы более подробно. Сама схема генератора организована в соответствии со стандартом по даташиту. Резистором R2 регулируется частота импульсов, а с помощью ширины R3. При этом диапазон регулировки периода длительности лежит в пределах 10-100 микросекунд, а период следования в пределах 50-100 микросекунд.Кроме того, что эти параметры можно использовать с помощью задающего конденсатора C1. Электролитический конденсатор C3 сглаживает пульсацию от источника питания, если же для питания используется аккумулятор или батарейки, то необходимость в нем отпадает и его можно не устанавливать. После сборки ни требуется, ни какой наладки, и в случае безошибочной схемы сборки она начинает работать сразу, как только будет подано питание. Питание генератора то же можно установить в довольно широких пределах без стабилизатора.Оно составляет от 4,5 вольт до 16. Но есть все-таки один недостаток, при изменении напряжения питания немного изменяется частота, если это критично для применяемой схемы, то следует поставить стабилизатор. Для осуществления более точной и плавной регулировки резисторы R2 и R3 следует использовать многооборотные с линейной характеристикой. Максимальный выходной ток таймера составляет 250 миллиампер. Если этого, то для умощнения целесообразно установить мощный полевой транзистор рассчитанный на жизненный ток.Они характеризуются малым проходным сопротивлением в открытом состоянии, порядка нескольких млОм. Что позволяет при малых размеровх коммутировать мощную нагрузку до сотен ампер. И кроме того требуется малое управляющее напряжение. В случае если нагрузка будет индуктивной, например коллекторный двигатель, на выходе нужно установить быстродействующий диод Шоттки в обратной полярности рассчитанный на выходной ток.Анекдот: Вовочка подходит к бабушке и говорит: |
РОЗЕТКА | Модуль YL-107 NE555 — генератор импульсов с регулировкой частоты и скважности CHY 6102.Ціна, купити Модуль YL-107 NE555 — генератор прямоугольных импульсов с регулировкой частоты и скважности CHY 6102 в Києві, Харкові, Дніпрі, Одесі, Запорожье, Львові. Модуль YL-107 NE555
YL-107 NE555 предназначен для генерирования прямых импульсов. Особенностью YL-107 является не только регулирование частоты, но изменения скважности импульсов. Модуль можно использовать в качестве генератора импульсов для шагового двигателя, для тестирования оборудования и т.д.
Плата модуля спроектирована на базе таймера NE555 . Микросхема NE555 имеет 8 выводов и выполнен в корпусе «SO-8». Ток потребления микросхемы без нагрузки составляет до 20 мА. Диапазон рабочей частоты составляет от 1Гц до 200 КГц. Диапазон частот выходных импульсов можно измерить с помощью перемычек:
Перемычка 1 (L): | от 1 Гц до 50 Гц |
Перемычка 2: | от 50 до 1 КГц |
Перемычка 3: | от 1 КГц до 10 КГц |
Перемычка 4 (H): | от 10 КГц до 200 КГц |
При необходимости более точной настройки параметров настройки параметров нужно использовать подстроечный резистор.Настройка частоты импульсов осуществляется с помощью потенциометра R1 , а скважность сигнала задается с помощью переменного резистора R2 . При изменении диапазона следует отключать питание от модуля.
Подключается модуль к устройствам с помощью 3 выводов:
VCC: | напряжение питания от 5 до 15 В |
GND: | «земля» |
OUT: | управляющий сигнал |
Подавать питание от внешнего источника питания платформы Arduino или любого другого микроконтроллерного устройства. О наличии питания сигнализирует светодиод, который подключен к шине питания. Диапазон напряжения питания модуля составляет от 5 до 15 В.
Технические характеристики модуля:
Микросхема | NE555 |
Напряжение питания, В | 5 … 15 |
Диапазон рабочих частот, КГц | 0,001 … 200 |
Ток потребления без нагрузки, мА | 20 |
Рабочая температура, ° С | 0… +70 |
Размеры модуля, мм | 23 х 31 |
Конструкции на интегральном таймере 555
Для начинающих радиолюбителей переход от создания простейших схем резисторов, конденсаторов, диодов к созданию печатных плат с различными микросхемами , означает переход на новый уровень мастерства. Однако при этом схемы основываются на базе простейших микросхем, одной из которых является микросхема интегрального таймера NE555.Изучение любой микросхемы следует начинать с фирменной — документации.Для начала следует обратить внимание на расположение выводов и их назначение для таймер NE555 (рисунок 1). Иностранные компании, как правило, не используйте принципиальные схемы своих устройств. Однако микросхема таймера NE555 является достаточно популярной и имеет свой отечественный аналог КР1006ВИ1, схема которого представлена на рисунке 2.
Рисунок 1
Рисунок 2
Далее рассмотрим простейшие схемы на базе микросхемы интегрального таймера NE555.
1.Одновибратор на базе NE555 (рисунок 3).
Рисунок 3
Работа схемы: вывод 2 микросхемы импульс низкого уровня. На выходе 3 микросхемы получается прямоугольный импульс, длительность которого определяется времязадающей RC-цепочкой (ΔT = 1,1 * R * C). Сигнал высокого уровня на выводе 3 формируется до тех пор, пока не зарядится времязадающий конденсатор С до напряжения 2 / 3Uпит. Диаграммы работы одновибратора показаны на рисунке 4. Для формирования импульса запуска работы микросхемы можно воспользоваться механической кнопкой (рисунок 5) или полупроводниковым элементом.
Рисунок 4
Рисунок 5
Назначение схемы одновибратора на базе микросхемы интегрального таймера NE555 — время выдержек от нескольких миллисекунд до нескольких часов.
2 Генераторы на базе интегрального таймера NE555
Генератор на базе NE555 способен вырабатывать импульсы с максимальными настройками в несколько килогерц для прямоугольных импульсов и с настройками в несколько мегагерц для импульсов не прямоугольной формы.Частота, как и в случае с одновибратором, будет определяться времязадающей цепи.
2.1 Генератор импульсов формы меандр на базе NE555
Схема такого генератора представлена на рисунке 6, временные диаграммы работы генератора на рисунке 7. Отличной особенностью импульсов генератора импульсов меандр является то, что времяса импульса и время паузы равны между собой.
Рисунок 6
Рисунок 7
Принцип действия схемы аналогичен схеме одновибратора.Исключение составляет лишь отсутствующий импульс запуска микросхемы таймера на выводе 2. Частота вырабатываемых импульсов определяется выражением f = 0,722 / (R1 * C1).
2.2 Генератор импульсов с регулируемой скважностью на базе NE555
Регулирование скважности вырабатываемых импульсов позволяет строить на базе NE555 широтно-импульсные генераторы. Скважность определяется отношением времени импульса к длительности импульса. Обратной величиной скважины является коэффициент заполнения (англ.Рабочий цикл). Схема генератора импульсов с регулируемой скважностью на базе NE555 представлена на рисунке 8.
Рисунок 8
Принцип работы схемы: время импульса и время определяет время заряда конденсатора С1. Сигнал высокого уровня формируется при заряде С1 по цепи R1-RP1-VD1. При достижении напряжения 2 / 3Uпит таймер переключается и конденсатор С1 разряжается по цепи VD2-RP1-R1. По достижению 1 / 3Uпит таймер снова переключается и цикл повторяется.
Регулировка времени заряда и разряда конденсатора С1 осуществляется переменным резистором RP1.При этом происходит изменение скважности выходных импульсов при постоянном периоде следования импульса.
Для проверки работоспособности микросхемы интегрального таймера NE555 можно собрать схему, представленную на рисунке 9 (схема в симуляторе Multisim).
Рисунок 9
Регулировка выходного напряжения осуществляется переменным резистором R1. На приведенной схеме достаточно просто разобраться в алгоритме работы таймера. При величине питающего напряжения 12В опорное значение напряжения для переключения микросхемы составляет 4В и 8В.При напряжении 7,8В (Рисунок 10) на выходе таймера — высокий уровень сигнала (светодиод LED1 не горит). При достижении 8В (рисунок 11) произойдет переключение микросхемы — загорается светодиод LED1. Дальнейшее увеличение напряжения никаких изменений в работе таймера не вызовет.