Гистерезис это – Гистерезис — Википедия

Содержание

Гистерезис — Википедия

Гистере́зис (греч. ὑστέρησις — отставание, запаздывание) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис[править | править код]

Магнитный гистерезис — явление зависимости вектора намагниченности и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как будто удерживается некоторым внутренним полем HA{\displaystyle H_{A}} (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA{\displaystyle H_{A}}). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила Hc≈HA{\displaystyle H_{c}\approx H_{A}}. Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc{\displaystyle H_{c}} он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc{\displaystyle H_{c}} может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис[править | править код]

Зависимость поляризации P{\displaystyle P} от напряжённости электрического поля E{\displaystyle E} в сегнетоэлектрике.

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P{\displaystyle P} сегнетоэлектриков от внешнего электрического поля E{\displaystyle E} при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc{\displaystyle P_{c}}. Направление поляризации может быть изменено электрическим полем. При этом зависимость P{\displaystyle P} (E{\displaystyle E}) в полярной фазе неоднозначна, значение P{\displaystyle P} при данном E{\displaystyle E} зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pr{\displaystyle P_{r}}, при E=0{\displaystyle E=0}
  • значение поля EKt{\displaystyle E_{Kt}} (коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис[править | править код]

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина ΔU{\displaystyle \Delta U} — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm[1].

Зависимость вероятности поимок Mustela nivalis (ласка) в t-году от плотности основной жертвы — Myodes glareolus (рыжая полевка) осенью предыдущего года (жирная линия) или весной текущего года (тонкая линия). Логит-регрессия по обучающей части ряда наблюдений — 1994—2004 гг. Средний Урал, темнохвойная южная тайга, Висимский заповедник.

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В экологии популяций система «хищник — жертва» обладает гистерезисом и/или запаздыванием численного отклика хищника.

Основная гидрофизическая характеристика почвы обладает гистерезисом.

Практический интерес также представляет запаздывание изменения температуры грунта на различных глубинах от колебаний температуры воздуха. Осенью и в начале зимы когда температура воздуха опускается ниже нуля, накопленное грунтом за тёплый сезон тепло ещё остаётся в грунте. Это создаёт благоприятные условия для использования грунтовых тепловых насосов для отопления.

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нём. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике.

Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису.

Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется её текущей динамикой или её начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определёнными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.

В характере формирования общественного мнения важно учитывать два существенных обстоятельства[2].

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчёта» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и её текущего состояния.

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса[3].

Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского[4], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина.[5] Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis[6]).

  1. Harrison, L. Current Sources & Voltage References. — Newnes, 2005. — 569 p. — (Electronics & Electrical). — ISBN 9780750677523., p. 335
  2. Горшков М. К. Общественное мнение. Учебное пособие. — М.: Политиздат, 1989. — 384 с.
  3. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983.
  4. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983. — 271 с.
  5. R. V. Lapshin. Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope (англ.) // Review of Scientific Instruments (англ.)русск. : journal. — USA: AIP, 1995. — Vol. 66, no. 9. — P. 4718—4730. — ISSN 0034-6748. — DOI:10.1063/1.1145314. (перевод на русский).
  6. ↑ Package Hysteresis (Tools for Modeling Rate-Dependent Hysteretic Processes and Ellipses) (неопр.). R-project (20 ноября 2013). Дата обращения 11 июня 2018.

ru.wikipedia.org

Гистерезис — это… Что такое Гистерезис?

        явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит от физические величины, характеризующей внешние условия (например, магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т.к. для изменения состояния тела всегда требуется определённое время (время релаксации (См. Релаксация)) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внешние условия Однако для некоторых процессов отставание при замедлении изменения внешних условий не уменьшается. В этих случаях неоднозначную зависимость величин называется гистерезисной, а само явление — Г.

         Г. наблюдается в различных веществах и при разных физических процессах. Наибольший интерес представляют: магнитный Г., диэлектрический Г. и упругий Г.

         Магнитный Г. наблюдается в магнитных материалах, например в ферромагнетиках (См. Ферромагнетики). Основной особенностью ферромагнетиков является наличие спонтанной (самопроизвольной) намагниченности. Обычно ферромагнетик намагничен не однородно, а разбит на доме́ны — области однородной спонтанной намагниченности, у которых величина намагниченности (магнитного момента единицы объема) одинакова, а направления различны. Под действием внешнего магнитного поля число и размеры доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, магнитные моменты отдельных доменов могут поворачиваться по полю. В результате магнитный момент образца увеличивается.

         На рис.


1 изображена зависимость магнитного момента М ферромагнитного образца от напряжённости Н внешнего магнитного поля (кривая намагничивания). В достаточно сильном магнитном поле образец намагничивается до насыщения (при дальнейшем увеличении поля значение М практически не изменяется, точка А). При этом образец состоит из одного домена с магнитным моментом насыщения Ms, направленным по полю. При уменьшении напряжённости внешнего магнитного поля Н магнитный момент образца М будет уменьшаться по кривой I преимущественно за счёт возникновения и роста доменов с магнитным моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение затруднено из-за наличия в образце различных дефектов (примесей, неоднородностей и т.п.), которые закрепляют доменные стенки в некоторых положениях; требуются достаточно сильные магнитные поля для того, чтобы их сдвинуть. Поэтому при уменьшении поля Н до нуля у образца сохраняется т. н. остаточный магнитный момент Mr (точка В).

         Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, называемом коэрцитивным полем (коэрцитивной силой (См. Коэрцитивная сила)) Нс (точка С). При дальнейшем увеличении магнитного поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничивание образца (из точки D в точку А) происходит по кривой II. Т. о., при циклическом изменении поля кривая, характеризующая изменение магнитного момента образца, образует петлю магнитного Г. Если поле Н циклически изменять в таких пределах, что намагниченность насыщения не достигается, то получается непредельная петля магнитного Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.

         При магнитном Г. одному и тому же значению напряжённости внешнего магнитного поля Н соответствуют разные значения магнитного момента М. Эта неоднозначность обусловлена влиянием состояний образца, предшествующих данному (т. е. магнитной предысторией образца).

         Вид и размеры петли магнитного Г., величина Нс в различных ферромагнетиках могут меняться в широких пределах. Например, в чистом железе Нс= 1 э, в сплаве магнико Нс= 580 э. На петлю магнитного Г. сильно влияет обработка материала, при которой изменяется число дефектов (рис. 2).

         Площадь петли магнитного Г. равна энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии называются гистерезисными. В тех случаях, когда потери на Г. нежелательны (например, в сердечниках трансформаторов, в статорах и роторах электрических машин), применяют магнитномягкие материалы, обладающие малым Нс и малой площадью петли Г. Для изготовления постоянных магнитов, напротив, требуются магнитножёсткие материалы с большим Нс.

         С ростом частоты переменного магнитного поля (числа циклов перемагничивания в единицу времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами (См. Вихревые токи) и магнитной вязкостью (См. Магнитная вязкость). Соответственно площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда называют динамической петлей, в отличие от описанной выше статической петли.

         От магнитного момента зависят многие др. свойства ферромагнетика, например электрическое сопротивление, механическая деформация. Изменение магнитного момента вызывает изменение и этих свойств. Соответственно наблюдается, например, гальваномагнитный Г., магнитострикционный Г.

         Диэлектрический Г. наблюдается обычно в сегнетоэлектриках (См. Сегнетоэлектрики), например титанате бария. Зависимость поляризации Р от напряжённости электрического поля Е в сегнетоэлектриках (рис. 3) подобна зависимости М от Н в ферромагнетиках и объясняется наличием спонтанной электрической поляризации, электрических доменов (См. Домены) и трудностью перестройки доменной структуры. Гистерезисные потери составляют большую часть диэлектрических потерь (См. Диэлектрические потери) в сегнетоэлектриках.
         Поскольку с поляризацией связаны др. характеристики сегнетоэлектриков, например деформация, то с диэлектрическим Г. связаны др. виды Г., например пьезоэлектрический Г. (рис. 4), Г. электрооптического эффекта (См. Электрооптический эффект). В некоторых случаях наблюдаются двойные петли диэлектрического Г. (рис. 5). Это объясняется тем, что под влиянием электрического поля в образце происходит фазовый переход с перестройкой кристаллической структуры. Такого рода диэлектрический Г. тесно связан с Г. при фазовых переходах.
         Упругий Г., т. е. гистерезисная зависимость деформации и от механического напряжения σ, наблюдается в любых реальных материалах при достаточно больших напряжениях (рис. 6). Упругий Г. возникает всякий раз, когда имеет место пластическая (неупругая) деформация (см. Пластичность). Пластическая деформация обусловлена перемещением дефектов, например дислокаций (См. Дислокации), всегда присутствующих в реальных материалах. Примеси, включения и др. дефекты, а также сама кристаллическая решётка стремятся удержать дислокацию в определенных положениях в кристалле. Поэтому требуются напряжения достаточной величины, чтобы сдвинуть дислокацию. Механическая обработка и введение примесей приводят к закреплению дислокаций, в результате чего происходит упрочнение материала, пластическая деформация и упругий Г. наблюдаются при больших напряжениях. Энергия, теряемая в образце за один цикл, идёт в конечном счёте на нагревание образца. Потери на упругий Г. дают вклад во Внутреннее трение. В случае упругих деформаций, помимо гистерезисных, есть и др. потери, например обусловленные вязкостью (См. Вязкость магнитная). Величина этих потерь, в отличие от гистерезисных, зависит от частоты изменения σ (или и). Иногда понятие «упругий Г.» употребляется шире — говорят о динамической петле упругого Г., включающей все потери на данной частоте.

         Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Современное учение о магнетизме, М. — Л., 1952; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Постников В. С., Внутреннее трение в металлах, М., 1969; Физический энциклопедический словарь, т. 1, М., 1960.

         А. П. Леванюк, Д. Г. Санников.

        

        Рис. 1. Петля магнитного гистерезиса для ферромагнетика: Н — напряжённость магнитного поля; М — магнитный момент образца; Нс — коэрцитивное поле; Mr — остаточный магнитный момент; Ms — магнитный момент насыщения. Пунктиром показана непредельная петля гистерезиса. Схематически приведена доме́нная структура образца для некоторых точек петли.

        

        Рис. 2. Влияние механической и термической обработки на форму петли магнитного гистерезиса пермалоя: 1 — после наклёпа; 2 — после отжига; 3 — кривая мягкого железа (для сравнения).

        

        Рис. 3. Петля диэлектрического гистерезиса в сегнетоэлектрике: Р — поляризация образца; Е — напряжённость электрического поля.

        

        Рис. 4. Петля гистерезиса обратного пьезоэлектрического эффекта в титанате бария: U — деформация: Е — напряжённость электрического поля.

        

        Рис. 5. Двойная петля диэлектрического гистерезиса.

        

        Рис. 6. Петля упругого гистерезиса: σ — механическое напряжение; u — деформация.



dic.academic.ru

Гистерезис — это… Что такое Гистерезис?

Рис. 1. Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса

Гистере́зис (греч. ὑστέρησις — отстающий) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как-будто удерживается некоторым внутренним полем (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным ). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем. При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pост, при E = 0
  • значение поля EKt(коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина  — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В электронике и электротехнике

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляют порядка 10-100 ppm[1].

В биологии

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В почвоведении

Основная гидрофизическая характеристика почвы обладает гистерезисом.

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису. Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

В социологии

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определенными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.

В характере формирования общественного мнения важно учитывать два существенных обстоятельства.[2]

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта—носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчета» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и ее текущего состояния.

Литература по теме

В философии

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века[источник не указан 652 дня], когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, «гистерезисной» тематики. Позднее, в 1983 году появилась монография [3], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Простое параметрическое описание различных петель гистерезиса можно найти в работе [4] (замена в данной модели гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет также получить кусочно-линейные петли гистерезисы, которые часто встречаются в дискретной автоматике, см. пример на Рис. 2).

Литература

В. А. Костицын, «Опыт математической теории гистерезиса», Матем. сб., 32:1 (1924), 192—202.

Примечания

dic.academic.ru

Гистерезис — Википедия

Гистере́зис (греч. ὑστέρησις — отставание, запаздывание) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагниченности и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как будто удерживается некоторым внутренним полем HA{\displaystyle H_{A}} (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA{\displaystyle H_{A}}). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила Hc≈HA{\displaystyle H_{c}\approx H_{A}}. Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc{\displaystyle H_{c}} он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc{\displaystyle H_{c}} может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис

Зависимость поляризации P{\displaystyle P} от напряжённости электрического поля E{\displaystyle E} в сегнетоэлектрике.

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P{\displaystyle P} сегнетоэлектриков от внешнего электрического поля E{\displaystyle E} при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc{\displaystyle P_{c}}. Направление поляризации может быть изменено электрическим полем. При этом зависимость P{\displaystyle P} (E{\displaystyle E}) в полярной фазе неоднозначна, значение P{\displaystyle P} при данном E{\displaystyle E} зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pr{\displaystyle P_{r}}, при E=0{\displaystyle E=0}
  • значение поля EKt{\displaystyle E_{Kt}} (коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина ΔU{\displaystyle \Delta U} — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В электронике и электротехнике

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm[1].

В биологии

Зависимость вероятности поимок Mustela nivalis (ласка) в t-году от плотности основной жертвы — Myodes glareolus (рыжая полевка) осенью предыдущего года (жирная линия) или весной текущего года (тонкая линия). Логит-регрессия по обучающей части ряда наблюдений — 1994—2004 гг. Средний Урал, темнохвойная южная тайга, Висимский заповедник.

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В экологии популяций система «хищник — жертва» обладает гистерезисом и/или запаздыванием численного отклика хищника.

В почвоведении

Основная гидрофизическая характеристика почвы обладает гистерезисом.

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нём. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике.

Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису.

Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется её текущей динамикой или её начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

В социологии

Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определенными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.

В характере формирования общественного мнения важно учитывать два существенных обстоятельства[2].

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчёта» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и её текущего состояния.

В философии

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса[3].

Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского[4], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве.

Простое и интуитивно-понятное параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина.[5] Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis[6]).

Примечания

  1. Harrison, L. Current Sources & Voltage References. — Newnes, 2005. — 569 p. — (Electronics & Electrical). — ISBN 9780750677523., p. 335
  2. ↑ Горшков М. К. Общественное мнение. Учебное пособие. — М., Политиздат, 1989. — 384 стр.
  3. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983.
  4. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983. — 271 с.
  5. R. V. Lapshin (1995). «Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope» (PDF). Review of Scientific Instruments (AIP) 66 (9): 4718-4730. DOI:10.1063/1.1145314. ISSN 0034-6748. (перевод на русский).
  6. ↑ Package Hysteresis (Tools for Modeling Rate-Dependent Hysteretic Processes and Ellipses). R-project (November 20, 2013). Проверено 11 июня 2018.

Литература

Ссылки

wikipedia.green

Гистерезис в электротехнике и электронике: что это такое

В электротехнике есть разные приборы, принцип работы которых основан на электромагнитных явлениях. Где есть сердечник, на котором намотана катушка из проводящего материала, например, меди, наблюдаются взаимодействия за счёт магнитных полей. Это реле, пускатели, контакторы, электродвигатели и магниты. Среди характеристик сердечников есть такая характеристика как гистерезис. В этой статье мы рассмотрим, что это такое, а также какаие польза и вред от данного явления.

Определение понятия

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

Важно! В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента.

При протекании тока через проводник вокруг последнего возникает магнитное и электрическое поле. Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Важно! Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника.

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

Гистерезис в электронике

В электронных устройствах гистерезис несёт в основном полезные функции. Допустим это используется в пороговых элементах, например, компараторах и триггерах Шмидта. Ниже вы видите график его состояний:

Это нужно в тех случаях, чтобы устройство сработало при достижении сигнала X, после чего сигнал может начать уменьшаться и устройство не отключилось до тех пор, пока сигнал не упадет до уровня Y. Такое решение используется для подавления дребезга контакта, помех и случайных всплесков, а также в различных регуляторах.

Например, термостат или регулятор температуры. Обычно его принцип действия заключается в том, чтобы отключить нагревательный (или охладительный) прибор в тот момент, когда температура в помещении или другом месте достигла заданного уровня.

Рассмотрим два варианта работы кратко и просто:

  1. Без гистерезиса. Включение и отключение при заданной температуре. При этом здесь есть нюансы. Если вы установили регулятор температуры на 22 градуса и обогреваете комнату до этого уровня, то как только в комнате будет 22 он выключится, а когда вновь опустится до 21 – включится. Это не всегда правильное решение, потому что ваш управляемый прибор будет слишком часто включаться и отключаться. К тому же в большинстве бытовых и многих производственных задачах нет нужды настолько четкой поддержки температуры.
  2. С гистерезисом. Чтобы сделать некий зазор в допустимом диапазоне регулируемых параметров применяют гистерезис. То есть, если вы установили температуру в 22 градуса, то, как только она будет достигнута, обогреватель отключится. Допустим, что гистерезис в регуляторе установлен на зазор в 3 градуса, то обогреватель вновь заработает только тогда, когда температура воздуха опустится до 19 градусов.

Иногда этот зазор регулируется на ваше усмотрение. В простых исполнениях используются биметаллические пластины.

Напоследок рекомендуем просмотреть полезное видео, в котором рассказывается, что такое гистерезис и как его можно использовать:

Мы рассмотрели явление и применение гистерезиса в электрике. Итог следующий: в электроприводе и трансформаторах он несет пагубный эффект, а в электронике и разнообразных регуляторах находит и полезное применение. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

samelectrik.ru

Гистерезис — Большая советская энциклопедия

Гистере́зис

(от греч. hysteresis — отставание, запаздывание)

явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит от физические величины, характеризующей внешние условия (например, магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т.к. для изменения состояния тела всегда требуется определённое время (время релаксации (См. Релаксация)) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внешние условия Однако для некоторых процессов отставание при замедлении изменения внешних условий не уменьшается. В этих случаях неоднозначную зависимость величин называется гистерезисной, а само явление — Г.

Г. наблюдается в различных веществах и при разных физических процессах. Наибольший интерес представляют: магнитный Г., диэлектрический Г. и упругий Г.

Магнитный Г. наблюдается в магнитных материалах, например в ферромагнетиках (См. Ферромагнетики). Основной особенностью ферромагнетиков является наличие спонтанной (самопроизвольной) намагниченности. Обычно ферромагнетик намагничен не однородно, а разбит на доме́ны — области однородной спонтанной намагниченности, у которых величина намагниченности (магнитного момента единицы объема) одинакова, а направления различны. Под действием внешнего магнитного поля число и размеры доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, магнитные моменты отдельных доменов могут поворачиваться по полю. В результате магнитный момент образца увеличивается.

На рис. 1 изображена зависимость магнитного момента М ферромагнитного образца от напряжённости Н внешнего магнитного поля (кривая намагничивания). В достаточно сильном магнитном поле образец намагничивается до насыщения (при дальнейшем увеличении поля значение М практически не изменяется, точка А). При этом образец состоит из одного домена с магнитным моментом насыщения Ms, направленным по полю. При уменьшении напряжённости внешнего магнитного поля Н магнитный момент образца М будет уменьшаться по кривой I преимущественно за счёт возникновения и роста доменов с магнитным моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение затруднено из-за наличия в образце различных дефектов (примесей, неоднородностей и т.п.), которые закрепляют доменные стенки в некоторых положениях; требуются достаточно сильные магнитные поля для того, чтобы их сдвинуть. Поэтому при уменьшении поля Н до нуля у образца сохраняется т. н. остаточный магнитный момент Mr (точка В).

Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, называемом коэрцитивным полем (коэрцитивной силой (См. Коэрцитивная сила)) Нс (точка С). При дальнейшем увеличении магнитного поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничивание образца (из точки D в точку А) происходит по кривой II. Т. о., при циклическом изменении поля кривая, характеризующая изменение магнитного момента образца, образует петлю магнитного Г. Если поле Н циклически изменять в таких пределах, что намагниченность насыщения не достигается, то получается непредельная петля магнитного Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.

При магнитном Г. одному и тому же значению напряжённости внешнего магнитного поля Н соответствуют разные значения магнитного момента М. Эта неоднозначность обусловлена влиянием состояний образца, предшествующих данному (т. е. магнитной предысторией образца).

Вид и размеры петли магнитного Г., величина Нс в различных ферромагнетиках могут меняться в широких пределах. Например, в чистом железе Нс= 1 э, в сплаве магнико Нс= 580 э. На петлю магнитного Г. сильно влияет обработка материала, при которой изменяется число дефектов (рис. 2).

Площадь петли магнитного Г. равна энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии называются гистерезисными. В тех случаях, когда потери на Г. нежелательны (например, в сердечниках трансформаторов, в статорах и роторах электрических машин), применяют магнитномягкие материалы, обладающие малым Нс и малой площадью петли Г. Для изготовления постоянных магнитов, напротив, требуются магнитножёсткие материалы с большим Нс.

С ростом частоты переменного магнитного поля (числа циклов перемагничивания в единицу времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами (См. Вихревые токи) и магнитной вязкостью (См. Магнитная вязкость). Соответственно площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда называют динамической петлей, в отличие от описанной выше статической петли.

От магнитного момента зависят многие др. свойства ферромагнетика, например электрическое сопротивление, механическая деформация. Изменение магнитного момента вызывает изменение и этих свойств. Соответственно наблюдается, например, гальваномагнитный Г., магнитострикционный Г.

Диэлектрический Г. наблюдается обычно в сегнетоэлектриках (См. Сегнетоэлектрики), например титанате бария. Зависимость поляризации Р от напряжённости электрического поля Е в сегнетоэлектриках (рис. 3) подобна зависимости М от Н в ферромагнетиках и объясняется наличием спонтанной электрической поляризации, электрических доменов (См. Домены) и трудностью перестройки доменной структуры. Гистерезисные потери составляют большую часть диэлектрических потерь (См. Диэлектрические потери) в сегнетоэлектриках.

Поскольку с поляризацией связаны др. характеристики сегнетоэлектриков, например деформация, то с диэлектрическим Г. связаны др. виды Г., например пьезоэлектрический Г. (рис. 4), Г. электрооптического эффекта (См. Электрооптический эффект). В некоторых случаях наблюдаются двойные петли диэлектрического Г. (рис. 5). Это объясняется тем, что под влиянием электрического поля в образце происходит фазовый переход с перестройкой кристаллической структуры. Такого рода диэлектрический Г. тесно связан с Г. при фазовых переходах.

Упругий Г., т. е. гистерезисная зависимость деформации и от механического напряжения σ, наблюдается в любых реальных материалах при достаточно больших напряжениях (рис. 6). Упругий Г. возникает всякий раз, когда имеет место пластическая (неупругая) деформация (см. Пластичность). Пластическая деформация обусловлена перемещением дефектов, например дислокаций (См. Дислокации), всегда присутствующих в реальных материалах. Примеси, включения и др. дефекты, а также сама кристаллическая решётка стремятся удержать дислокацию в определенных положениях в кристалле. Поэтому требуются напряжения достаточной величины, чтобы сдвинуть дислокацию. Механическая обработка и введение примесей приводят к закреплению дислокаций, в результате чего происходит упрочнение материала, пластическая деформация и упругий Г. наблюдаются при больших напряжениях. Энергия, теряемая в образце за один цикл, идёт в конечном счёте на нагревание образца. Потери на упругий Г. дают вклад во Внутреннее трение. В случае упругих деформаций, помимо гистерезисных, есть и др. потери, например обусловленные вязкостью (См. Вязкость магнитная). Величина этих потерь, в отличие от гистерезисных, зависит от частоты изменения σ (или и). Иногда понятие «упругий Г.» употребляется шире — говорят о динамической петле упругого Г., включающей все потери на данной частоте.

Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Современное учение о магнетизме, М. — Л., 1952; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Постников В. С., Внутреннее трение в металлах, М., 1969; Физический энциклопедический словарь, т. 1, М., 1960.

А. П. Леванюк, Д. Г. Санников.

Рис. 1. Петля магнитного гистерезиса для ферромагнетика: Н — напряжённость магнитного поля; М — магнитный момент образца; Нс — коэрцитивное поле; Mr — остаточный магнитный момент; Ms — магнитный момент насыщения. Пунктиром показана непредельная петля гистерезиса. Схематически приведена доме́нная структура образца для некоторых точек петли.

Рис. 2. Влияние механической и термической обработки на форму петли магнитного гистерезиса пермалоя: 1 — после наклёпа; 2 — после отжига; 3 — кривая мягкого железа (для сравнения).

Рис. 3. Петля диэлектрического гистерезиса в сегнетоэлектрике: Р — поляризация образца; Е — напряжённость электрического поля.

Рис. 4. Петля гистерезиса обратного пьезоэлектрического эффекта в титанате бария: U — деформация: Е — напряжённость электрического поля.

Рис. 5. Двойная петля диэлектрического гистерезиса.

Рис. 6. Петля упругого гистерезиса: σ — механическое напряжение; u — деформация.


Источник:
Большая советская энциклопедия
на Gufo.me


Значения в других словарях

  1. гистерезис —
    Гистерезис (греч. запаздывание, отставание) — различие в состоянии тела при одном и том же количественном выражении внешних условий в зависимости от того, измеряется ли состояние тела в процессе увеличения или уменьшения количественных параметров…
    Толковый словарь по почвоведению
  2. гистерезис —
    [< гр. запаздывание] – отставание следствия от производящей его причины; длительное последействие существовавших прежде условий; магнитный гистерезис – явление остаточного магнетизма, т.е.
    Большой словарь иностранных слов
  3. гистерезис —
    ГИСТЕРЕЗИС [тэ; рэ], -а; м. [от греч. hysterēsis — отставание, запаздывание] Мед. Отставание во времени реакции частей организма от вызывающего её внешнего воздействия. ◁ Гистерезисный, -ая, -ое. Г-ые реакции.
    Толковый словарь Кузнецова
  4. гистерезис —
    сущ., кол-во синонимов: 2 отставание 10 сдвиг 24
    Словарь синонимов русского языка
  5. Гистерезис —
    (от греч. hysteresis — отставание, запаздывание) 1) в гидродинамике — неоднозначность структуры поля течения и следовательно, аэродинамических характеристик обтекаемого тела при одних и тех же значениях кинематических параметров…
    Авиационный словарь
  6. ГИСТЕРЕЗИС —
    (от греч. hysteresis — отставание, запаздывание), явление, к-рое состоит в том, что физ. величина, характеризующая состояние тела (напр., намагниченность), неоднозначно зависит от физ. величины, характеризующей внеш. условия (напр., магн. поля).
    Физический энциклопедический словарь
  7. гистерезис —
    Гистерезис, гистерезисы, гистерезиса, гистерезисов, гистерезису, гистерезисам, гистерезис, гистерезисы, гистерезисом, гистерезисами, гистерезисе, гистерезисах
    Грамматический словарь Зализняка
  8. ГИСТЕРЕЗИС —
    ГИСТЕРЕЗИС (от греч. hysteresis — отставание) — запаздывание изменения физической величины, характеризующей состояние вещества (намагниченности М ферромагнетика, поляризации P сегнетоэлектрика и т.
    Большой энциклопедический словарь
  9. гистерезис —
    орф. гистерезис, -а
    Орфографический словарь Лопатина
  10. ГИСТЕРЕЗИС —
    ГИСТЕРЕЗИС, явление, характерное для упругих тел; заключается в том, что ДЕФОРМАЦИЯ тела при увеличении НАПРЯЖЕНИЯ меньше, чем при его уменьшении из-за задержки эффекта деформации.
    Научно-технический словарь

gufo.me

ГИСТЕРЕЗИС — это… Что такое ГИСТЕРЕЗИС?



        (от греч. hysteresis — отставание, запаздывание), явление, к-рое состоит в том, что физ. величина, характеризующая состояние тела (напр., намагниченность), неоднозначно зависит от физ. величины, характеризующей внеш. условия (напр., магн. поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внеш. условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т. к. для изменения состояния тела всегда требуется определ. время (время релаксации) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внеш. условия. Однако для нек-рых процессов отставание при замедлении изменения внеш. условий не уменьшается. В этих случаях неоднозначную зависимость величин наз. гистерезисной, а само явление — Г. Наблюдается Г. в разл. в-вах и при разных физ. процессах. Наибольший интерес представляют магн. Г., сегнетоэлектрич. Г. и упругий Г. . Рис. 1. Кривые намагничивания и размагничивания ферромагнетика при наличии магн. гистерезиса: Н — напряжённость внеш. магн. поля; М — намагниченность образца; Нc — коэрцитивное поле; Мr — остаточная намагниченность; Ms — намагниченность насыщения. Пунктиром показана непредельная петля гистерезиса.

Схематически приведена доменная структура образца для нек-рых точек петли. Для ед. объёма Ms=Js. Магнитный Г. наблюдается в магнитоупорядоченных в-вах, напр. в ферромагнетиках. Обычно ферромагнетик разбит на домены — области однородной самопроизвольной (спонтанной) намагниченности, у к-рых намагниченность Js (магн. момент Ms ед. объёма) одинакова, но направления вектора JS различны. Под действием внеш. магн. поля число и размеры : доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, векторы Js отд. доменов могут поворачиваться по полю (см. НАМАГНИЧИВАНИЕ). На рис. 1 изображены кривые намагничивания и размагничивания ферромагн. образца при наличии Г. (петля Г.). В достаточно сильном магн. поле образец намагничивается до насыщения (точка А). При этом образец состоит из одного домена с намагниченностью насыщения Ms, направленной по полю. При уменьшении напряжённости внеш. магн. поля Н значение М будет уменьшаться по кривой I преим. за счёт возникновения и роста доменов с магн. моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение происходит скачками из-за наличия в образце разл. дефектов (примесей, неоднородностей и т. п.), на к-рых доменные стенки задерживаются; требуется заметно увеличить магн. ноле для того, чтобы их сдвинуть. Поэтому при уменьшении Н до нуля у образца сохраняется т. н. остаточная намагниченность Мr (точка В). Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, наз. коэрцитивным полем (коэрцитивной силой) Нс (точка С). При дальнейшем увеличении магн. поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничпвание образца (D ®А) происходит по кривой //. Т. о., при циклич. изменении поля кривая, характеризующая изменение намагниченности образца, образует петлю магн. Г. Бели поле H циклически изменять в таких пределах, что насыщение не достигается, то получается непредельная петля магн. Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.

Вид и размеры петли магн. Г., значение Нс для разл. ферромагнетиков могут меняться в широких пределах. Напр., в чистом железе Hc=1Э, в сплаве магнико Hc=580 Э. На форму петли магн. Г. сильно влияет обработка материала, при к-рой изменяется число дефектов (рис. 2).

Площадь петли магн. Г. пропорц. энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии наз. гистерезисными. В тех случаях, когда потери на Г. нежелательны (напр., в сердечниках трансформаторов, в статорах и роторах электрич. машин), применяют магнитно-мягкие материалы, обладающие малыми значениями Hс и площади петли Г. Для изготовления магнитов постоянных применяют жёсткие магн. материалы с большой коэрцитивной силой.

С ростом частоты перем. магн. поля (числа циклов перемагничивания в ед. времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами и магнитной вязкостью.

.

Рис. 2. Влияние механич. и термич. обработки на форму петли магн. гистерезиса железоникелевого сплава (пермаллоя): 1 — после наклёпа; 2 — после отжига: 3 — кривая магнитно-мягкого железа (для сравнения).

Соотв. площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда наз. динамической, в отличие от описанной выше статич. петли.

От намагниченности зависят многие др. св-ва ферромагнетика, напр. электрич. сопротивление, механич. деформации. Изменение намагниченности вызывает изменение этих св-в. Соотв. наблюдается, напр., гальваномагнитный Г., магнитострикционный Г. Сегнетоэлектрический Г.— неоднозначная зависимость электрич. поляризации Р сегнетоэлектрика от электрич. поля Е (рис. 3). При включении поля 23 и последующем его возрастании возникшая поляризация сначала резко увеличивается, а затем достигает насыщения Ps. С убыванием поля Е поляризация уменьшается медленнее, чем по осн. кривой Оа. При E=0 значение Р?0, оно наз. остаточной поляризацией PR. Для того чтобы уменьшить поляризацию до нуля, надо приложить электрич. поле Ec противоположного направления, его наз. к о э р ц и т и в н ы м. При дальнейшем увеличении обратного поля вновь достигается состояние насыщения Ps. При полном цикле изменения поля Е от точки а до точки b и обратно к а изменения Р графически характеризуются замкнутой кривой, наз. сегнетоэлектрической петлёй Г. .

Рис. 3. Петля диэлектрич. гистерезиса в сегнетоэлектрике: Р — поляризация образца; Е — напряжённость электрич. поля.

Поскольку с поляризацией связаны др. хар-ки сегнетоэлектриков, напр. деформация, то с сегнетоэлектрич. Г. связаны др. виды Г., напр. пьезоэлектрич. Г., Г. электрооптич. эффектов. Гистерезисные потери составляют б. ч. диэлектрических потерь в сегнетоэлектриках. . Рис. 4. Петля упругого гистерезиса: по оси абсцисс — деформация, по оси ординат — напряжение.

Упругий Г.— отставание во времени развития деформаций упругого тела от напряжений; явл. одним из проявлений внутреннего трения в твёрдых телах. При циклич. повторении нагрузки и разгрузки тела диаграмма, изображающая напряжение s в ф-ции от деформации e, даёт петлю упругого Г. (рис. 4), площадь к-рой DU пропорц. доле энергии упругости, перешедшей в теплоту. Для оценки упругого Г. часто пользуются относит. величиной y=DU/U, где U — энергия упругой деформации (заштрихованная область на рис. 4).

Причина упругого Г. заключается в появлении в отдельных более слабых зёрнах кристалла местных пластич. деформаций, создающих в окружающей среде остаточные напряжения; эти последние при изменении нагружения тела производят местную пластич. деформацию обратного знака; в обоих случаях энергия расходуется на необратимые процессы. Кроме того, экспериментально установлена связь упругого Г. с магн. полями и магн. Г. (у ферромагн. тел), с магнитострикционным Г., межкристаллитными включениями, составом сплавов, термо- и технол. обработкой и с рядом др. факторов. Явление упругого Г. как упругого несовершенства свойственно всем телам и отмечалось даже при темп-pax, близких к абс. нулю. Оно явл. причиной затухания свободных колебаний самих упругих тел, затухания в них звука, уменьшения коэфф. восстановления при неупругом ударе и обусловливает необходимость затраты внеш. энергии для поддержания вынужденных колебаний.

Для объяснения природы упругого Г. привлекаются теория релаксации, теория дислокаций и др.


Физический энциклопедический словарь. — М.: Советская энциклопедия.
Главный редактор А. М. Прохоров.
1983.

dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о