Gsm сеть: Как работает радиоинтерфейс в GSM-сетях / Хабр

Содержание

Как устроена сеть сотовой связи GSM/UMTS / Хабр

В комментариях к постам про сеть WiMAX (1, 2) и про GPRS был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети — сеть радиодоступа (RAN — Radio Access Network) и сеть коммутации или опорную сеть (CN — Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Существующие сети радиодоступа у наших операторов — продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN — GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN — UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа — оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа — эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть — ядро сетей сотовой связи. Название опорная — мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS — Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже — её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части — верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах — проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи 🙂

HLR — Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько — они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки — в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири — 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
— может ли абонент совершать исходящие звонки
— может ли абонент отправлять/принимать SMS
— разрешена ли услуга конференц-связи
— ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC — Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR — Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.

VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.

MSC — классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции — для исходящего вызова — определить куда переключить вызов, для входящего же соединения — определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR — MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC — AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте — на радиоинтерфейсе.

GMSC — Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN — Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN — Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC — Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями — назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга — через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC — TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS — Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути — довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки — это не есть базовая станция 🙂 Базовая станция похожа на холодильник — шкафчик с модулями, который стоит в специальном месте. Это специальное место — например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.

Более подробно можно почитать в недавно опубликованной статье про базовые станции.

RNC — Radio Network Controller, контроллер сети радиодоступа. По сути выступает в той же роли, что BSC в GERAN.

NodeB, базовая станция в UMTS. Аналог BTS в GSM.

В целом, здесь описаны все жизненно важные элементы сети GSM/UMTS. Здесь я не упоминал ещё некоторые узлы, такие как SMS-C (SMS-Center), MMS-C (MMS-Center), WAP-GW (WAP-Gateway).

Если статья вызовет интерес, то в дальнейшем могу рассказать более подробно про сети радиодоступа GERAN и UTRAN, потому что я занимаюсь по большей части именно радийными вещами.

Также уже есть идеи для ряда статей на основе вопросов, вызвавших интерес, в комментариях к статьям по телекоммуникациям, пока не буду раскрывать интригу — задавайте интересные вопросы — будут интересные статьи! 😉

UPD: в комментариях отписались эксперты в своих областях, что очень интересно почитать:
1. Ветка про ПО, устанавливаемом на оборудовании;
2. Ветка про отличия наших (СНГшных) сетей и сетей в Европе/США/Азии;
3. Комментрии от пользователя DeSh с поправлениями и уточнениями: тыц, тыц.
Да и вообще в комментариях довольно много всего интересного всплыло помимо выделенных мной комментариев.

Стандарты сотовой связи: GSM

Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

GSM (Global System Mobile) – глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

GSM обеспечивает поддержку услуг:

  • Передачи данных GPRS
  • Передача речи
  • Передача коротких сообщений SMS
  • Передача факса

Кроме того, существуют дополнительные услуги:

  • Определение номера
  • Переадресация вызова
  • Ожидание и удержание вызова
  • Конференц-связь
  • Голосовая почта

Архитектура сети GSM

Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

gsm-scheme

Сеть GSM делится на две системы: SS (Switching System) – коммутационная подсистема, BSS (Base Station System) – система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

SS включает в себя:

  • MSC (Mobile Switching Center) – узел коммутации сети GSM
  • GMSC (Gate MSC) – коммутатор, который обрабатывает вызовы от внешних сетей
  • HLR (Home Location Register) – база данных домашних абонентов
  • VLR (Visitor Location Register) – база данных гостевых абонентов
  • AUC (Authentication Cetner) – центр аутентификации (проверки подлинности абонента)

BSS включает в себя:

  • BSC (Base Station Controller ) – контроллер базовых станций
  • BTS (Base Transeiver Station) – приемо-передающая станция
  • MS (Mobile Station) – мобильная станция

 

Состав коммутационной подсистемы SS

MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
Хранящаяся информация в HLR включает в себя:

  • Идентификаторы (номера) абонента.
  • Дополнительные услуги, закрепленные за абонентом
  • Информацию о местоположении абонента, с точностью до номера MSC/VLR
  • Аутентификационную информацию абонента (триплеты)

HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен  дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC – центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC – центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

 

Состав подсистемы базовых станций BSS

BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

nok_bsc2io

BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

mast

Географическое построение сетей GSM

Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

msc-zone

Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

gsm-zone

Частотный план GSM

GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

  • P-GSM900 890-915/935-960 MHz
  • E-GSM900 880-915/925-960 MHz
  • R-GSM900 890-925/935-970 MHz
  • R-GSM1800 1710-1785/1805-1880 MHz

В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.

Помогла ли вам статья? gsm-zoneДа gsm-zoneНет Стоп Спасибо! Ваш голос учтен.

Gsm что это такое в телефоне

Поиск Лекций

Основные характеристики стандарта GSM.

Литература

1. Бабков В.Ю., Цикин И.А.Сотовые системы мобильной радиосвязи.- СП.:

Изд-во Политехн.ун-та, 2011.-426 с.

2. Кузнецов М.А., Рыжков А.Е. Современные технологии и стандарты

подвижной связи. – СПб.: Линк, 2006.

3. Волков А.Н., Рыжков А.Е., Сиверс М.А. UMTS. Стандарт сотовой связи

третьего поколения. ‒ СПб, Линк, 2008.

4. Стандарты и сети радиодоступа 4G: LTE, WiMAX/ А.Е.Рыжков,

М.А.Сиверс и др. – СПб, Линк, 2012 – 226с.

5. Никитина А.В., Рыжков А.Е. Сети радиодоступа четвертого поколения.

Стандарт LTE: технологии и процедуры. – СПб, Издательство СпбГУТ, 2012 – 88с.

 

 

Ответы:

Принципы сотовой связи. Сотовые технологии. Характеристики трафика в сотовых сетях.

Сотовая связь, сеть подвижной связи — один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид шестиугольных ячеек (сот).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Основные составляющие сотовой сети — это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS,NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора.

Что такое GSM

Как правило, это осуществляется по повышенным тарифам. Возможность роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.[1]

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Основные характеристики стандарта GSM.

GSM (от названия группы Groupe Spécial Mobile, позже переименован в Global System for Mobile Communications) (русск.СПС-900) — глобальный стандарт цифровой мобильной сотовой связи, с разделением каналов по времени (TDMA) и частоте (FDMA). Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 80-х годов.

GSM относится к сетям второго поколения (2 Generation) (1G — аналоговая сотовая связь, 2G — цифровая сотовая связь, 3G — широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями, в том числе Интернет).

Сотовые телефоны выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц[1].

В стандарте GSM применяется GMSK модуляция с величиной нормированной полосы ВТ — 0,3, где В — ширина полосы фильтра по уровню минус 3 дБ, Т — длительность одного бита цифрового сообщения.

GSM на сегодняшний день является наиболее распространённым стандартом связи. По данным ассоциации GSM (GSMA) на данный стандарт приходится 82% мирового рынка мобильной связи, 29% населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий.

Принцип построения
Принцип построения сотовых систем вкратце состоит в следующем: в пределах территории действия сети устанавливается некоторое количество относительно маломощных стационарных приемо-передающих станций (базовых станций), каждая из которых имеет небольшую зону действия (обычно несколько километров). При этом, зоны действия соседних станций несколько перекрывают друг друга, чтобы обеспечить возможность перемещения абонента из одной зоны в другую без потери связи. Чтобы такое перекрытие было возможным, соседние станции должны использовать различные рабочие частоты. Для полного покрытия определенной территории требуется как минимум три различные частоты, чтобы расположенные в виде треугольника станции могли иметь перекрытие зон обслуживания. Четвертая же станция может снова использовать одну из этих трех частот, так как она граничит только с двумя зонами. При таком подходе форма зоны действия каждой базовой станции представляет собой шестиугольник, а расположение этих зон в точности повторяет структуру пчелиных сот, что и дало название системам связи с подобным принципом построения.

 

Сегодня GSM — наиболее быстро развивающаяся система сотовой связи. Новые, отчасти революционные технические новшества, совместимые с GSM, могут быть и будут представлены в ближайшем будущем. Все это служит твердой основой для того, чтобы технология GSM стала единым реальным стандартом цифровых сотовых систем во всем мире.

 

Сейчас GSM развивается в направлении к третьему поколению сотовых систем. Наиболее существенное различие между развиваемой технологией GSM и третьим поколением систем состоит в предъявляемом к последним требовании очень высокой скорости передачи данных, вплоть до 2 Мбит/с. Это означает, что для обеспечения большой площади обслуживания сети GSM-900, DCS-1800 иPCS-1900 могут быть использованы как компоненты систем сотовой связи третьего поколения. Это также означает, что высокоскоростной интерфейс для передачи данных сотовых систем третьего поколения должен разрабатываться таким образом, чтобы быть совместимым с GSM.

 

Основные характеристики стандарта GSM.

 

· Частоты передачи подвижной станциии приема базовой станции, МГц 890-915

· Частоты приема подвижной станции и передачи базовой станции, МГц 935-960

· Дуплексный разнос частот приема и передачи, МГц 45

· Скорость передачи сообщений в радиоканале, кбит/с 270, 833

· Скорость преобразования речевого кодека, кбит/с 13

· Ширина полосы канала связи, кГц 200

· Максимальное количество каналов связи 124

· Максимальное количество каналов, организуемых в базовой станции 16-20

Предоставляемые услуги[править]

GSM обеспечивает поддержку следующих услуг:

· Услуги передачи данных (синхронный и асинхронный обмен данными, в том числе пакетная передача данных — GPRS). Данные услуги не гарантируют совместимость терминальных устройств и обеспечивают только передачу информации к ним и от них.

· Передача речевой информации.

· Передача коротких сообщений (SMS).

· Передача факсимильных сообщений.

Дополнительные (необязательные к предоставлению) услуги:

· Определение вызывающего номера и ограничение такого определения.

· Безусловная и условная переадресация вызова на другой номер.

· Ожидание и удержание вызова.

· Конференц-связь (одновременная речевая связь между тремя и более подвижными станциями).

· Запрет на определённые пользователем услуги (международные звонки, роуминговые звонки и др.)

· Голосовая почта.

и многие другие услуги.

Преимущества и недостатки[править]

Преимущества стандарта GSM:

· Меньшие по сравнению с аналоговыми стандартами (NMT-450, AMPS-800) размеры и вес телефонных аппаратов при большем времени работы без подзарядки аккумулятора. Это достигается в основном за счёт аппаратуры базовой станции, которая постоянно анализирует уровень сигнала, принимаемого от аппарата абонента. В тех случаях, когда он выше требуемого, на сотовый телефон автоматически подаётся команда снизить излучаемую мощность.

· Хорошее качество связи при достаточной плотности размещения базовых станций.

· Большая ёмкость сети, возможность большого числа одновременных соединений.

· Низкий уровень индустриальных помех в данных частотных диапазонах.

· Улучшенная (по сравнению с аналоговыми системами) защита от подслушивания и нелегального использования, что достигается путём применения алгоритмов шифрования с разделяемым ключом.[уточнить]

· Эффективное кодирование (сжатие) речи. EFR-технология была разработана фирмой Nokia и впоследствии стала промышленным стандартом кодирования/декодирования для технологии GSM (см. GSM-FR, GSM-HR и GSM-EFR)

· Широкое распространение, особенно в Европе, большой выбор оборудования.

· Возможность роуминга.

Это означает, что абонент одной из сетей GSM может пользоваться сотовым телефонным номером не только у себя «дома», но и перемещаться по всему миру переходя из одной сети в другую не расставаясь со своим абонентским номером. Процесс перехода из сети в сеть происходит автоматически, и пользователю телефона GSM нет необходимости заранее уведомлять оператора (в сетях некоторых операторов, могут действовать ограничения на предоставление роуминга своим абонентам, более детальную информацию можно получить обратившись непосредственно к своему GSM оператору)

Недостатки стандарта GSM:

· Искажение речи при цифровой обработке и передаче.

· Связь возможна на расстоянии не более 120 км[3][4] от ближайшей базовой станции даже при использовании усилителей и направленных антенн. Поэтому для покрытия определённой площади необходимо большее количество передатчиков, чем в NMT-450 и AMPS.

Структура GSM[править]

Основная статья: GSM core network

Структура сети GSM

Система GSM состоит из трёх основных подсистем:

· подсистема базовых станций (BSS — Base Station Subsystem),

· подсистема коммутации (NSS — Network Switching Subsystem),

· центр технического обслуживания (OMC — Operation and Maintenance Centre).

В отдельный класс оборудования GSM выделены терминальные устройства — подвижные станции (MS — Mobile Station), также известные как мобильные (сотовые) телефоны.

 

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

принцип действия, стандарты и устройство современных сетей

Сотовая связь – набор методик, позволяющий использовать звонящему мобильный телефон.

История

Это интересно! Учёных-изобретателей опередил карикатурщик Льюис Баумер. Журнал Панч (1906 год) опубликовал прохаживающихся по Гайд Парку людей, использовавших переносные модели телефонов. Сюжет озаглавили «Ожидания 1907».

Телефоны развивались параллельно вещанию, связи. Первая попытка создания беспроводной модели предпринята (1908 год) совместными усилиями:

  • Профессора Альберта Джанкла.
  • Трансконтинентальной телефонной компании Окленда.
  • Пауэр Компани.

Железные дороги

Массовое производство переносных радиостанций прогорело. Начиная 1918 годом, участок Берлин-Цоссен немецких железных дорог тестирует беспроводные телефоны. Шесть лет спустя линия Берлин-Гамбург предоставила приватным пассажирам аналогичный сервис. 1925 считают отравной точкой промышленного изготовления. Теперь пассажиры первого класса могу звонить абонентам, наслаждаясь прелестями путешествия.

Первые переносные радиостанции 40-х годов весили изрядно, больше напоминая солидных размеров рюкзак. США (Сант-Луис, Миссури) начали разработки коммерческих образцов 17 июня 1946 года. Вскоре компания AT&T анонсировала Мобильный телефонный сервис (МТС). Родилось сразу несколько разрозненных локальных операторов.

Локальный оператор

Говорит Москва!

Советский инженер Леонид Куприянович (1957-1961 г.г.) представил первые экземпляры устройств. Вес модели составил 70 г, вполне позволяя корпусу быть ухваченным ладонью. Правительство, призрев усилия москвича, отдало приоритет развитию автомобильной версии «Алтай», призванной обустроить тяжкий быт управленцев. Оборудование конструируемое Воронежским научным институтом связи включало МРТ-1327, пробная версия охватила столицу (1963). На 1970 год 30 городов получили возможности общения. Разновидность радиосвязи существует доныне в России.

Столичная выставка Инфорга-65 представила труд болгарской компании Радиоэлектроника. Идея используется поныне: деление приемопередающей аппаратуры. Тяжелую работу выполняет базовая станция, относительно маленькая трубка позволяет абоненту говорить в пределах территориально ограниченной области. Конструкция использовала задумки Куприяновича. Одна база служила опорной точкой максимум 15-ти абонентам. 1966 отмечен выходом коммерческой версии RAT-0,5, обслуживаемой точкой доступа RATZ-10.

Мобильная телефония прямиком выводит стандарт 0G, использованный зародившейся компанией МТС.

Первый оператор

Итак, начиная 1949 годом начинает действовать Мобильный телефонный сервис. Изначально (1946 год), предшествуя формированию подразделения, компания AT&T начала оборудовать просторы США. Спустя пару лет, блага цивилизации получили тысячи городов, высокоскоростных трасс. Однако число абонентов составило 5000. Еженедельно совершали 30.000 вызовов. Бытовала ручная коммутация каналов оператором. Вес снаряжения говорящего составил 80 фунтов.

Мобильный телефонный сервис

Первоначально компания предоставила три частотных канала, позволяя одновременно беседовать… трём абонентам города. Стоимость:

  1. 15 долларов ежемесячно.
  2. 30-40 центов за вызов. Учитывая инфляцию, современный абонент заплатит 3,5-4,75$.

Аналогичный сервис Великобритании назвали Служба радиофонов почтовых отделений. В 1959 году сеть охватила окрестности Манчестера, шесть лет спустя паутина окутала Лондон. Затем последовало подключение основных городов королевства. Операторы постепенно увеличивали скорость топтания на месте. IMTS прибавил частотных каналов, попутно снижая начальные 35 кг веса оборудования. Общее число абонентов США достигло 40000. Две тысячи ньюйоркцев делили 12 каналов. Желающим совершить звонок приходилось выжидать полчаса.

RCC

Radio Common Carrier считают основным конкурентом МТС. Сервис  успешно засорял эфир 20 лет (60-80-е годы). Появившиеся системы AMPS сделали оборудование компании устаревшим. Отсутствовало понятие роуминга из-за несовместимости стандартов:

  1. Двухтоновая последовательная пагинация входящего вызова.
  2. Тоновый набор.
  3. Secode 2805 (тон вызова 2,805 кГц, напоминающий принцип действия оборудования МТС).

Часть телефонов задействовала полудуплексный режим (Моторола LOMO), другая – больше напоминала рации (серия 700 RCA). Мобильник Омахи становился грудой железа в штате Аризона. RCC игнорировали технический прогресс, пока конкуренты разрабатывали концепции роуминга.

Модели телефонов Моторола

Начиная 1969 годом, Центральная железная дорога Пенн снабдила поезда линии Нью-Йорк – Вашингтон мобильными радиостанциями. Система получила 6 каналов диапазона ДМВ 450 МГц. Великобританская система Кролик развила концепцию болгарских учёных. Максимальная дальность участка абонент-базовая станция составила 300 футов (100 метров). Ныне схожая технология, использующая 4G, запущена компаний Apple.

Перечень значимых сотовых операторов второй половины XX века

  1. Норвежский OLT (1966 год).
  2. Финский ARP (1971 год). Первый коммерчески успешный проект. Исследователи именуют оборудование компании 0G.
  3. Шведский MTD (70-е).
  4. Британский Рэдиколл (июль 1971).
  5. Немецкие A-Netz (1952 год), В-Netz (1972).

Сотовый оператор A-Netz

Автомобильная шведская MTA (1956), разработанная Штуре Лауреном (Телеверкет) использовала импульсный набор. Исходящие вызовы были прямыми, ближайшую станцию входящих выбирал оператор. Оборудование сборное:

  • Коммутаторы Эрикссон.
  • Аппараты, базовые станции Радиоактиболагет (SRA) и Маркони.

Утроба корпуса полна реле, вакуумных ламп, вес составляет 40 кг. 1962 год принёс облегчение, явив второе поколение услуг В. Транзисторы снизили вес, система сигнализации DTMF разгрузила ресурсы. 1971 отмечен появлением MTD. Ресурс просуществовал 12 лет, оставив сиротами 600 подписчиков.

Развитие концепции сотовой связи

Вторая мировая война окончилась полным отсутствием стандартов, частот, выделенных каналов. Холодным декабрём 1947 года Дуглас Ринг, Раэ Янг, инженеры Лаборатория Белла, выдвинули идею сотовой ячейки. Два десятилетия спустя Ричард Френкель, Джоэль Енгель, Филипп Портер развили концепцию, разработав детальный план. Портер подчеркнул необходимость применения башен, оснащённых направленными антеннами. Выделенный главный лепесток резко снижал уровень интерференции. Портер первым выдвинул концепцию предоставления ресурсов по запросу, снижая число коллизий.

Ранние эксперименты исключали возможность оперативной смены соты. Принципы повторного использования частот, хэндовера, основы современной связи заложены в 60-е. Инженеры Лабораторий Белла, Амос и Джоэль младший, изобрели (1970 год) трёхсторонние сети, упрощая процесс хэндовера. План переключения абонентов обсуждался (1973) Флуром и Нуссбаумом, система сигнализации – Хахенбургом.

Переключение абонентов сотовой связи

Переключение абонентов сотовой связи

Предшественники преимущественно щеголяли оборудованием, призванным порадовать транспортников. 3 апреля 1973 года Марти Купер (Моторола, США) сконструировал первую ручную версию, немедля позвонив конкуренту доктору Джоэлю Энгелю (Лаборатории Белла). Вес устройства длиной 23 см, шириной 13 см, толщиной 4,45 см составил 1,1 кг. Батарея заряжалась 10 часов, обеспечивая 30 минут полноценного общения. Шеф Купера сыграл ключевую роль, привлёкши внимание руководства Моторола.

Поколения связи

Развитие отрасли шло ярко выраженными волнами. Термин поколение настиг гонку на этапе 3G. Теперь словцо используют ретроспективно, обозревая былые заслуги.

1G – аналоговые соты

Концепция запущена (1979 год) японской компанией Ниппон телеграф и телефон (NTT), охватив метрополию Токио. Выполнив план пятилетки, инженеры покрыли сеткой острова архипелага. 1981 считается годом рождения датской, финской, норвежской, шведской систем связи NMT. Единый стандарт помог реализовать международный роуминг. США выжидал 2 года, лицезря европейские успехи. Затем чикагский провайдер Америтех, используя аппараты Моторола, начал захват рынка. Последовали аналогичные шаги со стороны Мексики, Канады, Великобритании, России.

Северная Америка (13 октября 1983 – 2008 г.г.), Австралия (28 февраля 1986, Телеком), Канада широко использовали AMPS; Великобритания – TACS; Западная Германия, Португалия, Южная Африка – С-450; Франция – Радиоком 2000; Испания – ТМА; Италия – RTMI. Японцы плодили стандарты неимоверно быстро: TZ-801, TZ-802, TZ-803. Конкурент NTT создал систему JTACS.

Стандарт включает цифровой вызов станции, однако передача информации полностью аналоговая (модулированный сигнал ДМВ выше 150 МГц). Шифрование отсутствовало напрочь, набивая монетой карманы частных детективов. Частотное деление каналов оставляло место незаконному клонированию устройств.

Мобильник DynaTAC 8000X Америтех

Мобильник DynaTAC 8000X Америтех

6 марта 1983 запущена разработка мобильника DynaTAC 8000X Америтех, стоившая компании состояние. Целое десятилетие устройство силилось достигнуть прилавки магазинов. Список желающих подписаться исчислялся тысячами индивидов, невзирая на явные недостатки:

  • Время жизни батареи.
  • Габариты.
  • Быстрая разрядка.

Поколение телефонов позже успешно модернизировали, обеспечивая апгрейд к поколению 2G.

2G – цифровая связь

Появлением второй ступени развития отмечено начало 90-х. Сразу обозначились два главных конкурента:

  1. Европейский GSM.
  2. Американский CDMA.

Ключевые отличия:

  1. Цифровая передача информации.
  2. Внеполосный вызов вышки телефоном.

Эру 2G называют эпохой заказанных телефонов. Покупателей слишком много, производитель заранее собирал списки желающих. Первой сеть Радиолиния запустила Финляндия. Европейские частоты исторически выше американских, некоторые диапазоны 1G и 2G (900 МГц) накладываются. Устаревшие системы ускоренно закрывали. Американский IS-54 захватил прежние ресурсы AMPS.

IBM Simon принято считать первым смартфоном: мобильник, пейджер, факс, PDA. Программный интерфейс предоставлял календарь, адресную книгу, часы, калькулятор, блокнот, электронную почту, опцию предсказания следующего символа наподобие Т9. Тачскрин обеспечивал управление клавиатурой QWERTY. Комплект дополнял стилус. Карта памяти PCMCIA ёмкостью 1,8 МБ расширяла функционал.

2G сотовая связь

2G сотовая связь

Наметилась тенденция минимизации аппаратов. Кирпичи начинали весить 100-200 г. Впервые оценены публикой СМС-сообщения. Первый (сгенерированный автоматически) GSM-текст послали 2 декабря 1992 года, в 1993 – произвели опробирование люди. Метод пакетной предоплаты вскоре сделал СМС общение популярной молодёжной забавой. Позже страсть охватила старшие поколения.

Появлением сервиса мобильных платежей (автоматы Кока-Кола, парковки), выходом платного медиаконтента ознаменован 1998 год: провайдером Радиолиния (ныне Элиза) продан первый рингтон. Изначально новостные подписки (2000 г.) распространяли бесплатно, сервис оплачивали рекламными взносами спонсоров. Появился защищённый доступ клиент-банк (1999, Филиппины), поддерживаемый операторами Глоуб, Смарт. Тогда же японская NTT DoCoMo реализовала телефонный интернет.

3G

Поколение 2G окончилось тотальной победой мобильных технологий. Повседневная жизнь миллиардов наполнилась вызовами. Инновационной идеей, призванной повысить скорость передачи данных, стала коммутация пакетов (вместо коммутации каналов). Разработчики отпустили вожжи производителям, сконцентрировавшись целиком на потребительских качествах. Сделанное явилось следствием внедрения сонма стандартов. Совместимый CDMA ввёл несколько улучшений:

  1. Снижение времени установки соединения.
  2. Повышение пакетной скорости (3,1 Мбит/с).
  3. Флаги QoS.
  4. Одновременное использование временного слота несколькими абонентами.

Первая сеть 3G WCDMA (май 2001, коммерческое использование, начиная 1 октября) охватила Токио. Южнокорейские конкуренты (KTF, SK Телеком) ждали 2002 года. Технология CDMA2000 1xEV-DO достигла берегов США, причём оператор Монет успел обанкротиться. Параллельно Япония обзавелась вторым набором пчелиных сот, благодаря Vodafone. Последовало общемировое внедрение технологии.

3G сотовая связь

3G сотовая связь

Параллельно появлялись промежуточные этапы становления систем – 2,5; 2,75G, например, GPRS. Указанные средства обеспечивали часть требований 3G, упуская другие: CDMA2000-1X теоретически способен дать 307 кбит/с. Следом идёт технология EDGE, номинально соответствующая 3G. Практически максимальные пороги недостижимы ввиду наличия помех.

Постепенно телерадиокомпании осознавали возможности беспроводного цифрового вещания. Первыми пташками вылетели трансляции Disney, RealNetworks. Эволюция явила миру HSDPA (высокоскоростной нисходящий пакетный доступ) – усовершенствованный вариант HSPA. Стандарт признали равным 3.5G, маркетологи радостно употребляли аббревиатуру 3G+. Текущая версия поддерживает скорости загрузки данных 1,8; 3,6; 7,2; 14 Мбит/с. На исходе 2007 полных 295 млн. абонентов эксплуатировала сети повсеместно, составляя долю 9% общемирового спроса на услуги связи. Сверхприбыли (120 млрд. $) заставили изготовителей телефонов немедля модернизировать производственный конвейер: адаптеры, приставки ПК.

4G

Итоги 2009 бесстрастно показали: грядёт новая смена поколений, вызванная растущими запросами публики. Стали вести поиск технологий, десятикратно повышающих скорости передачи. Первые ласточки – технологии WiMAX, LTE.

Поколение 4G

Поколение 4G

Зараза молниеносно охватила Скандинавию, благодаря усилиям ТелиаСонера. Сетевая коммутация убрана бесповоротно, заменена IP-адресацией. ITU нормирует (март 2008) области:

  1. Игровые приложения.
  2. IP-телефония.
  3. Интернет.
  4. HDTV.
  5. Видеоконференции.
  6. Трехмерные трансляции.

Установлены скорости:

  1. 100 Мбит/с – подвижные объекты (транспорт).
  2. 1 Гбит/с – типичные мобильные приложения.

Учитывая сказанное, принадлежность типов связи LTE, WiMAX к 4G сомнительна. Эксперты заявили принципиальную невозможность достижения технологиями установленной планки. LTE-A номинально коснулась рубежа, провалив натурные испытания. Инженеры возлагают надежды на разрабатываемый WirelessMAN-Advanced. Один расклад везде: инженер работает, маркетолог хвалится. Так устроен мир.

Принцип действия

Сотовые сети эксплуатируют идеи контроля доступа к среде (MAC). Полный аналог проводной версии. Происходит мультиплексирование данных, обеспечивая экономию ресурсов. Конкретный дизайн протокола определяет физическая среда. Радиосигнал изменяется оптическими эффектами, погодными условиями, временем дня, года. Качество приёма постоянно флуктуирует. Очевидным решением выступает повышение мощности, однако мера одновременно усиливает явление интерференции. Количество ошибок растёт. Примерные соотношения:

  1. Проводная сеть – количество ошибок менее миллионной доли.
  2. Сотовая связь – число неправильных пакетов свыше тысячной доли.

Разница превышает три порядка. Терминалам приходится использовать полудуплексный режим. Энергия передаваемого пакета много выше принимаемого сигнала. Особенности схемотехники допускают наводки. Просачивание столь большой мощности в тракт приёма полнодуплексного устройства мешает расшифровке пакетов.

Схема с контролируемым доступом

Назначается контролёр операций, координирующий распределение ресурсов. Чаще роль выполняет вышка, точка доступа. Терминал исполняет заранее заложенную программу выделения каналов, частот, временных слотов, антенн. Гарантируется отсутствие конфликтов.

Система сотовой связи

Система сотовой связи

  1. TDMA. Временное деление.
  2. FDMA. Деление по частоте.
  3. OFDMA. Ортогональный доступ по частоте.
  4. SDMA. Пространственное деление.
  5. Poll.
  6. Token Ring.

Динамическое выделение ресурсов даёт неоспоримые преимущества тяжело загруженным сетям. Потому что протоколы со свободным доступом львиную долю времени тратят, предотвращая коллизии. Терминал проверяет поочерёдно активность абонентов, используя алгоритмы случайных числе, предоставляя желающим передать информацию слоты.

Общим недостатком схем контролируемого доступа считают сложность покрытия сотами протяжённых областей. Много места занимают служебные пакеты информации.

Частотное деление

Эволюционно старейшая технология сотовой связи. В пределах сессии запрос получает уникальную частоту. Пустующий канал помечается соответствующим идентификатором, позволяющим дальнейшую раздачу ресурса.

Метод эксплуатируют узкополосные системы, где длина символа существенно превышает среднее время доставки сообщения. Переменный битрейт требует модификации метода, выделения полосы сообразно ширине спектра сигнала. Зато частотное деление позволит организовать дуплексный канал.

Временное деление

Контролёр выделяет абоненту фиксированный интервал времени. Без учёта загруженности слота.

Мультиплексирование по ширине спектра сигнала

Схема комбинирует временное и частотное деление. Выделяют 2 дочерних вида:

  1. Псевдослучайная перестройка. Текущие частотные, временные каналы составлены полосой узких отрезков. Абонент, вещающий узкополосным сигналом, получает слот. Время выделяется целиком, частота выделяется свободная (может изменяться) в текущий момент. Смена частоты может происходить несколько раз на длительности одного бита информации.
  2. Метод прямой последовательности. Бит кодируется псевдошумовым сигналом (ПШС), модулирующим несущую. Спектр сильно расширяется, позволяя понизить отношение сигнал/шум. Сказанным исключается взаимная интерференция терминалов, понижается плотность мощности. Использование ПШС разрешает нескольким абонентам эксплуатацию единой частоты.
Ортогональное частотное деление

Электронная начинка приёмника выполняет обратное преобразование Фурье сигнала. Спектр приходят частями, передаваемый разнесёнными несущими. Параллельное использование нескольких узких каналов даёт шанс улучшить коэффициент использования ресурсов.

Протокол со свободным доступом

Терминал предоставляет ресурсы случайным образом. Отсутствие координации предполагает возникновение коллизий. Идеальный выбор сетей с низкой загрузкой. Иначе производительность системы резко падает. Зато аппаратная реализация отличается максимальной простотой.

  1. ALOHA.
  2. CSMA.
  3. CSMA/CA.

Выбираем усилители сотовой связи для дачи с Aliexpress. ТОП-5 GSM репитеров

Деревня и дача — те места, где сигнал сотовой связи зачастую гораздо ниже порога уверенного приёма.  А коли разговаривать и пользоваться мобильным интернетом хочется всем, то предлагаю подборку самых приличных по качеству и функционалу усилителей сигнала мобильной связи с алиэкспресс.  Ко всем моделям есть масса положительных отзывов. 

 

 

 

ВАЖНО!

Если вас заинтересовал какой-то из товаров из этой подборки, то смотрите актуальный обновляемый список купонов и промокодов на алиэкспресс на август 2020г ТУТ, с их помощью можно неплохо сэкономить на покупке. 

↓ ↓ ↓

 

✅Крупнейшая распродажа на Аликспресс на Алиэкспресс «Миллионы скидок» проходит 19-28.08. Полное руководство: купоны, промокоды, хитрости и актуальные↑скидочные товары. Не упусти шанс хорошо сэкономить! ✅

↑ ↑ ↑

Детальная информация по специфике усиления мобильного сигнала в сельской местности и на даче есть в массе других статей, тут я постараюсь обойтись общим материалом. 

Уровни сигнала (dBm) и качество голосовой связи

 

до -75 dBmВысокий уровень сигнала

хорошее качество голоса, хороший приём в здании

-76…-85 dBmСредний уровень сигнала

хорошее качество голоса, хороший приём на улице

-86…-95 dBmНизкий уровень сигнала

пограничная зона, голосовая связи не гарантированна

-96…-109 dBmОчень низкий уровень сигнала

скорей всего будут приходить только СМС

-110 dBm и меньшеНет связи

 

Из чего состоит усилитель сотовой связи, он же  GSM-репитер

Собственно, тут три составляющих:  внешняя антенна, сам блок репитера, и внутренняя антенна. 

Блок репитера может иметь дисплей (что лучше всего), а может его не иметь. 

 

Как правильно установить усилитель мобильной связи.

а)внешнюю антенну необходимо направить на ближайшую базовую станцию. можно нарыть информацию по картам.

В местах с плохим сигналом от базовых станций сотовых операторов, оправданно купить внешнюю направленную  антенну с максимальным коэффициентом усиления. Разумеется, частотный диапазон антенны должен совпадать с репитером.

Для более точной настройки, что актуально при покупке отдельной узконаправленной антенны, стоит ориентироваться на показания уровня сигнала модемом или сотовым, который будет ловить сигнал от внутренней антенны, не стоит полагаться на данные на дисплее блока репитера. 

Есть отзывы о непрактичности распространённых антенн из алюминиевых трубок, конкретно жалобы на плохую влагозащиту. Попадающая внутрь вода прямо ухудшает функционала.  В общем-то, внешнюю антенну можно купить как оффлайн (где вам еще подскажут), так и онлайн

 

Внешнюю антенну можно сделать самому, можно купить оффлайн, можно купить и на алиэкспрессе.  К примеру вот эта вот направленная GSM-антенна(напоминаю частоты должны совпадать с нужными вам. в поиске вбивайте Yagi antenna). Не забудьте проверить тип разъёма, будет глупо заказать N вместо SMA.

 

б) репитер, внутреннюю и внешнюю антенны необходимо развести как можно дальше.  И идеале метров от 5 друг от друга, да еще и со стеной между ними. Если будете поднимать антенну сильно вверх — стоит озаботиться грозозащитой. 

Сигнал от внутренней антенны не должен ловиться внешней, иначе пойдет обратная связь, антенны будут самовозбуждаться. 

В силу этого варианты где внутренняя антенна подключается напрямую к репитеру оправданны лишь для последующего подключения отдельной внутренней антенны.    Комплектные варианты типа указанного на фото «крысиного хвоста» будут работать ощутимо хуже антенны по ссылке. 

  

При покупке внутренней антенны для GSM репитера имеет смысл взять вот такую антенну Omni broad range потолочного крепления.  Так как тут 0.3м родной кабель, то надо будет удлинять, благо в том же магазине продаются и кабели. Впрочем, их же можно купить и офлайн.  

в) прежде чем купить на алиэкспресс усилитель мобильного сигнала, надо определиться с частотным диапазоном вашего оператора в этой местности.  Тут все просто — скачиваете программу network cell info lite и там все отображается. 

внимание!

прежде чем я начну свой рейтинг gsm-репитеров, стоит упомянуть про марку Lintratek. Это отлично зарекомендовавшие себя устройства для разных нужд и бюджетов.  Для читателей не из России может быть уместно дать ссылку на их официальных магазин.  Первый в списке ниже усилитель сигнала мобильной связи я дам из другого магазина, потому что там есть доставка с РФ склада.  У Lintratek official store доставка этой модели только со склада в Китае, зато есть варианты разных комплектаций с разными антеннами и без них. Какие-то другие модели есть уже и на складе в РФ. 

это очень крупный фирменный магазин на алиэкспресс, где можно купить не только усилителей сотовый связи и интернета для дачи, но и все остальные запчасти — антенны всех разновидностей, кабели и т.д. 

 

Lintratek KW17L-GD

UPD. сейчас, на конец мая, вижу что продавец обновил лот. Сейчас тут ноль заказов и ноль отзывов. С чем связно  — непонятно. Совсем недавно тут было наоборот, т.е. куча заказов и множество хороших отзывов. Именно эту модель я собирался покупать сам и именно ее мне и посоветовал продавец, когда я обрисовал ему ситуацию (дача, неуверенный сигнал сети, едва живой интернет).  

Эта модель стоит дороже остальных, порядка 75$, зато избавляет от необходимости докупать как нормальную внутреннюю антенну, так и провода. Есть доставка с РФ склада. С максимальной вероятностью именно этот комплект я буду брать себе на дачу, так как в нём изначально нормальные антенны + есть поддержка LTE. Соответственно, скорость интернета должна тоже быть на приемлемом уровне. 

Кроме самого блока GSM-репитера, в комплект входят: Внешняя направленная антенна на частоту 800-2700 МГц и усилением 10 dBi, 10 метров коаксиального 50ом кабеля к ней, внутренняя направленная антенна на частоту 800-2700 МГц, усилением 3-5 dBi и кабелем 2 метра.

 

LINTRATEK KW13A-GSM

Исключительно популярная модель, 2500 заказов.  Отличие от модели выше — другие антенны, нет поддержи LTE. Этот усилитель сотовой связи подойдет чтобы провести в городских условиях сигнал с улицы в подвал, к примеру. Важно! Поддерживается лишь стандарт GSM 900!

Lintratek KW16L-WCDMA-S

В общем-то, все то же самое и для тех же целей,  что и у модели выше, но для частот B1, то есть 2100Мгц. Основной минус — куцая внутренняя антенна.  Но для каких-то подвальных помещений или усиления связии в небольших комнатах будет вполне нормально. Опять-таки — ничто не мешает докупить нормальную «круговую» антенну по ссылке в шапке обзора и заменить комплектную ей. 

ATNJ AS-W3

 ATNJ — это тоже бренд усилителей сотовой связи, ссылка ведет на официальный магазин. Доставка со склада в РФ.

Модель функционально схожа с первым Lintratek в списке. Тут две нормальные антенны, поддерживается широкий диапазон,  включая LTE — с интернетом проблем не должно быть. Есть автоматическое регулирование уровня усиления сигнала (AGC)

В комплекте длинный кабель (15 м снаружи и 5 м внутри) что позволит закрепить антенну в любом удобном месте. Уровень усиления заявлен в 70 дБ, частотный диапазон – от 1920 до 2170 МГц. То есть GSM 900Мгц  не будет!

 

Блок репитера 900mhz

Самый недорогой репитер для тех, кто имеет умение и\или желание доводить до ума все прилагющеся. Тут нет антен и блока питания, лишь сам блок репитера и его ценник в 28$. Оправданная покупка для человека, у которого есть все остальные запчасти или возможность их сделать.   

в магазине есть и другие блоки для других частот

Вот и все, надеюсь что эта подборка усилителей сотового сигнала, поможет кому-то из прочитавших выбрать подходящий для себя усилитель сотовой связи и интернета с алиэкспресс и мучиться, бегая по огороду\даче в поисках сигнала.

 

Кстати, если вы любите читать, то  есть вариант отлично сэкономить! Книжный сервис ЛИТРЕС, крупнейший в России и странах СНГ дает  четвертую книгу в подарок при покупке трех. Лично я именно там и покупаю книги уже порядка 5 лет.  Ценник и без того доступный, а с таким бонусом выходит совсем небольшим. Есть удобное приложение для чтения и прослушивания книг. По ссылке выше — одна из моих подборок, в которой есть жирный обновляемый промокод. 

 

 

ВАЖНО!

Если вас заинтересовал какой-то из товаров из этой подборки, то смотрите актуальный обновляемый список купонов и промокодов на алиэкспресс на август 2020г ТУТ 

 

Также стоит отметить что на даче и в сельской местности отлично проявит себя такая вещь как налобный или ручной фонарь. Современные модели стоят совсем немного и дают весьма яркий свет.  Посмотрите на мои подборки хороших моделей, наверняка что-то найдете.  Выбираем налобный фонарь и Мой личный ретийнг светодиодных фонарей на 2020г 

 

GSM на столе / Хабр

Разработка под веб: HTTP, HTML, CSS, JavaScript, Python… Ох. Всё одно и то же. Так хочется отвлечься на что-нибудь радикально другое. Я же обитаю в московском хакспейсе Нейрон! Почему бы не поспрашивать вокруг?

Например, в Нейроне сидят ребята из компании Fairwaves, разрабатывающие GSM-оборудование для недорогих сотовых сетей. Весь стек — от железа до софта — доступен под open source лицензией. Да, да, включая железо. Поэтому совсем не обязательно работать в Fairwaves, чтобы познакомиться с этой технологией. И результат копания можно выложить на GitHub или сделать вклад в существующий проект. Как минимум, будет чем похвастаться на собеседованиях.

Пара дней чтения документации, пролистывания кода, десятки навязчивых вопросов и экспериментов (спасибо Александру Чемерису и Ивану Ключникову за помощь). И вот результат — собственная GSM-сеть под контролем моего Макбука:



Тестировать сеть пришли постояльцы хакспейса:

О чём они разговаривают?

Как это работает? Вот так:

 +----------------------------------------+
 | Макбук                                 |
 |                                        |
 |  +-------------------------------+     |
 |  | VirtualBox виртуалка          |     |
 |  |                               |     |
 |  |  +----------------------+     |     |             |
 |  |  | Docker контейнер     |     |     |         \   |   /       |
 |  |  | (Ubuntu 12.04)       |     |     |          \  |  /        |
 |  |  |                      |     |     |           \ | /         |
 |  |  |  +-------------+     |     |     |        +----+----+     +-------+
 |  |  |  | OpenBSC     |     |     |     |        |         |     |       |
 |  |  |  | (osmo-nitb) |<-------------------------+ базовая |     | GSM   |
 |  |  |  |             |     |     |     |        | станция |     | теле- |
 |  |  |  +-------------+     |     |     |        |         |     | фон   |
 |  |  |                      |     |     |        |         |     |       |
 |  |  +----------------------+     |     |        +---------+     +-------+
 |  |                               |     |
 |  +-------------------------------+     |
 |                                        |
 +----------------------------------------+

На компьютере работаёт VirtualBox c Ubuntu, на котором запущен Docker контейнер c Ubuntu 12.04 и open source контроллером базовых станций OpenBSC (Base Station Controller, BSC). В моём случае OpenBSC работает в режиме network-in-the box и включает в себя не только BSC, но и простую реализацию всех остальных компонентов, нужных для небольшой GSM-сети (MSC, HLR, VLR, AuC и SMSC).

К контроллеру по локальной сети подключается базовая станция Fairwaves UmSITE, на котором крутится OsmoBTS — open source реализация базовой станции GSM (Base Transceiver Station, BTS):

Для запуска GSM-сети достаточно одной (!) команды:

docker run -v $HOME/db:/var/db -i -t -p 3002:3002 -p 3003:3003 -p 30000:30000/udp -p 30001:30001/udp -p 30002:30002/udp -p 30003:30003/udp -p 30004:30004/udp -p 30005:30005/udp -p 30006:30006/udp -p 30007:30007/udp shamrin/osmonitb start-nitb -i 10.0.0.10 -n HabraFon GSM1800 10 20

(Нет Докера? Установите его. У вас не Ubuntu и Докер не ставится? Тогда cмотрите ниже.)

10.0.0.10 нужно заменить на сетевой адрес Docker хоста (ifconfig). А 10 и 20 на используемые номера каналов, ARFCN. Какие каналы указывать, спросите вы? Это сложный вопрос. На частотах GSM нельзя ничего излучать без лицензии, не зависимо от мощности. А простым смертным лицензию получить невозможно. Остаются следующие варианты:

  1. Тестировать в клетке Фарадея. Если нет клетки Фарадея подходящих размеров, сымитировать ее в глухом подвале, где не ловит сотовая сеть и где нет риска помешать сотовым операторам (и они не помешают вам). В этом случае весь радиочастотный спектр в вашем распоряжении и можно указать любую пару чисел в диапазоне от 512 до 885 с разницей не меньше чем в 2-3 канала (лучше в 10 каналов). Например, 600 и 700.
  2. Под присмотром квалифицированного специалиста найти пару неиспользуемых каналов и указать эти каналы при запуске. Например, с помощью телефона, умеющего сканировать эфир, такого как Sagem OT. Еще раз, под присмотром квалифицированного специалиста!

Информацию о других параметрах контейнера и команды start-nitb смотрите в моём репозитарии.

А если у меня не Ubuntu?

Если у вас нет Ubuntu 12.04+, установите Vagrant и VirtualBox и запустите виртуалку Ubuntu + Docker с помощью этих команд:

git clone https://github.com/shamrin/osmonitb-docker
cd osmonitb-docker
vagrant up
vagrant ssh

Почему Docker?

Да, Docker использовать не обязательно. Можно и руками всё поставить и настроить. Но, во-первых, мне хотелось поэкспериментировать с Docker. Во-вторых, с ним можно надёжно завернуть, а потом повторить конфигурацию всей машины (debian-пакеты, вручную установленные программы, файлы конфигурации). В-третьих, список из десятков команд и манипуляций заменяется на одну — docker run ….

Почему не OpenBTS?

Кроме описанных проектов Osmocom (OpenBSC, OsmoBTS, OsmoTRX) есть другая open source реализация GSM протоколов — OpenBTS. Возраст обоих проектов примерно одинаков, но OpenBTS более известен в интернете благодаря чуть большей дружелюбности к новичкам. Если не вникать в технические различия, то в реальных условиях Osmocom работает лучше:

We started using Osmocom software at the beginning of this year and found that it works much better in real life deployments than OpenBTS. It almost never crashes, has more features, scales better and is more flexible.

Где взять оборудование?

Самый простой вариант для жителей Москвы — пользоваться оборудованием в хакспейсе Нейрон 🙂

Если вы живёте не в Москве или просто хотите иметь оборудование, чтобы поиграть с GSM у себя дома, есть две сравнительно недорогих альтернативы для лабораторного применения:

  • Ettus Research USRP разных версий
  • Fairwaves UmTRX

По возможностям они приблизительно близки, но у UmTRX есть преимущества:
  • все схемы платы и исходные коды софта доступны под open source лицензией
  • дешевле, чем аналогичная конфигурация на USRP
  • плата может работать с двумя независимыми каналами, в то время как USRP имеют только один канал
  • GPS для точной подстройки опорного генератора частоты уже встроен, а не закупается отдельно, как в USRP (плавающая частота генератора приводит в GSM к неожиданным проблемам)
  • поддержка российского производителя (и не надо платить таможне)

Если хочется немного сэкономить и не страшны проблемы с опорным генератором, то можно использовать USRP B200. У неё всего один канал, но для домашних экспериментов это не принципиально. Опорный генератор у USRP B200 не соответствует по точности стандарту GSM, но в большинстве случаях его хватает для простой работы «на столе». С USRP B200 могут возникнут проблемы при хэндовере от одной вашей базовой станции к другой, но вы же не планируете строить подноценную сеть на коленке, правда?

Но я могу быть необъективным, проверяйте сами.

Спасибо Андрею Бахмату, Ивану Ключникову, Павлу Труханову, Александру Чемерису и другим участникам хакспейса за комментарии к черновикам этого текста.

Архитектура системы GSM »Электроника

Архитектура сети GSM состоит из различных элементов, включая подсистему базовой станции BSS, подсистему сети и коммутации NSS, подсистему эксплуатации и поддержки, а также элементы, включая MSC, AuC, HLR, VLR и т. Д.


GSM primer включает:
GSM введение Сетевая архитектура Сетевые интерфейсы RF интерфейс / слот и пакет Кадры GSM Классы мощности и контроль каналы Аудиокодеки / вокодеры Сдавать


Архитектура сети GSM обеспечивает простую, но эффективную архитектуру для предоставления услуг, необходимых для системы сотовой или мобильной связи 2G.

В общей архитектуре сети GSM было четыре основных элемента, которые часто можно было дополнительно разделить. Такие элементы, как контроллер базовой станции, MSC, AuC, HLR, VLR и т.п., объединяются в общую систему.

Архитектура сети GSM 2G, хотя сейчас она заменена, дает отличное введение в некоторые из основных возможностей, необходимых для создания телефонной сети мобильной связи, и того, как все объекты работают вместе.

A mobile phone base station antenna that carries 2G GSM signals Антенна базовой станции, передающая сигналы GSM 2G

Элементы архитектуры сети GSM

Для того, чтобы система GSM работала вместе как полная система, общая сетевая архитектура объединяет ряд идентификаторов сети передачи данных, каждая из которых состоит из нескольких элементов.

Архитектура сети GSM определена в спецификациях GSM, и ее можно сгруппировать в четыре основные области:

  • Сеть и подсистема коммутации (NSS)
  • Подсистема базовой станции (BSS)
  • Мобильная станция (МС)
  • Подсистема эксплуатации и поддержки (OSS)

Различные элементы сети GSM работают вместе, и пользователь не знает о различных объектах внутри системы.

Поскольку сеть GSM определяется, но не только спецификациями и стандартами, она позволяет системе надежно работать вместе, независимо от поставщика различных элементов.

Базовая схема общей системной архитектуры для системы мобильной связи 2G GSM включает четыре основных элемента, которые показаны ниже:

Simplified view of the GSM network architecture showing the main elements in the base station subsystem, data network and switching subsystem as well as the operation and support subsystem.
Упрощенная схема архитектуры сети GSM

На этой диаграмме можно увидеть различные области сети — они сгруппированы в четыре области, которые обеспечивают разную функциональность, но все работают для обеспечения надежной мобильной связи.

Общая сетевая архитектура оказалась очень успешной и была доработана, чтобы позволить эволюцию 2G для передачи данных, а затем с дальнейшим развитием, чтобы позволить установить 3G.

Подсистема сетевой коммутации (NSS)

Архитектура системы GSM содержит множество различных элементов и часто называется базовой сетью. По сути, это сеть передачи данных с различными объектами, которые обеспечивают основной контроль и взаимодействие для всей мобильной сети. Основные элементы базовой сети включают:

  • Центр коммутации услуг мобильной связи (MSC): Основным элементом в пределах зоны базовой сети общей архитектуры сети GSM является Центр услуг коммутации мобильной связи (MSC).MSC действует как обычный коммутационный узел в PSTN или ISDN, но также предоставляет дополнительные функции, позволяющие поддерживать требования мобильного пользователя. Они включают в себя регистрацию, аутентификацию, определение местоположения вызова, передачу обслуживания между MSC и маршрутизацию вызова мобильному абоненту. Он также предоставляет интерфейс для PSTN, так что вызовы мобильной связи могут быть перенаправлены из мобильной сети на телефон, подключенный к наземной линии связи. Предусмотрены интерфейсы к другим MSC, позволяющие совершать звонки на мобильные устройства в разных сетях.
  • Регистр домашнего местоположения (HLR): Эта база данных содержит всю административную информацию о каждом подписчике вместе с их последним известным местоположением. Таким образом, сеть GSM может направлять вызовы на соответствующую базовую станцию ​​для MS. Когда пользователь включает свой телефон, телефон регистрируется в сети, и, исходя из этого, можно определить, с какой BTS он взаимодействует, чтобы входящие вызовы могли маршрутизироваться соответствующим образом. Даже когда телефон не активен (но включен), он периодически перерегистрируется, чтобы гарантировать, что сеть (HLR) знает о его последнем положении.Для каждой сети существует один HLR, хотя он может быть распределен между различными субцентрами по эксплуатационным причинам.
  • Регистр местоположения посетителей (VLR): Он содержит выбранную информацию из HLR, которая позволяет предоставлять выбранные услуги для отдельного абонента. VLR может быть реализован как отдельный объект, но обычно он реализуется как неотъемлемая часть MSC, а не как отдельный объект. Таким образом, доступ становится быстрее и удобнее.
  • Регистр идентификации оборудования (EIR): EIR — это объект, который решает, может ли данное мобильное оборудование быть разрешено в сети. Каждое мобильное оборудование имеет номер, известный как международный идентификатор мобильного оборудования. Этот номер, как было сказано выше, установлен в оборудовании и проверяется сетью при регистрации. В зависимости от информации, содержащейся в EIR, мобильному устройству может быть назначено одно из трех состояний — разрешено подключение к сети, запрещен доступ или отслеживается в случае возникновения проблем.
  • Центр аутентификации (AuC): AuC — это защищенная база данных, которая содержит секретный ключ, также содержащийся в SIM-карте пользователя. Он используется для аутентификации и для шифрования на радиоканале.
  • Шлюзовой центр коммутации мобильной связи (GMSC): GMSC — это точка, в которую исходящий вызов ME изначально маршрутизируется без какого-либо знания о местоположении MS. Таким образом, GMSC отвечает за получение MSRN (номер роуминга мобильной станции) от HLR на основе MSISDN (номер ISDN мобильной станции, «номер каталога» MS) и маршрутизацию вызова на правильный посещенный MSC.Часть «MSC» термина GMSC вводит в заблуждение, поскольку операция шлюза не требует какого-либо соединения с MSC.
  • SMS-шлюз (SMS-G): SMS-G или SMS-шлюз — это термин, который используется для общего описания двух шлюзов службы коротких сообщений, определенных в стандартах GSM. Два шлюза обрабатывают сообщения, направленные в разные стороны. SMS-GMSC (Центр коммутации мобильной связи шлюза службы коротких сообщений) предназначен для коротких сообщений, отправляемых на ME.SMS-IWMSC (Центр коммутации мобильной связи между работой службы коротких сообщений) используется для коротких сообщений, отправляемых мобильным телефоном в этой сети. Роль SMS-GMSC аналогична роли GMSC, тогда как SMS-IWMSC обеспечивает фиксированную точку доступа к центру службы коротких сообщений.

Эти объекты были основными, которые использовались в сети GSM. Обычно они располагались в одном месте, но часто вся базовая сеть была распределена по стране, где была расположена сеть.Это давало некоторую устойчивость в случае неудачи.

Хотя система GSM была важной системой голосовой связи, основная сеть была сетью передачи данных, поскольку все сигналы обрабатывались в цифровом виде.

Подсистема базовой станции (BSS)

Подсистема базовой станции (BSS) в архитектуре сети 2G GSM, которая в основном связана с обменом данными с мобильными устройствами в сети.

Состоит из двух элементов:

  • Базовая приемопередающая станция (BTS): BTS, используемая в сети GSM, состоит из приемников радиопередатчиков и связанных с ними антенн, которые передают и принимают для прямой связи с мобильными устройствами.BTS — определяющий элемент для каждой ячейки. BTS обменивается данными с мобильными устройствами, и интерфейс между ними известен как интерфейс Um со связанными с ним протоколами.
  • Контроллер базовой станции (BSC): BSC образует следующий этап возврата в сеть GSM. Он контролирует группу BTS и часто совмещен с одной из BTS в своей группе. Он управляет радиоресурсами и управляет такими элементами, как передача обслуживания в группе BTS, распределяет каналы и т.п.Он связывается с BTS через так называемый интерфейс Abis.

Элемент подсистемы базовой станции сети GSM использует технологию радиодоступа, позволяющую нескольким пользователям получать доступ к системе одновременно. Каждый канал поддерживает до восьми пользователей, и, позволяя базовой станции иметь несколько каналов, каждая базовая станция может обслуживать большое количество абонентов.

Базовые станции тщательно размещаются поставщиком сети, чтобы обеспечить полное покрытие территории.В покрываемой зоне находится базовая станция, которую часто называют сотой.

Поскольку невозможно предотвратить перекрытие сигналов в соседних ячейках, каналы, используемые в одной ячейке, не используются в следующей. Таким образом, снижаются помехи, которые могут снизить качество связи, при сохранении достаточного повторного использования частоты.

Важно, чтобы различные BTS были связаны с BSS, а BSS были связаны обратно с базовой сетью.

Для этого использовались самые разные технологии.Поскольку скорости передачи данных, используемые в сети GSM, были относительно низкими, часто использовались линии E1 или T1, особенно для соединения BSS с базовой сетью.

Так как все больше данных требовалось с увеличением использования сети GSM, а также по мере того, как другие сотовые технологии, такие как 3G, стали более распространенными, многие каналы использовали Ethernet операторского класса.

Часто удаленные BTS соединялись с помощью небольших микроволновых каналов, поскольку это могло уменьшить необходимость в установке определенных линий, если таковые не были доступны.Поскольку базовые станции часто приходилось размещать для обеспечения хорошего покрытия, а не в местах, где можно было бы проложить линии, вариант микроволновой связи обеспечивал привлекательный метод обеспечения канала передачи данных для сети.

Мобильная станция

Мобильные станции (MS), мобильное оборудование (ME) или, как они наиболее широко известны, сотовые или мобильные телефоны — это часть сети мобильной связи GSM, которую видит и использует пользователь. В последние годы их размер резко уменьшился, а уровень функциональности значительно вырос.Еще одно преимущество состоит в том, что время между зарядками значительно увеличилось.

В сотовом телефоне есть несколько элементов, но двумя основными элементами являются основное оборудование и SIM-карта.

Само аппаратное обеспечение содержит основные элементы мобильного телефона, включая дисплей, корпус, батарею и электронику, используемую для генерации сигнала, обработки данных приемника и передачи.

Мобильная станция или ME также содержит номер, известный как международный идентификатор мобильного оборудования (IMEI).Он установлен в телефоне при изготовлении и «не может быть» изменен. Сеть получает к нему доступ во время регистрации, чтобы проверить, не было ли оборудование заявлено как украденное.

SIM-карта или модуль идентификации абонента содержит информацию, которая обеспечивает идентификацию пользователя в сети. Он содержит разнообразную информацию, в том числе номер, известный как международный идентификатор мобильного абонента (IMSI). Поскольку он включен в SIM-карту, а это означает, что, перемещая SIM-карту с одного мобильного телефона на другой, пользователь может легко сменить мобильный.Простота смены мобильных телефонов при сохранении того же количества означала, что люди будут регулярно обновляться, тем самым создавая дополнительный поток доходов для сетевых провайдеров и помогая увеличить общий финансовый успех GSM.

Подсистема эксплуатации и поддержки (OSS)

Подсистема OSS или операционной поддержки — это элемент в общей архитектуре сети мобильной связи GSM, который связан с компонентами NSS и BSC. Он используется для управления и мониторинга всей сети GSM, а также для управления нагрузкой трафика BSS.Следует отметить, что по мере увеличения количества BS с увеличением числа абонентов некоторые задачи обслуживания передаются BTS, что позволяет снизить стоимость владения системой.

Архитектура сети 2G GSM следует логическому методу работы. Это намного проще, чем современные архитектуры сетей мобильных телефонов, которые используют программно определяемые объекты для обеспечения очень гибкой работы. Однако архитектура 2G GSM действительно показывает необходимые голосовые и операционные базовые функции и то, как они сочетаются друг с другом.Поскольку система GSM была полностью цифровой, сеть была сетью передачи данных.

Темы беспроводного и проводного подключения:
Основы мобильной связи 2G GSM 3G UMTS 4G LTE 5G Вай-фай IEEE 802.15.4 Беспроводные телефоны DECT NFC — связь ближнего поля Основы сетевых технологий Что такое облако Ethernet Серийные данные USB SigFox LoRa VoIP SDN NFV SD-WAN
Вернуться к беспроводной и проводной связи

.

Поставщики и ресурсы беспроводной связи RF

О компании RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи. На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д.Эти ресурсы основаны на стандартах IEEE и 3GPP. В нем также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

IoT based Fall Detection System architecture

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Узнать больше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета. • Система измерения столкновения • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Система интеллектуальной парковки на основе Zigbee. • Система интеллектуальной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


5G cell phone architecture

Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Которые используются в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Читать дальше➤


5G cell phone architecture

Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в одном канале, ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Руководство по основам 5G Полосы частот руководство по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Тестовое оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF фильтра ➤VSAT Система ➤Типы и основы микрополосковой печати ➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Рамочная конструкция ➤SONET против SDH


Поставщики и производители беспроводных радиочастотных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных компонентов, систем и подсистем RF для ярких приложений, см. ИНДЕКС поставщиков >>.

RF Wireless World Home Page-Passive RF components

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, чип резистор, чип конденсатор, индуктор чипа, ответвитель, оборудование EMC, программное обеспечение RF Design, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здоровье населения *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: Часто мойте их.
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: не трогайте его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему наблюдения за данными >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Калькуляторы и преобразователи беспроводной связи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Это касается беспроводных технологий, таких как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Различные типы датчиков


Поделиться страницей

Перевести

.

PPT — Презентация PowerPoint о сетевых компонентах GSM, скачать бесплатно

  • Сетевые компоненты GSM

  • Содержание • Архитектура системы GSM. • Мобильная станция или MS, включая: • Подсистему базовой станции или BSS, включая: • Центр коммутации мобильных услуг или MSC. • Регистры: • SIM-карта. • Мобильное оборудование. • Базовая приемопередающая станция или BTS. • Контроллер базовой станции или BSC. • Регистр домашнего местоположения. • Регистр местоположения посетителей. • Регистр идентификации оборудования.• Центр аутентификации.

  • Базовая приемопередающая станция (BTS) • Базовая приемопередающая станция (BTS) — это стационарная радиостанция, которая обменивается данными с мобильными телефонами с помощью электромагнитных волн. Базовая приемопередающая станция включает в себя передатчики, приемники, антенны, а также оборудование управления и связи для соединения с BSC через оптический кабель или микроволновую связь. • На каждую ячейку приходится одна BTS, обычно размещаемая в стойке высотой 2 м, как показано здесь. Эта стойка вместе с соответствующей системой электропитания и коммуникационным оборудованием по направлению к BSC обычно располагается в контейнере рядом с антенной вышкой.Система питания обеспечивает необходимое рабочее напряжение для оборудования и резервное питание от аккумуляторов в случае сбоя питания. Передача в BSC в основном осуществляется через оптический кабель или двухточечный микроволновый канал

  • Базовая приемопередающая станция (BTS) • Базовые станции используют в основном направленные антенны для увеличения пропускной способности и, следовательно, использования полосы частот (см. Урок 1). Направленные антенны монтируются на антенной мачте переменной высоты для обеспечения полного покрытия территории.На рисунке ниже представлена ​​типичная сотовая 120-градусная направленная антенна и ее диаграммы направленности. Как можно видеть, антенна на самом деле представляет собой массив диполей, обеспечивающих очень узкую диаграмму направленности в вертикальном направлении и требуемые 120 градусов в горизонтальном направлении

  • Контроллер базовой станции (BSC) • Контроллер базовой станции или BSC первый интеллектуальный компонент сети GSM, с которой мы встречаемся, необходимый для контроля и управления всеми BTS, с которыми он связан.• BSC обычно размещается в стойке высотой 2 м, как показано на рисунке. • Сайт BSC также включает источник бесперебойного питания с резервным аккумулятором на случай сбоя питания (аналогично BTS) и коммуникационное оборудование для BTS с одной стороны и для MSC с другой стороны.

  • Центр коммутации мобильной связи (MSC) • Центр коммутации мобильной связи (MSC) по сути представляет собой коммутатор ISDN со значительно расширенными возможностями обработки для удовлетворения особых потребностей GSM.MSC будет родительским (поддерживать) несколько BSC. Основная ответственность MSC — обработка голосовых вызовов и вызовов данных для мобильных абонентов в его домене. Через MSC абоненты мобильной связи могут общаться друг с другом и с подключенными телефонами для исправления сети PSTN. MSC является ядром сети GSM, поэтому каждый оператор сотовой связи будет иметь свой собственный MSC для обработки вызовов своих пользователей. • На следующем рисунке показаны основные коммутационные операции MSC. Мы видим стационарные телефоны, подключенные к PSTN (стационарная телефонная сеть).К PSTN также подключены несколько операторов сотовой связи, имеющие один или несколько MSC. Оставшаяся часть чертежа, включая BSC и BTS, уже была изучена. Мы можем различать три типа подключений: • от мобильного к мобильному в пределах одного и того же оператора, и в этом случае задействованы MSC одного оператора; • с мобильного телефона для исправления, который включает MSC одного оператора и PSTN; • от мобильного к мобильному между операторами. с участием MSC двух операторов и PSTN

  • MSC • На следующем рисунке показаны основные коммутационные действия MSC.Мы видим стационарные телефоны, подключенные к PSTN (стационарная телефонная сеть). К PSTN также подключены несколько операторов сотовой связи, имеющие один или несколько MSC. Оставшаяся часть чертежа, включая BSC и BTS, уже была изучена. Мы можем различать три типа подключений: • от мобильного к мобильному в пределах одного оператора, и в этом случае задействованы MSC одного оператора. • mobile-to-fix, в котором задействованы MSC одного оператора и ТфОП. • от мобильного к мобильному между операторами с участием MSC двух операторов и PSTN.

  • MSC • Но у MSC есть и другие функции, помимо голосовой коммутации — все они будут изучены в будущих уроках — а именно: • Доставка SMS (служба коротких сообщений — одна из важных функций GSM, о которой мы узнаем позже. ) от абонентов к SMS-центру (SMSC) и наоборот • Коммутация внутриполосных факсимильных и модемных вызовов. • Поддержка передачи обслуживания между BSC и от одного MSC к другому. • Поддержка других услуг в соответствии с реализацией конкретного поставщика, таких как конференц-связь, удержание вызова, переадресация вызова и т. Д.• Сбор информации о выставлении счетов, а именно создание записей, включающих всю необходимую информацию для взимания платы с пользователя.

  • Шлюз MSC (GMSC) • Шлюз MSC (GMSC) • MSC — это коммутационное оборудование, которое мы изучили до сих пор. Сеть оператора сотовой связи будет включать в себя несколько таких устройств. • Шлюз MSC или GMSC — это коммутатор, который подключает оператора сотовой связи к PSTN, а также тот, который определяет, к какому посещенному MSC в настоящее время находится вызываемый абонент. Обычно у оператора есть один такой переключатель, но у очень крупных операторов, работающих на больших поверхностях, может быть больше.

  • Домашний реестр местоположения (HLR) • Домашний реестр местоположения или HLR — это интеллектуальная база данных и функция управления услугами, отвечающая за управление записями каждого отдельного абонента. Он содержит подробную информацию о каждом абоненте мобильного телефона, а точнее его SIM-карте, которому разрешено использовать базовую сеть GSM.

  • Home LocationRegister (HLR) Home LocationRegister (HLR) HLR включает для всех SIM-карт, выпущенных сотовым оператором, профиль, включающий: Уникальный идентификатор IMSI SIM, который является одним из основных ключей для каждой записи HLR.Первичный ключ означает, что IMSI является одним из параметров поиска в базе данных. Телефонные номера, связанные с SIM-картой, которая используется для совершения и приема вызовов на мобильный телефон, известный как номер ISDN мобильного абонента (MSISDN). MSISDN состоит из кода страны + кода страны назначения + номера абонента. Текущее местоположение абонента, означающее, в какой зоне местоположения он находится. Оно включает BTS, управляемые одним и тем же BSC, и идентифицируется его кодом зоны местоположения или LAC. Основной MSISDN — это номер, используемый для совершения и приема голосовых вызовов и SMS.Это номер мобильного телефона, который мы все знаем и используем. Но с SIM-картой могут быть связаны другие вторичные MSISDN для вызовов по факсу и данным (мы узнаем больше об этом позже). Каждый MSISDN также является первичным ключом для записи HLR. Услуги GSM, запрошенные или предоставленные абонентом Переадресация вызовов на услуги передачи данных Настройки MSISDN и / или GPRS, чтобы позволить абоненту получить доступ к пакетным услугам

  • VisitorLocationRegister (VLR) • Visitor Location Register (VLR) — это интеллектуальная база данных и функция управления услугами.Он хранит на временной основе информацию, необходимую для обработки вызовов, установленных или полученных зарегистрированными в нем MS. VLR отвечает за группу областей расположения, обычно связанных с MSC. Вот почему большинство поставщиков оборудования либо интегрируют VLR с MSC, либо, по крайней мере, плотно подключают их через собственный интерфейс. Данные, хранящиеся в VLR, были либо получены от HLR, либо собраны от MS. • Основные функции VLR следующие: • Информировать HLR о том, что абонент прибыл в его зону • Отслеживать, в каком LA расположены различные MS • Разрешить или запретить обслуживание MS • Удалить запись абонента при переходе на другой VLR под контролем HLR • Удалить запись абонента, если она неактивна дольше заданного времени.

  • Регистр идентификации оборудования (EIR) EIR — это база данных, которая содержит информацию об идентичности ME, которая предотвращает вызовы от украденных, несанкционированных или неисправных мобильных станций.EIR (регистр идентификации оборудования) часто интегрируется в HLR. EIR ведет список мобильных телефонов (идентифицируемых по их IMEI), которые должны быть запрещены к сети или отслеживаться. Это сделано для отслеживания украденных мобильных телефонов. Теоретически все данные об украденных мобильных телефонах должны быть распространены среди всех EIR в мире через центральную EIR. Однако ясно, что есть операторы, у которых EIR не работает. Данные EIR не должны изменяться в реальном времени, а это означает, что эта функция может быть менее распределенной, чем функция HLR.

  • Регистр идентификации оборудования (EIR) Доступ к регистру идентификации оборудования (EIR) осуществляется во время процедуры проверки оборудования, когда мобильная станция обращается к системе. • EIR Включает список ME, идентифицируемых их IMEI, разделенный на: • Белый или Действительный список — Список действительных идентификаторов оборудования MS • Серый или контролируемый список — Список подозреваемых мобильных телефонов под наблюдением • Черный или запрещенный список — Список мобильных телефонов, для которых обслуживается запрещен

  • TheAuthenticationCentre (AUC) Центр аутентификации или AUC — это функция, которая аутентифицирует каждую SIM-карту, которая пытается подключиться к базовой сети GSM (обычно, когда телефон включен).После успешной аутентификации HLR разрешается управлять SIM-картой и услугами, описанными выше. Также создается ключ шифрования, который впоследствии используется для шифрования всей беспроводной связи (голос, SMS и т. Д.) Между мобильным телефоном и базовой сетью GSM. Сфера действия AuC — предотвращение клонирования SIM-карты. Проверка подлинности основана на секрете, индивидуально для каждого номера пользователя Ki.

  • TheAuthenticationCentre (AUC) Процесс аутентификации: когда определенный IMSI запрашивает доступ к базовой сети GSM, AUC генерирует определенное случайное число — RAND — которое отправляется на SIM-карту.Затем SIM-карта передает это число и Ki (который записывается на SIM-карту) в собственный алгоритм A3 или A8, в зависимости от ситуации, и SRES рассчитывается и отправляется обратно в MSC. Параллельно AUC выполняет те же операции и получает свой собственный SRES *. Если SRES совпадает с SRES * (что должно быть, если это действующая SIM-карта), то мобильному устройству разрешается подключиться и продолжить работу с услугами GSM.

  • TheAuthenticationCentre (AUC) Генерация ключей и шифрование: после успешной аутентификации MSC отправляет ключ шифрования Kc контроллеру базовых станций (BSC), чтобы все коммуникации могли быть зашифрованы и дешифрованы.Конечно, мобильный телефон может сам генерировать Kc, передавая тот же RAND, предоставленный во время аутентификации, и Ki в алгоритм A5.

  • SIM Модуль идентификации абонента или SIM-карта — это съемная смарт-карта, расположенная внутри MS, которая несет всю информацию, относящуюся к абоненту. SIM-карта — одно из важных нововведений, представленных сетью GSM. SIM-карта на самом деле представляет собой крошечный компьютер — микрокомпьютер — внутри телефона с памятью от 16 до 128 Кбит.

  • SIM Содержимое SIM-карты: • Уникальная идентификация SIM-карты на основе номера, называемого международным идентификатором мобильного абонента (IMSI). Смена SIM-карты означает изменение вашего номера телефона / личности • Аутентификация и шифрование на основе секретного ключа с целью предотвращения подслушивания • Персональные настройки и услуги, которые можно переносить с одного телефона на другой, например: будильники, информационные услуги, вход в другой servicesetc… • Персональная телефонная книга, сокращенные коды набора и текстовые сообщения • Тарифные планы, информация о выставлении счетов, информация об учетной записи.(не действует в Турции) • Информация о местоположении для ускорения подключения к сети при включении телефона. Мы уже знаем, что в GSM есть 124 канала FDMA. Когда телефон включен, он должен искать все частоты, чтобы найти работающую в своей конкретной соте. Чтобы сократить этот процесс, телефон имеет в SIM-карте информацию о последней ячейке, к которой он был подключен перед выключением. Конечно, если тем временем было перемещено в другую ячейку, эта информация больше не будет полезна.

  • Мобильная станция (MS) Мобильное оборудование (ME) обеспечивает радиосвязь и обработку, необходимые для доступа к сети GSM, а также дружественный человеко-машинный интерфейс или MMI, включая: дисплей, клавиатуру и звуковые сигналы, позволяющие пользователю получать доступ к услугам . ME уникально идентифицируется международным идентификатором мобильного оборудования (IMEI) с целью предотвращения использования украденных / потерянных ME. Обслуживание такого ME будет запрещено сетью.

  • .

    Покрытие сети — мобильные сети 2G / 3G / 4G

    Ключевой частью спецификации любого мобильного телефона являются его рабочие диапазоны частот. Поддерживаемые диапазоны частот определяют, совместим ли конкретный телефон с определенным оператором сети.

    Помимо технических характеристик мобильного телефона, GSMArena рада предоставить вам собственный каталог частотных диапазонов для вашей страны. Это не зависит от оператора и полезно, если вы выбираете телефон для использования в своей стране или если вы уверены, что ваш телефон будет работать в стране, в которую вы собираетесь.

    К сожалению, наша система не может определить вашу страну по вашему текущему IP-адресу.

    Пожалуйста, выберите интересующую вас страну: AfghanistanAland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaireBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCook IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland (Мальвинские) острова Фарерские IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island и МакДональда IslandsHoly Престол (Ватикан) Гондурас, Гонконг, Венгрия, Исландия, Индия, Индия esiaIranIraqIrelandIsle Из ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKoreaKosovoKuwaitKyrgyzstanLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint BarthelemySaint HelenaSaint Китса и NevisSaint LuciaSaint MartinSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Томе и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzaniaThailandTimor-LesteTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабских EmiratesUnited KingdomUnited StatesUnited Штаты Экваторияльная IslandsUnknownUruguayUzbekistanVanuatuVenezuelaViet NamVirgin IslandsWallis и FutunaWestern SaharaYemenZambiaZimbabwe
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *