Индуктивность формула для катушки с током: Индуктивность (катушка) в цепи переменного тока: формула, схема, график

Содержание

Катушка индуктивности. Описание, характеристики, формула расчета

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Паяльный фен YIHUA 8858

Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

Подробнее

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Теоретика

Для начала давайте определим назначение этой детали, а также основные понятия и термины, связанные с ней.

Что такое катушка индуктивности


Разнообразие размеров катушек

Катушка индуктивности – это радиоэлемент, применяющийся в разных схемах для следующего:

  • Сглаживание биений;
  • Подавление помех;
  • Ограничение переменного тока;
  • Накопление энергии и прочее.

Представляет собой данный элемент спиральную, винтовую или винтоспиральную катушку, сделанную из изолированного проводника. Деталь обладает относительно малой емкостью и малым активным сопротивлением, при этом у него имеет высокая индуктивность, то есть способность возникновения ЭДС (электродвижущей силы) в проводнике, при протекании в цепи электрического тока.


Дроссели на печатной плате
  • Катушка индуктивности, в зависимости от места и цели применения может иметь и другие названия. Например, если элемент используется для изоляции по высокой частоте в разных частях схемы, накоплении энергии магнитного поля сердечника, сглаживания пульсаций и подавления помех, катушку называют дросселем либо реактором (второе название употребляется редко).
  • Если говорить про силовую электротехнику, то там устоялось название ректор – его применяют при необходимости ограничения тока, например, если произошло замыкание на ЛЭП.


Соленоид
  • Бывают также и цилиндрические катушки индуктивности, называемые соленоидами. Длина такого цилиндра в несколько раз превышает его диаметр.

Интересно знать! Магнитное поле внутри соленоида однородно. Данное магнитное поле может выполнять механическую работу, втягивая ферритовый сердечник.


Обмотка с втягивающего реле на стартере
  • Применяются катушки индуктивности и в электромагнитных реле, где их называют обмоткой реле.
  • Устанавливаются подобные элементы и в индукционные нагреватели – тут их называют нагревательными индукторами.


Схема сверхпроводящего индуктивного накопителя
  • Также можно услышать термины вроде индукционного накопителя или накопительного дросселя, если речь идет об устройствах импульсной стабилизации напряжения.

Конструкционные особенности


Строение катушки индуктивности

Конструкционно катушка индуктивности представляет собой намотанную по спирали или винтом изолированную одножильный или многожильный проводник (чаще, лакированная медная проволока), вокруг диэлектрического сердечника (каркаса). Форма сердечника может быть круглой, тороидальной, прямоугольной, квадратной. Материалы, применяемые для сердечника, имеют магнитную проницаемость выше, чем у воздуха, что дополнительно удерживает магнитное поле возле катушки, а значит, увеличивается и индуктивность.

Существуют и катушки, вовсе не имеющие сердечника, или же он является регулируемым, что позволяет менять индуктивность детали.


Тороидальная катушка

Намотка проводника может быть как однослойной, ее еще называют рядовой с шагом, или многослойной (применяются названия универсал, внавал, рядовая). Расстояние между витками называется шагом.

Интересно знать! Шаг намотки может быть прогрессивным, то есть его величина изменяется по длине катушки. Применяется такая намотка для снижения «паразитной» емкости.

Применение

Используются катушки в схемах обработки сигналов и аналоговых схемах. В сочетании с конденсаторами и прочими радиокомпонентами могут формировать участки схем, которые усиливают или отфильтровывают определенные сигналы.

Широко применяются дроссели в источниках питания, где они вместе с конденсаторами фильтра призваны устранить остаточные помехи и прочие колебания, возникающие на выходе.


Строение трансформатора

Если две катушки соединить одним магнитным полем, то получится трансформатор – устройство, способное передавать электричество от одной части цепи к другой, за счет электромагнитной индукции, попутно меняя величину напряжения.

Для справки! Трансформаторы способны функционировать только с переменным током.

Основные характеристики катушек индуктивности

Прежде чем разбираться с тем, как ведет себя ток, проходя в цепи через катушку индуктивности, давайте сначала узнаем главные характеристики этого элемента.


Определение индуктивности: формула
  • Прежде всего, нас интересует индуктивность – значение, численно выражающаяся соотношением потока магнитного поля, которое создается протекающим током, к силе этого самого тока. Измеряется этот параметр в Генри (Гн).
  • Если говорить более простым языком, то это явление можно описать так. При протекании тока через катушку индуктивности создается электромагнитное поле, которое напрямую связано с ЭДС, которая оказывает противодействие изменению переменного напряжения, то есть в цепи возникает ток, который течет в обратном направлении основному.
  • Измерение силы тока на катушке индуктивности и переменного напряжения, противостоят данной силе, точнее наоборот. Это свойство элемента называется индуктивным сопротивлением, которое находится в противофазе реактивному емкостному сопротивлению конденсатора, включенному в цепь переменного тока.

Совет! Изменение величины индуктивности катушки происходит пропорционально изменению числа витков.


Расчет энергии магнитного поля катушки
  • Давно известно, что любое магнитное поле обладает некоторой энергией. Отсюда следует, что магнитное поле катушки тоже имеет определенный запас магнитной энергии. Величина этого запаса равна затраченной энергии на обеспечение протекания тока (I) в противодействие ЭДС. Расчеты производятся по приведенной выше формуле.


Гидротурбина
  • Чтобы было еще понятнее давайте сравним катушку с гидротурбиной. Итак, водяной поток, который направлен через турбину, будет ощущать ее сопротивление, пока турбина до конца не раскрутится. Она имеет некоторую инерцию, а значит, будет вращаться синхронно с потоком воды, не оказывая ему практически никакого сопротивления.
  • Если вы попробуете остановить поток воды или сменить его направление, то увидите, что турбина продолжит вращаться по инерции, заставляя двигаться воду в прежнем направлении. Чем выше инерция у турбины, тем сильнее она будет сопротивляться изменению направления потока воды.
  • Ровно то же самое происходит в катушке индуктивности, когда переменный ток начинает течь в обратном направлении.


При последовательном соединении катушек их индуктивность складывается
  • Влияние тока на индуктивность катушки выражается не только в виде основного эффекта взаимодействия. Часто наблюдаются паразитные эффекты, из-за которых сопротивление переменному току катушки индуктивности чисто реактивным назвать нельзя. Из-за этих эффектов в катушке возникают некоторые потери, оценивающиеся как сопротивление потерь. Данное значение составляет сумму потерь в сердечнике, проводе, экране и диэлектрике.
  • Каждая из потерь вызвана разными причинами. В проводах их целых три: они обладают хоть и малым, но все же активным омическим сопротивлением; данное сопротивление растет с увеличением частоты, что обусловлено уменьшением амплитуды электромагнитных волн, по мере того как они проникают в глубину проводящей среды (это явление называется скин-эффектом) – другими словами, ток вытесняется на верхние слои провода, из-за чего изменяется площадь проводника, а значит, и его сопротивление; если провода свиты в спираль, возникает эффект близости, из-за которого тоже меняется активное сечение проводника, и общее сопротивление.


Дроссель сварочного аппарата
  • Потери в диэлектрике могут возникать из-за межвиткового конденсатора, или по причине его электромагнитных свойств. Однако справедливости ради стоит отметить, что потери в этой части детали настолько малы, что ими часто пренебрегают при расчетах.
  • Потери на сердечнике складываются из двух величин: потери на перемагничивание ферромагнетика (потери на гистерезис) и потери на вихревые токи. Переменное магнитное поле, возникающее от протекающего в проводнике тока, индуцирует вихревые ЭДС в соседних проводниках – сердечнике, проводах ближайших витков, и даже экране. Возникшие токи, имеющие название помимо вихревых, токи Фуко, также являются причиной потерь, из-за активного сопротивления провода.
  • С потерями на сопротивление связана и другая характеристика, называемая добротностью. Ее величина – это соотношение реактивного и активного сопротивления катушки индуктивности.


Паразитная емкость катушки индуктивности
  • Следующий параметр – это паразитная емкость. Явление состоит в том, что между витками катушки возникает некоторая нежелательная емкостная связь.
  • ТКИ (температурный коэффициент индуктивности) – все мы знаем, что при нагревании вещества увеличиваются в размерах. Когда это происходит с катушкой, мы получаем нестабильность индуктивности, из-за изменения длины и диаметра проводника, длины и диаметра каркаса, а значит, изменения диаметра и шага витков. Помимо этого перемена температуры влияет на диэлектрическую проницаемость материала каркаса, что влечет изменение емкости катушки и влияет на проницаемость магнитным полем ферромагнетика сердечника.
  • ТКД (температурный коэффициент дробности) – тут все понятно! Это изменение параметров добротности в зависимости от температуры.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.


Маркировка
В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

  • В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.

  • Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.

  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Последовательное соединение индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Описание устройства

Катушка индуктивности бывает винтовой, спиральной или винтоспиральной, имеющей свернутый изолированный проводник, который обладает значительным показателем индукции при малой емкости с активным сопротивлением. Как следствие, ток протекает через источник тока со значительной инерционностью.

Обратите внимание! Применяется, чтобы подавлять помехи, сглаживать биения, накапливать энергию, ограничивать переменный ток или резонансный/частотно-избирательный контур цепи.

Стоит указать, что ее применение разнообразно. Называется она дросселем, вариометром, соленоидом и токоограничивающим реактором. При этом основные технические характеристики варьируются. Могут отличаться силой тока, сопротивлением потерь, добротностью, емкостью и температурным добротным коэффициентом.

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

где R является собственным сопротивлением обмотки.

Основные технические параметры

Катушки индуктивности имеют следующие характеристики:

  • добротность отклонения;
  • эффективность;
  • начальная индуктивность;
  • температура;
  • стабильность;
  • предельная емкость;
  • номинальная индуктивность.

Стабильность демонстрирует свойства устройства при изменении условий использования. Температура фиксируется вследствие различных причин. Многое зависит от размера каркаса. Когда температура уменьшается, индуктивность также снижается. Современные параметры — это цикличность, которая является отношением температуры к линейному расширению. Учитывается изменение в керамической основе плюс показатель плотности.

Вам это будет интересно Как работает УЗО и что это такое

Температура отслеживается на горячей намотке. В этом плане хорошо себя показали многослойные дроссели с сердечником, которые сделаны из карбонильного железа. Ёмкость отображает количество витков катушки, берется в расчет количество секций и контуров. Высокочастотные модели считаются более емкостными и стабильными.


Емкостные катушки

Номинальная индуктивность — это параметр, который учитывает изменение размеров волны. Измерение происходит в микрогенрах. Если смотреть на формулу, учитывается количество витков, длина намотки, плюс диаметр катушки.

Катушка индуктивности. Формула индуктивности

Базовая формула индуктивности катушки:

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  • l = длина катушки в метрах (м)

Индуктивность прямого проводника:

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

Индуктивность катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

Индуктивность многослойной катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

Индуктивность плоской катушки:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА.

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
  1. Накопленная энергия в индуктивности
  2. Гидравлическая модель
  3. Индуктивность в электрических цепях
  4. Схемы соединения катушек индуктивностей
  5. Параллельное соединение индуктивностей
  6. Последовательное соединение индуктивностей
  7. Добротность катушки индуктивности
  8. Катушка индуктивности. Формула индуктивности
  9. Базовая формула индуктивности катушки
  10. Индуктивность прямого проводника
  11. Индуктивность катушки с воздушным сердечником
  12. Индуктивность многослойной катушки с воздушным сердечником
  13. Индуктивность плоской катушки
  14. Конструкция катушки индуктивности
  15. Применение катушек индуктивности
  16. Расчет катушек индуктивности
  17. Метод определения собственной ем­кости катушек
  18. Расчет и изготовление плоских катушек индуктивности
  19. Расчет однослойной катушки

Катушка индуктивности

— является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Вот и все, что хотел рассказать о катушках индуктивности. Удачи!

Литература: 1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры». 2. В. В. Фролов «Язык радиосхем». 3. М. А. Сгут «Условные обозначения и радиосхемы».

Глава 10. Индуктивность . Введение в электронику

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Объяснить принципы индуктивности.

• Дать определение основных величин измерения индуктивности.

• Описать основные типы катушек индуктивности.

• Дать определение полной индуктивности в последовательной и параллельной цепях.

• Дать объяснение постоянной времени L/R и ее связи с индуктивностью.

Когда по проводнику течет ток, вокруг него возникает магнитное поле. Это поле обладает энергией, величина которой пропорциональна индуктивности.

В этой главе обсуждается индуктивность и ее приложения в цепях постоянного тока. Более подробно об индуктивности рассказано в главе 16.

10-1. ИНДУКТИВНОСТЬ.

Индуктивность — это способность извлекать энергию из источника и сохранять ее в виде магнитного поля. Это свойство проводника, предотвращающее резкие изменения текущего через него тока. Например, если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется. Если ток в катушке уменьшается, магнитное поле сжимается. Однако сжатие магнитного поля индуцирует в катушке напряжение, которое поддерживает ток. Таким образом, индуктивность позволяет энергии сохраняться в виде магнитного поля, зависящего от тока. Когда ток уменьшается, уменьшается и магнитное поле, возвращая в цепь запасенную энергию.

Единица, которой измеряется индуктивность называется генри (Гн). Она названа в честь американского физика Джозефа Генри (1797–1878). Генри — это такая индуктивность, которая требуется для индуцирования электродвижущей силы (э.д.с.) в 1 вольт при изменении тока в проводнике со скоростью 1 ампер в секунду.

Генри — большая единица, значительно чаще используются миллигенри (мГн) и микрогенри (мкГн). Индуктивность обозначается символом L.

10-1. Вопросы

1. Дайте определение индуктивности.

2. В каких единицах измеряется индуктивность?

3. Дайте определение генри.

4. Какая буква используется для обозначения индуктивности?

10-2. КАТУШКИ ИНДУКТИВНОСТИ

Катушки индуктивности — это устройства, имеющие определенную индуктивность. Они состоят из провода, намотанного на сердечник, и классифицируются по материалу сердечника. Сердечник катушки может быть либо магнитным, либо немагнитным. На рис. 10-1 показано схематическое обозначение катушки индуктивности.

Рис. 10-1. Схематическое обозначение катушки индуктивности.

Катушки могут иметь как постоянную, так и изменяемую индуктивность. На рис. 10-2 показано схематическое обозначение катушки с переменной индуктивностью. Катушки с переменной индуктивностью содержат подстроечный сердечник.

Рис. 10-2. Схематическое обозначение катушки с переменной индуктивностью

На рис. 10-3 показаны несколько типов катушек индуктивности, использующих подстроечный сердечник. Максимальная индуктивность регистрируется, когда сердечник полностью введен в катушку.

Рис. 10-3. Некоторые типы катушек индуктивности с возможностью регулирования индуктивности.

Катушки индуктивности с воздушным сердечником, или катушки без сердечника, используются в тех случаях, когда индуктивность не превышает 5 миллигенри. Они наматываются на керамические или композитные сердечники (рис. 10-4).

Рис. 10-4. Типы катушек индуктивности с воздушным сердечником.

Сердечники из феррита или порошкообразного железа используются для индуктивностей до 200 миллигенри. Схематическое обозначение катушки с железным сердечником показано на рис. 10-5.

Рис. 10-5. Схематическое обозначение катушки индуктивности с железным сердечником.

Тороидальные сердечники имеют кольцеобразную форму и позволяют получить высокую индуктивность при малых размерах (рис. 10-6). Их магнитное поле сосредоточено внутри сердечника.

Рис. 10-6. Катушки индуктивности с тороидальным сердечником.

Экранированные индуктивности заключены в корпус (экран), сделанный из магнитного материала для защиты их от влияния внешних магнитных полей (рис. 10-7).

Рис. 10-7. Экранированная катушка индуктивности.

Многослойные катушки индуктивности с железным сердечником используются для получения большой индуктивности (рис. 10-8).

Рис. 10-8. Многослойная катушка индуктивности с железным сердечником.

Индуктивность этих катушек изменяется от 0,1 до 100 генри и зависит от величины тока, протекающего через катушку. Эти катушки иногда называют дросселями. Они используются в цепях фильтрации источников питания для удаления переменных составляющих выпрямленного постоянного тока. Они будут обсуждаться немного позднее.

Обычно катушки индуктивности имеют допуск ±10 %, но встречаются катушки с допуском менее, чем 1 %. Катушки индуктивности, как и резисторы, могут соединяться последовательно, параллельно или последовательно-параллельно. Полная индуктивность нескольких катушек индуктивности, соединенных последовательно (катушки должны быть пространственно разделены для того, чтобы избежать взаимодействия их магнитных полей), равна сумме их индуктивностей:

LT = L1 + L2 + L3 +… + Ln

Если две или более катушек индуктивности соединены параллельно (без взаимодействия их магнитных полей), общую индуктивность можно найти с помощью формулы:

1/L

T = 1/L1 + 1/L2 + 1/L3 +… + 1/Ln

10-2. Вопросы

1. Что такое катушки индуктивности?

2. Нарисуйте схематические обозначения катушек с постоянной и переменной индуктивностью.

3. Как по другому называются многослойные катушки индуктивности с железным сердечником?

4. Напишите формулы для определения общей индуктивности

а. В последовательных цепях.

б. В параллельных цепях.

5. Какова общая индуктивность цепи с тремя катушками индуктивности 10 Гн, 3,5 Гн и 6 Гн, соединенными параллельно?

10-3. ПОСТОЯННАЯ ВРЕМЕНИ L/R

Постоянная времени L/R — это время, требуемое для увеличения тока в проводнике от нуля до 63,2 % или уменьшения до 36,8 % от максимального значения. RL цепь показана на рис. 10-9.

Рис. 10-9. Цепь, используемая для определения постоянной времени L/R.

L/R — обозначение, используемое для постоянной времени RL цепи:

t = L/R

где

t — время в секундах, L — индуктивность в генри, R — сопротивление в омах.

На рис. 10–10 показан график увеличения и уменьшения магнитного поля, как функции времени, причем масштабной единицей взята постоянная времени t

. Требуется время, в пять раз большее постоянной времени для того, чтобы полностью передать энергию магнитному полю или создать максимальное магнитное поле. Такое же время требуется для того, чтобы магнитное поле полностью исчезло.

Рис. 10–10. Количество постоянных времени, требуемое для создания максимального магнитного поля или полного исчезновения магнитного поля в катушке индуктивности.

10-3. Вопросы

1.  Что такое постоянная времени катушки индуктивности?

2. Как определяется постоянная времени?

3. Сколько постоянных времени требуется для того, чтобы создать максимальное магнитное поле катушки индуктивности?

4. Сколько постоянных времени требуется для того, чтобы магнитное поле катушки индуктивности полностью исчезло?

5. Какое время требуется, чтобы создать максимальное магнитное поле катушки индуктивностью 0,1 генри, соединенной последовательно с резистором 100000 Ом?

РЕЗЮМЕ

• Индуктивность — это способность сохранять энергию в виде магнитного поля.

• Единицей измерения индуктивности является генри (Гн).

• Для обозначения индуктивности используется буква L.

• Катушки индуктивности — это устройства, имеющие определенную индуктивность.

• Схематическим обозначением постоянной индуктивности является:

• Схематическим обозначением переменной индуктивности является:

• Катушки индуктивности бывают следующих типов: с воздушным сердечником, с сердечником из феррита или порошкообразного железа, с тороидальным сердечником, экранированные и многослойные с железным сердечником.

• Общая индуктивность катушек, соединенных последовательно, вычисляется по формуле:

LT = L1 + L2 + L3 +… + Ln

• Общая индуктивность катушек, соединенных параллельно, равна:

1/LT = 1/L1 + 1/L2 + 1/L3 +… + 1/Ln

• Постоянная времени — это время, требуемое для увеличения тока от нуля до 63,2 % или уменьшения его до 36,8 % от максимального значения.

• Постоянная времени определяется формулой:

t = L/R

• Время, в пять раз большее постоянной времени, необходимо для создания максимального магнитного поля или полного исчезновения магнитного поля катушки индуктивности.

Глава 10. САМОПРОВЕРКА

1. Как можно увеличить магнитное поле, создаваемое катушкой индуктивности?

2. Чему равна общая индуктивность изображенной ниже цепи?

3. Катушка индуктивности 500 мГн и резистор 10 кОм соединены последовательно и подключены к источнику тока 25 вольт. Каково будет напряжение на катушке индуктивности через 100 микросекунд после включения цели?

Как рассчитать индуктивность катушки

••• спиральное изображение крупным планом Александра Угоренкова с сайта Fotolia.com

Обновлено 24 апреля 2017 г.

Автор: Карлос Мано . Эта индуктивность достигается за счет магнитного смещения соотношения между напряжением (сколько прикладывается электромагнитная сила) и током (сколько электронов течет). Обычно напряжение и ток совпадают по фазе — оба высокие одновременно, оба низкие одновременно. Катушки меняют это, и чем мощнее катушка (чем больше генри или единиц индуктивности), тем больше фазовый сдвиг.

    Рассчитайте индуктивность катушки в качестве учебного упражнения или если вы планируете когда-нибудь собрать радиоприемник из запасных частей. На катушках, которые вы покупаете, будут четко обозначены генри (мера индуктивности). Знание формулы поможет вам понять поведение катушек, и нет лучшего способа понять и запомнить формулу, чем использовать ее.

    Проведите два измерения: длину катушки и диаметр катушки. Чем точнее вы сделаете эти измерения, тем точнее будут ваши результаты. В следующем расчете «L» будет длиной катушки, а «D» будет диаметром катушки. Теперь посчитайте количество колец в катушке. Это будет «N» в формуле. Теперь, когда у вас есть значения для L, D и N, вы можете выполнить расчет. 92)/(18D + 40L), где «N» равно количеству колец в витке, «D» равно диаметру витка, а «L» равно длине витка.

    Вещи, которые вам понадобятся
    • Линейка
    • Калькулятор
    • Если у вас нет программируемого калькулятора, рекомендуется выполнять этот расчет поэтапно. Например, вычислите 18D и запишите его; вычислите 40L и запишите его. Добавьте 18D к 40L и напишите «знаменатель = (какой бы он ни был)». Сделайте то же самое для числителя. Последним шагом будет деление числителя на знаменатель, чтобы получить индуктивность.

      Существуют онлайн-калькуляторы индуктивности, которые могут значительно упростить этот расчет. Вам все равно придется измерять катушку.

    Предупреждения
    • Если ваши провода не изолированы, ваш расчет будет неверным, если какое-либо из колец касается

      Эта формула может измениться, если вы используете провод или сердечник необычного сечения для катушки. Некоторые онлайн-калькуляторы могут это учитывать.

Связанные статьи

Ссылки

  • Team Rocs: Сопротивление против импеданса

Советы

  • Если у вас нет программируемого калькулятора, рекомендуется выполнять этот расчет пошагово. Например, вычислите 18D и запишите его; вычислите 40L и запишите его. Добавьте 18D к 40L и напишите «знаменатель = (какой бы он ни был)». Сделайте то же самое для числителя. Последним шагом будет деление числителя на знаменатель, чтобы получить индуктивность.
  • Существуют онлайн-калькуляторы индуктивности, которые могут значительно упростить этот расчет. Вам все равно придется измерять катушку.

Фото предоставлено

спираль крупным планом, изображение Александра Угоренкова с сайта Fotolia.com

14.2: Взаимная индуктивность — Физика LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    4435
    • OpenStax
    • OpenStax
    ЦЕЛИ ОБУЧЕНИЯ

    К концу этого раздела вы сможете:

    • Соотносить две близлежащие цепи, по которым текут изменяющиеся во времени токи, с ЭДС, индуцированной в каждой цепи
    • Опишите примеры, в которых взаимная индуктивность может быть или не быть желательной

    Индуктивность — это свойство устройства, которое говорит нам, насколько эффективно оно индуцирует ЭДС в другом устройстве. Другими словами, это физическая величина, выражающая эффективность данного устройства.

    Когда две цепи, по которым текут изменяющиеся во времени токи, расположены близко друг к другу, магнитный поток в каждой цепи меняется из-за изменяющегося тока I в другой цепи. Следовательно, ЭДС индуцируется в каждой цепи изменением тока в другой. Поэтому этот тип ЭДС называется ЭДС взаимной индукции , и возникающее явление известно как взаимная индуктивность ( M ) . В качестве примера рассмотрим две плотно намотанные катушки (рис. \(\PageIndex{1}\)). Катушки 1 и 2 имеют \(N_1\) и \(N_2\) витков и пропускают токи \(I_1\) и \(I_2\) соответственно. Поток через один виток катушки 2, создаваемый магнитным полем тока в катушке 1, равен \(\Phi_{12}\), тогда как поток через один виток катушки 1 из-за магнитного поля \(I_2 \) равно \(\Phi_{12}\).

    Рисунок \(\PageIndex{1}\): Некоторые силовые линии магнитного поля, создаваемые током в катушке 1, проходят через катушку 2.

    Взаимная индуктивность \(M_{21}\) катушки 2 по отношению к катушке 1 равна отношение потока через \(N_2\) витков катушки 2, создаваемого магнитным полем тока в катушке 1, к этому току, то есть

    \[M_{21} = \dfrac{N_2\Phi_{21}}{I_1}. \метка{12.24}\]

    Аналогично, взаимная индуктивность катушки 1 по отношению к катушке 2 равна

    .

    \[M_{12} = \dfrac{N_1\Phi_{12}}{I_2}. \метка{12.25}\]

    Как и емкость, взаимная индуктивность является геометрической величиной. Это зависит от формы и взаимного расположения двух катушек и не зависит от токов в катушках. Единица СИ для взаимной индуктивности М называется генри (Гн) в честь Джозефа Генри (1799–1878), американского ученого, открывшего ЭДС независимо от Фарадея. Таким образом, имеем \(1 \, H = 1 \, V \cdot s/A\). Из уравнений \ref{12.24} и \ref{12.25} мы можем показать, что \(M_{21} = M_{12}\), поэтому мы обычно опускаем индексы, связанные с взаимной индуктивностью, и пишем

    \[M = \dfrac{N_2\Phi_{21}}{I_1} = \dfrac{N_1 \Phi_{12}}{I_2}. \label{14.3}\]

    ЭДС, развиваемая в каждой катушке, находится путем объединения закона Фарадея и определения взаимной индуктивности. Так как \(N_2\Phi_{21}\) — это полный поток через катушку 2 из-за \(I_1\), мы получаем

    \[\begin{align} \epsilon_2 &= — \dfrac{d}{dt} (N_2 \Phi_{21}) \\[4pt] &= — \dfrac{d}{dt} (MI_1) \\ [4pt] & = — M\dfrac{dI_1}{dt} \label{14.4} \end{align} \]

    , где мы использовали тот факт, что \(M\) является постоянной, не зависящей от времени, потому что геометрия не зависит от времени. Аналогично имеем

    \[\epsilon_1 = — M\dfrac{dI_2}{dt}. \метка{14.5}\]

    В уравнении \ref{14.5} мы можем видеть значение более раннего описания взаимной индуктивности (\(M\)) как геометрической величины. Значение \(M\) точно отражает физические свойства элементов схемы и позволяет нам отделить физическую схему схемы от динамических величин, таких как ЭДС и ток. Уравнение \ref{14.5} определяет взаимную индуктивность с точки зрения свойств в цепи, тогда как предыдущее определение взаимной индуктивности в уравнении \ref{12. 24} определяется с точки зрения испытанного магнитного потока, независимо от элементов цепи. Вы должны быть осторожны при использовании уравнений \ref{14.4} и \ref{14.4}, потому что \(\epsilon_1\) и \(\epsilon_2\) не обязательно представляют суммарные ЭДС в соответствующих катушках. В каждой катушке также может быть наведена ЭДС из-за ее самоиндукция (собственная индуктивность будет обсуждаться более подробно в следующем разделе).

    Большая взаимная индуктивность M может быть как желательной, так и нежелательной. Мы хотим, чтобы трансформатор имел большую взаимную индуктивность. Но такой прибор, как электрическая сушилка для белья, может индуцировать опасную ЭДС на своем металлическом корпусе, если взаимная индуктивность между его катушками и корпусом велика. Один из способов уменьшить взаимную индуктивность — встречная обмотка катушек, чтобы нейтрализовать создаваемое магнитное поле (рис. \(\PageIndex{2}\)).

    Рисунок \(\PageIndex{2}\): Нагревательные спирали электрической сушилки для белья могут быть встречно намотаны, так что их магнитные поля компенсируют друг друга, что значительно снижает взаимную индуктивность с корпусом сушилки.

    Цифровая обработка сигналов — еще один пример, в котором взаимная индуктивность уменьшается за счет встречной обмотки катушек. ЭДС быстрого включения/выключения, представляющая 1 и 0 в цифровой схеме, создает сложное магнитное поле, зависящее от времени. ЭДС может генерироваться в соседних проводниках. Если этот проводник также несет цифровой сигнал, ЭДС индукции может быть достаточно большой, чтобы переключать 1 и 0 с последствиями от неудобных до катастрофических.

    Пример \(\PageIndex{1}\): взаимная индуктивность

    На рисунке \(\PageIndex{3}\) показана катушка из \(N_2\) витков и радиуса \(R_2\), окружающая длинный соленоид длиной \ (l_1\), радиус \(R_1\) и \(N_1\) оборотов.

    1. Какова взаимная индуктивность двух катушек?
    2. Если \(N_1 = 500 \, витков, \, N_2 = 10 \, витков, \, R_1 = 3,10 \, см, \, l_1 = 75,0 \, см\), а ток в соленоиде изменяется в 200 А/с, какая ЭДС индуцируется в окружающей катушке?
    Рисунок \(\PageIndex{3}\): соленоид, окруженный катушкой.

    Стратегия

    Магнитного поля снаружи соленоида нет, а поле внутри имеет величину \(B_1 = \mu_0(N_1/l_1)I_1\) и направлено параллельно оси соленоида. Мы можем использовать это магнитное поле, чтобы найти магнитный поток через окружающую катушку, а затем использовать этот поток для расчета взаимной индуктивности для части (а), используя уравнение \ref{14.3}. Мы решаем часть (b), вычисляя взаимную индуктивность из заданных величин и используя уравнение \ref{14.4} для расчета ЭДС индукции. 9{-3}В. \end{выравнивание*} \]

    Значение

    Обратите внимание, что M в части (a) не зависит от радиуса \(R_2\) окружающей катушки, потому что магнитное поле соленоида ограничено его внутренней частью. В принципе, мы также можем вычислить M , найдя магнитный поток через соленоид, создаваемый током в окружающей катушке. Этот подход намного сложнее, потому что \(\Phi_{12}\) очень сложен. Однако, поскольку \(M_{12} = M_{21}\), мы знаем результат этого вычисления.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *