Источник постоянного электрического тока: Источник постоянного электрического тока – схема

Содержание

Постоянный электрический ток

 на главную   

 

Официальный сайт АНО ДО Центра «Логос», г.Глазов

http://logos-glz.ucoz.net/

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного о физике:   

 

Что называют электрическим током?

 

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j плотность токаS площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил,

 q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая  электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l — длина участка проводника,  S — площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G — проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке,  R — сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1— φ2 + ε = U напряжение на заданном участке цепи, R — электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R — электрическое сопротивление внешнего участка цепи,  r — электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

 

Последовательное и параллельное

соединение проводников.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

    

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение — комбинация  параллельного и последовательного  соединений.

 

 

Правила Кирхгофа.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел — точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n — число проводников, сходящихся в узле, Ii— сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла — отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

 

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают  токи противоположного направления. ЭДС источников  электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае — отрицательными.

 

Порядок расчета сложной цепи постоянного тока.

  1. Произвольно выбирают направление токов во всех участках цепи.

  2. Первое правило Кирхгофа  записывают  для  (m-1)  узла, где m — число узлов в цепи.

  3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

  4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт — сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если  амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление — сопротивление, подключаемое последовательно с вольтметром (гальванометром),  для расширения его шкалы при измерении напряжения.

Если  вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

 

Источники постоянного тока: виды, характеристики, сферы применения | Hi-Tech

Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

Источники постоянного электрического тока

Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

  • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
  • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
  • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
  • световые, превращающие энергию солнечного света в электрическую энергию.

В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Световые источники

Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Механические источники постоянного тока

Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

  • однополупериодые выпрямители;
  • двухполупериодные выпрямители.

В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

Регулирование источника

Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

В ней выходное напряжение сравнивается с эталонным (опорным) значением.

При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

Импульсные источники

Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

Сравнение источников

Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

Заключение

В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

Постоянный электрический ток. Направление тока, формула

 

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

 

Направление электрического тока

 

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

 

Действия электрического тока

 

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

 

Сила и плотность тока

 

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

(1)

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

(2)

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

 

Скорость направленного движения зарядов

 

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

м

Положим мм . Из формулы (5) получим:

м/с.

Это порядка одной десятой миллиметра в секунду.

 

Стационарное электрическое поле

 

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Постоянный и переменный ток, его источники и их применение в электротехнике

Такое понятие, как источник тока, имеет несколько трактовок. Одна из них – это строгое физическое определение, другая – устоявшийся термин, причем не только в бытовой среде, но и среди профессионалов. Оба варианта имеют право на существование в том случае, если из прямых указаний или из контекста ясно, какое из определений имеется в виду.

Обозначение на электрических схемах

Что такое источник тока

Будучи синонимами, оба термина имеют различное значение, хотя и относятся к электротехнике. Что они означают:

  • Элемент электрической цепи, создающий постоянный ток, значение которого не зависит от сопротивления нагрузки и напряжения. Может иметь равнозначные термины: идеальный источник тока или токовый генератор. Данная формулировка используется в теоретической электротехнике для описания работы электрических цепей;
  • Устройство электропитания (электрической энергии). Устоявшаяся терминология в практической области. Может означать источники питания постоянного тока (химические, аккумуляторы и т.д.), переменного тока (генераторы, трансформаторы).

Теоретическая электротехника

Источник тока, как и источник напряжения, используется в электротехнике для моделирования реальных устройств питания цепей с некоторыми допущениями.

Идеальный источник характеризуется следующими параметрами:

  • Значение тока, протекающего через него, всегда постоянно, вне зависимости от значения нагрузки;
  • Выходное напряжение зависит лишь от сопротивления нагрузки и определяется по закону Ома при условии, что I=const:

U=I·R

  • Внутренняя проводимость бесконечно мала.

Из определения следует, что при увеличении сопротивления нагрузки напряжение и мощность, которые отдает источник тока, увеличиваются, стремясь к бесконечности.

Реальный источник тока имеет некоторое внутреннее сопротивление, аналогично реальному источнику напряжения, поэтому характеристики будут соответствовать определению только в некотором диапазоне сопротивления нагрузки. В частности, с некоторым приближением, таковым можно считать вторичную обмотку мощного трансформатора тока, включенного в цепь переменного тока.

Реальный источник тока

В теоретической электротехнике существует возможность взаимного преобразования токовых генераторов источников напряжения, то есть можно выбрать наиболее удобное для дальнейших расчетов отображение.

Применение

Источники с характеристиками, приближенными к идеальным, имеют и практическое применение. Яркий пример – зарядное устройство для аккумуляторов. Для заряда современных аккумуляторных батарей используются устройства, которые формируют зарядное напряжение по специальным алгоритмам, но наиболее просто и не менее надежно (особенно для простых кислотных и щелочных батарей) производить зарядку стабильным током до тех пор, пока напряжение на выходе не сравняется с ЭДС аккумуляторной батареи. К ним также можно отнести аппараты для электродуговой сварки, которые стабилизируют ток дуги для получения однородного сварного шва, вне зависимости от длины дуги.

В аналоговой схемотехнике применяются источники, сконструированные на основе биполярных и полевых транзисторов. Они применяются для питания дифференциальных и операционных усилителей, измерительных и сравнивающих мостовых схем.

Токовый генератор

Практическая электротехника

В практической электротехнике источниками тока именуются все, без исключения, устройства питания, хотя большинство из них относится к классу источников напряжения. К ним относятся преобразователи любых видов энергии в электрическую:

  • Химические источники тока;
  • Физические;
  • Вторичные устройства электропитания.
Химические источники тока

К таким устройствам относятся такие, которые вырабатывают электрическую электроэнергию в результате химических процессов, в частности, окислительно-восстановительных реакций. Это:

  • Устройства однократного применения – гальванические элементы;
  • Устройства многократного применения – аккумуляторы;
  • Электрохимические генераторы (топливные элементы).

Гальванические элементы реализуются наиболее просто, чем и объясняется то, что они были созданы самыми первыми. Особенность гальванических элементов – способность работать длительное время при небольших отборах мощности. Отрицательная сторона – при исчерпании запаса энергии химического преобразования элемент подлежит утилизации. Некоторые типы, например, щелочные элементы, допускают регенерацию в конце службы путем заряда со стороны внешнего блока питания, но эффективность таких действий невысока и является временным выходом из положения.

Гальванический элемент

Аккумуляторы рассчитаны на многократное повторение циклов разряд-заряд. Восстановление емкости производится от зарядного устройства. Аккумуляторы способны выдавать в импульсе большие значения мощности, а некоторые типы рассчитаны на длительную работу в буферном режиме.

Количество циклов работы ограничено, но даже с этим условием использование аккумуляторов экономически более выгодно, чем гальванических элементов.

Работа источника тока на электрохимическом генераторе по принципу выработки электроэнергии подобна гальваническому элементу, но в нем используется химическая реакция между веществами, подаваемыми в активную область непрерывно. Срок службы ограничивается запасом химических веществ.

Все химические устройства вырабатывают постоянный ток, и для получения переменного требуется использование преобразователя.

Физические источники

Данные устройства основаны на физических принципах выработки электроэнергии, преобразуя в нее энергию других видов:

  • Тепловую;
  • Механическую;
  • Атомную;
  • Солнечную.

Наиболее мощные преобразователи используют первые три типа энергии и работают на одном принципе. Это тепловые, атомные и гидроэлектростанции. Тепло при сгорании углеводородного топлива или распада атомного ядра используется для нагрева жидкости (воды), которая в виде пара под давлением крутит вал турбины генератора.

Гидроэлектростанции используют для вращения генераторов энергию падающей воды.

Все эти генераторы могут вырабатывать переменный или постоянный ток, но, главным образом, первый из них, поскольку его легко трансформировать для других значений напряжения.

Гидроэлектростанция

Существуют устройства, способные преобразовать тепловую энергию в электричество напрямую, без промежуточного использования воды, но они имеют ограниченное распространение из-за низкого КПД и эффективности.

Солнечные элементы (фотоэлементы) производят прямое преобразование энергии света в постоянный ток. В настоящее время КПД промышленных образцов солнечных батарей невысок, для устойчивой работы необходимо наличие прямого попадания солнечных лучей          на фотопреобразователи. Служат основным источником электроэнергии на космических кораблях, работающих на ближайших к солнцу орбитах. С удалением от солнца энергия лучей падает пропорционально квадрату расстояния, поэтому приходится переходить на электрохимические генераторы.

Солнечная батарея

Вторичные источники электропитания

Выходные параметры устройств питания не всегда соответствуют требованиям. Многие области применения требуют подачи различного по величине и другим характеристикам питающего напряжения.

Преобразование к нужным параметрам производится во вторичных блоках электропитания. Схемы построения во многом зависят от типа входного напряжения. Для преобразования напряжения постоянного тока используются, в основном, инверторные преобразователи, которые при помощи мощных транзисторных ключей формируют импульсы высокой частоты. Высокочастотный сигнал поступает на трансформатор, со вторичных обмоток которого снимается необходимое напряжение.

Для преобразования переменного напряжения применяется обычный трансформатор, но может использоваться и инверторная схема с предварительным выпрямлением входного напряжения.

Использование терминов зависит от того, в какой из областей их применение. Для строгости понятий термин «Источник тока» следует использовать только для определения идеального источника, в остальных случаях более корректным будет употребление формулировки «источник напряжения», питания, генератор.

Видео

Оцените статью:

Постоянный электрический ток: определение, механизм, характеристики

Определение 1

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Определение 2

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast. Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε=Aq (1), где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε=В.

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Определение 3

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S:

I=dqdt (2).

Ток может быть постоянным и переменным. При неизменной силе тока  с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I=qt (3), где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе СИ основная единица измерения силы тока – Ампер (А).

1 A=1 Кл1 с.

Определение 4

Плотность – это векторная локальная характеристика. Вектор плотности тока j→способен показывать, каким образом распределяется ток по сечению S. Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

j=dIdS’ (4), где dS’ является проекцией элементарной поверхности dS на плоскость, перпендикулярную вектору плотности тока, dI – элементом силы, которая идет через поверхности dS и dS’.

Представление плотности в металле возможно по формуле:

j→=-n0qeυ→ (5), где n0 обозначается концентрацией электронов проводимости, qe=1,6·10-19 Кл  – зарядом электрона, υ→ – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то

υ→=10-4 мс.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Закон сохранения заряда

Рисунок 1

Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S, изображенной на рисунке 1, ограничивающей объем V количество выходящего электричества в единицу времени (1 секунду) из объема V можно определить по формуле ∮sjndS. Такое же количество электричества выражается через заряд -∂q∂t, тогда получаем:

∂q∂t=-∮SjndS (6), где jn считается проекцией вектора плотности на направление нормали к элементу поверхности dS, при этом:

jn=jcos a (7), где a является углом между направлением нормали к dS и вектором плотности тока. Уравнение (6) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S.

Выражение (6) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:

∮SjndS=0 (8).

Пример 1

Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ, который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E. Направление скорости движения вдоль оси цилиндра.

Решение

Основой решения задачи берется определение силы тока в виде:

I=dqdt (1.1).

Из формулы (1.1) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.

Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:

E=σε0 (1.2), где σ является поверхностной плотностью заряда, ε0=8,85·10-12 КлН·м2. Выразим σ из (1.2), тогда:

σ=E·ε0 (1.3).

Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:

dqdS=σ (1.4).

Используя (1.3), (1.4), имеем:

dq=E·e0dS (1.5).

Выражение элемента поверхности цилиндра идет через его параметры:

dS=2π ·Rdh (1.6), где dh является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:

dq=E·ε0·2h·Rdh (1.7).

Произведем подстановку из (1.7) в (1.1):

I=d(E·ε0·2π·Rdh)dt=2πRε0Edhdt (1.8).

Движение цилиндра идет вдоль оси, тогда запишем:

dhdt=υ (1.9).

Получим:

I=2πRε0Eυ.

Ответ: конвективный ток I=2πRε0Eυ.

Пример 2

Изменение тока в проводнике происходит согласно закону I=1+3t. Определить значение заряда, проходящего через поперечное сечение проводника, за время t, изменяющегося от t1=3 с до t2=7 c. Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?

Решение

Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:

I=dqdt (2.1).

Формула (2.1) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t1 до t2 возможно таким образом:

q=∫t1t2Idt (2.2).

Произведем подстановку имеющегося по условию закона в (2.2) для получения:

q=∫t1t2(1+3t)dt=∫t1t2dt+∫t1t23tdt=t2-t1+3·t22t1t2=(t2-t1)+32t22-t12 (2.3).

Вычислим заряд:

q=7-3+32(72-32)=4+32·40=64 (Кл).

Чтобы определить постоянный ток для получения силы используется формула:

Iconst=qt (2.3), где t считается временем, за которое поперечное сечение проводника пройдет заряд q.

Тогда время протекания заряда равняется:

t=t2-t1 (2.4).

Выражение (2.3) примет вид:

Iconst=qt2-t1 (2.5).

Произведем подстановку и вычислим:

Iconst=647-3=644=16 (A).

Ответ: q=64 Кл. Iconst=16 А..

Идеальный источник тока | Электрикам

Идеальный источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах. Предполагается, что внутреннее сопротивление идеального источника тока бесконечно велико, и поэтому параметры внешней электрической цепи, от которых зависит напряжение на зажимах источника, не влияют на ток источника.
Условные обозначения идеального источника тока приведены на рис. 1

Стрелка в источнике тока или знаки «+» и «—» указывают положительное направление тока i(t) или полярность источника, т. е. направление перемещения положительных зарядов.

Сейчас принято обозначать источники тока буквой J, и чаще всего применяется нижнее условно графическое изображение.

Рис.1 — Идеальный источник тока

По мере неограниченного увеличения сопротивления внешней электрической цепи, присоединенной к идеальном

у источнику тока, напряжение на его зажимах и соответственно мощность, развиваемая им, неограниченно возрастают. Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.

 

Источник тока конечной мощности изображается в виде идеального источника тока с параллельно подключенным к его зажимам пассивным элементом  который характеризует внутренние параметры источника и

Представляя собой теоретическое понятие, источник тока применяется в ряде случаев для расчета электрических цепей.

Некоторым подобием источника тока может служить устройство, состоящее из аккумулятора, соединенного последовательно с дополнительным большим сопротивлением  Другим примером источника тока может являться пяти электродная усилительная электронная лампа (пентод). Имея внутреннее сопротивление  несоизмеримо большее,  чем сопротивление внешней электрической цепи, эти устройства отдают ток, почти не зависящий от изменения внешней нагрузки в широких пределах, и именно в этом отношении они аналогичны источнику тока.

Идеальный источник эдс

Источник переменного напряжения, источник постоянного напряжения


Напряжение, этим термином обозначают разность электрических потенциалов между двумя точками электрической цепи. Некоторые неправильно полагают, что напряжение — это что-то такое, что движется в цепи. Но это не так. Напряжение — это та сила, под действием которой в электрической цепи движутся электрические заряды, т.е. протекает электрический ток. Напряжение можно сравнить с ударом клюшки по шайбе. Полёт шайбы сравним с протеканием тока, но удар клюшки — это потенциальная сила, вызвавшая движение шайбы. Ток и напряжение взаимосвязаны, так как важна не только разность потенциалов сама по себе, а важен и электрический ток, обусловленный этой разностью потенциалов. Поэтому при описании работы электрических цепей ток и напряжение, как правило, фигурируют вместе.

Можно выделить две группы источников электрической энергии: источники напряжения и источники тока. Напряжение между выходными полюсами источника напряжения не зависит или слабо зависит от тока, отдаваемого источником во внешнюю цепь (нагрузку). В источниках тока, напротив, выходной ток почти не зависит от напряжения на его полюсах, которое определяется нагрузкой.

Основной единицей измерения разности потенциалов является вольт (В). На практике часто применяются производные от основной единицы измерения напряжения. Единица измерения милливольт (мВ) используется для обозначения разности потенциалов, эквивалентной 1/1000 В. Микровольт (мкВ) составляет 1/1000 мВ или 1/1000 000 В. Один киловольт (КВ) равен 1000 В, а один мегавольт (МВ) — 1 000 000 В.

Различают переменное напряжение и постоянное напряжение.

Источник постоянного напряжения

Аккумуляторная батарея — это типичный источник постоянного напряжения. Для питания электронных схем применяются преимущественно источники постоянного напряжения. Напряжение измеряется между положительным и отрицательным выводами (полюсами) источника. Для того, чтобы образовать замкнутую электрическую цепь, в которой протекает постоянный ток, полюсы источника питания должны быть соединены с выводами схемы (нагрузки), потребляющей энергию от источника, или с выводами измерительного прибора. Считается, что в нагрузке, подключённой к источнику питания, ток течёт в направлении от положительного потенциала к отрицательному.

Источник переменного напряжения

Промышленная электросеть — типичный источник переменного напряжения. Если в цепях постоянного напряжения полярность полюсов фиксирована и один из полюсов всегда положителен, а другой отрицателен, то в источниках переменного напряжения полярность постоянно меняется. В первой половине периода один из полюсов имеет отрицательную полярность, а другой — положительную. Во второй половине полярности полюсов меняются. Быстрота смены полярности в цепях переменного тока измеряется в герцах (Гц). В нашей сети напряжение является переменным и в течение одной секунды происходит 50 циклов (периодов) смены полярности напряжения. Частота сети переменного тока (в РФ) равна 50 Гц. Для примера, в США она равна 60 Гц.

LTspice: Моделирование постоянной мощности нагрузки

Некоторые файлы cookie необходимы для безопасного входа в систему, а другие необязательны для функциональной активности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Файлы cookie для таргетинга / профилирования:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
Отклонить файлы cookie

Управляйте источниками тока и напряжения с помощью модуля переменного / постоянного тока

Если вы когда-либо работали с граничным условием Терминал в COMSOL Multiphysics, вы знаете, что это электрическое граничное условие может применять ток или напряжение, помимо других параметров. . Но знаете ли вы, что вы также можете динамически переключаться между типами возбуждения во время моделирования переходных процессов? Это полезно, например, если вы пытаетесь смоделировать источник питания с ограничением по току или напряжению.Сегодня мы рассмотрим, как реализовать такое поведение переключения.

Конечное граничное условие

При использовании модуля переменного / постоянного тока, модуля MEMS или плазменного модуля условие клеммы может применяться к границам любых областей, через которые могут протекать токи проводимости или смещения. С этим граничным условием можно применить возбуждение Current , Voltage или Power , а также соединение с внешней цепью Circuit или соединением Terminated с известным импедансом.

Независимо от типа возбуждения или используемого физического интерфейса условие Терминал всегда указывает напряжение, но при желании добавляет в модель дополнительные уравнения. Например, при использовании условия клеммы с указанным током программное обеспечение автоматически добавляет функцию Integration Component Coupling для интегрирования общего тока через указанную границу. Программное обеспечение также добавляет глобальное уравнение , которое вводит одну дополнительную степень свободы в модель для напряжения на клеммах, так что ток через клеммы равен току, заданному пользователем.

Эта комбинация глобальных уравнений с интегрирующей связью компонентов является достаточно гибкой, и вы, возможно, уже знакомы с ее использованием для структурной механики и моделирования теплопередачи. Давайте теперь посмотрим, как мы можем легко переключаться между разными типами терминалов.


Схема блока материала с заземлением и клеммами на противоположных сторонах. Граничное условие Терминала будет переключаться между источником напряжения или тока.

Управление током или напряжением с одним граничным условием

Мы рассмотрим очень простую модель электрического тока, включающую всего лишь блок материала с заземленной границей с одной стороны и граничным условием клеммы типа тока с другой.Мы начнем с рассмотрения стационарного случая и рассмотрим, как применить возбуждение током или напряжением, добавив глобальное уравнение. Само глобальное уравнение добавляется в интерфейс Electric Currents (Чтобы добавить глобальные уравнения в физический интерфейс, убедитесь, что включен режим Advanced Physics Options под меню Показать в построителе моделей.)

Сначала посмотрим на настройки Терминала. Как видно из приведенного ниже снимка экрана, тип терминала — Current, а приложенный ток — это переменная Current , которая будет решена с помощью глобального уравнения.


Состояние клеммы текущего типа с приложенным током, которое будет контролироваться глобальным уравнением.


Настройки Global Equations управляют прикладываемым током для условий Терминала.

Настройки глобального уравнения показаны на скриншоте выше. Существует одно уравнение для переменной Current , и уравнение, которое должно быть выполнено, — это

.
 (ток-1 [A]) / 1 [A] 

Поскольку это уравнение по определению должно равняться нулю, приложенный ток равен 1 ампер.Это простое уравнение; он не включает никаких отзывов от модели, а скорее устанавливает значение Current . Само глобальное уравнение безразмерно, поскольку мы также хотим удовлетворить уравнение для напряжения. Переключение на возбуждение напряжением можно выполнить, просто изменив это уравнение на

.
 (ec.V0_1-3 [V]) / 3 [V] 

, где переменная ec.V0_1 автоматически определяется граничным условием Терминала.

Таким образом, мы прикладываем такой ток, чтобы напряжение на клеммах составляло 3 вольта.Это уравнение действительно дает обратную связь от модели, но модель остается линейной. Он по-прежнему будет решать за одну итерацию, но для этого требуется использование прямого решателя. Если вы попробуете это сами, то увидите, что теперь вы можете переключаться между возбуждением напряжением и током, просто изменяя глобальное уравнение для стационарной задачи. Далее мы рассмотрим, как можно динамически переключаться между этими возбуждениями во время моделирования переходных процессов.

Переключение глобального уравнения во время моделирования, зависящего от времени

Предположим, что у нас есть источник энергии, приводящий в действие систему, которая демонстрирует переменное сопротивление.Например, сопротивление изменяется с температурой из-за джоулева нагрева и индукционного нагрева. Предположим также, что при изменении сопротивления наш источник питания может подавать постоянный ток до некоторого пикового напряжения или постоянное напряжение до некоторого пикового тока.

Чтобы смоделировать этот тип коммутатора, мы будем использовать интерфейс Events . Ранее мы писали об интерфейсе Events для реализации термостата для решения тепловых проблем, и мы рекомендуем просмотреть этот пост в блоге для получения технических деталей и соответствующих настроек решателя.

Интерфейс Events содержит четыре функции: функцию Discrete States , функцию Indicator States и две функции Implicit Events . Во-первых, функция дискретных состояний определяет переменную с одним состоянием, CC , которая действует как флаг, указывающий, находится ли источник питания в режиме постоянного тока, CC = 1 , или в режиме постоянного напряжения, CC = 0. . Изначально наш блок питания будет работать в режиме постоянного тока. Затем есть функция состояния индикатора, определяющая две переменные состояния индикатора, PeakV и PeakI , которые должны плавно меняться во времени.Наконец, есть две функции неявных событий, которые будут отслеживать эти две переменные состояния индикатора и изменять переменную дискретного состояния, CC , на ноль или единицу, если выполняются логические условия. Все эти настройки показаны на скриншотах ниже.


Функция дискретных состояний определяет флаг, который сигнализирует о состоянии терминала.


Функция состояния индикатора определяет два различных индикатора возможных событий.


Неявные события переключают переменную дискретных состояний.

Остается сделать только одну задачу: изменить глобальное уравнение для переменной Current на

 CC * ((Ток-1 [A]) / 1 [A]) + (1-CC) * (ec.V0_1-3 [V]) / 3 [V] 

Вы можете видеть, что это сумма двух выражений, разработанных ранее для управления током или напряжением с использованием флага CC для переключения между ними. Как только это будет сделано, останется только решить во временной области с настройками исследования, описанными в нашем предыдущем сообщении в блоге, и с использованием прямого решателя для поля напряжений Electric Currents , напряжения на клеммах и глобального уравнения для текущий, как показано на скриншоте ниже.Переменные Events могут быть решены на отдельном отдельном шаге.


Настройки решателя, показывающие, как разделяются переменные и что используется прямой решатель.

Благодаря этим функциям мы реализовали следующее поведение источника питания:

  • Сначала подайте постоянный ток в 1 А и отрегулируйте приложенное напряжение для поддержания этого тока.
  • Если напряжение превышает 3 В, переключитесь в режим постоянного напряжения.
  • Если ток превышает 1 А, вернитесь в режим постоянного тока.

Чтобы получить некоторые репрезентативные результаты, мы явно сделаем так, чтобы общее сопротивление нашего домена изменялось во времени, как показано на графике ниже. Из последующих графиков тока и напряжения видно, что подаваемый ток изначально постоянен, но напряжение растет из-за повышенного сопротивления. Затем источник питания переключается в режим постоянного напряжения, и ток изменяется. Когда сопротивление снова падает, ток возрастает до своего пика, а затем источник питания переключается обратно в режим фиксированного тока.


Поскольку сопротивление устройства меняется со временем, источник переключается между постоянным током и постоянным напряжением, чтобы гарантировать, что максимальный ток и напряжение никогда не превышаются.

Заключительные замечания по использованию модуля переменного / постоянного тока для управления источниками тока и напряжения

Мы продемонстрировали схему управления, которая обеспечивает максимальное значение как тока, так и напряжения, реализованную с помощью глобальных уравнений и граничного условия терминала. Функциональность используемых здесь граничных условий Терминала не ограничивается интерфейсами Electric Currents .Состояние клеммы также доступно в интерфейсе Magnetic and Electric Fields , а также в интерфейсе Magnetic Fields , где оно называется условием подачи через границу или подачи через зазор. Интерфейс Magnetic Fields также включает в себя доменную функцию Multi-Turn Coil , которая может использоваться эквивалентным образом.

Также можно использовать этот тип схемы управления во время исследования частотно-переходного процесса , которое часто происходит при джоулевом или индукционном нагреве, при котором электромагнитная проблема решается в частотной области, а тепловая проблема решается для температуры. вариации, которые приводят к изменениям импеданса, решаются во временной области.Это может быть особенно полезно при моделировании, например, радиочастотного нагрева и абляции.

Модуль проектирования батареи, модуль коррозии, модуль электрохимии и модуль электроосаждения содержат граничные условия тока электрода и тока электролита, которые могут использоваться эквивалентно показанному здесь состоянию клеммы. В частности, в учебной модели «Снижение емкости литий-ионной батареи» показано, как моделировать зарядку и разрядку батареи.

Мы надеемся, что вы видите, что с небольшим количеством воображения можно реализовать некоторые довольно сложные схемы управления с граничным условием терминала и интерфейсом Events .

Если у вас есть конкретное приложение, которое вы хотите моделировать с помощью COMSOL Multiphysics, не стесняйтесь обращаться к нам.

Что поставляет энергию в ответ электрической цепи? — Реабилитацияrobotics.net

Что поставляет энергию в ответ в электрической цепи?

аккумулятор

Что такое источник в электрической цепи?

Источник тока — это электронная схема, которая подает или поглощает электрический ток, который не зависит от напряжения на ней.Источник тока — это двойник источника напряжения. Зависимый источник тока выдает ток, который пропорционален некоторому другому напряжению или току в цепи.

Что использует электричество в цепи?

Электрическая цепь, путь для передачи электрического тока. Электрическая цепь включает в себя устройство, которое передает энергию заряженным частицам, составляющим ток, например аккумулятор или генератор; устройства, использующие ток, такие как лампы, электродвигатели или компьютеры; и соединительные провода или линии передачи.

Что делает источник в цепи?

Источник напряжения будет обеспечивать необходимую мощность, изменяя ток питания и фиксируя подаваемое напряжение в зависимости от общего сопротивления. Источник тока будет делать то же самое, изменяя напряжение питания и фиксируя подаваемый ток в зависимости от общего сопротивления.

Где источник энергии для цепи?

Цепь — это замкнутый контур, в котором могут перемещаться электроны. Источник электричества, такой как батарея, обеспечивает электрическую энергию в цепи.Пока цепь не замкнута, то есть не совершает полный круг обратно к источнику электричества, электроны не будут двигаться.

Что такое идеальная схема?

Идеальные устройства — это математические описания специализированных элементов схемы, которые имеют точные и конкретные определения. Симуляторы могут имитировать только работу идеальных устройств. Формализм и сила теории цепей применимы только к идеальным устройствам. Модели состоят из комбинаций идеальных устройств.

Почему источник тока подключен параллельно?

При параллельном подключении резисторов от источника течет больше тока, чем протекает по любому из них по отдельности, поэтому общее сопротивление ниже.Каждый резистор, включенный параллельно, имеет такое же полное напряжение источника, как на него, но делит общий ток между ними.

В чем разница между источником напряжения и тока?

Сравнение между источниками напряжения и тока Реальный источник напряжения имеет очень низкое, но ненулевое внутреннее сопротивление и выходной импеданс, часто намного меньше 1 Ом. И наоборот, источник тока обеспечивает постоянный ток, пока нагрузка, подключенная к клеммам источника, имеет достаточно низкий импеданс.

Можно ли параллельно подключать источники напряжения?

Идеальные источники напряжения могут быть соединены между собой как параллельно, так и последовательно, как и любой элемент схемы. Последовательные напряжения складываются, а параллельные напряжения имеют одинаковое значение.

Каков идеальный источник напряжения?

Идеальный источник напряжения — это источник напряжения, который обеспечивает постоянное напряжение в цепи, несмотря на ток, который она потребляет. Когда идеальный источник напряжения имеет нулевое внутреннее сопротивление, он может полностью упасть на нагрузке в цепи.

Какие бывают типы источников напряжения?

Типы источников напряжения

  • Независимый источник напряжения: они бывают двух типов — источник постоянного напряжения и источник переменного напряжения.
  • Зависимый источник напряжения: они бывают двух типов — источник напряжения, управляемый напряжением, и источник напряжения, управляемый током.

Что такое зависимый источник напряжения?

В теории электрических сетей зависимый источник — это источник напряжения или источник тока, значение которого зависит от напряжения или тока в другом месте сети.Операционный усилитель можно описать как источник напряжения, зависящий от дифференциального входного напряжения между его входными клеммами.

Какой идеальный источник тока?

Идеальный источник тока — это источник тока, который подает постоянный ток в цепь, несмотря на любые другие условия, присутствующие в цепи. Идеальный источник тока обеспечивает этот постоянный ток со 100% эффективностью.

Могут ли источники тока поглощать энергию?

Также для решения схемотехнического анализа и теорем источники тока становятся источниками с разомкнутой цепью, чтобы сделать их ток равным нулю.Также обратите внимание, что источники тока могут передавать или поглощать энергию.

Что такое идеальный и практичный источник тока?

Источник напряжения — это устройство с двумя выводами, напряжение которого в любой момент времени является постоянным и не зависит от тока, потребляемого от него. Такой источник напряжения называется идеальным источником напряжения и имеет нулевое внутреннее сопротивление. Источники, имеющие некоторое внутреннее сопротивление, известны как практические источники напряжения.

Что такое источник постоянного тока?

Источник постоянного тока — это источник питания, который обеспечивает постоянный ток нагрузки, даже несмотря на изменения и отклонения в сопротивлении нагрузки.Это используется, когда в цепи требуется постоянный ток без колебаний.

Что произойдет, если два разных источника напряжения будут подключены параллельно?

Когда два источника напряжения разной величины соединены параллельно, заряд от источника более высокого напряжения перемещается в сторону источника более низкого напряжения до тех пор, пока оба источника напряжения не достигнут одинакового потенциала.

Что такое источник постоянного напряжения?

Источник постоянного напряжения — это электрогенератор, внутреннее сопротивление которого очень мало по сравнению с сопротивлением нагрузки, на которую он передает энергию.Поскольку его внутреннее сопротивление настолько низкое, большая часть напряжения падает на нагрузку с более высоким сопротивлением.

Для чего используется постоянное напряжение?

Постоянное напряжение — это способность изменять выходной ток для поддержания заданного напряжения. Постоянное напряжение можно использовать в тех случаях, когда детали не имеют плоских поверхностей, например перекрещивающиеся проволоки, где сопротивление значительно меняется, и для очень коротких сварных швов (менее 1 миллисекунды).

Является ли аккумулятор источником постоянного напряжения?

Батареи обычно моделируются как источники постоянного напряжения, потому что с ними легко работать.Их также можно смоделировать как источники тока (которые являются зависимыми), но это затрудняет их моделирование.

Аккумулятор — это устройство, которое подает в цепь постоянное электрическое давление?

Батарея — это источник постоянного напряжения, изменяющегося во времени. Источники питания переменного и постоянного тока не имеют постоянного напряжения из-за времени, необходимого для заполнения конденсатора и превращения катушки индуктивности в провод, когда нагрузка имеет резкое изменение сопротивления.

Как батареи создают разность напряжений в цепи?

В результате химической реакции между двумя выводами возникает разность потенциалов.Когда батарея подключена к цепи, электроны, образованные в результате химической реакции на аноде, проходят через цепь к катоду. Напряжение батареи также известно как ЭДС, электродвижущая сила.

Аккумулятор — это устройство, которое подает в цепь постоянный ток?

Кроме того, аккумулятор является источником постоянного напряжения, поскольку он не меняет заметно напряжение нагрузки при изменении нагрузки. 2. Его можно использовать в качестве источника тока, но в прямом виде он «не» источник постоянного тока, так как не может поддерживать одинаковый ток для разных значений сопротивления нагрузки.

Что такое цепь постоянного тока?

Источник постоянного тока (CCS) в электронике — это устройство / цепь, которая производит постоянное значение тока независимо от напряжения источника или сопротивления нагрузки. Цепь постоянного тока также может использоваться в качестве ограничителя тока.

Напряжение постоянно?

значений для расчета сопротивления всей цепи. 1. Ток не меняется при прохождении через каждый отдельный резистор. Однако напряжение в последовательной цепи не остается постоянным.

Как быстро электрический ток течет в цепи?

В случае электрического шнура, соединяющего настольную лампу или другой предмет домашнего обихода с источником питания, медный провод внутри шнура действует как проводник. Эта энергия распространяется в виде электромагнитных волн примерно со скоростью света, которая составляет мили в час, 1 или 300 миллионов метров в секунду.

Как проходит электричество в электрической цепи?

ЧТО ДАЕТ ТЕКУЩИЙ ПОТОК В КОНТУРЕ? Электрический ток течет по петле, питая лампочки или другие электрические КОМПОНЕНТЫ.Схема состоит из различных компонентов, связанных между собой проводами. Ток передается по цепи источником питания, например АККУМУЛЯТОРНОЙ БАТАРЕЕЙ.

HF6284_FinalPaper_2017-12-04_16.54.47_CIIRNJ

% PDF-1.4 % 2 0 obj >>>] / ON [71 0 R] / Order [] / RBGroups [] >> / OCGs [71 0 R 128 0 R] >> / Pages 3 0 R / Type / Catalog / ViewerPreferences 69 0 R >> эндобдж 127 0 объект > / Шрифт >>> / Поля 132 0 R >> эндобдж 70 0 объект > поток application / pdf

  • Администратор
  • HF6284_FinalPaper_2017-12-04_16.54.47_CIIRNJ
  • 2017-12-23T17: 32 + 08: 00pdfFactory Pro www.pdffactory.com2018-01-22T17: 48: 51 + 01: 002018-01-22T17: 48: 51 + 01: 00pdfFactory Pro 3.50 (Windows XP Professional) uuid: ae6641f1-223e-42a5-abfe-bd624aac3c65uuid: db05f9f4-dfcc-4687-b18b-64c9d633e4d6 конечный поток эндобдж 3 0 obj > эндобдж 69 0 объект > эндобдж 5 0 obj > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 13 0 объект > / Font> / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Type / Page >> эндобдж 33 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 37 0 объект > / Font> / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Type / Page >> эндобдж 52 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 54 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 189 0 объект > поток HTMo0WDlaJn / nXPtT 60797e + gsS {,% + ؂7_, I% ۄ EQD`Gē.ea, b6F

    Произошла ошибка при настройке вашего пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Основы проектирования и основы разработки драйвера лазерного диода

    Введение:

    Если вы собираетесь начать работать с лазерными диодами, вы, скорее всего, знаете, что есть некоторые очень специфические нюансы для безопасного управления ими и контроля их температуры. Для них требуется специальный набор специально разработанных электронных элементов управления. Этот набор элементов управления объединяется для создания так называемого драйвера лазерного диода или источника тока лазерного диода.По сути, эти элементы определяют, как лазер включается и управляется для получения определенной длины волны и выходной мощности. И как это сделать, не повредив лазерный диод. Подробнее »

    БЫСТРАЯ НАВИГАЦИЯ:

    МАГАЗИН ДРАЙВЕРОВ ЛАЗЕРНЫХ ДИОДОВ:

    Купить все драйверы лазерных диодов »

    Shop High Power (> 5 Amp) Драйверы лазерных диодов »

    Приобрести Печатные платы и OEM-драйверы лазерных диодов »


    Краткий обзор лазерных диодов:

    Чтобы понять, что такое драйверы лазерных диодов и почему они важны, важно понимать некоторые ключевые особенности устройств с лазерными диодами.Эти устройства требуют особого внимания к тому, как они включаются, работают и выключаются. В сети много подробной информации о лазерных диодах. Короче говоря, лазерный диод — это полупроводниковый прибор, сделанный из двух разных материалов. Один из P-материала, другой из N-материала, зажатых вместе. Прямое электрическое смещение через P-N-переход заставляет соответствующие дырки и электроны с противоположных сторон перехода объединяться, испуская фотон в процессе каждой комбинации.Поверхности зоны стыка (полости) имеют до зеркального блеска. Те, кто знаком с теорией лазеров, знают, что происходит, когда фотоны прыгают по полированной полости. Электрическое смещение для перехода должно быть стабильным, малошумящим источником свободного тока от переходных процессов.

    В этой короткой статье представлена ​​основная информация о драйверах лазерных диодов, также называемых источниками постоянного тока, и почему они важны для управления и защиты этих устройств. В нем представлен базовый обзор того, как работают драйверы лазерных диодов, и многие типы драйверов лазерных диодов, доступных в отрасли.

    Что такое драйвер лазерного диода? А что такое источник постоянного тока?

    Драйвер — это источник постоянного тока. Вот полезное короткое видео на YouTube, в котором объясняются источники постоянного тока и постоянного напряжения, а также почему источники тока предпочтительны для управления лазерными диодами. Если вас оскорбила его простота… Приносим свои извинения.

    Понимание коэффициентов настройки и эффективности:

    Лазерные диоды — это токочувствительные полупроводники.Изменение тока возбуждения равно изменению длины волны устройства и выходной мощности. Любая нестабильность управляющего тока (шум, дрейф, индуцированные переходные процессы) повлияет на рабочие характеристики лазерного диода. В частности, они повлияют на выходную мощность и длину волны. Кроме того, на температуру диодного перехода напрямую влияет ток. Текущая нестабильность источника вызовет колебания температуры перехода; выходные характеристики (опять же мощность и длина волны) изменятся.Для того же диода, упомянутого выше:

    Нестабильность управляющего тока напрямую приводит к колебаниям температуры перехода, хотя временная шкала несколько медленнее, чем прямое влияние изменений тока.

    Общие сведения о динамическом сопротивлении и прямом напряжении вашего водителя:

    Прямое напряжение на лазерном диоде непостоянно. Он меняется, особенно после пороговой точки. Пороговая точка — это точка, в которой выходная оптическая мощность лазера линейна с входным током возбуждения, мВт / мА.

    Для тех из вас, кто еще помнит вычисления, первая производная кривой V-I показывает график динамического сопротивления диода, оно также не является постоянным. Таким образом, вся нагрузочная характеристика лазерного диода непостоянна. Напряжение и сопротивление изменяются в зависимости от тока (и температуры). Итак, как мы узнали из видео об источниках постоянного тока, хороший, стабильный, малошумящий источник тока будет поддерживать постоянный ток независимо от нагрузки, подключенной к его выходу!

    Почему не следует использовать настольный источник напряжения:

    Источники напряжения (настольные источники питания) нарастают напряжение при включении, но ток не контролируется.Это не подходит для диодов, требующих постоянного регулируемого тока. Изменение сопротивления источника постоянного напряжения приводит к изменению тока. Если приложение требует постоянной мощности лазера и стабильной длины волны, источник напряжения не будет работать и может подвергнуть лазер риску теплового удара и / или переходных процессов из-за быстрого изменения тока.

    Какие основные типы драйверов для лазерных диодов?

    На самом общем уровне существует несколько классов или «типов» лазерных драйверов, которые вы обычно слышите.Это: постоянного тока (CW), импульсные (включая QCW), маломощные и мощные драйверы . Постоянный ток — это именно то, что он заявляет, постоянный выходной уровень с течением времени, скажем 30 мА, теоретически навсегда, если это необходимо. Импульсные драйверы лазерных диодов представляют собой интересную разновидность, поскольку выходная мощность является функцией времени, а коэффициент заполнения — лучший способ ее описать. Рабочий цикл — это время, в течение которого источник тока включен — высокий выходной ток, деленный на общее время импульса (время включения и выключения). Небольшое замечание о временах отключения в источниках тока: они никогда не отключены по-настоящему (то есть нулевой ток), но часто находятся на достаточно низком уровне выходного сигнала, при котором выход лазерного диода минимален — значительно ниже порогового значения.В следующем разделе дано общее определение версий этих типов драйверов с низким и высоким энергопотреблением.

    Какие общепринятые коммерчески доступные уровни мощности доступны для драйверов?

    Драйверы «малой мощности» и «высокой мощности» — это общепринятая отраслевая терминология, описывающая величину выходной мощности нагрузки. Однако это немного неправильное название: выходной уровень не выражается в единицах мощности, то есть в ваттах, а выражается в единицах мкА, мА и амперах. В мире мощных импульсных источников тока вы можете увидеть выходной импульс, выраженный в Джоулях, то есть энергии, то есть 1 Вт = 1 Дж / с.В технических паспортах обычно также указывается величина выходного тока и напряжение, вам просто нужно их найти. Драйвер с низким энергопотреблением примерно определяется как от 1 мА до 5 ампер. Драйвер мощного лазерного диода — 5 А и до 100 А в режиме CW. Это драйверы уровня кВт, доступные в импульсном и QCW-режимах. Это ни в коем случае не стандарты, а просто обобщение, основанное на опыте автора в мире контроллеров лазерных диодов.

    Краткий обзор схемы лазерного драйвера:

    Следующий шаг — схематическое представление о том, как работает «типичный» лазерный диодный источник тока.У Wavelength Electronics есть отличное видео, описывающее их текущие конструкции источников. Это хорошая информация в виде блок-схемы, которую легко понять.

    Информация, представленная в этом видео, применима ко всем имеющимся в продаже источникам тока лазерных диодов, различия в функциях и характеристиках будут определять производительность и, конечно же, цену.

    Конечно, вы можете гораздо глубже понять источники лазерного тока.Есть уровень, на котором вы, возможно, захотите построить свой собственный, здесь вам нужно будет разбираться в электрических схемах и компонентах. Быстрый поиск источников тока лазерных диодов на YouTube приведет к созданию множества собственных источников тока. Для тех из вас, у кого особые требования, не удовлетворяемые коммерческими производителями, есть хорошая статья под названием «Высокоустойчивый малошумящий лазерный драйвер тока» от BYU. Он очень подробный, содержит отличные схемы для тех, кто разбирается в электрическом проектировании с математически обоснованными принципами проектирования, а производительность подкрепляется данными и графиками.

    Итак, с учетом сказанного, следующий уровень — покупка коммерчески доступного источника тока.

    Каковы типичные диапазоны цен на имеющиеся в продаже драйверы лазерных диодов?

    Вот краткий обзор основных стилей корпусов и ценовых диапазонов имеющихся в продаже источников постоянного и импульсного тока.

    »Источники тока уровня ИС для монтажа на печатной плате: Это интегральная схема (ИС), припаянная непосредственно к печатной плате (ПП).Как правило, это источники более низкого энергопотребления и базового тока, обеспечивающие от 10 мА до 500 мА. Вы найдете их в своем DVD-плеере, сканерах штрих-кодов, указателях и т. Д. Диапазон цен: от 10 до 100 долларов.

    »Драйверы OEM-модулей: Это источники тока, встроенные в небольшой корпус или радиатор; подключения к модулю драйвера необходимы для питания переменного или постоянного тока и источников логического управления, а также для подключения к нагрузке. Они доступны в широком диапазоне диапазонов выходного тока, от 50 мА до 100 А.Диапазон цен: от 250 до 2500 долларов.

    »Настольные драйверы: Это автономные источники тока, которые размещены в корпусе с передней панелью для облегчения управления. Единственные подключения к нему — это вход переменного тока и выход для нагрузки лазерного диода. Они могут быть многофункциональными (управление микропроцессором, низкий уровень шума, высокая стабильность, многодиапазонный) или базовыми (аналоговое управление, одиночный диапазон, включение / выключение), малой или высокой мощностью. Доступны в импульсном и непрерывном режимах от 100 мА до 100 А и более.Вы найдете их во многих оптических лабораториях, чистых комнатах и ​​т. Д. Диапазон цен: от 1000 до 10 000 долларов

    Какая функция наиболее важна? Защита вашего лазерного диода:

    Защита лазерного диода, о которой часто забывают, забывают или просто игнорируют. Что ж, вы можете рискнуть и просто использовать любой источник тока или напряжения, но вы рискуете либо повредить очень дорогой лазерный диод в разработке, либо рискуете потерять часы лабораторной работы и устранения неполадок из-за перегоревшего лазера.Диодные лазеры имеют низкую стойкость к тепловому удару. Стратегии защиты, используемые в большинстве имеющихся в продаже источников тока лазерных диодов, включают способ включения и выключения источника тока (схемы медленного пуска), защиту от сверхтоков (ограничения тока), защиту от переходных процессов, прокладку кабелей и т. Д. от Newport Corp. о защите: защита лазерного диода.

    Учет всех уровней защиты должен быть важным фактором не только в коммерческих источниках тока лазерных диодов, но и в реализации и соблюдении в лаборатории или системе разработки продукции.

    И не забывайте также о контроле температуры … многие критические параметры лазерного диода, включая длину волны, пороговый ток и эффективность, сильно зависят от температуры перехода. Таким образом, для многих приложений требуется очень стабильный контроль температуры.

    Какие наиболее важные характеристики следует учитывать при выборе драйвера?

    Этот ответ наверняка зависит от области применения диода. Например, лазерная указка не имеет таких строгих требований к контролю тока, как диод, используемый в спектроскопических приложениях, требующих очень узкой ширины линии.В большинстве исследовательских приложений, где вы собираетесь потратить от сотен до нескольких тысяч долларов на источник тока лазерного диода, наиболее важными характеристиками являются: защита от скачков и переходных процессов по току и напряжению, плотность шума тока и долговременная стабильность. Безусловно, есть много других важных функций, но вам нужен источник постоянного тока, прежде всего, чтобы оптимизировать и защитить лазерный диод для конкретного применения.

    Еще одно замечание об атрибутах, хотя и не упомянутых в первой тройке, текущий диапазон, конечно, важен.Но помимо очевидной причины, вот почему: если вы покупаете источник тока с диапазоном 2 А, а диоду требуется только 50 мА, обратите внимание на разрешение источника тока, оно зависит от общего выходного диапазона. Точность вывода также зависит от диапазона, если это важно для приложения. Обратите особое внимание на спецификации производителя для этих спецификаций. Поищите технические примечания или спросите производителя, как они определяются, измеряются и проверяются.

    Кто делает драйверы для лазерных диодов?

    Теперь у вас есть основа, которая поможет вам начать поиск конкретного драйвера источника тока для вашей лаборатории.Вы можете посетить наш указатель драйверов для лазерных диодов, чтобы сравнить цены и характеристики многих ведущих мировых производителей. Эти компании предлагают широкий спектр маломощных, высокомощных, непрерывных и импульсных драйверов лазерных диодов, богатых функциями и характеристиками.

    Источник постоянного тока подает электрический ток 300 мА на нагрузку 1 кОм. При изменении нагрузки на 100 Ом ток нагрузки будет

    . Источник постоянного тока подает электрический ток 300 мА на нагрузку 1 кОм.Когда нагрузка изменится на 100 Ом, ток нагрузки будет | ЭКЗАМЕНАМИ

    Электрические схемы


    Источник постоянного тока подает электрический ток 300 мА на нагрузку 1 кОм. Когда нагрузка изменится на 100 Ом, ток нагрузки будет 300 мА.3 А. 100 мА. 30 мА.ОТВЕЧАТЬ 2 М.М. М / л. М / 2.ОТВЕЧАТЬ 0.75 В, 5/6 Ом 0,75 В, 1,5 Ом 1,5 В, 1,5 Ом 1.5В, 5/6 Ом ОТВЕЧАТЬ 0.εr / F. Ф. F εr.ОТВЕЧАТЬ 1000 Гц.100 Гц. 1 Гц. 10 Гц.ОТВЕЧАТЬ 3.33 А 1 А 23,33 А 5 А ОТВЕЧАТЬ БОЛЬШЕ MCQ ОБ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *