Из чего делают оптоволокно. Оптоволокно: состав, производство и применение в современных телекоммуникациях

Из каких материалов изготавливают оптическое волокно. Как устроено оптоволокно и какими свойствами оно обладает. Где применяется оптоволокно в современных телекоммуникациях. Какие преимущества дает использование оптоволоконных линий связи.

Содержание

Что такое оптоволокно и из чего его изготавливают

Оптическое волокно представляет собой тонкую нить из прозрачного материала, способную передавать световые сигналы на большие расстояния с минимальными потерями. Основными материалами для производства оптоволокна являются:

  • Кварцевое стекло — наиболее распространенный материал, обеспечивающий высокую прозрачность и низкие потери сигнала
  • Специальные стекла на основе фторидов, халькогенидов и других соединений — для передачи в среднем и дальнем инфракрасном диапазоне
  • Полимерные материалы — используются для изготовления пластикового оптоволокна

Выбор материала зависит от требуемых характеристик и области применения оптоволокна. Кварцевое стекло остается основным материалом для телекоммуникационных линий связи благодаря минимальным потерям сигнала.


Структура и основные компоненты оптического волокна

Оптическое волокно имеет слоистую структуру и состоит из следующих основных компонентов:

  • Сердцевина (ядро) — центральная часть волокна, по которой распространяется световой сигнал
  • Оптическая оболочка — окружает сердцевину и обеспечивает полное внутреннее отражение света
  • Защитное покрытие — внешний слой для механической защиты волокна

Диаметр сердцевины составляет от 8 до 62,5 мкм в зависимости от типа волокна. Общий диаметр волокна с оболочкой и покрытием достигает 125-250 мкм. Для сравнения, толщина человеческого волоса составляет 50-100 мкм.

Принцип передачи сигнала по оптоволокну

Передача информации по оптическому волокну основана на явлении полного внутреннего отражения света. Как это работает:

  1. Источник генерирует световой сигнал, который вводится в сердцевину волокна
  2. Луч света распространяется по сердцевине, многократно отражаясь от границы с оболочкой
  3. Благодаря разнице показателей преломления сердцевины и оболочки свет не выходит за пределы волокна
  4. На приемном конце сигнал преобразуется обратно в электрический

Такой способ передачи обеспечивает минимальные потери сигнала и высокую скорость передачи данных на большие расстояния.


Основные виды оптических волокон

По режиму распространения света оптические волокна делятся на два основных типа:

Многомодовое оптоволокно

Имеет более широкую сердцевину (50-62,5 мкм), в которой одновременно распространяется несколько мод (путей) светового сигнала. Характеристики:

  • Меньшая пропускная способность и дальность передачи
  • Проще в монтаже и дешевле
  • Применяется в локальных сетях на небольших расстояниях

Одномодовое оптоволокно

Имеет узкую сердцевину (8-10 мкм), в которой распространяется только одна мода светового сигнала. Характеристики:

  • Высокая пропускная способность и большая дальность передачи
  • Сложнее в монтаже и дороже
  • Применяется для магистральных линий связи на большие расстояния

Выбор типа волокна зависит от конкретных требований к линии связи.

Технология производства оптического волокна

Процесс изготовления оптоволокна включает несколько основных этапов:

  1. Создание преформы — стеклянного стержня с заданным профилем показателя преломления
  2. Вытяжка волокна из преформы в специальной башне при температуре около 2000°C
  3. Нанесение защитного полимерного покрытия
  4. Намотка готового волокна на катушку
  5. Тестирование оптических и механических параметров

Производство оптоволокна требует соблюдения высокой чистоты материалов и прецизионного контроля всех параметров. Это обеспечивает минимальные потери сигнала и высокое качество волокна.


Основные характеристики оптических волокон

Ключевые параметры, определяющие свойства оптоволокна:

  • Коэффициент затухания — определяет потери сигнала при распространении
  • Дисперсия — уширение импульсов при передаче
  • Полоса пропускания — максимальная скорость передачи данных
  • Числовая апертура — характеризует способность волокна собирать свет
  • Механическая прочность — устойчивость к растяжению и изгибам

Современные одномодовые волокна имеют затухание менее 0,2 дБ/км на длине волны 1550 нм, что позволяет передавать сигналы на сотни километров без усиления.

Применение оптоволокна в телекоммуникациях

Основные области применения оптических волокон в современных телекоммуникациях:

  • Магистральные линии связи между городами и странами
  • Подводные кабельные системы для связи между континентами
  • Сети доступа (технологии FTTx) для подключения абонентов
  • Локальные и корпоративные сети
  • Центры обработки данных
  • Системы кабельного телевидения

Оптоволоконные линии обеспечивают основу современной телекоммуникационной инфраструктуры и глобальной сети Интернет.


Преимущества оптоволоконных линий связи

Использование оптического волокна дает ряд важных преимуществ:

  • Высокая пропускная способность — до нескольких Тбит/с по одному волокну
  • Низкое затухание сигнала — возможность передачи на большие расстояния
  • Невосприимчивость к электромагнитным помехам
  • Малый вес и габариты кабеля
  • Экономичность при высоких скоростях передачи
  • Долговечность — срок службы 25-30 лет

Эти преимущества обеспечивают широкое внедрение оптоволоконных технологий в телекоммуникационных сетях различного уровня.

Перспективы развития оптоволоконных технологий

Основные направления совершенствования оптических волокон и систем связи:

  • Снижение потерь сигнала — приближение к теоретическому пределу
  • Увеличение пропускной способности — технологии мультиплексирования
  • Разработка специальных волокон — для квантовых коммуникаций, сенсоров и т.д.
  • Создание фотонных интегральных схем
  • Внедрение оптических технологий в компьютерные системы

Оптоволоконные технологии продолжат играть ключевую роль в развитии телекоммуникаций и обработки информации в обозримом будущем.



Оптическое волокно (оптоволокно)

Волоконно-оптические линии связи (ВОЛС) давно занимают одну из лидирующих позиций на рынке телекоммуникаций. Имея ряд преимуществ перед другими способами передачи информации (витая пара, коаксиальный кабель, беспроводная связь…), ВОЛС широко используются в телекоммуникационных сетях разных уровней, а также в промышленности, энергетике, медицине, системах безопасности, высокопроизводительных вычислительных системах и во многих других областях.

Передача информации в ВОЛС осуществляется по оптическому волокну (optical fiber). Для того чтобы грамотно подойти к вопросу использования ВОЛС, важно хорошо понимать, что из себя представляет оптическое волокно как среда передачи данных, каковы его основные свойства и характеристики, какие бывают разновидности оптических волокон. Именно этим базовым вопросам теории волоконно-оптической связи и посвящена данная статья.

 

Структура оптического волокна

Оптическое волокно (оптоволокно) – это волновод с круглым поперечным сечением очень малого диаметра (сравним с толщиной человеческого волоса), по которому передается электромагнитное излучение оптического диапазона. Длины волн оптического излучения занимают область электромагнитного спектра от 100 нм до 1 мм, однако в ВОЛС обычно используется ближний инфракрасный (ИК) диапазон (760-1600 нм) и реже – видимый (380-760 нм). Оптическое волокно состоит из сердцевины (ядра) и оптической оболочки, изготовленных из материалов, прозрачных для оптического излучения (рис. 1).

Рис. 1. Конструкция оптического волокна

 

Свет распространяется по оптоволокну благодаря явлению полного внутреннего отражения. Показатель преломления сердцевины, обычно имеющий величину от 1,4 до 1,5, всегда немного больше, чем показатель преломления оптической оболочки (разница порядка 1%). Поэтому световые волны, распространяющиеся в сердцевине под углом, не превышающим некоторое критическое значение, претерпевают полное внутреннее отражение от оптической оболочки (рис. 2). Это следует из закона преломления Снеллиуса. Путем многократных переотражений от оболочки эти волны распространяются по оптическому волокну.

Рис. 2. Полное внутреннее отражение в оптическом волокне

 

На первых метрах оптической линии связи часть световых волн гасят друг друга вследствие явления интерференции. Световые волны, которые продолжают распространяться в оптоволокне на значительные расстояния, называются пространственными модами оптического излучения. Понятие моды описывается математически при помощи уравнений Максвелла для электромагнитных волн, однако в случае оптического излучения под модами удобно понимать траектории распространения разрешенных световых волн (обозначены черными линиями на рис. 2). Понятие моды является одним из основных в теории волоконно-оптической связи.

 

Основные характеристики оптического волокна

Способность оптического волокна передавать информационный сигнал описывается при помощи ряда геометрических и оптических параметров и характеристик, из которых наиболее важными являются затухание и дисперсия.

1.

Геометрические параметры.

Помимо соотношения диаметров сердцевины и оболочки, большое значение для процесса передачи сигнала имеют и другие геометрические параметры оптоволокна, например:

  • некруглость (эллиптичность) сердцевины и оболочки, определяемая как разность максимального и минимального диаметров сердцевины (оболочки), деленная на номинальный радиус, выражается в процентах;
  • неконцентричность сердцевины и оболочки – расстояние между центрами сердцевины и оболочки (рис. 3).

Рис 3. Некруглость и неконцентричность сердцевины и оболочки

 

Геометрические параметры стандартизированы для разных типов оптического волокна. Благодаря совершенствованию технологии производства значения некруглости и неконцентричности удается свести к минимуму, так что влияние неточности геометрии оптоволокна на его оптические свойства оказывается несущественным.

 

2. Числовая апертура.

Числовая апертура (NA) – это синус максимального угла падения луча света на торец волокна, при котором выполняется условие полного внутреннего отражения (рис. 4). Этот параметр определяет количество мод, распространяющихся в оптическом волокне. Также величина числовой апертуры влияет на точность, с которой должна производиться стыковка оптических волокон друг с другом и с другими компонентами линии.

Рис 4. Числовая апертура

 

3. Профиль показателя преломления.

Профиль показателя преломления – это зависимость показателя преломления сердцевины от ее поперечного радиуса. Если показатель преломления остается одинаковым во всех точках поперечного сечения сердцевины, такой профиль называется ступенчатым. Среди других профилей наибольшее распространение получил градиентный профиль, при котором показатель преломления плавно увеличивается от оболочки к оси (рис. 5). Помимо этих двух основных, встречаются и более сложные профили.

Рис. 5. Профили показателя преломления

 

4. Затухание (потери).

Затухание – это уменьшение мощности оптического излучения по мере распространения по оптическому волокну (измеряется в дБ/км). Затухание возникает вследствие различных физических процессов, происходящих в материале, из которого изготавливается оптоволокно. Основными механизмами возникновения потерь в оптическом волокне являются поглощение и рассеяние.

а) Поглощение. В результате взаимодействия оптического излучения с частицами (атомами, ионами…) материала сердцевины часть оптической мощности выделяется в виде тепла. Различают собственное поглощение, связанное со свойствами самого материала, и примесное поглощение, возникающее из-за взаимодействия световой волны с различными включениями, содержащимися в материале сердцевины (гидроксильные группы OH, ионы металлов…).

б) Рассеяние света, то есть отклонение от исходной траектории распространения, происходит на различных неоднородностях показателя преломления, геометрические размеры которых меньше или сравнимы с длиной волны излучения. Такие неоднородности являются следствием как наличия дефектов структуры волокна (рассеяние Ми), так и свойствами аморфного (некристаллического) вещества, из которого изготавливается волокно (рэлеевское рассеяние). Рэлеевское рассеяние является фундаментальным свойством материала и определяет нижний предел затухания оптического волокна. Существуют и другие виды рассеяния (Бриллюэна-Мандельштама, Рамана), которые проявляются при уровнях мощности излучения, превышающих те, которые обычно используются в телекоммуникациях.

Величина коэффициента затухания имеют сложную зависимость от длины волны излучения. Пример такой спектральной зависимости приведен на рис. 6. Область длин волн с низким затуханием называется окном прозрачности оптического волокна. Таких окон может быть несколько, и именно на этих длинах волн обычно осуществляется передача информационного сигнала.

Рис. 6. Спектральная зависимость коэффициента затухания

 

Потери мощности в волокне обуславливаются также различными внешними факторами. Так, механические воздействия (изгибы, растяжения, поперечные нагрузки) могут приводить к нарушению условия полного внутреннего отражения на границе сердцевины и оболочки и выходу части излучения из сердцевины. Определенное влияние на величину затухания оказывают условия окружающей среды (температура, влажность, радиационный фон…).

Поскольку приемник оптического излучения имеет некоторый порог чувствительности (минимальную мощность, которую должен иметь сигнал для корректного приема данных), затухание служит ограничивающим фактором для дальности передачи информации по оптическому волокну.

 

5.Дисперсионные свойства.

Помимо расстояния, на которое передается излучение по оптическому волокну, важным параметром является скорость передачи информации. Распространяясь по волокну, оптические импульсы уширяются во времени. При высокой частоте следования импульсов на определенном расстоянии от источника излучения может возникнуть ситуация, когда импульсы начнут перекрываться во времени (то есть следующий импульс придет на выход оптического волокна раньше, чем закончится предыдущий). Это явление носит название межсимвольной интерференции (англ. ISI – InterSymbol Interference, см. рис. 7). Приемник обработает полученный сигнал с ошибками.

Рис. 7. Перекрывание импульсов, вызывающее межсимвольную интерференцию: а) входной сигнал; б) сигнал, прошедший некоторое расстояние L1 по оптическому волокну; в) сигнал, прошедший расстояние L2>L1.

 

Уширение импульса, или дисперсия, обуславливается зависимостью фазовой скорости распространения света от длины волны излучения, а также другими механизмами (табл. 1).

Таблица 1. Виды дисперсии в оптическом волокне.
Название Краткое описание Параметр
1. Хроматическая дисперсия Любой источник излучает не одну длину волны, а спектр незначительно отличающихся длин волн, которые распространяются с разной скоростью.

Коэффициент хроматической дисперсии, пс/(нм*км).

Может быть положительным (спектральные составляющие с большей длиной волны двигаются быстрее) и отрицательным (наоборот). Существует длина волны с нулевой дисперсией.
а) Материальная хроматическая дисперсия Связана со свойствами материала (зависимость показателя преломления от длины волны излучения)
б) Волноводная хроматическая дисперсия Связана с наличием волноводной структуры (профиль показателя преломления)
2. Межмодовая дисперсия Моды распространяются по разным траекториям, поэтому возникает задержка во времени их распространения.

Ширина полосы пропускания (bandwidth), МГц*км.

Эта величина определяет максимальную частоту следования импульсов, при которой не происходит межсимвольной интерференции (сигнал передается без существенных искажений). Пропускная способность канала (Мбит/с) может численно отличаться от ширины полосы пропускания (МГц*км) в зависимости от способа кодирования информации.
3. Поляризационная модовая дисперсия, PMD Мода имеет две взаимно перпендикулярные составляющие (поляризационные моды), которые могут распространяться с различными скоростями.

Коэффициент PMD, пс/√км.

Временная задержка из-за PMD, нормируемая на 1 км.

 

Таким образом, дисперсия в оптическом волокне отрицательно сказывается как на дальности, так и на скорости передачи информации.

 

Разновидности и классификация оптических волокон

Рассмотренные свойства являются общими для всех оптических волокон.

Однако описанные параметры и характеристики могут существенно отличаться и оказывать различное влияние на процесс передачи информации в зависимости от особенностей производства оптоволокна.

Фундаментальным является деление оптическим волокон по следующим критериям.

  1. Материал. Основным материалом для изготовления сердцевины и оболочки оптического волокна является кварцевое стекло различного состава. Однако используется большое количество других прозрачных материалов, в частности, полимерные соединения.
  2. Количество распространяющихся мод. В зависимости от геометрических размеров сердцевины и оболочки и величины показателя преломления в оптическом волокне может распространяться только одна (основная) или же большое количество пространственных мод. Поэтому все оптические волокна делят на два больших класса: одномодовые и многомодовые (рис. 8).

Рис. 8. Многомодовое и одномодовое волокно

 

На основании этих факторов можно выделить четыре основных класса оптических волокон, получивших распространение в телекоммуникациях:

  1. Кварцевое многомодовое волокно.
  2. Кварцевое одномодовое волокно.
  3. Пластиковое, или полимерное, оптическое волокно (POF).
  4. Кварцевое волокно с полимерной оболочкой (HCS).

Каждому из этих классов посвящена отдельная статья на нашем сайте. Внутри каждого из этих классов также существует своя классификация.

 

Производство оптических волокон

Процесс изготовления оптического волокна крайне сложен и требует большой точности. Технологический процесс проходит в два этапа: 1) создание заготовки, представляющей собой стержень из выбранного материала со сформированным профилем показателя преломления, и 2) вытягивание волокна в вытяжной башне, сопровождающееся покрытием защитной оболочкой. Существует большое количество различных технологий создания заготовки оптического волокна, разработка и совершенствование которых происходит постоянно.

 

Волоконно-оптические кабели

Практическое использование оптического волокна в качестве среды передачи информации невозможно без дополнительного упрочнения и защиты. Волоконно-оптическим кабелем называется конструкция, включающая в себя одно или множество оптических волокон, а также различные защитные покрытия, несущие и упрочняющие элементы, влагозащитные материалы. По причине большого разнообразия областей применения оптоволокна производители выпускают огромное количество самых разных волоконно-оптических кабелей, отличающихся конструкцией, размерами, используемыми материалами и стоимостью (рис. 9).

Рис.9. Волоконно-оптические кабели

определение, строение, все про оптический кабель

Привет, друзья! О том, что такое оптоволокно, уже писал наш гуру Интернета и беспроводных технологий Бородач (ссылка на статью обязательно будет ниже). Но мои коллеги решили, что Блондинка тоже должна написать на эту тему и заодно добавить знаний в свою красивую головку. Ну что ж, надо – значит, надо! Будем разбираться.

Разумеется, пришлось схитрить и позадавать глупые вопросы нашим партнерам из LANart. За что им отдельное спасибо)

Содержание

  1. Определение для чайников
  2. Материалы
  3. Строение
  4. Виды и области применения
  5. Оптический кабель
  6. Достоинства и недостатки
  7. Задать вопрос автору статьи