Из чего состоит стартер для люминесцентных ламп: Для чего нужен стартер для люминесцентных ламп, все подробно

Содержание

Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка


Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.

Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.

Предлагаем разобраться, как устроен стартер для люминесцентных ламп, какова его роль в осветительном приборе. Кроме того, мы обозначим особенности разных пусковых приборов и расскажем, как выбрать нужный механизм.

Содержание статьи:

Как устроено приспособление?

Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.

Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.

Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи . Остальные — подключены к катодам пускателя.

Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.

Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)

Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.

Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.

Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.

В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.

Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы

Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.

Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.

В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети

Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.

В процессе подбора нужного пускателя, учитывая конкретную модель  (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.

Принцип работы аппарата

Подав сетевое питание на светотехнический прибор, напряжение проходит через витки и нить накала, выполненную из монокристаллов вольфрама.

Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.

Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.

Величина тока, сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи (+)

Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.

Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.

Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.

Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.

Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.

Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.

Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.

Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.

При изменении тока в контуре или его полного прекращения пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот контур и приводит к возбуждению в этой схеме ЭДС самоиндукции

Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.

Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.

Виды стартеров для люминесцентных приборов

В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.

Пускатель электронного типа

Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.

Например, при температуре ниже 0°C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.

Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т. е. ее порче.

Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы

Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.

Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.

В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:

  • управленческой схемы;
  • высоковольтного узла коммутации.

В качестве примера можно привести микросхему электронного зажигателя UBA2000T фирмы PHILIPS и высоковольтный тиристор TN22 производства STMicroelectronics.

Принцип работы электронного стартера основан на размыкании цепи посредством нагревания. Некоторые образцы обладают существенным преимуществом – опцией ждущего режима зажигания.

Таким образом размыкание электродов производится в необходимой фазности напряжения и при условии оптимальных температурных показателей нагрева контактов.

Полупроводниковые элементы электронного балласта должны подходить по ключевым рабочим характеристикам, а именно, соотношению значения мощности и напряжения сети подсоединенного светотехнического прибора

Важно, что при поломках лампы и неудачных попытках ее запуска такого типа механизм выключается, если их число (попыток) достигнет 7. Поэтому о досрочном выходе из строя электронного стартера и не может быть и речи.

Как только произойдет замена лампочки на исправную, приспособление сможет возобновить процесс запуска ЛЛ. Единственный минус этой модификации – высокая цена.

В схеме со стартером в качестве дополнительного метода снижения радиопомех могут использоваться симметрированные дросселя с обмоткой, разделенной на идентичные участки, с равным количеством витков, накрученных на общее устройство – сердечник.

На сегодняшний день, выпускаемые балласты имеют сборно-стержневую конструкцию. Вырубка магнитного провода осуществляется из стальных листов. Как правило, такие дроссели имеют две симметричные обмотки

Все области катушки соединены в последовательном порядке с одним из контактов лампы. При включении оба его электрода будут работать в одинаковых техусловиях, таким образом снижая степень помех.

Тепловой вид пускателя

Ключевой отличительной характеристикой тепловых зажигателей является длительный период пуска ЛЛ. Такой механизм в процессе функционирования использует много электричества, что негативно сказывается на его энергозатратных характеристиках.

Тепловой стартер также называют термобиметаллическим. Разогрев контактов происходит с замедлением, что эффективно сказывается на работе светотехнического прибора в низкотемпературной среде

Как правило, этот вид применяется в условиях низкого температурного режима. Алгоритм работы существенно разнится с аналогами других видов.

В случае отключения питания электроды устройства находятся в замкнутом состоянии, при подаче – образуется импульс с высоким напряжением.

Механизм тлеющего разряда

Пусковые механизмы, основанные на принципе тлеющего разряда, имеют в своей конструкции биметаллические электроды.

Они выполнены из металлических сплавов с различными коэффициентами линейного расширения при нагреве пластины.

Минусом зажигателя тлеющего разряда является низкий уровень импульса напряжения, из-за чего нет достаточной надежности загорания ЛЛ

Возможность розжига лампы определяется длительностью предшествующего нагрева катодов и показателей тока, протекающего через светотехнический прибор в момент размыкания цепи контактов стартера.

Если при первом рывке пускатель не зажигает лампу, он будет автоматически воспроизводить попытки до того момента, пока лампа не засветится.

Поэтому такие устройства не используются при низких температурных режимах или неблагоприятном климате, например, при повышенной влажности.

Если не будет обеспечиваться оптимальный уровень нагрева контактной системы лампа будет затрачивать много времени на розжиг или же будет выведена из строя. Согласно стандартам ГОСТа, потраченное стартером время на зажигание не должно превышать 10 секунд.

Пусковые приборы, выполняющие свои функции посредством теплового принципа или тлеющего разряда, в обязательном порядке оборудуются дополнительным устройством – конденсатором.

Роль конденсатора в схеме

Как уже было отмечено ранее, конденсатор располагается в кожухе приспособления параллельно его катодам.

Этот элемент решает две ключевые задачи:

  1. Понижает степень электромагнитных помех, создаваемых в диапазоне радиоволн. Они возникают в результате контакта системы электродов пускателя и образуемых лампой.
  2. Влияет на процесс зажигания люминесцентной лампы.

Такой дополнительный механизм снижает величину импульсного напряжения, сформированного при размыкании катодов стартера, и наращивает его продолжительность.

Конденсатор снижает вероятность слипания контактов. Если в устройстве не предусмотрен конденсатор, напряжение на лампе довольно быстро увеличивается и может доходить до нескольких тысяч вольт. Такие условия снижают степень надежности розжига ламп

Поскольку использование подавляющего устройства не позволяет достичь полного нивелирования электромагнитных помех, на входе схемы вводят два конденсатора, общая емкость которых составляет не менее 0,016 мкф. Они соединяются в последовательном порядке с заземлением средней точки.

Основные недостатки пускателей

Главным минусом стартеров является ненадежность конструкции. Отказ запускающего механизма провоцирует фальстарт – визуализируются несколько вспышек света до начала полноценного светового потока. Такие неполадки снижают ресурс вольфрамовых нитей лампы.

Пусковые аппараты образуют внушительные потери энергии и понижают КПД устройства лампы. К недостаткам также относится зависимость от напряжения и значительный разброс времени срабатывания электродов

У люминесцентных ламп со временем наблюдается повышение рабочего напряжения, тогда как у стартера, наоборот, чем выше срок службы, тем ниже напряжение зажигания тлеющего разряда. Таким образом выходит, что включенная лампа может провоцировать его срабатывание, из-за чего свет погаснет.

Разомкнувшиеся контакты пускателя вновь зажигают свет. Все эти процессы осуществляется в доли секунды и пользователь может наблюдать только мерцание.

Пульсирующий эффект вызывает раздражение сетчатки глаза, а также приводит к перегреванию дросселя, снижению его ресурса и выходу из строя лампы.

Такие же негативные последствия ожидают и от значительного разброса времени контактной системы. Его зачастую недостаточно для полноценного предварительного разогрева катодов лампы.

В итоге прибор загорается после воспроизведения ряда попыток, что сопровождаются увеличенной длительностью процессов перехода.

Если стартер подключен в цепь одноламповой схемы, в этом случае нет возможности снизить световую пульсацию.

С целью снижения негативного эффекта рекомендуется использовать такого рода схемы только в помещениях, где применены группы ламп (по 2-3 образца), включать которые необходимо в разные фазы трехфазной цепи.

Расшифровка маркировочных значений

Общепринятой аббревиатуры для моделей стартеров отечественного и зарубежного производства не существует. Поэтому рассмотрим основы обозначений по отдельности.

Декодировка значения 90С-220 выглядит так: стартер, функционирующий с люминесцентными образцами, сила которых составляет 90 Вт, а номинальное напряжение 220 В (+)

Согласно ГОСТу, расшифровка буквенно-цифровых значений [ХХ][С]-[ХХХ], нанесенных на корпус прибора, выглядит следующим образом:

  • [ХХ] – цифры, указывающие на мощность световоспроизводящего механизма: 60 Вт, 90 Вт или 120 Вт;
  • [С] – стартер;
  • [ХХХ] – напряжение, применяемое для работы: 127 В или 220 В.

Для реализации зажигания ламп иностранные разработчики выпускают приспособления с различными обозначениями.

Электронный форм-фактор выпускается многими фирмами.

Наиболее известная на отечественном рынке — Philips, производящая стартеры таких типов:

  • S2 рассчитаны на мощность 4-22 Вт;
  • S10 — 4-65 Вт.

Фирма OSRAM ориентирована на выпуск стартеров как для одиночного подключения осветительных приборов, так и для последовательного. В первом случае это маркировка S11 с ограничением по мощности 4-80 Вт, ST111 — 4-65 Вт. А во втором, например, ST151 — 4-22 Вт.

Выпускаемые модели стартеров представлены в широком ассортименте. Ключевые параметры, учитывающиеся при подборе — соразмерные значения характеристикам ламп люминесцентного типа.

На что смотреть при выборе?

В процессе выбора пускового механизма недостаточно основываться на имени разработчика и ценовом диапазоне, хотя и эти факторы должны быть учтены, т.к. указывают на качество прибора.

В этом случае выигрывают надежные аппараты, положительно зарекомендовавшие себя на практике. Стоит обратить внимание на такие фирмы: Philips, Sylvania и OSRAM.

Стартер FS-11 бренда Sylvania. Подбирается к лампам дневного света, мощностью 4-65 Вт. Может использоваться в сети переменного тока. Работает по принципу тлеющего разряда

Самыми основными эксплуатационными параметрами пускателя считаются такие технические особенности:

  1. Ток зажигания. Этот показатель должен быть выше рабочего напряжения лампы, но не ниже сети питания.
  2. Базисное напряжение. При подключении в одноламповую схему применяется аппарат на 220 В, двухламповую – на 127 В.
  3. Уровень мощности.
  4. Качество корпуса и его огнеустойчивость.
  5. Эксплуатационный срок. При стандартных условиях применения, стартер должен выдерживать не менее 6000 включений.
  6. Длительность разогрева катодов.
  7. Тип применяемого конденсатора.

Также необходимо учитывать индуктивное противодействие катушки и коэффициент выпрямления, отвечающий за соотношение обратного сопротивления к прямому при постоянном напряжении.

Дополнительная информация об устройстве, работе и подключении пускорегулирующего механизма люминесцентных ламп представлена в .

Выводы и полезное видео по теме

Помощь в подборе необходимо балласта для лампы дневного света:

Пускатель для люминесцентных приборов: основы маркировки и конструктивное устройство аппарата:

Теоретически, время работы пускателя эквивалентно сроку службы лампы, которую он зажигает. Тем не менее стоит учесть, что с течением времени, интенсивность напряжения тлеющего разряда падает, что отражается на работе люминесцентного прибора.

Однако производители рекомендуют одновременно менять и стартер, и лампу. Для приобретения нужной модификации изначально стоит изучить основные показатели приборов.

Поделитесь с читателями вашим опытом выбора стартера для люминесцентных ламп. Пожалуйста, оставляйте комментарии, задавайте вопросы по теме статьи и участвуйте в обсуждениях – форма для отзывов расположена ниже.

Стартер для люминесцентных ламп. Как проверить стартер люминесцентной лампы

С каждым днем популярность ламп дневного света в качестве источника освещения только растет. Это обусловлено их высокой продолжительностью работы и качественным свечением.

Люминесцентные лампы работают не напрямую от сети с напряжением 220 Вольт. Для их функционирования требуется специальный блок, называющийся пускорегулирующей аппаратурой (ПРА). Конструкция блока включает в себя три основных элемента, в которые входят: дроссель (катушка индуктивности с сердечником), сглаживающего конденсатора и стартера. Вот как рас о последнем устройстве мы сегодня и поговорим.

Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.

Устройство стартера люминесцентных ламп

Конструкция этого элемента достаточно проста. Каждая модель, выпущенная определенным производителем, имеет свои технические характеристики. Это следует учитывать при выборе ламп. Стартер – это стеклянный баллон, внутри которого находится инертный газ. Это может быть смесь гелия с водородом или неон. В баллон впаяны неподвижные металлические электроды. Их выводы проходят через цоколи.

Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие. Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных ламп имеет только две ножки (контакта).

Если вынуть конструкцию из корпуса видно саму колбу. Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф.

Конденсатор призван выполнять сразу две функции:

  • — борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.
  • — участвует в процессе зажигания лампы.

Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.

За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.

Для чего нужен стартер в люминесцентных лампах

Этот элемент является основным в конструкции люминесцентных ламп. Без него электромагнитная пускорегулирующая аппаратура не сможет функционировать. Главное назначение стартера – запускать механизма и разжигание инертного газа, находящегося в газоразрядной колбе. Стартер работает как выключатель — размыкает и замыкает электрическую цепь.

Установка стартера продиктована необходимость выполнения двух важных функций:

  1. — замыкания цепи. Позволяет нагреть электроды лампы, облегчая тем самым процесс зажигания;
  2. — разрыв цепи. Происходит сразу же после нагрева электродов. В результате размыкания образуется импульс повышенного напряжения, являющийся причиной пробоя газового промежутка колбы.

Дроссель играет роль стабилизатора и трансформатора. Он поддерживает необходимый ток нитей лампы, создает импульс напряжения, необходимый для пробоя лампы и стабилизирует процесс горения дуги.

Как работает люминесцентный светильник

В момент подключения схемы к электрической цепи все напряжение подается на стартер для люминесцентных ламп. В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).

Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.

Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.

При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.

Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.

После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.

Возникновение ЭДС самоиндукции является причиной создания повышенного напряжение величиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.

На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.

Как проверить стартер люминесцентной лампы

Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.

Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой. А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампы в домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.

Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.

Собрать такую схему не составит труда. Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов. Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.

Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп. Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.

Почему мигает люминесцентная лампа

Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах.

В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе. После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.

Поэтому если вы замечаете постоянное мигание лампы необходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена.

При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Стартер для люминесцентных ламп: применение

Стартер – основной элемент люминесцентных ламп, является частью электромагнитной пускорегулирующей аппаратуры. Его назначение – пуск механизма, т.е. зажигание газа в газоразрядной колбе. Устройство замыкает и размыкает электрическую цепь.

Внешний вид стартера для люминесцентных ламп

Дроссель выполняет функцию трансформатора и стабилизатора – ограничивает ток нитей лампы до требуемого значения, защищает оборудование от перепада температур, скачков напряжения и перегрузки.

Дроссель служит для защиты оборудования от скачков напряжения и перегрузки

Устройство и принцип работы

Деталь представляет собой небольшую стеклянную колбу тлеющего разряда, помещенную в металлическую или пластиковую емкость. Колба заполнена благородным газом, как правило, неоном или гелием, и включает в себя два электрода.

Стеклянная колба, заполненная гелием или неоном, с двумя электродами

Изготовляют конструкции двух видов: симметричные и несимметричные. В симметричных – оба электрода подвижны, в несимметричных – только один. Первый тип применяется чаще из-за большей практичности.

В колбе происходит предварительный прогрев ртути и перевод ее в газообразное состояние. Затухающий заряд, вследствие подачи напряжения на разомкнутые электроды, приводит к зажиганию устройства. Т.е. создается мощный импульс. Электроды после замыкания гасят тлеющий заряд. Цепь, которая возникает впоследствии, увеличивает температуру катодов и дросселя. После падения напряжения электроды не могут замыкать цепь, тем самым поддерживая лампочку в зажженном состоянии.

Напряжение стартера выбирается выше рабочего люминесцентной лампы и ниже напряжения сети. Т.к. газоразрядные лампочки имеют отрицательное сопротивление, ток после пуска становится намного выше нормы. Для чего и необходимо устройство, которое может ограничить и стабилизировать этот ток до требуемого рабочего значения.

Дроссель – катушка в металлической оплетке. Задача детали заключается в поддержке лампы в рабочем состоянии. Элемент накапливает и преобразовывает электрическую энергию.

После успешного запуска прибора в цепи течет ток, соответствующий номинальному току лампочки. Это условие гарантирует правильное горение лампы. Зажигание зависит от качества прогрева катодов и силы тока. При недостаточных значениях этих параметров, когда цепь размыкается при низкой величине тока, лампочка не включится. Процесс в этом случае становится неисправным циклическим.

Сборка люминесцентной лампы

Виды стартеров и дросселей

Различают стартеры нескольких видов:

  • Тепловые. Для них характерно увеличенное время пуска, что повышает стабильность работы газоразрядных лампочек. Достаточно сложное устройство, потребление дополнительной энергии на собственные нужды усложняет применение этого вида для эксплуатации в частных домах.
  • Тлеющего ряда. Содержит биметаллические электроды. Имеют упрощенную схему и малое время зажигания.
  • Полупроводниковые. Возникновение импульса в колбе происходит по принципу ключа – нагрева и размыкания цепи.

Разновидности дросселей:

  • Электронные. Используют простую схему подключения. При этом отсутствует мерцание и пульсирование при включении. Характеризуются низким шумом при работе. Достаточно дорогостоящая продукция. Целесообразно применять лишь в комнатах с частым включением приборов.
  • Электромагнитные. Для работы таких дросселей используют последовательное подключение с лампочкой, т.к. невозможно произвести холодный запуск. Главным недостатком является длительное мерцание во время включения.

Конденсатор в работе устройства

Конденсатор обеспечивает стабильность работы устройства. Главное назначение – борьба с радиопомехами, возникающими при замыкании цепи (контакте электродов). Также необходим он для стабилизации импульсов тлеющих зарядов.

Для стандартных лампочек применяются установки емкостью до 0,1 микрофарад. При отсутствии в схеме подключения этого элемента, напряжение в цепи будет непрерывно возрастать до критических значений. Конденсатор, включенный параллельно в цепь с электродами, исключает залипание электродов, которое может возникнуть во время образования электронной дуги, т.е. гасит ее.

Конденсатор люминесцентной лампочки

Срок службы, ремонт и замена

При каждом последующем запуске напряжение внутри снижается, что при продолжительном сроке эксплуатации вызывает мигание лампочки и износ стартера. При длительном использовании лампы тлеющий заряд уменьшается, и со временем на нем полностью пропадает напряжение. При этом наблюдается самовольное замыкание и размыкание электродов.

Моргание в лампах происходит из-за низкого напряжения в сети. Стартер совершает бесконечный ряд попыток произвести запуск механизма: до успешного включения или до выхода из строя оборудования. Стандартное время зажигания составляет 10 секунд. В противном случае в работе системы сбои или неисправности.

После появления первых признаков неисправностей, необходимо выполнить замену элемента. Несвоевременный ремонт грозит не только раздражающими вспышками при пуске, но и поломкой дросселя (за счет постоянного перегрева контактов), а также полным выходом из строя люминесцентной лампы.

При недостаточном напряжении в питающей сети зажигание происходит не с первой попытки, постоянное моргание значительно снижает срок эксплуатации. Во избежание частого выхода из строя необходимо использовать качественную светотехническую продукцию, а также следить за исправностью цоколя и внутридомовой электросети.

Для продления срока службы люминесцентных ламп рекомендуется на вводе в жилые дома (квартиры) устанавливать стабилизаторы напряжения.

Замена стартера состоит из несколько этапов:

  • Выключение лампы.
  • Снятие плафона.
  • Извлечение неисправного элемента (выкручивается против часовой стрелки).
  • Подключение нового. Необходимо вставить в паз и повернуть до упора по часовой стрелке.

Замена дросселя требует определенных навыков и опыта. Сначала необходимо отключить автоматы на щитке квартиры (дома) для полного ее обесточивания. После того как напряжение не будет подаваться на лампу, следует снять с нее крепежные детали и соединительные провода. Теперь дроссель легко демонтировать и установить на его месте новый. Затем необходимо произвести все действия в обратном порядке.

Соединительные провода элемента

Выбор и производители

При выборе необходимо руководствоваться следующими факторами:

  • тип запуска лампочки;
  • производитель;
  • номинальные характеристики.

Существует большое количество производителей, выпускающих качественное оборудование. Среди них:

  • Philips;
  • Chilisin;
  • Luxe;
  • Osram.

Не стоит покупать слишком дешевые модели, т.к. в них используются дешевые материалы основных элементов. Такие устройства, в лучшем случае, быстро выходят из строя, в худшем, приводят к разгерметизации лампочек и выпуску вредных газов в воздух.

Знаменитые производители предлагают большой выбор запасных элементов для замены каждой детали. Также заводы дают длительную гарантию на использование своего оборудования, обычно 6 тысяч включений при рабочем диапазоне температур. В фирменных магазинах предлагают бесплатную замену в случае попадания брака.

Стартеры фирмы Philips считаются лучшими на рынке светотехнического оборудования. Для их изготовления используют высококачественные материалы, к примеру, огнестойкий поликарбонат, который предотвращает перегрев компонентов системы. Как заверяет производитель, брак выпуска составляет всего 0,0001%. В отличие от дешевых изделий, модели Philips не содержат радиоактивные изотопы, поэтому такое оборудование не вредит здоровью человека.

Компания упростила дизайн, что позволило производить установку системы при помощи обычной отвертки или, при навыках работы со светотехническими материалами, вручную. Тип S-2 разработан для низковольтных люминесцентных лампочек, а также высоковольтных до 22 Вт, использующих схему последовательного соединения. S-10 предназначен исключительно для включения высоковольтных ламп мощностью до 64 Вт.

Монтаж. Видео

О нюансах монтажа люминесцентной лампы рассказывается в этом видео.

Для чего нужен стартер? Ответ прост – для нормального пуска и корректной работы люминесцентных лампочек. Дроссели поддерживают стабильную эксплуатацию оборудования.

Оцените статью:

Как работают стартеры люминесцентных ламп

Рейтинг

Общий рейтинг : 5/ 5оставило 8человек

Цена от 15.00 грн. до 33.00 грн.

Стартеры для люминесцентных ламп- типа S2 (4 – 22Вт) и S10 (4 – 65Вт) постоянно поддерживаются в наличии.

Цена на стартер указана Прайс гривна за штуку с учетом НДС. Купить можно со склада в Киеве. Отправка в города Украины производится службой Новая почта.Стартеры Philips для люминесцентных ламп – единственный стартер, который быстро и просто устанавливается без использования дополнительных инструментов.

Даже плотно закрепленные – легко изымаются. В каталоге представлен весь ассортимент высококачественных стартеров тлеющего разряда для запуска люминесцентных ламп с электромагнитными балластами.  Изготовлены с соблюдением экологических норм (не содержат свинца и радиоактивных веществ).

Увеличивают срок службы лампы более чем на 25%; более низкая стоимость владения по сравнению с низкокачественными стартерами, не соответствующими Международным стандартам по электротехнике. Оптимальное удобство установки обеспечивается медными компонентами и устойчивыми к окислению медными штырьками. Огнеупорные компоненты и УФ-устойчивый корпус для дополнительной безопасности запуска (одобрено лабораторией UL по технике безопасности в США).На фото: стартер для люминесцентных ламп S2 4-22Вт PHILIPS

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.В некоторых конструкциях стартеров смотровое окно отсутствует.

Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлениз биметалла.В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла.

Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.Схема подключения двух люминесцентных ламп через стартер.При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА).

Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются.

Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.Стартеры тлеющего заряда.Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера.

Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с.

и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф.

Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая.

В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.Принципиальная схема включения люминесцентной лампы.Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой.

Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т.

е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивлениявсей сети.

Такие схемы называются отстающими.В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.Устройство люминесцентной лампы.В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину.

Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует.

Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.Один из недостатков рассмотренных схем – низкий коэффициент мощности. Он составляет величину 0,5-0,6.

Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным.

Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.Основной недостаток стартерных схем зажигания – их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться.

Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.Схема запуска сгоревшей люминисцентной лампы.У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы.

Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.Общий недостаток всех одноламповых схем – невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока.Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи.

Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе.

Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа – ПРА.Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй – опе­режает на угол 60°.

Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.Поделитесь полезной статьей:

С каждым днем популярность ламп дневного света в качестве источника освещения только растет. Это обусловлено их высокой продолжительностью работы и качественным свечением.

Люминесцентные лампы работают не напрямую от сети с напряжением 220 Вольт.

Для их функционирования требуется специальный блок, называющийся пускорегулирующей аппаратурой (ПРА). Конструкция блока включает в себя три основных элемента, в которые входят: дроссель (катушка индуктивности с сердечником), сглаживающего конденсатора и стартера. Вот как рас о последнем устройстве мы сегодня и поговорим.

Содержание

  • 1 Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.
  • 2 Устройство стартера люминесцентных ламп
  • 3 Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие. Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных лампимеет только две ножки (контакта).
  • 4 Если вынуть конструкцию из корпуса видно саму колбу. Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции: – борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.- участвует в процессе зажигания лампы. Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.
  • 5 За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.
  • 6 Для чего нужен стартер в люминесцентных лампах
  • 7 Как работает люминесцентный светильник
  • 8 При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.
  • 9 Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.
  • 10 После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.
  • 11 Возникновение ЭДС самоиндукции является причиной создания повышенного напряжениевеличиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.
  • 12 На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.
  • 13 Как проверить стартер люминесцентной лампы
  • 14 Почему мигает люминесцентная лампа
  • 15 Поэтому если вы замечаете постоянное мигание лампынеобходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена. При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель. Похожие материалы на сайте:

Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.

Устройство стартера люминесцентных ламп

Конструкция этого элемента достаточно проста.

Каждая модель, выпущенная определенным производителем, имеет свои технические характеристики. Это следует учитывать при выборе ламп. Стартер – это стеклянный баллон, внутри которого находится инертный газ.

Это может быть смесь гелия с водородом или неон. В баллон впаяны неподвижные металлические электроды. Их выводы проходят через цоколи.

Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие.

Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных лампимеет только две ножки (контакта).

Если вынуть конструкцию из корпуса видно саму колбу.

Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции:

    – борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.- участвует в процессе зажигания лампы.

Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.

За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.

Для чего нужен стартер в люминесцентных лампах

Этот элемент является основным в конструкции люминесцентных ламп.

Без него электромагнитная пускорегулирующая аппаратура не сможет функционировать. Главное назначение стартера – запускать механизма и разжигание инертного газа, находящегося в газоразрядной колбе. Стартерработает как выключатель – размыкает и замыкает электрическую цепь.

Установка стартера продиктована необходимость выполнения двух важных функций:

– замыкания цепи.

Позволяет нагреть электроды лампы, облегчая тем самым процесс зажигания;- разрыв цепи. Происходит сразу же после нагрева электродов. В результате размыкания образуется импульс повышенного напряжения, являющийся причиной пробоя газового промежутка колбы.

Дроссель играет роль стабилизатора и трансформатора. Он поддерживает необходимый ток нитей лампы, создает импульс напряжения, необходимый для пробоя лампы и стабилизирует процесс горения дуги.

Как работает люминесцентный светильник

В момент подключения схемы к электрической цепи все напряжение подается на стартер для люминесцентных ламп.

В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).

Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.

Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.

При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.

Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.

После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.

Возникновение ЭДС самоиндукции является причиной создания повышенного напряжениевеличиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.

На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.

Как проверить стартер люминесцентной лампы

Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.

Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой.

А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампыв домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.

Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.

Собрать такую схему не составит труда.Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов.

Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп.Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.

Почему мигает люминесцентная лампа

Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах.

В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе.

После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.

Поэтому если вы замечаете постоянное мигание лампынеобходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена.

При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.

Похожие материалы на сайте:

Источники:

  • elmar.com.ua
  • fazaa.ru
  • electricvdome.ru

Лампы дневного света: устройство, принцип работы, стартеры

Современное общество стремится экономить на любых видах энергоносителей, особенно на электричестве. Это связано с постоянным возрастанием оплаты за свет. Поэтому в жизнь людей очень прочно входят и активно используются лампы дневного света.

Из чего состоят лампы дневного света

Сама лампа состоит из стеклянной колбы, которая может быть различной формы и диаметра. По своему строению и виду они делятся:

  • компактные с цоколем Е 14 и Е 27;
  • кольцевые;
  • U- образные;
  • прямые.

Независимо от внешнего вида, каждая из ламп дневного света имеет внутри электроды, специальное люминесцентное покрытие, закачанный инертный газ с парами ртути. Из-за того, что электроды накаляются, происходит периодическое зажигание инертного газа, поэтому люминофор светится. Учитывая, что спирали могут при кратковременном разогреве перегреваться и сгорать, в этих приборах используется стартер для ламп дневного света. Стоит отметить и тот факт, что спирали в осветителях дневного света небольшого размера, им не подходит стандартное напряжение, поэтому устанавливаются специальные приборы – дроссели, задачей которых является ограничение номинального значения силы тока.

Принцип работы люминесцентной лампы

Когда осветитель подключается к сети, происходит автоматическая подача сетевого напряжения в 220 В на схему, далее оно следует на стартер. Так как контакты еще разомкнуты, то полное напряжение через прибор не идет, а попадает на дроссель, где колеблется около нуля. Этого напряжения достаточно, чтобы произошел розжиг разряда в лампочке. Как только биметаллический электрод стартера разогреется, он загибается и происходит замыкание электрической цепи, нити в люминесцентной лампе загораются. Это приводит к запуску в работу самой лампы.

В качестве электродов в дневных лампах установлены вольфрамовые нити накала. На них обязательно наносится специальное покрытие защитной пастой. Через некоторое время эта паста сгорает, что влечет перегорание нити накала. Если хотя бы одна из нитей перегорит, осветитель выходит из строя и зажигаться не будет.

Как правильно подключить осветительный прибор

Существуют схемы подключения ламп дневного света. Они очень простые и не вызывают трудности даже у неопытного человека. Для одного источника света достаточно, на собранную схему, подать напряжение через клеммы. Оно последует на дроссель, далее, на первую спираль. Затем, включается стартер, он реагирует на поступивший ток, и пропускает его дальше на вторую спираль, подключенную к клемме.

Некоторые специалисты рекомендуют устанавливать конденсаторы, которые выполняют функцию сетевого фильтра. Он помогает уменьшить потребление электроэнергии, так как гасит частично мощность, вырабатываемую дросселем.

Если вам необходимо установить несколько приборов дневного света, то схемы подключения немного изменятся. Все лампы будут соединяться последовательно. Будет использоваться несколько стартеров, для каждого источника отдельно. Если вы хотите установить две лампы на один дроссель, то необходимо прочитать номинальную мощность, которая указывается на корпусе. Если мощность дросселя составляет 40 Вт, то к нему подсоединяются только два прибора с мощностью в 20 Вт.

Разработаны схемы подключения ламп без использования стартера. Их заменяют электронные балластные устройства. В таком варианте прибор дневного света включается мгновенно, нет моргания, как при включении стартера.

Подключить электронные балласты легко. Для этого достаточно ознакомиться с инструкцией, которая находится на корпусе прибора. В таких инструкциях указана схема подключения, какие контакты лампы должны быть соединены с соответствующими клеммами. Стоит отметить, что многие специалисты считают, что именно такой способ имеет большие преимущества:

  • вам не нужно наличие дополнительных элементов для управления и подключения стартера;
  • работа лампы без стартера продолжительней, так как исключается установка соединительных проводов прибора и стартера, которые часто и быстро выходят из строя.

Стоит отметить, что подключение ламп дневного накаливания не вызывает особого труда, так как в комплекте с прибором идут все необходимые элементы устройства и схемы их сборки. Вам не нужно что-то покупать дополнительно и выдумывать, или отыскивать схемы сборки устройства.

Поломки лампы дневного света, ремонт и замена

Как только вы обнаружили проблемы в работе устройства, необходимо выяснить причины неисправности, и определиться: нужна ли полная замена лампы, или достаточно поставить новый элемент. Самыми распространенными неполадками являются проблемы в работе стартера или дросселя. Когда лампа при включении зажигается лишь с одной стороны, то необходимо перевернуть ее таким образом, чтобы вход несветящейся части стал на противоположное место. В случае когда лампа продолжает светить так же, то ее можно выбросить — она неисправна.

Часто встречаются неполадки, когда светятся два конца лампы, а вся она не зажигается. Это может свидетельствовать о неисправности стартера, проводки или патрона. Начните проверку со стартера. Если он исправен, то начинайте работу с проводкой, возможно, в ней возникли замыкания.

Если лампа при включении загорается тусклым светом, а через несколько минут начинает пульсировать и вообще гаснет, то это свидетельствует о попадании в колбу воздуха. В таком случае требуется замена прибора.

Как работает дроссель, основные признаки поломки

Некоторые лампы резко и мгновенно зажигаются, но после нескольких часов работы, края источника света темнеют. На такую работу стоит сразу обратить внимание. Это свидетельствует о быстром выходе из строя прибора. Причиной поломки станет проблема в работе дросселя: пусковой и рабочий ток имеют показатели, превышающие норму. Для точной диагностики неполадки достаточно воспользоваться вольтметром, и проверить величину пускового и рабочего тока. Чаще всего специалисты находят неисправности нескольких катодов.

Некоторые пользователи наблюдают, что в лампе дневного света периодически вьется змейка. Это также указывает на проблемы в работе дросселя. В источник поступает электрическое напряжение, но разряд внутри неравномерный. Здесь также достаточно проверить величину пускового и рабочего напряжения, и при обнаружении превышения, заменить дроссель на новый.

Основные проблемы в работе стартера

Когда владелец лампы дневного света наблюдает картину постоянно или периодически гаснущего прибора, то это указывает на проблемы в работе стартера и лампы. Для точной диагностики неполадок, необходимо проверить входящее напряжение в приборе. Если его параметры гораздо выше, то достаточно заменить только лампу. Обязательно измеряйте напряжение и в стартере. Если оно ниже нормы, то необходима замена стартера.

В случае, если светильник дневного света начинает функционировать тускло, то это признак резкого снижения тока внутри до критического уровня. Это свидетельствует о неполадках дросселя. Когда вы измерили в нем напряжение и убедились, что причин к неправильной работе нет, то, возможно, ваш источник света отслужил свой срок, количество ртути внутри снизилось до минимума. Необходима замена самой колбы.

Если в лампах перегорает спираль, то это указывает на поломку или повреждение дросселя. Чаще всего – это проблемы или изнашивание изоляции. Как только источник дневного света перестает нормально работать, необходимо его сразу отключить от электричества, и найти причины поломки. Не стоит многократно пытаться включать прибор, так как поломка одного элемента, влечет проблемы в работе или выход из строя и других частей прибора.

Важно понять главное — при установке лампы дневного света, схемами подключения нужно оперировать грамотно. Только в этом случае не возникнет проблем и прибор будет функционировать качественно.

Стартер для люминесцентных ламп – описание и принцип работы

Стартер для люминесцентных ламп является одним из основных элементов лампочек дневного света. Зачем он нужен? Замыкание и размыкание электрической цепи – вот основная его функция. Кроме него в состав лампы входит дроссель, являющийся одновременно трансформатором и стабилизатором. Он нужен для ограничения тока в светильнике и защищает оборудование от перегрева и скачков напряжения.

Принцип работы стартера

Стартер является малогабаритной газоразрядной лампой, работа которой основана на принципе тлеющего разряда. Устройство стартера представляет собой стеклянную колбу с двумя электродами, заполненную неоном или гелием. Для защиты колба помещена в корпус из металла или прочного пластика. Электроды изготавливаются из биметаллических пластин. У разных производителей их конструкция может отличаться.

Для сглаживания момента замыкания и размыкания контактов в цепи дополнительно устанавливают конденсатор. Одновременно он является дугогасительным устройством. Возникающая в момент включения дуга может привести к свариванию контактов. Это может стать причиной преждевременного выхода из строя и существенно снизить срок эксплуатации.

Зная, для чего нужен стартер, легко разобраться в принципе его работы.

В начальный момент электроды имеют разомкнутое состояние. При подключении к сети в устройстве возникает разряд, величина тока которого лежит в диапазоне от 20 до 50 мА. Он разогревает биметаллические электроды, вследствие нагрева происходит изгиб электродов стартера, после чего электрическая цепь замыкается. При перемещении электрического тока по замкнутой цепи происходит разогрев дросселя и катодов люминесцентной лампы.

При отсутствии тлеющего разряда электроды из биметалла остывают. Это ведет к их разгибанию, разрыву электрической цепи и возникновению импульса высокого напряжения. Под его воздействием дроссель зажигает лампу. С увеличением свечения лампы все напряжение сети приходится на нее, поскольку стартер подключен параллельно лампе, недостаток напряжения питания оставляет электроды в разомкнутом положении.

Виды стартеров:

  • тепловые;
  • тлеющего ряда (содержащие биметаллические электроды с упрощенной схемой) ;
  • полупроводниковые.

Напряжение стартера необходимо выбирать выше, чем в лампах, и ниже напряжения сети.

Срок службы, ремонт и замена

Длительная эксплуатация стартера вызывает снижение напряжения внутри него, что приводит к износу. Это отражается на работоспособности, лампа начинает мигать, а затем и вовсе прекращает запускаться. Это связано с тем, что при долгом использовании лампы уменьшается тлеющий заряд. Если появились признаки неисправности в виде моргающей лампочки, необходимо заменить неисправный элемент с целью предотвращения выхода из строя всего оборудования.

Кроме моргания может произойти износ дросселя от перегрева контактов и поломка люминесцентной лампы. Чтобы часто не менять непригодные для работы устройства, нужно приобретать качественные стартеры, хорошо зарекомендовавшие себя на рынке светотехники. Установка стабилизаторов напряжения также дает положительный эффект для повышения срока службы ламп.

Замена стартера делается следующим образом:

  • отключить лампу;
  • снять плафон;
  • выкрутить против часовой стрелки неисправную деталь;
  • новый стартер вставить в паз и повернуть по часовой стрелке до упора.
Внешний вид стартеров и маркировки

Чтобы правильно подобрать стартер, необходимо знать:

  • тип запуска лампочки;
  • производителя;
  • электрические характеристики.

Качественное оборудование выпускают фирмы Philips, Chilisin, Luxe, Osram. Дешевые модели стартеров быстро изнашиваются или приводят к такому действию, как разгерметизация колбы. В этом случае газы, которыми заполнена лампа, начинают испускать неприятный запах, все это еще и вредно для здоровья. Хороший производитель комплектует свою продукцию запасными частями и дает большой гарантийный срок, до 6 тысяч включений. В фирменных магазинах предлагают бесплатную замену. При обнаружении брака фирменные магазины бесплатно заменяют непригодную для работы деталь.

Фирма Philips считается лучшим производителем стартеров. Они изготовлены из высококачественных материалов. Например, для защиты от перегрева использован теплоустойчивый поликарбонат. Процент брака составляет 0,0001%. В моделях этой фирмы нет радиоактивных компонентов. Простой дизайн и обслуживание позволяют справиться с установкой и заменой оборудования даже неопытному человеку, нужно лишь следовать инструкции.

Пускатели этой фирмы производятся в Нидерландах. Модель S2 предназначена для низковольтных ламп с ограничением по мощности 4–22 Вт.

Более универсальной является модель S10. Ее можно применять для высоковольтных устройств без ограничения мощности.

Всем стандартам качества удовлетворяют стартеры отечественного производства фирмы Osram, имеющие огнестойкий корпус из макролона.

Прежде чем подбирать стартер того или иного производителя, необходимо обратить внимание на следующие характеристики:

  1. срок службы;
  2. температурный режим;
  3. тип конденсатора;
  4. номинальное напряжение.

Как выбрать подходящий стартер, зная рабочее напряжение? Маркировка отечественных приспособлений регламентирована ГОСТом. Первые две цифры указывают на мощность. Буква «С» – назначение устройства (стартер). Последние цифры определяют напряжение.

Пример: 90С-220. Расшифровывать данную надпись нужно следующим образом: стартер предназначен для ламп дневного света мощностью 90 ватт и рабочим напряжением 220 В.

Выбирая импортные пускатели, следует помнить, что они имеют другие стандарты маркировки. К примеру, обозначения S10, ST111 и FS-U указывают на то, что стартер можно применять в светильниках с мощностью, диапазон которой находится в пределах 4–80 Вт, напряжение сети должно составлять 220 В.

Освещение не включается: причины

Что делать, если не включается светильник:

  • Напряжение питания меньше 200 В. Стартер не может работать при таких характеристиках.
  • Износ стартера. Тлеющий разряд, дающий толчок для замыкания электродов, недостаточно велик в связи с амортизацией.
  • Недостаточно времени для нагрева катодов.

Решить проблему можно, если сделать замену на другую лампу, имеющую больший период замыкания контактов.

Стартер для люминесцентных ламп FS-2

Наименование: Стартер для люминесцентных ламп FS-2

Описание: Стартер для люминесцентных ламп FS-2

Заказать

Цена: Уточните у менеджера +7 (8352) 22-06-15

Основное предназначение стартера – зажигание или запуск люминесцентных ламп. Напряжение для работы стартера может быть 220 В и 127 В от сети переменного тока с частотой 50 Герц.

Подключение стартера может быть двух видов:

  • Одиночное подключение к дросселю. В данном варианте стартер использует напряжение 220 В;
  • Последовательное подключение, когда на один дроссель используется два стартера, при этом напряжение сети равно 127 В.

Стартер представляет собой газоразрядную лампу, которая состоит из стеклянной колбы, заполненная газом. Внутри колбы располагаются два электрода. В основном применяются стартеры симметричной конструкции с подвижными электродами. Электроды являются биметаллическими.

тип рабочее напряжение используются лампами импульс напряжения время старта срок службы количество штук в коробке код продукта
FS-2 110-130V 4-22W 800 4сек 6000 25 5001
FS-2 Promo 2400 200-240V 4-22W 800 4сек 6000 2400 5003

 

Флуоресцентные стартеры | Все, что вам нужно знать

Флуоресцентные стартеры или стартеры накаливания используются для зажигания люминесцентных ламп и ламп на начальном этапе их работы.

Проще говоря, люминесцентные стартеры — это реле с таймером. Переключатель открывается и закрывается до тех пор, пока люминесцентная лампа не «загорится» и не загорится. Если люминесцентная лампа не загорается, переключатель повторяет цикл открытия / закрытия, и люминесцентные лампы снова пытаются зажечься.

Прочтите, если вы хотите узнать больше об этом процессе…

Когда питание впервые подается на люминесцентный светильник, ток создает внутри люминесцентного стартера два электрода, которые нагреваются и светятся.Это заставляет один из электродов люминесцентного стартера изгибаться и контактировать с другим электродом. Это замыкает переключатель, и теперь ток проходит через люминесцентный стартер к остальной части светильника. Это означает, что цепь между люминесцентной лампой и балластом в арматуре будет эффективно переключаться «последовательно» с питающим напряжением.

Ток, который сейчас течет в люминесцентную лампу, заставляет нити на каждом конце люминесцентной лампы нагреться и начать испускать электроны в газ, который существует внутри люминесцентной лампы, с помощью процесса, известного как термоэлектронная эмиссия.

Внутри люминесцентного стартера прикосновение электродов замыкает поддерживающее их напряжение, и они начинают остывать и отклоняться друг от друга. Это затем открывает переключатель в течение секунды или двух.

Ток через нити в люминесцентной лампе и балласт затем прерывается, и, когда цепь больше не включена последовательно, полное напряжение подается на нити люминесцентной лампы, и это создает индуктивный толчок, который обеспечивает высокое напряжение, необходимое для включить люминесцентную лампу.

Если нити были недостаточно горячими во время начального цикла, люминесцентная лампа не загорается, и цикл повторяется, при этом стартер нагревается и снова замыкает цепь.

Обычно требуется несколько циклов зажигания люминесцентной лампы, что вызывает мерцание и щелчки на этапе запуска.

После зажигания люминесцентной лампы переключатель стартера не замыкается снова, потому что напряжение на зажженной люминесцентной лампе недостаточно для возобновления процесса нагрева электродов в люминесцентном пускателе.

Чем старше люминесцентная лампа и чем старше люминесцентный стартер, тем менее эффективно они зажигают. Трубка, запуск которой занимает более нескольких секунд, является явным индикатором того, что трубка и стартер могут нуждаться в замене.


Типы люминесцентных пускателей

Флуоресцентные пускатели можно определить по обозначенной мощности, написанной на боковой стороне. Мощность напрямую зависит от длины люминесцентной лампы, для работы с которой она предназначена.

Ниже перечислены 3 наиболее распространенных типа люминесцентных стартеров:

Двухтрубная серия

Стартер серии FS2
До 22 Вт

Для использования с фитингами с несколькими люминесцентными лампами.

Одноламповый стартер

FSU Universal
4–65 Вт

Люминесцентные лампы 2 фута 18 Вт, 3 фута 30 Вт, 4 фута 36 Вт и 5 футов 58 Вт.

Одноламповый стартер

FS125
От 70 до 125 Вт

6-футовые люминесцентные лампы мощностью 70 Вт и более.


Лампы 2D и круглые лампы T9

Как правило, в 2-контактных лампах стартер встроен в корпус, а для 4-контактных версий требуется внешний люминесцентный стартер.

При замене двухмерной или круглой лампы убедитесь, что вы заменили аналогичную лампу соответствующей мощности.


Как узнать, нужен ли вам новый стартер?

  • Мерцающая люминесцентная лампа.
  • Люминесцентная лампа не светится.
  • Люминесцентная лампа освещает только один конец.
  • Люминесцентные лампы освещают только концы, но не середину.

При рассмотрении вопроса о замене лампы на участке с несколькими лампами мы предлагаем заменить все старые лампы на новые.

Старые трубки теряют цвет и со временем могут казаться тусклыми. Новые рядом будут выглядеть ярче и чище.

Замена всех ламп в комнате вместе придаст общий однородный вид.

Обязательно прочтите наше удобное руководство по замене люминесцентных ламп.

Мы также рекомендуем заменять все люминесцентные стартеры при замене лампы. Это обеспечивает быстрый и эффективный запуск, обеспечивает максимальную производительность трубки и может продлить срок ее службы.

Обратите внимание, что светодиодные лампы поставляются со своим собственным специальным стартером, который по сути представляет собой схему, которая обходит функцию, которую выполнял бы обычный люминесцентный стартер (светодиодные лампы не нуждаются в «нагревании»). НИКОГДА не используйте люминесцентный стартер со светодиодной лампой.


Insight — Как работает Tubelight Starter

Люминесцентные лампы — одни из самых популярных систем освещения, используемых во всем мире. Люминесцентные лампы / лампы наполнены парами ртути.Они используют электрический заряд для возбуждения атомов ртути с целью получения ультрафиолетового света. Стартер накаливания или обычно известный как стартер используется в цепи лампового света для подачи начального тока на нити лампового света. Чтобы понять, почему именно стартер используется в цепи лампового освещения, давайте посмотрим на его схему.

Рис.1: Схема схемы лампового пускателя

Когда переключатель нажат, ток не может первоначально проходить через трубку, потому что газ внутри нее не ионизирован и, следовательно, цепь освещения трубки ведет себя как разомкнутая цепь.Как только газ ионизируется, он обеспечивает путь для прохождения тока. Для ионизации газа необходим начальный высокий ток в течение короткого периода времени через нити основной трубки. Это то, что делает стартер. Первоначально стартер обеспечивает путь для замыкания цепи, и как только загорается лампочка, ток течет через ионизированный газ в основной лампе.

Рис. 2: Изображение Tubelight Starter

На изображении выше показан типичный стартер, подключенный параллельно люминесцентной лампе.

Рис. 3: Изображение, показывающее цилиндрическую форму стартера с двумя прикрепленными к нему выводами

Это цилиндрическая банка с двумя выводами, как показано на рисунках выше. Эти две клеммы используются для электрического соединения стартера с остальной частью цепи.

Ключевые компоненты

Рис. 4: Изображение, показывающее заполненную газом трубку и конденсатор подавления радиопомех стартера

Пускатель состоит из небольшой газонаполненной трубки и конденсатора подавления радиочастотных помех (см. Также Capacitor-Insight).И конденсатор, и трубка, заполненная неоновым газом, подключены параллельно к цепи световой трубки.

Рис.5: Увеличенный вид газонаполненной трубки

Маленькая стеклянная трубка заполнена неоном или аргоном и содержит биметаллическую пластину. Эта биметаллическая пластина — сердце стартера. Из двух контактных полос, показанных на изображении, левая прикреплена с биметаллической полосой, как показано на изображении выше.

Конденсатор

Рис.6: Изображение конденсатора подавления радиопомех

Конденсатор подавления радиопомех показан на изображении. Открытие конденсатора открывает следующий вид.

Рис.7: Конденсатор внутри

Конденсатор подавления радиопомех выполняет следующие функции в цепи лампового освещения:

а. Поглощает электрический шум, создаваемый разрядом вокруг электродов, чтобы подавить радиочастотные помехи другим электрическим устройствам.

г. Ослабляет начальное напряжение зажигания от балласта и делает его широким, чтобы обеспечить более надежный запуск.

г. Избегая изгибов между контактами накаливания, он обеспечивает долгий срок службы контактов.

Рабочий:

Когда питание подается на цепь лампового освещения, этого напряжения недостаточно для ионизации газа внутри основной трубки. Однако эта мощность создает электрический потенциал на контактах маленькой трубки стартера.Это электрическое поле достаточно велико, чтобы ионизировать газ внутри маленькой трубки и, следовательно, через ионизированный газ в двух контактах протекает ток. Тепло, выделяемое из-за протекания тока, расширяет биметаллическую пластину по направлению к другой пластине и в течение нескольких десятых секунды касается другой пластины. Это выполняет две функции: во-первых, он деионизирует газ, а во-вторых, увеличивает ток через нити основной трубки.

Теперь газ в основной трубке ионизируется, и через него начинает течь ток.Таким образом, биметаллическая пластина стартера охлаждается, открывая зазор между двумя контактами. Этот промежуток будет оставаться открытым до тех пор, пока в следующий раз не загорится лампочка.

]]> ]]>
В папке: Insight
С тегами: конденсатор, стартер, tubelight, tubelight starter

У вас недостаточно прав для чтения этого закона в настоящее время

У вас недостаточно прав для чтения этого закона в настоящее время Логотип Public.Resource.Org На логотипе изображен черно-белый рисунок улыбающегося тюленя с усами.Вокруг печати находится красная круглая полоса с белым шрифтом, в верхней половине которого написано «Печать одобрения создания», а в нижней половине — «Public.Resource.Org». На внешней стороне красной круглой марки находится круг. серебряная круглая полоса с зубчатыми краями, напоминающая печать из серебряной фольги.

Public.Resource.Org

Хилдсбург, Калифорния, 95448
США

Этот документ в настоящее время недоступен для вас!

Уважаемый гражданин:

В настоящее время вам временно отказано в доступе к этому документу.

Public Resource ведет судебный процесс за ваше право читать и говорить о законах. Для получения дополнительной информации см. Досье по рассматриваемому судебному делу:

.

Американское общество испытаний и материалов (ASTM), Национальная ассоциация противопожарной защиты (NFPA), и Американское общество инженеров по отоплению, холодильной технике и кондиционированию воздуха (ASHRAE) против Public.Resource.Org (общедоступный ресурс), DCD 1: 13-cv-01215, Объединенный окружной суд округа Колумбия [1]

Ваш доступ к этому документу, который является законом Соединенных Штатов Америки, был временно отключен, пока мы боремся за ваше право читать и говорить о законах, по которым мы решаем управлять собой как демократическим обществом.

Чтобы подать заявку на получение лицензии на чтение этого закона, обратитесь к Своду федеральных нормативных актов или применимым законам и постановлениям штата. на имя и адрес продавца. Для получения дополнительной информации о постановлениях правительства и ваших правах гражданина в соответствии с нормами закона , пожалуйста, прочтите мое свидетельство перед Конгрессом Соединенных Штатов. Вы можете найти более подробную информацию о нашей деятельности на общедоступном ресурсе. в нашем реестре деятельности за 2015 год. [2] [3]

Спасибо за интерес к чтению закона.Информированные граждане — фундаментальное требование для работы нашей демократии. Благодарим вас за усилия и приносим извинения за возможные неудобства.

С уважением,

Карл Маламуд
Public.Resource.Org
7 ноября 2015 г.

Банкноты

[1] http://www.archive.org/download/gov.uscourts.dcd.161410/gov.uscourts.dcd.161410.docket.html

[2] https://public.resource.org/edicts/

[3] https://public.resource.org/pro.docket.2015.html

Люминесцентные лампы

Люминесцентные лампы [На главную I Ссылки I Глоссарий I Основы I F.A.Q. Я FFA. Страница I Схемы I Советы по безопасности I Закон Ома Я добавляю URL]

Люминесцентные лампы

Люминесцентные лампы — это большое улучшение по сравнению с лампами накаливания. Они потребляют меньше энергии, служат дольше, излучают больше света, выделяют меньше тепла и дешевле в эксплуатации. Одна из проблем — размер, но теперь доступны люминесцентные лампы с цоколем типа «могул», которые подходят к обычным розеткам.
Люминесцентная лампа — электронное устройство. Он функционирует через проводимость в газе. Он состоит из длинной прямой или круглой трубки, содержащей каплю ртути и небольшое количество газообразного аргона с электроды впаяны в каждый конец. Оба электрода будут работать как катоды (эмиттеры электронов в корпус). Это позволит лампе проводить в любом направлении и, следовательно, пропускать переменный ток. Внутренняя поверхность трубки покрыта флуоресцентным материалом, известным как люминофор, который производит видимый свет при возбуждении ультрафиолетовым излучением.

Есть несколько способов работы …
Предварительный нагрев или пуск выключателем! Пусковой выключатель используется в настольных или переносных лампах. Существуют также ручные и автоматические пускатели, которые размещаются на одной линии с балластом. Стартеры сегодня используются очень редко.
Запуск триггера! Этот метод обеспечивает практически мгновенный запуск и используется для ламп меньшего типа. Лампы мощностью до 30 ватт и для ламп CIRCLINE от 8 до 12 дюймов.
Быстрый старт! Эта система используется с лампами с высокой выходной мощностью, с очень высокой выходной мощностью или с лампами с канавкой.Эти лампы следует использовать с балластом для быстрого пуска. Лампы загораются сразу после включения и достигают полной яркости примерно за 2 секунды.
Мгновенный пуск балласта! Благодаря использованию балласта более высокого напряжения эти фонари можно запускать без предварительного нагрева. С этим балластом нельзя использовать обычные лампы, иначе срок их службы значительно сократится. Лампы мгновенного пуска доступны в размерах 40 Вт T12 и 40 Вт T17.
Slimline (мгновенный старт)! Тонкие светильники длиной 8 футов являются одними из самых эффективных ламп.Помимо повышения эффективности, большая длина уменьшает количество ламп и приспособлений, необходимых для данной установки. Лампы Slimline доступны в длинах 72 и 96 дюймов в T8 и 48, 72 и 96 дюймов в наиболее популярном диаметре T12.
Подогрейте лампы с помощью стартеров! Есть еще некоторые люминесцентные лампы, которые предварительно нагреваются с помощью стартеров. Пускатели доступны как в стандартном, так и в обычном исполнении. Пускатели также имеют автоматический и ручной сброс. Рекомендуется ручной сброс (сторожевой таймер), поскольку он устраняет мигание или мигание по окончании срока службы лампы.экономит балласт и служит намного дольше. Если у вас возникла проблема с лампой предварительного нагрева, попробуйте сначала заменить стартер.
Защитные лампы (с пластиковым покрытием)! Эти лампы покрыты покрытием, которое предотвращает вылет битого стекла при падении или разбивании. Они необходимы на пищевых заводах и в других местах, где разбитое стекло может стать проблемой.
цветов! Люминесцентные лампы доступны в различных цветах. Красный, золотой, розовый, зеленый и синий. Все люминесцентные лампы, кроме золотых и красных, в выключенном состоянии белые.
Диммеры! Лампы T12 мощностью 40 Вт можно регулировать от полной яркости до почти полного затемнения с помощью специального балласта и диммеров, специально разработанных для этой цели.
ВНИМАНИЕ !!! Будьте осторожны при обращении с люминесцентными лампами. Осколки стекла этих ламп очень острые и могут стать причиной серьезных порезов. Также флуоресцентное покрытие может нанести вред вашим глазам. После работы с этими лампами вымойте руки.

Балласт

Люминесцентным лампам требуется балласт для обеспечения более высокого наведенного напряжения, необходимого для зажигания дуги, и после начала проводимости стабилизируйте цепь, чтобы поддерживать рабочий ток на постоянном уровне.Вы должны использовать балласт, соответствующий типу вашей лампы. Схема использования и подключения обычно указывается на балласте. Ранний выход балласта из строя может быть вызван неправильным расположением приспособления, которое препятствует надлежащему отведению тепла. Также неправильный выбор балласта в зависимости от типа используемой лампы, перегоревших ламп и колебаний сетевого напряжения. Большинство балластов рассчитаны на входное напряжение 120 В. Будьте осторожны при подключении этого балласта. Вторичное напряжение высокое и может вызвать серьезное поражение электрическим током. Вставляя лампочки в патроны, старайтесь не касаться концов фонарей.Самый безопасный способ сделать это — отключить питание перед тем, как вставлять лампы.

Частые проблемы

Погода …
На люминесцентные лампы могут влиять душные и влажные условия. Старайтесь очищать свет от грязи и влаги, протирая его сухой тканью. Также в холодную погоду свет может мигать и выключаться. Если не слишком холодно, это прекратится, когда балласт нагреется. Но в морозную погоду может потребоваться балласт для холодной погоды.
Закручивание и закручивание по спирали …
Это вызвано частицами материала, разрыхляющимися на свету.Обычно это происходит с новыми лампами и чаще всего само собой исправляется. Вы можете попробовать выключить свет на минуту.
Индикаторы мигают и гаснут …
Обычно это означает, что лампа неисправна. Также может быть низкое напряжение цепи, низкий балластный рейтинг, низкая температура, влажность, холодные сквозняки, также убедитесь, что светильники и отражатели (плафон непосредственно над лампой) правильно заземлены. Эти проблемы следует устранить, иначе балласт может быть поврежден.
Фары включаются и выключаются…
Если ваша лампа включается на минуту или две, то на некоторое время гаснет, и это повторяется. Скорее всего, у вас есть тепловая перегрузка в балласте или приспособлении. Когда балласт перегревается, он отключается и снова включается, когда остывает. Обычно это указывает на то, что балласт выходит из строя. Его следует заменить.
Почернение концов лампы …
Обычно указывает на раннее почернение концов лампы. Высокое или низкое напряжение. Напряжение должно быть в пределах балластного рейтинга. Плохие контакты с патронами.Убедитесь, что лампы надежно закреплены в патронах. Плохой или дешевый балласт. Попробуйте использовать балласт с U.L. метка. Неправильная проводка блоков также может вызвать проблему.
Одна лампа выключена, другая тусклая …
Если у вас есть прибор с несколькими источниками света, эти лампы обычно подключаются последовательно. Если один испортится, другой не загорится или будет очень тусклым. Даже если неисправна только одна лампочка, вы можете заменить обе лампы.
Гул или шум балласта …
Шум трансформатора свойственен балласту лампы.На этикетке большинства балластов указан уровень шума, от A до F. А — самый тихий. В этом случае вы получаете то, за что платите. Обычно более качественный свет будет менее шумным. Убедитесь, что балласт надежно закреплен в светильнике. Убедитесь, что само приспособление надежно затянуто. Напряжение должно быть в пределах балластного рейтинга. По мере того, как балласт начинает портиться, он становится громче.
Балластное тепло …
Эти балластные устройства представляют собой более или менее трансформаторы, которые будут выделять тепло, пока на них есть питание.При снятии лампочек будет немного меньше тепла, потому что трансформатору не придется так сильно работать без нагрузки. Вы можете приобрести фонари с электронным балластом, которые производят меньше шума и выделяют меньше тепла, но при этом стоят дороже.
Средний срок службы …
Учитывая отсутствие проблем, нет ничего необычного в том, что лампа служит долго или рано выходит из строя. Чем лучше сделан свет, тем больше шансов, что он прослужит дольше. Вы также можете продлить срок службы лампы, стараясь не выключать и не включать ее многократно.Если вы планируете уйти только на минуту, оставьте его включенным, но если вы уезжаете на какое-то время, отключите его.

Лампы накаливания

Эти лампы изготавливаются путем установки вольфрамовой нити в стекло с покрытием, из которого откачивается воздух, а затем повторно вводятся различные инертные газы. Другими словами, лампа накаливания — это просто вольфрамовая проволока, запаянная в стеклянной трубке. Электрический ток, проходящий по проволоке, нагревает ее до накала, и проволока излучает свет.

Лампочки перегорают слишком часто.
Если вы часто сжигаете лампы, вы также можете попробовать использовать лампы меньшей мощности. Лампа на 40 Вт имеет более высокое сопротивление, чем лампа на 100 Вт. Обе лампы будут иметь одинаковое напряжение, лампа мощностью 100 Вт должна иметь больший ток. А это значит, что лампочка на 100 Вт должна иметь меньшее сопротивление. Поэтому нить для нити с более высоким сопротивлением 40 Вт должна быть тяжелее или иметь меньшее поперечное сечение. Также существует грубая служебная лампочка, сделанная из более тяжелой нити накала.
Важно, чтобы линейное напряжение, питающее лампочку, максимально соответствовало номинальному напряжению лампы.Если лампа рассчитана на 120 вольт, а питание лампы составляет 90 вольт, лампа будет тусклой. Если напряжение составляет 135 вольт, нить накала будет перегреваться и некоторое время ярко гореть, но не прослужит долго. Допустимое отклонение напряжения составляет около 10 процентов от низкого или высокого уровня.
Поскольку включение и выключение лампы накаливания не приводит к значительному сокращению срока службы ее нити, лучше выключить ее, когда это возможно. То же самое не относится к люминесцентной лампе — ее включение приводит к значительному старению ее нитей (из-за процессов распыления), поэтому вам не следует выключать люминесцентную лампу, если вы планируете перезапустить ее менее чем примерно через 1 минуту.Выходя из дома, всегда выключайте свет. Вибрация также может сократить срок службы нити накала. Лучшая лампа на рынке сегодня — это CFL (компактные люминесцентные лампы) (Philips, Sylvania). Эти лампочки могут стоить от 10 до 15 долларов, но прослужат около 10 000 часов.
Для новых осветительных приборов требуется проводка под углом 90 градусов Цельсия.
Для новых осветительных приборов требуется, чтобы номинальная температура проволоки, питающей эти светильники, составляла не менее 90 ° C. Это номинальная температура для этих осветительных приборов.Важно, чтобы номинальная температура проводки, питающей эти приспособления, соответствовала или превышала номинальную температуру приспособления. Если номинальная температура проводки ниже, чем требуемые 90 ° C, изоляция вокруг нее становится хрупкой и может порваться. Это позволяет образовывать дугу между оголенными проводами, что приводит к нагреву, плавящемуся в приспособлении, и может стать причиной возгорания.
Найдите буквы NMB на оболочке провода. NM означает кабель с неметаллической оболочкой (Romex), а суффикс B означает, что жилы кабеля рассчитаны на максимальную рабочую температуру 90 ° C 194 ° F.Мы можем предположить, что проводка, сделанная до 1984 года, без суффикса B, рассчитана на 60C 140F. Подобная проводка используется в большинстве старых домов, построенных до 1982 года. C.F.L. Освещение

На сегодняшний день лучшей лампой на рынке является компактная люминесцентная лампа (CFL) (Philips, Sylvania). Эти лампочки могут стоить от 10 до 15 долларов, но прослужат около 10 000 часов.
Вот несколько советов, на что обращать внимание при покупке этих лампочек. Найдите хорошее место для их использования. Светильник, который остается включенным больше, чем другие.Убедитесь, что ваш CFL. правильный размер, чтобы соответствовать вашему приспособлению. Постарайтесь получить такую ​​же мощность, как у лампы накаливания, которую вы можете использовать. Люмены и ватты обычно указаны на лампе и этикетке упаковки.
Большинство КЛЛ двух цветов. Теплый белый (аналог лампы накаливания) Холодный белый (белый).
Если вы используете диммер, убедитесь, что ваш CFL. помечен для использования с диммером. Фотоэлементы должны быть помечены для использования с КЛЛ.

Галогенные лампы

В лампах накаливания вольфрамовый материал из нити накала испаряется и откладывается на внутренней стенке лампы.Галогеновый газ, используемый в галогенных лампах, снимает вольфрам со стены и, по сути, возвращает его обратно на нить накала. Галогенные лампы обычно на 15% эффективнее и служат дольше обычных ламп накаливания. Благодаря своим уникальным характеристикам галогенную лампу можно сделать меньше и с более высоким давлением, чем обычно. Стекло колбы изготовлено из кварца или «твердого стекла», что позволяет повышать температуру, повышая общий КПД.

Опасности
Галогенные лампы горят намного ярче и выделяют гораздо больше тепла, чем стандартные лампы накаливания.Это может привести к возгоранию и ожогам кожи.
Есть несколько мер предосторожности, которые помогут предотвратить некоторые из этих опасностей.
Размещайте фонари в местах, где они не могут быть опрокинуты детьми, домашними животными или под сильным сквозняком из открытого окна.
Если у вас есть переносная галогенная лампа для торшеров, убедитесь, что вы не используете лампу мощностью более 300 Вт, даже если мощность вашей лампы составляет 500 Вт.
Перед снятием или заменой лампочек выключите лампу и вытащите вилку из розетки.Как всегда, никогда не пытайтесь заменить или выбросить горячую на ощупь лампочку.
Никогда не прикасайтесь к галогенной лампе голыми пальцами. Масла на коже могут вызвать появление горячих точек на стеклянной оболочке, что может привести к преждевременному выходу лампы из строя. Эта «горячая точка» нагревает стеклянную колбу и может вызвать деформацию и растяжение стекла в горячей точке. В результате в стеклянной колбе образуется слабое место, которое может разбиться и сократить срок службы.
Галогенная технология обеспечивает более высокую температуру нити накала, что увеличивает количество производимого УФ-света.Для защиты от ультрафиолетового излучения некоторые лампы имеют специальный стеклянный или пластиковый экран, который также защищает от взрыва. Диммеры

Диммеры используются почти в каждом доме. Поверните ручку или нажмите рычаг, и свет станет ярче или тусклее. У этих переключателей действительно есть проблемы, такие как гудение и жужжание. Вы должны быть уверены, что когда у вас есть эти устройства, вы не превышаете номинальную мощность в ваттах. Если у вас есть диммер на 300 Вт и вы используете лампы мощностью 500 Вт, диммер перегреется, и вы услышите гудение, или диммер будет поврежден.Также старайтесь использовать качественные лампочки известных брендов с диммером. У дешевых ламп накаливания будут слабее, чем у дорогих. Жужжание лампочек — обычно признак дешевого диммера. В диммерах должны быть фильтры. Задача фильтра — сглаживать острые углы сигнала и быстрые скачки тока, которые могут вызвать жужжание. В дешевых диммерах они экономят деньги на производственных затратах за счет снижения затрат на фильтрацию, что делает ее менее эффективной. Возможно, на одних настройках диммер подойдет, а на других — нет.Если у вас проблемы с жужжанием, это почти всегда дешевый диммер.

Для получения дополнительной информации об электричестве Щелкните здесь.

[На главную I Ссылки I Глоссарий I Основы I F.A.Q. Я FFA. Страница I Схемы I Советы по безопасности I Закон Ома Я добавляю URL]

Можно ли запустить ламповый свет без стартера?

Для запуска трубка холодная без стартер требует других средств генерации импульса высокого напряжения, а поскольку в холодной трубке конденсируются пары ртути, для этого требуется гораздо более высокое напряжение, чем раньше.Но как только трубка зажигает , она нагревается достаточно, чтобы испарить остаток ртути.

Щелкните, чтобы увидеть полный ответ.

Точно так же спрашивают, может ли люминесцентный свет работать без стартера?

Когда вы включаете люминесцентную лампу , пускатель является замкнутым переключателем. Без стартера между двумя нитями нити никогда не создается постоянный поток электронов, и лампа мерцает. Без балласта дуга представляет собой короткое замыкание между нитями, и это короткое замыкание содержит большой ток.

Во-вторых, может ли ламповый свет работать без дросселя? Можно ли запустить ламповый свет без дроссельной катушки и стартера? Да, при условии, что газ ионизируется и вы контролируете напряжение. Дроссель и стартеры — всего лишь «инструменты» для достижения ионизации. Если у вас есть другие инструменты для достижения того же результата, значит, вы все делаете правильно.

Соответственно всем люминесцентным лампам нужен стартер?

Не у всех люминесцентных ламп есть стартеры , но если у вас есть , он обычно будет расположен рядом с розеткой для трубки . Светильники с более чем одной лампой имеют отдельный стартер для каждой . Люминесцентные лампы без стартеров называются быстрозажигающимися лампами , и это обозначение обычно напечатано или проштамповано на них.

Что такое стартер в ламповой лампе?

Люминесцентные лампы / лампы наполнены парами ртути. Они используют электрический заряд для возбуждения атомов ртути, чтобы произвести ультрафиолетовый свет .Пускатель накала или обычно известный как стартер используется в цепи лампового света для подачи начального тока на нити лампового светильника .

Где находится стартер на люминесцентном свете?

Стартер — это , расположенный на раме лампы (обычно есть два стартера). Когда вы включаете выключатель света , стартер посылает электрический разряд газу внутри люминесцентной лампы .Затем ионизированный газ проводит электричество, и лампочка зажигает лампочку .

Нажмите, чтобы увидеть полный ответ


Кроме того, у всех люминесцентных ламп есть стартер?

Не у всех люминесцентных ламп есть стартеры , но если у твоего есть , он обычно будет расположен рядом с патроном для лампы. Светильники с более чем одной трубкой имеют отдельный стартер , для каждой. Люминесцентные лампы без стартеров называются быстрозажигающимися лампами , и это обозначение обычно печатается или штампуется на них.

Кроме того, почему не включаются люминесцентные лампы? Неисправный флуоресцентный может быть вызван отсутствием электроэнергии (сработавший прерыватель или перегоревший предохранитель), неработающим или умирающим балластом, неработающим стартером или перегоревшей лампой (ами). Сначала проверьте питание, затем стартер (если есть), а затем лампы . Когда все остальное не помогает, следует заменить балласт.

Кроме того, как узнать, неисправен ли люминесцентный стартер?

Верните люминесцентные лампы в розетку , если были сняты, чтобы добраться до стартера .Включите выключатель. Если лампочка загорается и не мигает непрерывно, проблема была в стартере . Если прибор не светится или продолжает мигать, проблема в другом.

Может ли люминесцентный свет работать без стартера?

Когда вы включаете люминесцентную лампу , пускатель является замкнутым переключателем. Без стартера , постоянный поток электронов никогда не создается между двумя нитями накала, и лампа мерцает. Без балласта дуга представляет собой короткое замыкание между нитями накала, и это короткое замыкание содержит большой ток.

(PDF) Конструкция адаптивного электронного пускателя для люминесцентных ламп

кратко описывается следующим образом. Сначала выпрямленное напряжение

измеряется и детектируется детектором напряжения. Если

обнаружено высокое напряжение, сработает таймер предварительного нагрева

и начнет отсчет времени предварительного нагрева T

ф.

.В процессе

времени предварительного нагрева T

ph

, пожарная цепь работает как короткое замыкание

, чтобы пропустить ток через нити лампы

для достижения процесса предварительного нагрева. По истечении времени предварительного нагрева

T

ф.

таймер предварительного нагрева отправляет сигнал запуска

в цепь зажигания, чтобы она работала как разомкнутая цепь. В момент размыкания цепи пожара

энергия, накопленная в магнитном балласте

, преобразуется в высокое импульсное напряжение, которое вызывает пробой газа лампы

.Наконец, горит люминесцентная лампа

, а пожарная цепь остается в состоянии разомкнутой цепи. Как показано на рис. 3 (а)

, таймер предварительного нагрева, созданный схемой RC

, предназначен для снижения стоимости [6,7,8,10,11]. Время предварительного нагрева

T

ph

определяется значением произведения резистора

R

T1

и конденсатора C

T

. Этот таймер RC-цепи имеет ограничение

, которое не может перезапускаться быстро, так как скорость разряженного конденсатора C

T

ограничена значением продукта

, резистором R

T2

и конденсатором C

Т

.Чтобы решить эту проблему, на

Рис. 3 (b) показан RC-таймер

с новой схемой управления.

˥

˧˄

˥

˧˅

˖

˧

(а)

˖̂́̇̅̂˿ʳ

˖˼̅˶̈˼̇

˖

˧

9000

˧˄

˥

˧˅

˦

˥˸̆˸̇ʳ˖̂́̇̅̂˿ʳ˖˼̅˶̈˼̇

(b)

Рисунок 3. (a) типичный RC-таймер; (b) типичный RC-таймер со схемой управления сбросом

Функция быстрого перезапуска выполняется переключателем S

, который может быть замкнут для мгновенного разряда конденсатора C

T

.

Однако схема управления в этой схеме управления сбросом

слишком сложна, чтобы снизить стоимость [9]. Время предварительного нагрева типичного электронного пускателя

является фиксированным, что приводит к серьезной проблеме

, когда нити накаливания лампы перегружаются при высоком напряжении переменного тока

и занижены при низком уровне мощности переменного тока

. При перегрузке срок службы люминесцентной лампы

будет значительно сокращен. В состоянии сердечного ритма ниже

люминесцентную лампу трудно зажигать.То, что

означает, что в усовершенствованном электронном пускателе

необходимо адаптивное время предварительного нагрева. Кроме того, простая схема с более низкой стоимостью

должна быть сохранена в усовершенствованном электронном пускателе

для массового производства. Для достижения вышеупомянутого высокого качества

при низкой стоимости в этой статье предлагается управление сбросом с повышающим напряжением

(RCVPC), состоящее только из резистора

и диода. Кроме того, предлагаемый RCVPC

может адаптировать время предварительного нагрева в соответствии с

к входной мощности переменного тока и хорошо работать в ситуации с более низкой мощностью переменного тока

.

II. S

ОПИСАНИЕ СИСТЕМЫ

На рис. 4 показана блок-схема предлагаемого адаптивного электронного пускателя

, который состоит из выпрямителя

, детектора напряжения, RCVPC и пожарной цепи.

˙˼̅˸ʳ˖˼̅˶̈˼̇

́˺ʳ

˧˼̀˸̅

˩̂˿̇˴˺˸ʳ

˗˸̇˸˶ ̇̂̅

˥˸˶̇˼˹˼˸̅

́̇̅̂˿ʳ̊˼̇˻ʳ

˩̂˿̇˴˺˸ʳˣ̈˿˿ˀ˨̃ʳ˖˼̅˶̈˼̇

˖ˡ˄

˖ˡ˅

Рисунок 4.Блок-схема предлагаемого AES

Выпрямитель обеспечивает постоянное напряжение от сети переменного тока.

Детектор напряжения предназначен для определения напряжения на люминесцентной лампе

для оценки уровня мощности и

для контроля состояния включения света. Когда детектор напряжения

определяет достаточную мощность, схема обрабатывает состояние предварительного нагрева

для адаптивного времени предварительного нагрева, чтобы надлежащим образом

предварительно нагреть нити лампы.Адаптивное время предварительного нагрева составляет

, которое точно контролируется таймером предварительного нагрева и адаптируется к входной мощности переменного тока

. Подробные функции схемы будут

, проиллюстрированные в следующем разделе. По истечении времени предварительного нагрева цепь зажигания

может генерировать импульсный сигнал с высоким скачком напряжения

для зажигания люминесцентной лампы. Люминесцентная лампа

есть; поэтому загорелся. Когда входное питание переменного тока отключено, детектор напряжения

определяет эту ситуацию и запускает

RCVPC.Затем таймер предварительного нагрева возвращается в исходное состояние

для функции быстрого сброса. Наконец, люминесцентную лампу

можно быстро перезапустить при необходимости.

III. C

IRCUIT ANALYSIS

Учитывая схему, стоимость и размер которой ограничены

для большей коммерческой выгоды, предлагаемая схема электронного пускателя

, показанная на рис. 5, спроектирована так, чтобы быть максимально простой

. Этот электронный пускатель

не только поддерживает все функции типичной функции, но также обеспечивает адаптивное время предварительного нагрева

и пониженную мощность переменного тока при работе

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *