Измерение емкости конденсаторов: Как измерить емкость мультиметром? — Kvazar-wp

Содержание

Измерение емкости электролитических конденсаторов

Что-то не так?


Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

QRZ.RU > Каталог схем и документации > Схемы наших читателей > Радиолюбительские конструкции > Измерение емкости электролитических конденсаторов

class=»small»>


Измерение емкости электролитических конденсаторов
В. ЧЕРНИКОВ, «Радио» #12, стр.54.

В повседневной практике радиолюбители нередко сталкиваются с необходимостью измерения емкости конденсаторов, особенно электролитических, так как из-за высыхания электролита она со временем снижается. Кроме того, электролитические конденсаторы имеют большие допуски по емкости.

Описываемый здесь прибор позволяет измерять емкость полярных и неполярных электролитических и неэлектролитических конденсаторов до 3000 мкФ. Отсчет идет непосредственно по шкале стрелочного измерительного прибора.

Работа прибора основана на измерении протекающего через конденсатор переменного тока при подведении к нему пульсирующего напряжения от однополупериодного выпрямителя.
Принцип действия прибора поясняет схема, приведенная на рис. 1. Во время положительной полуволны переменного напряжения на верхнем (по схеме) выводе вторичной обмотки трансформатора Т1 конденсатор Сх заряжается через выходное сопротивление выпрямителя, а во время отрицательной — разряжается через резистор R1.

Эффективное значение тока /с через конденсатор пропорционально его емкости. Нижняя граница емкости измеряемых конденсаторов ограничивается чувствительностью измерителя тока, верхняя — постоянной времени цепи разрядки CхR1. При этом надо иметь в виду, что значительное уменьшение сопротивления резистора R1 для уменьшение постоянной времени нецелесообразно из-за резкого увеличения рассеиваемой резистором мощности.

Принципиальная схема прибора показана на рис. 2. Диапазон измерения емкости — от 3000 пФ до 300 мкФ. Измерительный прибор PAJ — на переменное напряжение 30 мВ. Он может быть как промышленным, так и любительским с входным сопротивлением не менее 100 кОм. Может подойти, в частности, прибор, описание которого приведено в статье Б. Степанова и В. Фролова «Милливольтметр переменного тока» («Радио», 1977, № 2, с.

53-55).

Перед измерениями переключателем S3 параллельно зажимам Сх подключают образцовый конденсатор Со и подстроенным резистором R7 устанавливают стрелку милливольтметра на отметку шкалы, соответствующую емкости измеряемого конденсатора. При точном подборе резисторов повторной калибровки при переключении диапазонов измерения не требуется.
При измерении емкости электролитического конденсатора необходимо строго соблюдать его полярность подключения к прибору. Предварительно он должен быть проверен на отсутствие утечки и замыкания между обкладками.

Трансформатор Т1 может быть от блока питания промышленного приемника, вторичная обмотка которого рассчитана на напряжение 6,3 В и ток не менее 1 А. Предохранитель F2 защищает прибор при случайном замыкании на выходе и в случае, пробоя проверяемого конденсатора.
Переключатели и выключатели любой конструкции. Резистор R1 на мощность рассеяния не менее 5 Вт. Образцовый конденсатор С0 с отклонением бт номинала ±5%. Целесообразно в качестве калибровочного конденсатора использовать такой, емкость которого близка к верхнему пределу измерений на соответствующем поддиапазоне.

Как проверить конденсатор мультиметром на работоспособность

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.

Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор «не держит» заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается «электролитов» и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.

Содержание статьи:

  • Внешний осмотр.
  • Проверка на короткое замыкание:
    — «прозвонка» тестером;
    — светодиодом и батарейкой;
    — с помощью лампочки на 220 В.
  • Проверка на внутренний обрыв:
    — звуковой сигнал в режиме «прозвонки»;
    — измерение сопротивления постоянному току;
    — по остаточному напряжению.
  • Определяем рабочее напряжение конденсатора:
    — по напряжению пробоя;
    — по току утечки.
  • Измерение тока утечки конденсатора.
  • Измерение емкости конденсатора:
    — с использованием специальных приборов;
    — с использованием второго конденсатора известной емкости;
    — расчет емкости через постоянную времени цепи;
    — другие методы (контроль сопротивления, яркость лампы, баланс моста).
  • Как проверить конденсатор не выпаивая из схемы.

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.

С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т. п.).

Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Проверка на отсутствие внутреннего обрыва

Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.

Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂

Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Как это сделать? Есть три способа.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.

Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.

Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:

Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.

Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.

Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.

С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0. 001 мкФ (или 1000 пФ).

Вот видео для наглядности:

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.

Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.

Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.

Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.

Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Определение рабочего напряжения конденсатора

Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.

Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.

Способ №1: определение рабочего напряжения через напряжения пробоя

Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.

Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.

Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).

За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.

Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.

Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:

А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).

Способ №2: нахождение рабочего напряжения конденсатора через ток утечки

Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.

Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:

и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.

У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):

Напряжение на
конденсаторе, В
Ток утечки,
мкА
Прирост тока,
мкА
101.11.1
202.21.1
303.31.1
404.51.2
505.81.3
607.21.4
708.91.7
8011.02.1
9013.42.4
10016.02.6

Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.

Если из полученных значений построить график, то он будет иметь следующий вид:

Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:

Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3101620253240506380100125160200250315350400450500

то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.

Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.

Как измерить ток утечки конденсатора?

Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.

Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:

При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.

При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.

Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Можно ли проверить конденсатор мультиметром не выпаивая его с платы?

Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.

Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.

Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.

Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.

Вот пример, когда все пять конденсаторов покажут ложное КЗ:

Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.

В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.

Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.

Вот очень правильный и понятный видос на эту тему:

Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.

Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.

Измерения емкости – испытания и измерения

Испытания и измерения

Измерения емкости обычно выполняются мостовым или мостовым способом. измеритель емкости реактивного типа. Помимо емкости, тестируемый конденсатор всегда имеет некоторые потери. Конденсаторы несут потери в результате таких факторов, как сопротивление в проводниках (пластинах) или выводах, утечки тока и диэлектрических поглощения, все из которых влияют на коэффициент мощности конденсатора. Теоретически коэффициент мощности идеального конденсатора должен быть равен нулю; Однако, перечисленные выше потери вызывают коэффициенты мощности практических конденсаторов в диапазоне от почти 0 до возможных 100%. Потери могут иметь характеристики либо шунта, либо последовательного сопротивления, либо это может быть сочетание того и другого. Эти сопротивления следует учитывать при измерении емкость.

Конденсаторы могут сохранять заряд долгое время после отключения напряжения. Электрический заряд, удерживаемый конденсаторами в обесточенных электронных цепей во многих случаях достаточно, чтобы вызвать смертельный шок. Будьте уверены, что вы и те, кто работает с вами, учитывают эту опасность, прежде чем выполнять какие-либо действия. техническое обслуживание любой электрической или электронной цепи и перед выполнением подключения к, казалось бы, мертвой цепи. Будьте предельно осторожны перед работой в обесточенных цепях, в которых используются большие конденсаторы.

Измерения мостового типа

Вы можете измерять емкость, индуктивность и сопротивление с высокой точностью с помощью мостов переменного тока. Эти мосты состоят из конденсаторов, катушек индуктивности, и резисторы в самых разных комбинациях. Мосты переменного тока работают по принципу моста Уитстона; то есть неизвестное сопротивление уравновешивается известными сопротивлениями и после моста уравновешено, неизвестное сопротивление рассчитывается через известное сопротивление.

Независимо от их истинной природы потери конденсатора можно представить как простое последовательное сопротивление. Следовательно, емкость можно измерить с точки зрения двухэлементной эквивалентной схемы, состоящей из последовательно включенного конденсатора с резистором, который показан на рисунке ниже как Р х .

Емкостный мост.

На рисунке выше представлена ​​схема емкостного моста. Как видите, а емкостной мост по конструкции очень похож на мост сопротивления за исключением штатного конденсатора ( С 3 ) и неизвестный конденсатор ( C x ).

Общее условие баланса моста переменного тока (см. здесь)

Мы можем написать импедансы для нашего случая

После подстановки этих импедансов в общее состояние ( Z 1 Z 4 = Z 2 Z 3 )

Равенство двух комплексных чисел требует, чтобы действительные части были равны на две стороны уравнения, а также члены j . Следовательно

Таким образом, как неизвестное сопротивление, так и емкость, R x и C x , можно оценить по известному сопротивлению R 1 , R 2 , R 3 , и известные емкость С 3 . Условия баланса требуют, чтобы две величины были переменными в этом мост как, например, R 1 (или R 2 ) и Р 3 .

Реактивные измерения

В оборудовании для измерения емкости реактивного типа используется следующему принципу: если переменное напряжение фиксированной частоты приложено к конденсатор и резистор, соединенные последовательно, падение напряжения на реактивное сопротивление конденсатора за счет результирующего протекания тока обратно пропорционально пропорциональна емкости. Падение напряжения используется для срабатывания счетчика. который откалиброван в значениях емкости. Точность реактивного типа меньше для конденсаторов с высоким коэффициентом мощности. В конденсаторы с высоким коэффициентом мощности, возникающие потери эффективно помещают определенное сопротивление последовательно с емкостным реактивным сопротивлением. Влияние этого сопротивления при измерении конденсатора должно вызывать большее падение напряжения на конденсаторе. Это падение не из-за реактивное сопротивление выше, но является результатом импеданса, который из курс состоит как из реактивного сопротивления, так и из сопротивления. Следовательно емкость, указанная анализатором, будет ниже фактического значения. Более продвинутые приборы также измеряют фазовый угол между напряжением и тока, что позволяет рассчитать и отобразить эквивалентную емкость и сопротивление конденсатора.

конденсатор — Как цифровые мультиметры измеряют емкость?

спросил

Изменено 3 года, 5 месяцев назад

Просмотрено 8к раз

\$\начало группы\$

Как цифровые мультиметры (DMM) измеряют емкость через их типичное входное/выходное сопротивление 10 МОм?

При логическом уровне 3,3 В попытка измерения 1F будет означать постоянную времени 10 миллионов секунд (R x C), поэтому повышение напряжения на конденсаторе будет неизмеримым (в минимальном уровне шума). Они также делают это в течение секунда или около того с точностью 3%. Как это достигается?

  • конденсатор
  • измерительный
  • мультиметр

\$\конечная группа\$

4

\$\начало группы\$

Существует множество способов измерения емкости. Если у вас есть генератор сигналов, вы можете использовать прямоугольный сигнал и измерить время нарастания. Или синусоида и измерить ток и напряжение. Если вы знаете ток и напряжение, вы знаете, какая у вас нагрузка. Если нагрузкой является конденсатор, вам также потребуется информация о фазе. Ссылки ниже более подробно рассказывают о том, как это делается. Вместо генератора сигналов цифровые мультиметры обычно имеют более простую схему (обычно генерирующую только одну или несколько частот). Вместо схемы осциллографа, измеряющей фазу и амплитуду, делать расчеты.

Самое интересное, что если у вас есть осциллограф и генератор сигналов, вы также можете измерить емкость, иногда лучше, чем цифровой мультиметр. Это также работает для индуктивности.


Источник: https://meettechniek.info/passive/capacitance.html


Источник: https://meettechniek.info/passive/capacitance.html

\$\конечная группа\$

4

\$\начало группы\$

Измерение значения 1 Фарад за 1 секунду с разрешением цифрового мультиметра 1% 0,1 мВ и измеренным значением 10 мВ требует тока батареи при использовании методов измерения импульсов.

Несмотря на то, что счетчики RLC используют более точную синусоиду постоянного тока на выбранных частотах для измерения амплитуды напряжения и фазового сдвига для вычисления всех значений, они все равно не доходят до 1 Фарад.

Ic=CdV/dt= 1F * 10 мВ/1 с = 10 мА, что больше тока, чем обычно потребляет цифровой мультиметр, и сокращает срок службы батареи. Таким образом, Fluke 115 измеряет только до 9999 мкФ.

Портативные измерители Keysight измеряют только до 199,99 мФ

Однако, если вы будете следовать процедуре испытаний Maxwell с использованием ультракап, вам не понадобится RLC-метр стоимостью более 1000 долларов США для монтажа в стойку, который предлагает показания 1F.

Но это занимает больше 1 секунды.

\$\конечная группа\$

\$\начало группы\$

Редактировать: высокий импеданс только для настройки измерения напряжения. Импеданс намного ниже при измерении емкости.

По данным Fluke:

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя полученное напряжение и затем вычисляя емкость.

Они не ждут постоянной времени RC. Он подает известный ток в течение определенного времени и смотрит на ΔV. Они также могут делать то же самое, разряжая колпачок в цикле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *