Измеритель емкости конденсаторов без выпаивания: Страница не найдена — ELQUANTA.RU

Содержание

Инструкция к Прибору для измерения ESR и емкости конденсаторов Mega328 LCR-T4

Прибор  для измерения  ESR  и емкости конденсаторов

 

ВНИМАНИЕ! При работе с прибором не забудьте убедиться, что подключаемый конденсатор разряжен. Если производятся измерения без выпаивания из схемы - ремонтируемое устройство должно быть выключено из сети и конденсаторы в нем разряжены!!!

 

Технические характеристики прибора:

Диапазон измеряемых значений емкостей  1…65000 мкФ

Точность измерения емкости:     +/- 2%   +   +/-1D

Формат отображения измеренной емкости от 0 до 9999 в мкФ, от 10000 до 65000 в тыс. мкФ  пример; 4700 мкФ – индикатор 4700; 15000 мкФ – индикатор 15,00

Диапазон измеряемых значений ESR:  0…25 Ом

Точность измерения ESR:  +/- 2%   +   +/-1D  

Формат отображения ESR: от 0 до 2 Ом  - 0,00 – 2,00 Ом,

Разрешающая способность 0,01 Ом от 2 до 25 Ом – 2,0 – 25,0                                                                                                                                        Разрешающая способность 0,1 Ом   (В режиме измерения ESR можно измерять обычные сопротивления на переменном токе. )

Потребляемый ток в режиме измерения:  не более 25 мА

Потребляемый ток в спящем режиме: не более 0,1 мкА

Напряжение питания:  3,6 - 9 Вольт   (Возможно применение 3-х элементов типа AAA, литиевого аккумулятора , батареи 6F22 «крона») Габариты:     55 х35х10 мм (без источника питания)

Таймер автоотключения питания : 120 сек.

Режимы измерений:    - только емкость      - только ESR      - емкость и ESR по очереди 

Индикация:    Семисегментный  индикатор.

Способ измерения ESR:  Измерение сопротивления на переменном токе частотой 60 кГц синусоидальной формы

Способ измерения емкости:   Измерение времени заряда фиксированным током.

Максимальное напряжение на щупах :  200мВ  (позволяет проводить измерения без выпаивания  конденсаторов из схемы. Возможно уменьшение точности в таком режиме)

Контроль напряжения питания

Контроль напряжения батареи и индикация в случае недостаточного напряжения при каждом включении прибора 

Управление  Одна кнопка . Короткие нажатия –выбор режима. Длинные –вкл./выкл.

 

Применение прибора.

 

 Как известно, причиной подавляющего большинства дефектов радиоэлектронной аппаратуры являются неисправные электролитические конденсаторы. Поиск неисправных конденсаторов с помощью тестера или измерителя емкости порой довольно затруднителен, т.к. емкость неисправного конденсатора может незначительно отличаться от номинальной, а значение ESR (эквивалентного последовательного сопротивления) может быть довольно большим.

И именно ESR является важнейшим параметром для измерения при поиске неисправного конденсатора. В большинстве случаев это конденсаторы импульсных блоков питания в бытовой аппаратуре, импульсных блоков питания компьютеров, импульсных преобразователях на материнских платах, драйверы двигателей, строчные развертки и пр. В этих местах конденсаторы  подвергаются значительному нагреву и быстрее выходят из строя (как говорят многие, “высыхают”).

          Предлагаемый Вашему вниманию прибор предназначен для измерения ESR (Equivalent Series Resistance) электролитических конденсаторов на синусоидальном переменном токе частотой 62,5 кГц , что позволяет реально оценить состояние конденсатора . Как правило частоты импульсных блоков питания и преобразователей лежат в диапазоне 20-100 кГц. Собственно измерение можно производить  без демонтажа конденсатора  из печатной платы, что в значительной степени уменьшает время поиска неисправности, повышает качественные показатели ремонта аппаратуры.

Благодаря низкому измерительному напряжению точность измерений без демонтажа практически не страдает. Алгоритм расчета ESR на базе измеренного

напряжения учитывает нелинейности связанные с ненулевым выходным сопротивлением генератора 62,5 кГц и пропорции изменения напряжения на низкоомных делителях. Тем самым обеспечивается высокая точность и линейность измерений во всем диапазоне. Прибор поможет подобрать электролитические конденсаторы для высококачественных УНЧ по минимальному ESR. Сегодня существуют рекомендации по использованию в таких усилителях конденсаторов только от некоторых ведущих производителей. Использование прибора позволит подбирать конденсаторы по реальным характеристикам, а не ориентироваться на рекламируемый бренд. В этом же режиме можно измерять  сопротивления низкоомных резисторов до 2 Ом с точностью 0,01 и до 25 Ом с точностью 0,1 Ом. При измерении низкоомных проволочных резисторов нужно помнить, что измерение производится на переменном токе и на результат влияет индуктивность резисторов.

Это не является недостатком прибора, а наоборот, позволяет более точно оценить возможность использования резисторов в высокочастотных схемах – импульсных преобразователях, усилителях, ШИМ- регуляторах. В этом же режиме можно измерять внутренние сопротивления аккумуляторов, батареек  и других химических источников тока, что позволяет судить о состоянии их заряда и износа.          

          Подключать прибор к батареям и аккумуляторам следует через качественный керамический конденсатор емкостью 20-30 микрофарад с рабочим напряжением более 50 вольт. Дело в том, что батареи, так же как и конденсаторы, имеют свое внутреннее сопротивление, которое составляет у свежих батарей величину 0,1…5 Ом в зависимости от типа и емкости батареи. При выработке батареи или аккумулятора это сопротивление существенно возрастает. Подбирая в аккумуляторную батарею элементы с близкими значениями ESR, Вы можете существенно увеличить срок ее службы.   При измерении ESR сопротивления конденсатора  будет складываться из собственно  ESR и емкостного сопротивления   Xc = 1/(  2*π* F )  , где F = 62500 Гц.

  Поэтому при необходимости нахождения точного значения именно значения TSR для конденсаторов емкостью менее 20 мкФ  следует отнимать величину емкостного сопротивления для частоты 62,5 кГц . При ремонте и диагностике это не требуется. 

 

      Работа с прибором

 

 Прибор  имеет всего один элемент управления – кнопку . Включение производится нажатием на кнопку, длительностью более 0,8 сек. Прибор имеет режим авто-выключения через 120 сек от последнего нажатия кнопки.  После включения на индикаторе появится приветствие  «CEsr» , затем  прибор переходит к контролю питания. Включаются генератор и  при максимальном токе потребления,  производится замер напряжения питания. В случае недостаточного напряжения появляется надпись « Bt. Lo »,  и прибор выключается. В случае нормального электропитания прибор переходит в рабочий режим. Всего существует 3 рабочих режима: режим с индикацией емкости, с индикацией ESR и с поочередной индикацией емкость - ESR.

Индикация ESR –  в Ом, емкости – в микрофарадах, при индикации ESR в первом разряде индицируется символ E. Переключение режимов осуществляется кратковременным нажатием кнопки. Режимы переключаются  циклически  (С, ESR, C-ESR, С...). После следующего включения прибор останется в том режиме, в котором он выключился . Для принудительного выключения прибора удерживать кнопку более 1 сек.  Проверяемый конденсатор подключается к щупам, либо  при проверке конденсатора без демонтажа, щупы прибора подключаются  к конденсатору на плате и по показаниям на индикаторе делается вывод о его работоспособности.  Следует отметить, что если несколько конденсаторов соединены параллельно (обычно фильтрующие по питанию), то прибор покажет их СУММАРНУЮ емкость. Подключенные параллельно керамические конденсаторы емкостью до 0,5 мкФ могут увеличить погрешность измерения ESR до 5-7%. Максимально возможное значение измеряемой емкости – 65 000 мкФ  Если емкость конденсатора больше этого  значения, на  дисплее будет индицироваться «С---».
Аналогично и для ESR – при ESR больше 25 Ом – индикация  «ESR---». При дефектном конденсаторе с большим током утечки или короткозамкнутым индикатор покажет   «Сerr».                                                           С целью продления срока службы  элементов питания автоматическое выключение питания происходит через 60 секунд после включения или смены режима .  Потребляемый устройством ток в выключенном режиме практически равен нулю (доли микроампер).  Выключить устройство можно также удерживая кнопку нажатой  более секунды.  Предупреждение:  Во избежание выхода прибора из строя перед проверкой РАЗРЯДИТЕ КОНДЕНСАТОР! Особенно это касается высоковольтных конденсаторов импульсных блоков питания. Защита устройства по входу стандартная – 2 диода встречно-параллельно (LL4148). При большом остаточном  напряжении  на конденсаторе она может оказаться неэффективной.(Обычно проверяйте транзистор IRLML2402 (sot-23) справа, под индикатором. Симптомы – не меряет емкость. Замена - IRLML2502 и диодов .
Перекалибровка при замене не требуется.)

 

Калибровка.

 

Вход в режим калибровки- нажать и удерживать кнопку около 10 секунд. При проявлении надписи db00-отпустить. Две последние цифры – номер режима калибровки.  Режим 00 – Замкнуть щупы , короткими нажатиями добиться показаний равными нулю. Это калибровка компенсации сопротивления щупов в диапазоне 0-2 Ом. Выход в следующий режим – нажать кнопку на 1 сек , пока не появится номер следующего режима. Если данную калибровку менять не надо, то после входа  сразу нажать кнопку на 1 сек.  Во всех режимах может потребоваться больше сотни нажатий . если проскочили значение , нажимайте дальше, калибровка идет по кругу. Режим   01 – Замкнуть щупы , короткими нажатиями добиться показаний равными нулю. Это калибровка компенсации сопротивления щупов в диапазоне 2-25 Ом Режим 02 – подключить образцовый безиндуктивный резистор сопротивлением 1 Ом , короткими нажатиями добиться показаний Е1,00.

  Режим 03 – подключить образцовый безиндуктивный резистор сопротивлением 10 Ом , короткими нажатиями добиться показаний Е10,0.  Режим 04 – подключить образцовый неэлектролитический конденсатор емкостью 100 – 500 мкФ , короткими нажатиями добиться правильных показаний емкости.  Режим 05 – подключить образцовый безиндуктивный резистор сопротивлением 2 Ом, короткими нажатиями добиться правильных показаний.  Это калибровка компенсации выходного сопротивления в диапазоне 0-2 Ом. Не рекомендуется менять заводские установки Режим 06 – подключить образцовый безиндуктивный резистор сопротивлением 20 Ом, короткими нажатиями добиться правильных показаний.  Это калибровка компенсации выходного сопротивления в диапазоне 2-25 Ом. Не рекомендуется менять заводские установки

 

Все приборы проходят тестирование и калибровку на заводе. В процессе эксплуатации калибровка не требуется. Только при установке других щупов может потребоваться калибровка режимов 00 и 01.

 

Отличия от существующих аналогов:

1. Значительно меньшие габариты

 2. Щупы прибора не имеют соединительных разъёмов, что уменьшает погрешность в измерениях

 3. Три режима работы - индикация только емкости, только ESR или поочередно емкость/ESR

4. Автоматическое отключение через 120 секунд

 5. Управление с помощью всего одной кнопки (включение, переключение режимов работы)

6. Контроль напряжения батарей питания

7. Автономное питание

8. Потребляемый ток в "спящем" режиме практически равен нулю

9. Не требует калибровки в процессе эксплуатации

10. Автоматическое определение короткозамкнутых конденсаторов в режиме измерения емкости.

11. Измерение низкоомных резисторов и внутреннего сопротивления батарей/аккумуляторов.

12. Наличие функции калибровки (компенсация сопротивления щупов)

Прибор для проверки конденсаторов разных типов на исправность

Одной из причин выхода из строя различного рода электронной аппаратуры, является пробой конденсатора. В статье будет описано: что такое конденсатор, основные типы, принцип работы конденсатора. Также будет предоставлена информация о том, как проверить элемент на работоспособность с выпаиванием и непосредственно на плате самостоятельно.

Что такое конденсатор

Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:

  • пикофарад обозначается pF или пФ;
  • нанофарад обозначается nF или нФ;
  • микрофарад обозначается mF или мФ.

Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.

Цепь переменного тока

В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.

Цепь постоянного тока

В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.

Виды конденсаторов

Существует несколько видов и типов конденсаторов. Они разделяются между собой по следующему принципу:

  1. Изменение емкости. Это изменение классифицирует электронные элементы на постоянные, переменные и подстрочные.
  2. Материал диэлектрика может быть воздухом, слюдой, тефлоном, поликарбонатом, электролитом.
  3. Монтаж. По способу монтажа, эти радиодетали делятся на навесные и печатные.

Существуют несколько типов емкостных устройств, делящихся по принципу построения и работоспособности:

  1. Керамические. Эти элементы выполнены из диска, с обеих сторон имеющего проводник. Подобные печатные детали имеют малое рабочее напряжение, но большую емкость.
  2. Пленочные. Подобные конденсаторы имеют внутри корпуса скрученную в рулон пленку. Большой заряд и высокое рабочее напряжение удается разместить по всем слоям. Слои выполнены из фольги с диэлектриком на одной стороне.
  3. Электролитические. Эти устройства схожи по структуре с пленочными. Отличием является материал диэлектрика. Для этих печатных элементов диэлектриком является бумага, пропитанная электролитом.
  4. Переменные. Это устройства точной настройки приборов. Изменение емкости производится механическим способом.
  5. Подстрочные. Это элементы одноразовой настройки параметров в приборах. Подобная настройка выполняется только на заводах изготовителях.
  6. Пусковые. Это конденсаторы служат для запуска электрических двигателей. Они работают в цепи переменного тока в 220 вольт.

Определение параметров

Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.

Проверка емкости

Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.

Инструкция:

  1. Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
  2. Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
  3. Оба щупа присоединяются к выводам.

Полученное значение является номиналом емкости.

Определение полярности

Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:

  1. Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
  2. Современные радиодетали также имеют обозначение на корпусе знаком «+».
  3. SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.

Минус определяется также визуально:

Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.

Проверка мультиметром

Для определения полярности с помощью мультиметра, необходимо:

  1. Полностью разрядить деталь, закоротив ее выводы.
  2. Резистор присоединить к клемме «+» мультиметра.
  3. Второй конец резистора присоединить к выводу блока питания на 12 вольт.
  4. Резистор присоединить к выводу конденсатора.
  5. Минусовую жилу блока питания соединить со 2 выводом конденсатора.

Если мультиметр не покажет наличие тока в цепи, значит полярность элемента правильная. «+» жила блока питания была верно соединена с «+» конденсатора. Если мультиметр показал наличие тока, значит в цепи не была соблюдена полярность.

Проверка исправности конденсаторов

Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.

Мультиметр

Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.

Для проверки необходимо:

  1. Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
  2. Установить мультиметр в режим определения емкости «cX».
  3. Переключить прибор на определение максимального диапазона емкости.
  4. Щупы присоединить к ножкам или выводам конденсатора.
  5. Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.

Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.

Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.

Тестер

Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.

Инструкция:

  1. Для проверки необходимо установить тестер в режим сопротивления.
  2. Выпаять и разрядить проверяемый элемент.
  3. Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
  4. Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.

Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.

Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.

Проверка без выпаивания

Проверить конденсатор непосредственно на печатной плате очень проблематично. Во-первых, неисправный электрический прибор должен быть полностью обесточен. Также необходимо добиться разряда всех емкостных элементов в цепи. Проверка без выпаивания может показать значения сопротивления элементов, впаянных рядом. Но проверку все же можно провести при помощи индикатора-пинцета.

Первый способ

Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.

Второй способ

Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.

Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.

Третий способ

Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.

Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.

Прибор своими руками

Для проверки конденсаторов можно собрать собственный прибор. Он будет определять емкость не хуже профессиональной аппаратуры. Собрать подобное устройство своими руками достаточно просто. С помощью этого прибора можно проверить работоспособность любых емкостных элементов и даже SMD.

Схема сборки:

Для прибора понадобятся следующие детали:

  1. Микросхема из серии 555, например, NE555 или отечественный аналог КР1006ВИ1. Данная микросхема является таймером времени, но в приборе будет играть роль генератора.
  2. Резисторы: R1 и R5 на 6.8 К. R12 на 12 К. R10 на 100 К. R2 и R6 на 51 К. R13 и R11 на 100 К. R3 и R7 на 68 К. R14 на 120 К. R4 и R8 на 510 К. R15 на 13 К.
  3. Конденсаторы: С1 емкостью 47nf, С2 на 470pf, С3 на 0ю47 mkF.
  4. VD1 подходит любой диод малой мощности, например, SOD 232.
  5. SA1 является любым переключателем на 5 положений.
  6. Мультиметр Х1.
  7. Батарея или блок питания до 12 вольт.

Принцип работы прибора заключается в следующем:

  1. Резисторы R1 и R8, вместе с конденсаторами С1 и С2, создают прямоугольные импульсы, которые регулируются при помощи переключателя SA1. Прибор работает в диапазоне частот от 25 и 2.5 kHz и 25–250 Hz.
  2. Заряд для испытуемого элемента подается через диод VD1.
  3. Разрядниками заряда являются резисторы R10, 12, 15.
  4. Образовавшийся разрядный импульс рассчитывается микросхемой 555. Длительность импульса приравнивается к емкости испытуемого элемента.
  5. Резистор R13 и конденсатор С3, стоящие на выходе, преобразуют импульс в электрический ток. Напряжение равно емкости испытуемой радиодетали.
  6. Напряжение на выходе поступает на мультиметр Х1, который показывает количество вольт, а значит общую емкость детали.

При помощи данного прибора можно проводить проверку конденсаторов емкостью от 20 pF до 200 mkF. Собирается схема на печатной плате, которая должна быть очищена от всех старых дорожек и вытравлена. Если сборка схемы проводится при помощи пайки проводами, нужно учитывать, что длина провода сильно влияет на длину импульса.

Принципиальная схема на печатной плате:

Основные неисправности конденсаторов

Емкостные элементы играют большую роль в принципиальной схеме любого устройства. Основная их функция — заряд определенным количеством тока и импульсный разряд в цепь. К основным неисправностям конденсаторов относятся:

  1. Обычный пробой. Пробой может быть вызван увеличением рабочего напряжения. Для ремонта требуется не только замена элемента, но и определение причины возникновения высокого напряжения.
  2. Внутренний обрыв. При обрыве радиодеталь теряет свою емкость, так как оба ее вывода становятся изолированными. Обрыв может возникнуть при падении прибора или некачественной сборки самого элемента.
  3. Утечка. Эта проблема связана с потерей части емкости. Чем меньше допустимая и оптимальная емкость, тем меньше размер заряда.

Полезные советы

Проверка конденсатора, особенно высоковольтного и пускового, связана с определенным риском.

Перед проверкой стоит учитывать:

  1. Если электрический прибор находится под напряжением или был отключен непродолжительное время, нельзя трогать печатную плату в районе конденсаторов. Устройство разрядится от прикосновения и последует удар током.
  2. Высоковольтные конденсаторы нельзя разряжать металлическим инструментом. Может возникнуть искра, а неизолированная часть предмета ударит током.
  3. Максимальная величина проверки для современных мультиметров, составляет 200 мкФ. Проверить большую величину не получится.
  4. Элементы емкостью менее 0.25 мкФ можно проверить только на замыкание.
  5. При проверке полярных устройств важно определить полюса элемента. Подключение тестера с изменением полюсов может привести к выходу из строя самого конденсатора.

Во время ремонта электроприборов любой мощности, следует четко соблюдать меры безопасности. Проверку любых радиодеталей можно производить только при обесточенном устройстве.

Видео по теме

Прибор для измерения конденсаторов своими руками есп. Цифровой измеритель ESR (ЭПС) и ёмкости на контроллере

Выполненный по приведённой ниже схеме, как измерительную приставку к мультиметру. С обязанностями своими справляется на «ура», доволен им, за исключением как бы незначительного момента - для его использования необходим мультиметр, который нужно достать с полки, убрать щупы, выставить предел измерения, подсоединить пробник... и читать-то эти подробности муторно, а каждый раз это делать? А если нужно проверить конденсаторы, стоящие на плате ремонтируемого электронного устройства, да вдобавок плата не маленького размера, тогда вообще получается вместо любимого «хобби» сплошная суета с примесью досады. Вот и решил собрать мобильный вариант пробника с собственным индикатором для дефектовки электролитических конденсаторов. Отличие этой схемы от схемы приставки в том, что результаты измерения выводятся не на жидкокристаллический дисплей мультиметра а на стрелочный индикатор от магнитофона. Для того чтобы индикатор функционировал в схему введён трансформатор на ферритовом кольце (взят от энергосберегающей лампочки, это важно). Первичная обмотка выполнена проводом диаметром 0,1 мм - 150 витков, вторичная проводом диаметром 0,5 мм - 8 витков (количество витков подбирается, 1 = 100 - 200, 2 = 5 - 10). Изменён номинал резистора R2 cо 100 Ом до 10 кОм. Напряжение питания снижено с 9 до 5 вольт (U питания микросхемы К561ЛН2 от 5 до 15 вольт).

Схема

Основным несущим компонентом для монтажа всего и получения, в конечном счете, желаемого выбрал прочный пластмассовый пинцет, входящий в набор устройства для производства оттиска печати на документах (наборная печать). К нему, при помощи металлической пластины, прикрепил М4762 предназначенный для работы в вертикальном положении шкалы, с током отклонения 220 - 270 мкА, внутренним сопротивлением 2800 Ом, с габаритными размерами 49 х 45 х 32 мм и длиной шкалы - 34 мм. Так же установил на него щупы - контакты и разъём питания.

Шкалу индикатора заменил. Символ бесконечности придаёт ей несколько вызывающий вид, но по сути всё верно, тут важно через увиденное понять, что у измеряемого конденсатора нет превышения допускаемого эквивалентного последовательного сопротивления (ESR), а всё что свыше того (до бесконечности) к эксплуатации не пригодно. Градуировка новой шкалы полностью соответствует задачам дефектовки. В дальнейшем предполагается отклонение стрелки измерительного прибора выставлять, при помощи подстроечного резистора, на конечное деление шкалы, которое будет соответствовать определённому значению ESR. Можно установить полное отклонение стрелки при 1 Ом, а можно и при 10 Ом и т.д. (как будет желаемо).

Печатная плата была разведена только под часть электронных компонентов, остальные (в данном конкретном случае) гораздо удобней разместить навесным способом. И в первую очередь это касается подстроечного резистора который будет размещён снаружи корпуса. Доступность регулировки позволит при необходимости в любой момент перенастроить значение ESR относительно полного отклонения стрелки на шкале индикатора.

По готовности печатной платы и трансформатора была произведена предварительная сборка и опробована работоспособность пробника. Подключённый резистор сопротивлением в 10 Ом удачно вписался в показания стрелки, она отклонилась почти на всю шкалу, что означило максимально возможный для визуального восприятия ESR и будет в данном случае равен 10 Ом.

Конденсатор и два диода были смонтированы навесным способом монтажа на контактах индикатора, всё остальное (за исключением подстроечного резистора) установлено на плату.

После окончательного, чистового соединения всех узлов ещё раз проверил работоспособность - без замечаний. Трансформатор приклеен к плате клеем «Мастер».

Печатная плата помещена в металлический корпус, в качестве которого использована часть пришедшего в негодность печатного вала катриджа принтера. Корпус одет на цилиндрическую часть (выступ) индикатора. Заглушкой для торцевой части послужила подходящая пластиковая пробочка. На ней установлен подстроечный резистор, а лучше поставить маленький переменник (буду менять). Габаритные размеры пробника, как видно на фото, сопоставимы со спичечным коробком, изначально задуманный мобильный с возможностью все доступности вариант думаю удался.

После полуминутной настройки стрелка занимает следующие положения на шкале индикатора: при накоротко замкнутых контактах.

При подключении резистора номиналом 0,1 Ом.

При подключении резистора номиналом 1 Ом, а при 2,5 Ом стрелка встаёт перед последним делением.

Результат проведённой дефектовки припасённых к этому случаю электролитических конденсаторов б/у.

Как это происходило - индикатор в работе.

Видео

Пока питание на пробник подаю с лабораторного БП, но это не то. Нужен индивидуальный компактный хорошо стабилизированный источник питания на 5 вольт. В заключении хочу поблагодарить любителя электроники с просторов интернета Olegm Wolf за помощь в доработке схемы. С уважением, Babay .

Обсудить статью ESR ТЕСТЕР

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока , то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P=I 2 xR

где

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло;-) И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром :


Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к . С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:


Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.

Для того, чтобы не травить лишний раз платку, я взял и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.


С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ


Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как М онтажный, Г ибкий, Т еплостойкий, в Ф торопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:


Микросхемы по привычке всегда ставлю в панельки:


При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:


Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:


Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп :


Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:


Провода, идущие к пинцету, закреплены каплей термоклея . Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф , замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:


Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора





Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (Н изкоЧ астотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

Степан Миронов.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их - не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% - это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% - не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором - "aESR" (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте - эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме "ESR", а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью "анализатора - aESR".

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания "aESR" в большинстве случаев немного выше показаний "ESR". Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” - это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

И так, что же может мой измеритель.

Измеритель ESR+LCF v3 - измеряет

Дополнительные функции:

В режиме ESR можно измерять постоянные сопротивления 0.001 - 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 - 20Ом.
- В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора (подробное описание см. далее).
- В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
- Индикация разряда батареи.
- Автоматическое отключение - около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись "StBy" и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.

В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».

Принципиальная схема.

"Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.

Конструкция и детали.

ЖК - индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер - PIC16F886-I/SS.
Транзисторы BC807 - любые P-N-P, близкие по параметрам.
ОУ TL082 - любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 - 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 - 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 - 430-650пФ с низким ТКЕ, К31-11-2-Г - можно найти в КОС отечественных телевизоров 4-5 поколения (КВП контура).
С102, С104 4-10мкФ SMD - можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 - можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.

Печатная плата выполнена из одностороннего стеклотекстолита.

Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.

Крышки сделаны из чёрной пластмассы.

Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” - гнездо более высокого качества.

Конструкция щупа:

В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.

Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.

Удачи всем и всего наилучшего!

miron63 .

Архив Измеритель ESR+LCF v3.

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель - тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR - mikro». Остановило то, что уж больно здорово хвалили - «через край». В общем, решился на самостоятельные действия. Так как на замахиваться не хотелось - выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось - не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» - со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества - пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой - далеко не миниатюрный.

Обратная сторона - плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал - способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления - резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем - соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее - враг хорошего» трогать его не позволил - сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении . Про свои хлопоты и радости поведал Babay .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

ESR метр своими руками . Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический . Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность , приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать .

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на , которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

Прибор для измерения ёмкости конденсаторов

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость , насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов. Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять  микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта монитора samsung. Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

Смотрим видеоверсию данной статьи:

.

измеритель ESR микроконтроллере PIC16F873 - MBS Electronics

Самодельный измеритель ESR с возможностью измерений бьез выпаивания конденсаторов из печатной платы

Что такое ESR?

Эквивалентное последовательное сопротивление (ESR) — это исключительно важный параметр электролитического конденсатора, характеризующий его работоспособность, качество и степень старения. С точки зрения ремонта электронной техники этот параметр даже более важен, чем емкость. Если, например, мы измерили емкость конденсатора номиналом 1000 микрофарад и она оказалась 650 микрофарад, конденсатор еще может долгое время работать в устройстве практически без заметного ухудшения характеристик (это конечно сильно зависит от конкретной схемы), в случае, если его ESR остается в приемлемых рамках. С другой стороны, если у конденсатора сильно выросло ESR, то во многих схемах, особенно в импульсных блоках питания, такой конденсатор уже не сможет выполнять своих функций даже если у него сохранилась номинальная емкость. Однако на практике такое бывает не часто, так как емкость и ESR — параметры взаимосвязанные и при росте ESR очень часто уменьшается и емкость конденсатора. Обычно ESR возрастает по мере высыхания электролита конденсатора.

В чем же смысл параметра ESR и почему он так важен? SER (Equivalent Series Resistance) или эквивалентное последовательное сопротивление — это паразитное сопротивление, которое можно представить себе как резистор, включенный последовательно с идеальным конденсатором. То есть это дополнительное сопротивление, которое имеет место быть в любом реальном конденсаторе, которое ухудшает качество этого конденсатора. Иными словами — это параметр, который показывает насколько наш конденсатор не идеален. Таким образом, чем больше ESR, тем хуже конденсатор.

Нужно сказать, что допустимое ESR — это параметр не постоянный, он зависит от емкости и рабочего напряжения конденсатора. Поэтому сделать вывод о пригодности конденсатора после измерения его ESR можно с помощью специальной таблицы максимально допустимых значений ESR. Вы можете ее увидеть на фотографии прибора на его лицевой панели. Я распечатал таблицу и приклеил ее на панель прибора:

Как измерить ESR?

Эквивалентное последовательное сопротивление, так же, как и обычное сопротивление, измеряется в Омах. В отличие от обычного омметра, прибор, измеряющий ESR, производит измерения не на постоянном токе, а на переменном токе сравнительно высокой частоты, обычно в районе 100 килогерц. На такой частоте емкость конденсатора практически не оказывает влияния на сопротивление конденсатора, поэтому измеряется именно последовательное эквивалентное сопротивление, а не емкость конденсатора. Фактически это главное и единственное отличие измерителя ESR от простого омметра.

В общем виде метод измерения ESR показан на схеме ниже:

Большинство измерителей работают именно по этому принципу. У нас есть генератор переменного напряжения G, резистор известного сопротивления R и измеряемый конденсатор Cx. Этот резистор совместно с измеряемым конденсатором образуют делитель напряжения. Дальше идет детектор, преобразующий переменное напряжение в постоянное и узел индикации этого постоянного напряжения, пересчитанного в Омы. Это может быть аналоговая или цифровая схема индикации, суть от этого не меняется.

Схема прибора

Описываемый прибор исключительно удобен тем, что может проверять конденсаторы без выпаивания их из схемы и в большинстве случаев это срабатывает. Исключением может быть например если вы хотите проверить конденсатор, параллельно которому включены другие конденсаторы. Такое включение иногда бывает в блоках питания. В таком случае прибор покажет наименьший ESR (то есть ESR лучшего конденсатора).

Схема измерителя ESR (кликните чтобы увеличить)

Прибор собран на основе микроконтроллера PIC16F873. Микроконтроллер измеряет выпрямленное напряжение, пересчитывает его значение в сопротивление в Омах. Кроме того микроконтроллер генерирует переменное напряжение прямоугольной формы частотй 100 кГц, которое используется для проведения измерений.

Для того, чтобы было возможно измерять ESR конденсаторов, не выпаивая их из схемы, измерительное напряжение должно быть достаточно низким, обычно 0,2-0,4 вольта, то есть меньше порога открывания pn — переходов полупроводниковых приборов.

Фактичекски представляет собой цифровой омметр работающий на переменном напряжении частотой 100кГц и позволяющий измерять сопротивления от 0 до 25,5Ом.

Узел формирования образцового напряжения 2.5 В для АЦП контроллера в оригинальной схеме собран на микросхеме TL431. В то время, когда я собирал этот измеритель у меня такой микросхемы не было и я заменил его стабилитроном на 3.3 В и подстроечным резистором на 10 К. Подстроечником я установил на ножке 5 контроллера требуемое напряжение 2.5 В.

Исходный узел на TL431

Я заменил его вот так

Сейчас TL431 — это очень распространенная и дешевая микросхема и проблем с ее приобретением нет. Так что если вы будете использовать мою печатную плату, то установите TL431. Подстроечник в таком случае устанавливать не нужно.

Блок питания собран на сетевом трансформаторе T1, диодном мостике и стабилизаторе напряжения LM7805 (K142ЕН5А). В своей версии прибора я отказался от трансформатора, оставив, тем не менее, диодный мостик на печатной плате. Я использовал малогабаритный импульсный сетевой блок питания (адаптер) на напряжение 12 вольт,

который, благодаря наличию диодного мостика, можно подключать в любой полярности или вообще использовать адаптер с переменным напряжением на выходе (просто трансформатор).

В принципе можно избавиться вообще от блока питания, если использовать пяти-вольтовый адаптер — зарядку от смартфона.

Меандр с частотой 100кГц снимается с ножки RC2 микроконтроллера и через резистор R3 подается на усилитель тока, собранный на транзисторах VT1,VT2. Я использовал КТ3102 и КТ3107. Хорошей идеей здесь будет использовать современные транзисторы BC547 и bc557. Нагрузкой усилителя служит резистор R1 и диоды VD5,VD7, включенные встречно-параллельно для ограничения амплитуды на измеряемом конденсаторе. Далее переменное напряжение, через конденсатор С1 и измеряемый конденсатор Cx поступает на первичную обмотку повышающего трансформатора Т2. далее импульсы снимаются со вторичной обмотки и выпрямляются диодом VD6, после чего полученное пульсирующее напряжение сглаживается конденсатором С3. Далее сформированное постоянное напряжение через подстроечный резистор R4 поступает на вход аналого-цифрового преобразователя микроконтроллера D3. Конденсатор С9 устраняет возможные высокочастотные помехи.

Информация отображается на трехразрядном семи-сегментном ЖК индикаторе. Транзисторы VT3, VT4, VT5 — ключи коммутации ЖК индикаторов (используется принцип динамической индикации.

Сетевой трансформатор (если вы решите его использовать) со вторичной обмоткой на 9-12 вольт. Повышающий трансформатор Т2 намотан на ферритовом кольце марки М2000НМ и размером К10х6Х3 (можно использовать кольцо других размеров, не сильно отличающихся от указанных. Это не критично). Первичная обмотка намотана проводом диаметром 0,26мм, и состоит из 42 витков. Вторичная обмотка содержит 700витков провода диаметром 0,08мм.

Налаживание устройства. Подключаем к щупам измерителя резистор известного сопротивления в диапазоне 1 .. 5 Ом и подстроечным резистором добиваемся корректных показаний на дисплее. После такой настройки мой прибор при соединенных вместе щупах показывал сопротивление отличное от нуля, поэтому я еще слегка подкорректировал положение движка резистора таким образом чтобы на дисплее были нулевые показания при замкнутых щупах.

Печатная плата устройства когда-то была разведена в программе PCAD2006, а в последствии я импортировал файл платы в программу DIPTRACE.

Прошивка (программа) для микроконтроллера PIC16F873 написана на ассемблере. Архив с прошивкой и чертежом печатной платы вы можете скачать по ссылке а конце этой статьи.

Я разрабатывал печатную плату, когда у меня еще не было в наличии светодиодных 7-сегментных индикаторов, поэтому индикатор я установил на отдельной плате. Эта плата — кусок обычной макетной платы, куда были припаяны индикаторы. То есть, печатную плату для индикатора я не разводил.

Со стороны лицевой панели индикатор закрыт куском оргстекла синего цвета. Это улучшает контрастность дисплея.

Провода щупов измерителя желательно выполнить из толстого многожильного провода, чтобы их сопротивление было как можно меньше. Сами щупы я сделал из толстых стальных швейных игл, такими щупами очень удобно измерять ESR конденсаторов непосредственно на печатных платах.

Провода щупов измерителя желательно выполнить из толстого многожильного провода, чтобы их сопротивление было как можно меньше. Сами щупы я сделал из толстых стальных швейных игл, такими щупами очень удобно измерять ESR конденсаторов непосредственно на печатных платах.

Ссылка для скачивания архива с прошивкой и печатной платой измерителя ESR

Ссылки для заказа некоторых компонентов схемы

Радиосхемы. - Приборы и измерения

Радиотехника начинающим
перейти в раздел

Букварь телемастера
перейти в раздел

Основы спутникового телевидения
перейти в раздел

Каталог схем
перейти в раздел

Литература
перейти в раздел

Статьи
перейти в раздел

Схемы телевизоров
перейти в раздел

Файловое хранилище
перейти в раздел

Доска объявлений
перейти в раздел

Радиодетали и
ремонт в Вашем городе
перейти в раздел

ФОРУМ
перейти в раздел

Справочные материалы
Справочная литература
Микросхемы
Прочее

Прибор для измерения емкостей без выпайки из схем

   Измерение величины емкости конденсатора без выпайки из схемы - это 50% успеха при ремонте и настройке электронных устройств. В журнале "Радио" подобные схемы стали появляться в конце 80 годов. Были повторены и модернизированы ряд схем. В результате появилась предлагаемая схема прибора для измерения емкостей (1000 пФ до 10000 мкФ) на старой элементной базе (у кого есть возможность применить современные счетверенные ОУ на полевых транзисторах, с потреблением на корпус 1 мА - применяйте). Ставилась задача создать прибор на недорогой старой элементной базе, простой в регулировке и настройке, имеющий время автономной работы на аккумуляторах 5 дней в неделю по 8 часов (применены самые дешевые и распространенные аккумуляторы Д - 0,26 Д) и работающий на любой мультиметр. Рассмотрим кратко схему прибора (рекомендуется в начале прочитать статью в "Радио" №4 1998г В. Васильев "Измеритель емкости конденсаторов" так как нет смысла полностью описывать, как работает прибор. Внешних отличий два - применены электронные ключи, для уменьшения габаритов прибора, стабилизированный преобразователь напряжения со схемой контроля разряда аккумуляторов и автоматического выключения прибора).

   Прибор для измерения емкостей питается от 3 аккумуляторов. Заряд аккумуляторов осуществляется от блока питания с напряжением 6…12В, подключаемого к гнезду XS1. Аккумуляторы заряжаются постоянным током, его величина устанавливается резистором R2. Контроль за разрядом аккумуляторов до 2,7 - 2,5В осуществляет схема на триггере VT4 и VT5. Величину опорного напряжения изменяют резистором R8 (падение напряжения на зеленом светодиоде примерно 2,5В, допустимо использовать 5 диодов включенных последовательно).

   Преобразователь напряжения собран на транзисторах VT2 и VT3. Выходное напряжение стабилизированное ±7±0,5В (VD1), преобразователь работает при входном напряжении от 1,8В до 5В. Трансформатор Т1 намотан на стандартном каркасе для ферритового сердечника М2000 Ш4?4, допустимо использовать любой подходящий малогабаритный ферритовый трансформатор. Диаметр провода - 0,1 мм, число витков 1 обмотки - 15 витков, 2 и 3 обмоток - 35 витков. Диаметр провода не критичен, можно взять и 0,2 мм, число витков тоже не критично - в 1 обмотке допустимо 10 - 20 витков, во вторичных обмотках в два раза больше.

Схему прибора можно скачать здесь.

   Учитывая, что максимальная частота работы ОУ составляет 1 кГц за основу были взяты ОУ 140УД12 (для уменьшения габаритов прибора применен его счетверенный аналог 1401УД3). Единственно на что следует обратить внимание - амплитуда колебаний на выходе генератора должна быть одинаковой на всех частотах, иначе увеличивают ток программирования ОУ (R11 и R18). Измерительный ОУ был выбран 140УД14 - малое потребление и достаточно большое входное сопротивление. Хотя на пределе измерения 1000пФ оно маловато (скорректировано увеличением номинала резистора R43 до 12 МОм, а не 10МОм). Коррекция нуля показаний прибора на пределе измерения 1000пФ осуществляется R35 (убирается паразитная входная емкость прибора с измерительными щупами (C17 3 пикофарады!), желательно вывести под шлиц для оперативной подстройки). Применена нестандартная частотная коррекция ОУ 140УД14 (главное убрать звон на фронтах, все-таки это дифференциатор склонный к самовозбуждению).

   В схеме используется электронный переключатель пределов измерения, позволяющий резко сократить габариты прибора. Переключатель SA2 переключает диапазоны измерения с помощью ключей в микросхемах DD1 и DD2 (от 1000пФ в положении 1 до 10000мкФ в положении 8).

Рис. 1

   Прибор калибруют своим подстроечным резистором на каждом пределе измерения по эталонным емкостям, что резко упрощает настройку прибора. На пределе 1000пФ - R37 на пределе 0,01мкФ - R38, на пределе 0,01мкФ - R39, на пределе 1мкФ - R40, на пределах (10мкФ - 10000мкФ) - (R23 - R26).

   Далее описание работы прибора аналогично описанию схемы в "Радио" №4 1998г В. Васильев "Измеритель емкости конденсаторов"… . Единственно в данной схеме в генераторе ошибка - в ОУ DA 1.2 необходимо поменять местами прямой и инверсный входы ОУ иначе генератор не заработает. Схемы обзора в прикрепленных файлах. На фотографиях в конце статьи 1-я и 3-я модификации прибора автора.

   Первая модификация прибора создана в начале 2000 г., применен микроамперметр на 100мкА и аккумуляторная батарея 7 D - 0,0125D.

Рис. 2

   Третья модификация прибора описанная в данной статье (2001 год)

   Автор: Сучинский Александр

Как проверить конденсатор без демонтажа [испытание электрической цепи]

Эй! надеюсь, у вас все хорошо.

Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты перегорают и требуют замены.

Компоненты, которые имеют более высокую вероятность сгорания, - это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы. А иногда перенапряжение их выгорает.

Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор разомкнут, и вы можете найти их на плате за секунды.

Однако это не относится к конденсатору.

В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.

Но что, если тебе не повезло?

Настоящая проблема, с которой вы столкнетесь, - нормально выглядящий конденсатор может оказаться плохим.Таким образом, вам нужно снять весь конденсатор с платы, проверить каждый, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.

Не волнуйтесь.

В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.

Надеюсь, вам понравится эта статья.

Проверить конденсатор без демонтажа его

Давай посмотрим правде в глаза.

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.

Почему?

  • Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним.Таким образом, вы получаете эквивалентное значение, а не фактическое.
  • Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.

Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.

Итак, как я могу проверить эту суку?

Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).

Таким образом, лучшим решением для тестирования конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний - для проверки конденсаторов SMD.

В оставшейся части статьи я подробно расскажу, что такое упомянутые устройства и как они проверяют внутрисхемные конденсаторы.

Измеритель СОЭ

Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR - это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.

Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.

У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.

Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.

Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший или плохой конденсатор.

Как проверить конденсатор с помощью измерителя ESR?

Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.

  • Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительных сведений всегда разряжайте конденсатор перед измерением любого его параметра.
  • Разряд конденсатора может производиться закорачивая его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
  • Включите измеритель СОЭ и закоротите его провода, пока на его экране не появится 0. Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
  • Подсоедините красный провод измерителя ESR к положительному, а черный - к отрицательному выводу тестируемого конденсатора.
  • Запишите показания ESR-метра.
  • Сравните показание с таблицей на корпусе измерителя СОЭ. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
  • Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.

В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.

Более того, хороший конденсатор будет иметь измерения почти как короткое замыкание, а все другие части, подключенные параллельно ему, будут иметь минимальное влияние на конечные измерения. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.

Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.

Просто найдите это.

Я рекомендую и мне нравится этот измеритель СОЭ (ссылка на Amazon) . Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его. Теперь, если вы не хотите платить высокую прибыль на Amazon при покупке счетчика с опцией зажимов ( Amazon продает счетчик с двумя вариантами: один с зажимами, а другой без зажимов ), вы можете напрямую купить тот же измеритель с двумя типами зажимов (один для SMD и один для компонентов со сквозным отверстием) по низкой цене и бесплатной доставкой от нас. Yaman Electronics (ESR Meter Link).

Просто дополнительный обмен для настоящих любителей электроники и любителей: Если вы любитель или новичок и думаете о создании собственного недорогого измерителя ESR, альтернативного вышеуказанному, то вы должны попробовать этот тестер компонентов (ссылка на продукт) . Вы знаете, это устройство помогает вам идентифицировать компоненты электроники и выдает значения за считанные секунды, включая конденсатор, а также измеряет его емкость и значения ESR. Было бы здорово заставить это устройство работать как измеритель ESR, припаяв зажимы к его плате.Это был бы классный проект для вас. Но эй! покупайте, только если знаете, что делаете.

Интеллектуальный пинцет

Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но умный пинцет (ссылка на Amazon) - это весело и, на мой взгляд, замечательный инструмент для вашей лаборатории.

Настоящая проблема умных пинцетов в том, что они дорогие. Когда я в последний раз проверял, его цена была около 300 долларов.Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.

Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.

Визуально неисправный конденсатор

Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.

Плохой электролитический конденсатор проглатывается на верхней стороне, вы видите такой в ​​цепи; просто замените его, не теряя времени на тестирование.

Значение емкости может быть в хорошем диапазоне, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.

Заключение

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.

Единственное решение для проверки конденсаторов без демонтажа припайки - это измерение их эквивалентного последовательного сопротивления (ESR).Это значение измеряется измерителем СОЭ.

Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.

Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.

Ну вот и все. Теперь, если такой читатель, как я, сначала прочитает заключение. Вы это читаете. Пора перейти к началу.Но вы читатель, зашедший так далеко. Надеюсь, вам понравилось.

Спасибо и хорошо проводите время.

Другие полезные сообщения

Как проверить конденсатор без распайки (испытание цепи)

Довольно сложно исследовать любую часть «в цепи», а не просто конденсаторы.

Вы должны иметь некоторое представление об окружающей схеме, чтобы вы могли решить, чего ожидать, когда будете применять свой собственный тест.

Это ведет к другому этапу, если вы используете мультиметр для измерения обеих сторон детали, вы хотите понять, как мультиметр взаимодействует со всей схемой.

В ваших обстоятельствах я бы по крайней мере начал с моего мультиметра в режиме постоянного тока, начал со стороны низкого напряжения этого входа питания и оценил правильные напряжения, которые обнаруживаются как при правильной работе устройства, так и особенно когда он находится в режиме отказа.

Работа в компьютерной системе.

Вам вполне может потребоваться осциллограф, если ваш DVM ничего не раскрывает.

Но не делайте этого, если на машину поступает сетевое напряжение и у вас есть некоторая неуверенность в том, какие части находятся под высоким напряжением !!!

Электролитические конденсаторы имеют традицию пренебрегать с течением времени, проверять наличие выпуклых головок или, если они увеличены на поверхности печатной платы, загляните между их ножек, чтобы определить, не вытолкнулась ли герметизирующая крышка - определенный признак разрушенной крышки.

Кабельные соединения также являются слабым местом, поэтому убедитесь, что все они полностью вставлены в исходное положение.

Когда где-нибудь есть чип от машины, проверьте, есть ли тактовый сигнал.

Этого достаточно, чтобы рассмотреть сегодня.

Оценка конденсатора без демонтажа его

Позвольте только взглянуть правде в глаза.

Вы просто не можете исследовать ужасный конденсатор внутри или снаружи печатной платы, просто измерив его значение емкости с помощью измерителя конденсаторов или мультиметра.

Потому что в этой ситуации упомянутое устройство приведет вас к неверному изучению, а также у вас может не быть возможности действительно сказать, действительно ли проанализированный вами конденсатор был плохим или подходящим.

Почему?

Основная причина в том, что даже когда конденсатор находится внутри печатной платы, существует множество различных элементов, включенных параллельно или последовательно с ним.

Значит, вы получаете равные показания, возможно, не настоящие.

После того, как конденсатор выходит за пределы планки, иногда неисправный конденсатор может дать вам подходящее значение емкости на мультиметре или измерителе конденсатора.

Без сомнения, мультиметр или емкостной измеритель используется для количественного определения емкости.
Им просто нельзя доверять, чтобы вы знали, плохой или исправен конденсатор, если он снаружи или внутри печатной платы.

Итак, как мне это проверить?

Остался один вариант, который мы могли использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).

В заключение, идеальный способ проверить конденсатор без его полного демонтажа - использовать измеритель ESR или умный пинцет.
Оба работают одинаково и все в порядке.
Однако измеритель ESR предпочтителен для сквозных конденсаторов, а последний - для проверки конденсаторов SMD.

В оставшейся части руководства я предоставлю дополнительную информацию о том, что будет за упомянутое устройство, и о том, как они проверяют внутрисхемные конденсаторы.

Измеритель СОЭ

Выражение ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR - это устройство, используемое для определения эквивалентного последовательного сопротивления настоящего конденсатора без его демонтажа с помощью цепи.

Это устройство не может измерять емкость, его можно просто использовать для проверки конденсатора.

У большого конденсатора значение ESR равно нулю, но на самом деле оно намного меньше; рядом с идеальной стоимостью.
Высокое значение ESR является первым признаком разрушения конденсатора.

Увеличение значения ESR увеличивает как падение напряжения в конденсаторе, так и нагрев.
Тепло, выделяемое конденсаторами, происходит из-за тепла, и это тепло вызывает утечку конденсатора.

Если вы не исследуете электролитический конденсатор на значение ESR с помощью измерителя ESR, то у вас может не быть возможности определить, хороший ли конденсатор или плохой.

Как проверить конденсатор с помощью измерителя ESR?

Здесь перечислены быстрые действия по проверке любого внутрисхемного конденсатора с помощью измерителя ESR.

Сначала разрядите конденсатор, указанный ниже.

Это действительно важно и важно, если вы случайно забудете этот шаг, вы можете испортить свой измеритель СОЭ.

Чтобы получить дополнительную информацию, постоянно снимайте конденсатор перед измерением какого-либо его параметра.

Разряд конденсатора может производиться закорачиванием его ножек любыми доступными способами.

Но не просто укорочите ноги кабелем с низким сопротивлением, фантастической практикой будет использование материала с высоким сопротивлением.

Включите измеритель СОЭ, также кратко проинформируйте о его перспективах, пока на его собственном дисплее не появится 0 исследований.

Если в настоящее время на дисплее отображается 0 исследований, то нет необходимости в кратком изложении результатов.

Подключите красный провод измерителя ESR к полезному выводу, а черный провод к отрицательной клемме проверяемого конденсатора.

Обратите внимание, что показания измерителя ESR.

Оцените показания, используя таблицу, размещенную на корпусе измерителя ESR.

Если значение ESR находится в указанном диапазоне, конденсатор отличный и не требует изменений, или даже тогда он плохой и требует замены.

Если весь корпус ESR не соответствует обеденному столу, используйте техническое описание этого конденсатора, чтобы увидеть его значение ESR.

В техническом описании каждого конденсатора записано его значение ESR при частоте 100 кГц и номинальном напряжении.

Отклонение от этого отношения помогает нам определить, нужно ли заменять конденсатор или нет.

Обычно ESR плохого конденсатора увеличивается.

Более того, фантастический конденсатор можно было бы измерить почти как короткую цепь, а остальные части, подключенные параллельно с его использованием, будут иметь минимальное влияние на размер конца.

Это качество, которое делает измеритель СОЭ незаменимым прибором для поиска неисправностей электроники.

Следовательно, если вы действительно хотите изучить и исправить неисправные конденсаторы на своих устройствах, вам понадобится соответствующий измеритель ESR.

Вы можете найти достойное СОЭ где угодно.

Интеллектуальный пинцет

Обычно измеритель ESR может выполнять всю работу за вас, но что касается деталей SMD, это не так просто, как мудрый пинцет.

Если вы решите выбрать СОЭ, все будет в порядке, но интеллектуальный пинцет (ссылка на Amazon) - это приятно и, по моему мнению, отличный инструмент для вашей лаборатории.

Настоящая проблема умных пинцетов в том, что они дороги.

В последний раз я проверял его стоимость около 300 долларов.

Но помимо использования его просто для проверки конденсаторов, он также может работать как замечательный портативный измеритель LCR.

Все измерения точно такие же, как я говорил ранее для измерителя ESR.

Визуально видя плохой конденсатор

Вместо того, чтобы использовать измеритель ESR или пинцет, мы могли бы даже протестировать конденсатор, не снимая его при помощи общего обзора.

Плохой электролитический конденсатор расходуется с другой стороны, вы видите это на схеме: просто замените его, не тратя время на его анализ.

Значение емкости может быть в большом диапазоне, если вы исследуете его вне цепи с помощью мультиметра или емкостного измерителя, но, тем не менее, оно паршивое.

Заключение

Вы просто не можете проверить ужасный конденсатор ни в помещении, ни за пределами печатной платы с помощью измерителя емкости или мультиметра.

Основная причина.

Они могут привести к ложным результатам.

Единственное средство для проверки конденсатора без демонтажа припайки - это измерение его эквивалентного последовательного сопротивления (ESR).

Это значение измеряется измерителем ESR.

Измеритель ESR передает переменный ток частотой 100 кГц на тестируемый конденсатор.

Ток генерирует напряжение на конденсаторе, а затем с помощью математики вычисляется ESR и отображается на мониторе.

Вы получаете смещенное значение ESR после сравнения его с графиком ESR, вы получаете неисправный конденсатор.

Как измерить емкость с помощью цифрового мультиметра

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как прикасаться к нему или проводить измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. 4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.

    Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.

  5. Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Устранение неисправностей однофазных двигателей - одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC - хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.

Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Связанные ресурсы

Как проверить конденсатор с помощью мультиметра -5 Методы

Печатные платы

собираются из электронных компонентов, таких как транзисторы, конденсаторы, интегральные схемы (ИС).Если по какой-либо причине компонент неисправен, его необходимо заменить новым для ремонта устройства. Первым шагом в устранении неполадок является определение неисправного компонента системы путем измерения с помощью инструментов или визуального осмотра.

Например, если мы говорим о конденсаторах, они очень чувствительны к скачкам напряжения, а перенапряжение может необратимо повредить конденсатор. Как проверить конденсаторы на предмет неисправности или условия работы для ремонта - тема данной статьи. Устранение неисправностей конденсатора с помощью мультиметра или других инструментов.

Что такое конденсатор?

Конденсатор - это компонент, который накапливает энергию в виде электрического заряда и часто используется в электронных приборах, таких как вентиляторы и компрессоры кондиционирования воздуха, для выполнения различных функций.

Кроме того, эти конденсаторы можно разделить на два типа: электролитические, связанные в основном с вакуумными и транзисторными источниками питания, и неэлектролитические, совместимые с регулированием постоянного тока.

Как проверить конденсатор с помощью мультиметра

Из этого туториала Вы узнаете, как проверить конденсатор переменного тока с помощью цифрового мультиметра, а также как проверить его без него.

1. Использование цифрового мультиметра с установкой емкости

Проверка конденсаторов с помощью цифрового мультиметра с функцией измерителя емкости - один из самых простых и распространенных способов. В современных цифровых мультиметрах можно встретить как измеритель емкости, так и измеритель напряжения

.

Точно так же этот метод работает и с крошечными SMD-компонентами. Пошаговые инструкции о том, как проверить конденсатор переменного тока с помощью цифрового мультиметра, можно найти ниже

.
  • Удалите конденсатор из цепи и убедитесь, что он полностью разряжен, прежде чем измерять его значение.
  • Обратите внимание, что емкость конденсатора на его корпусе указывается в фарадах, поскольку единицей измерения емкости является фарад, обычно выражаемый в микрофарадах (Ф).
  • Установите мультиметр в режим «емкости», повернув ручку.
  • Зонд мультиметра должен быть подключен к клеммам конденсатора. Подключите положительную клемму к красному щупу мультиметра, а отрицательную клемму к черному щупу, если соблюдается полярность.
  • Запишите фактическое значение на листе бумаги после проверки мультиметра.
  • Сравните оба показания, и если есть большая разница между напечатанным показанием и измеренным показанием или измеренное показание равно нулю, конденсатор неисправен и его необходимо заменить на исправный.
Рис. - Демонстрация того, как проверить конденсатор переменного тока с помощью цифрового мультиметра.

2. Использование цифрового мультиметра без настройки емкости

Некоторые цифровые мультиметры не имеют функции измерения емкости, поэтому описанный выше метод неприменим, но мы все же можем проверить конденсатор, измерив его сопротивление.Пошаговая инструкция по проверке конденсатора мультиметром путем измерения его сопротивления

  • Выньте конденсатор из его цепи и убедитесь, что он полностью разряжен.
  • Установите ручку мультиметра в положение Ом (единица сопротивления) или греческую букву омега (*), как показано на рисунке 1.
  • Снова подключите выводы мультиметра к клеммам конденсатора, убедившись, что красный находится на положительной клемме и черный находится на минусовой клемме.
  • Следует отметить первое показание сопротивления, которое появляется на дисплее.В течение нескольких секунд он устанавливает отображение значения бесконечности (Открыть).
  • Отсоедините датчики и повторно соблюдайте их. Это означает, что конденсатор находится в хорошем рабочем состоянии, если результаты такие же, как и в первый раз.
  • Конденсатор неисправен (мертв), если он не изменился ни в одном из повторных тестов.

3. Проверьте конденсатор с помощью простого аналогового мультиметра

Используя другие параметры, такие как ток (A), напряжение (V) и сопротивление (O), мы можем проверить конденсатор так же, как мы можем с цифровыми мультиметрами.В этом разделе объясняется, как можно проверить конденсатор путем измерения сопротивления. Это пошаговое руководство по тестированию конденсатора с помощью простого аналогового мультиметра

.
  • Повторите те же шаги еще раз: выньте конденсатор из цепи и проверьте его на полную разрядку.
  • Убедитесь, что ваш мультиметр настроен на настройку сопротивления (омметр *), и выберите более высокий диапазон.
  • Красный датчик должен подключаться к положительной клемме, а черный датчик - к отрицательной клемме.
  • Указатель стрелки на дисплее аналогового мультиметра измеряет показания, а положение иглы определяет результат измерения емкости.
  • Это указывает на то, что конденсатор функционирует правильно, если стрелка сначала показывает низкое значение, а затем перемещается в правую сторону и через некоторое время отображает более высокое значение.
  • Когда стрелка сначала показывает низкое значение и не движется дальше, это указывает на неисправный конденсатор.
  • Возможно, что стрелка в третьем случае не показывает значения сопротивления или не перемещается ни на какое значение.Это указывает на то, что конденсатор открыт и неисправен.

3. Проверка конденсатора с помощью вольтметра

Чтобы проверить, неисправен ли конденсатор, мы воспользуемся простым вольтметром для измерения его номинального напряжения. Вы можете выполнить следующие действия, чтобы проверить конденсатор с помощью вольтметра, в следующем разделе: Проверка конденсатора с помощью вольтметра

  • После того, как конденсатор полностью разрядится, снимите его и удалите из цепи.Для измерения также можно убрать одну задержку.
  • Номинальное напряжение конденсатора должно быть записано на листе бумаги на измерителе и проверено за пределами корпуса конденсатора. Вы можете найти цифру после большой буквы «V» на любой части тела. Например, 16В, 50В или другое значение.
  • Конденсатор теперь необходимо зарядить напряжением ниже его номинального. Если номинальное напряжение конденсатора составляет 30 В, зарядите его 9 В и зарядите не менее 600 В.
  • Убедитесь, что положительная клемма подключена к красному щупу, а отрицательная клемма - к черному щупу.
  • Подсоедините красный щуп к положительной клемме, а черный щуп к отрицательной клемме вольтметра. Теперь вы готовы измерить напряжение заряженного конденсатора.
  • Конденсатор, размер которого близок к его номинальному значению, является хорошим конденсатором. Конденсатор неисправен, если разрыв напряжения больше.

4. Замыкание клеммы конденсатора

Этот метод был более популярен в прежние времена, так как не требовал никаких измерительных устройств для проверки.В этой статье мы обсудим, как проверить конденсатор без мультиметра

.

Метод опасен и не рекомендуется профессионалами, но при необходимости следует соблюдать меры предосторожности. Необходимо надевать защитные перчатки, нельзя прикасаться к металлическим поверхностям. Ниже приводится пошаговое руководство о том, как закоротить клемму конденсатора для проверки конденсатора. Следующие шаги используются при тестировании конденсатора

.
  • Снимите конденсатор с печатной платы путем распайки, при этом конденсатор должен быть полностью разряжен.
  • На время от одной до четырех секунд подключите красный к положительной клемме, а черный к отрицательной клемме источника питания.
  • В качестве меры предосторожности закоротите конденсаторы на металлическую проволоку или стержень.
  • По интенсивности искры можно определить зарядную емкость конденсатора. Конденсатор в хорошем состоянии, если искра сильная и долгая. В противном случае неисправен конденсатор.

Как проверить конденсатор мультиметром в цепи

Теперь другой вопрос, как проверить конденсатор без распайки или без снятия конденсатора с печатной платы.

Когда конденсатор установлен на печатной плате, невозможно измерить фактическое номинальное значение с помощью мультиметра или измерителя емкости, потому что на той же печатной плате размещено несколько других компонентов. За счет этого конденсатор приобретает эквивалентную стоимость, а не фактическую.

Теперь вопрос снова тот же: как проверить конденсатор без демонтажа компонента, и если да, то как это возможно.

Да, это возможно при использовании эквивалентного измерителя последовательного сопротивления (ESR) или интеллектуального пинцета, оба работают нормально, но измеритель ESR больше подходит для компонентов со сквозным отверстием, а интеллектуальный пинцет для крошечных компонентов SMD.Как проверить конденсатор без распайки. Для определения неисправного конденсатора используются 3 метода.

1. Проверьте конденсатор с помощью измерителя ESR

Устройство для измерения ESR, используемое для определения эквивалентного последовательного сопротивления конденсатора без распайки или снятия его с печатной платы. Это устройство не может измерить емкость, но может проверить конденсатор. Вы можете купить в Интернете (измеритель СОЭ (ссылка на Amazon)

)

Ниже приведены шаги, которые необходимо выполнить, чтобы проверить понимание конденсатора схемы.

  • Для проверки конденсатора первым и важным шагом является его полная разрядка. Для разряда можно закоротить клемму конденсатора с помощью металлических предметов.
  • Включите измеритель СОЭ и соедините красную ножку с положительной клеммой конденсатора, а черную - с отрицательной клеммой. и закоротите его выводы, пока не отобразится нулевое значение.
  • Запишите показания измерителя СОЭ и запишите его.
  • Теперь сравните отмеченные показания таблицы на корпусе измерителя СОЭ.Если зазор находится в пределах допустимого диапазона, конденсатор исправен и его не нужно менять.
  • ESR не дает никакой таблицы, которую вы можете проверить с помощью таблицы данных конденсатора и сравнить ее с измеренным значением.

2. Пинцет Smart Интеллектуальные пинцеты

более удобны и портативны, чтобы выполнять работу более увлекательно и комфортно. Измеритель ESR не более надежен в работе с крошечным SMD-компонентом.

Но недостатком умных пинцетов является то, что они слишком дороги, иначе они работают очень умно и эффективно. (Умный пинцет (ссылка на Amazon)

3. Визуальный осмотр неисправного конденсатора

Иногда вы можете проверить конденсатор визуально, а не просто с помощью интеллектуального пинцета или измерителя ESR.

Неисправный конденсатор проглатывается с верхней стороны и получает повреждения или прожоги на корпусе. Если вы обнаружите такие наблюдения во время осмотра, замените подозрительный конденсатор на новый.

Заключение - Подведение итогов

С этой информацией вы сможете ответить на вопрос о том, как проверить конденсатор с помощью мультиметра в обоих условиях: не снимая его с печатной платы и прикрепляя к печатной плате.Также как проверить конденсаторы без мультиметра.

Используя цифровые мультиметры и измерители ESR, а также интеллектуальный пинцет, вы можете определить неисправные конденсаторы. Мультиметр используется для измерения ESR конденсатора в цепи, а интеллектуальный пинцет используется для проверки конденсатора.

Конденсаторы 101 - iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает. Конденсатор - это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции.Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный перетекает к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь. Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали.Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение. Пока напряжение питания падает до нуля, конденсатор начинает вытекать из своего содержимого, это сглаживает выходное напряжение и ток.Таким образом, конденсатор размещается линейно к компоненту, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглых жестяных банок обычно являются электролитическими конденсаторами. Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами.Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старого радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный конденсатор. Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости.В схемах, где жизненно важно поддерживать стабильный источник напряжения, обычно имеется большой электролитический конденсатор, параллельный керамическому дисковым конденсаторам. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению). Основное назначение экрана из фольги - продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами.Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов является их «упаковка». Размеры этих компонентов стандартизированы, например, упаковка 0201 - 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации.Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%. Это означает, что оно может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор.Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Также полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос здесь - как проверить конденсатор на предмет необходимости его замены.

Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста по принципу «все или ничего».Этот тест покажет только, полностью ли разряжен конденсатор. Это , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора. Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый для этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр.Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом. Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку.В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу. Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии.Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора - это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения. Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением.Один из способов проверить, работает ли конденсатор, - это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное - на катод конденсатора. Не забудьте проверить маркировку на тестируемом конденсаторе.Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отсоедините аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр. Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подключите положительный (красный) провод от мультиметра к нему, а отрицательный (черный) - к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Тестирование конденсатора SMD может быть затруднено с помощью громоздких пробников.Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала. Никогда не субсидируйте конденсатор меньшей стоимости.

Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

Эта Wiki - это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной. Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Eaton Electronics

Максвелл

Digikey

Mouser

Руководство и 10 лучших [2021]

Емкость - это способность электронного компонента накапливать энергию, вызванную различным напряжением, в виде электрического заряда. Электронный компонент, хранящий энергию, называется конденсатором. Чтобы измерить емкость конденсатора, нам понадобится электронное измерительное устройство, которое называется тестером конденсатора. Для измерения щупы необходимо подключить к ножкам конденсатора.

Способы проверки конденсатора

На практике существуют различные методы проверки конденсатора:

  1. Мультиметр с измерением емкости
  2. Автономный тестер конденсатора
  3. Измеритель ESR

Для проверки конденсатора вне цепи , мультиметр с измерением емкости и тестер конденсаторов - правильный выбор.

Перед проведением теста необходимо полностью разрядить конденсатор. Для тестирования конденсатора с помощью тестера конденсаторов требуется только демонтированный / отключенный конденсатор и подключение к нему датчиков.

Тот же метод применяется при использовании мультиметра с измерением емкости. Чтобы определить качество конденсатора, убедитесь, что сравниваемые показания все еще находятся в пределах допустимых значений. Если показание находится вне его, то это можно рассматривать как неисправный конденсатор.

С другой стороны, измеритель ESR является лучшим, когда дело доходит до проверки конденсатора внутри цепи.

В то время как предыдущие способы показывают единицы измерения в Фарадах, измеритель СОЭ показывает показания в единицах Ом.

Качество конденсатора можно узнать, сравнив показания с таблицей характеристик, в которой содержится ожидаемое считываемое значение в отношении рабочего напряжения и значения емкости. Если показания соответствуют таблице и находятся в пределах допуска, конденсатор находится в хорошем состоянии.

Несмотря на то, что в повседневной жизни существует множество приложений для тестирования конденсаторов, самым простым из них является замена конденсатора во время ремонта электроприборов.

Топ-10 лучших тестеров конденсаторов 2021

Если вы ищете лучший тестер конденсаторов, то ожидается, что этот пост вам поможет.Мы рассмотрим 10 лучших тестеров конденсаторов. На самом деле, это далеко не все тестеры конденсаторов. Некоторые из них являются мультиметрами с измерением емкости (функция измерения емкости встроена в мультиметр), а некоторые - измерителями ESR. Конечно, они призваны расширить ваши возможности, когда дело доходит до покупки прибора для измерения и проверки емкости.

№1. B&K Precision 830C [Лучший автономный тестер конденсаторов в целом]

Самостоятельный поиск лучшего тестера конденсаторов требует много времени.С другой стороны, вы можете значительно сократить время, затрачиваемое на это, прочитав определенные обзорные статьи, такие как наша. Если вы профессионал и пытаетесь найти лучший тестер конденсаторов для работы, то B&K Precision 830C будет правильным выбором.

Счетчик оснащен широким набором функций и возможностей. Таким образом, он становится лучшим тестером конденсаторов. Он имеет широкий диапазон измерений от 1000 пФ до 200 мФ. Он подходит для большинства конденсаторов, имеющихся на рынке. Он соответствует стандартам безопасности: EN61010-1 по степени загрязнения и EN61326-1 по невосприимчивости и эмиссии.Есть два дисплея (основной и дополнительный) и два типа питания (батарея 9 В и адаптер переменного тока). Дисплей также оснащен подсветкой.

Использование этого глюкометра дает вам совершенно новый опыт измерения. Он поддерживает ручные и автоматические измерения диапазона. Существуют различные режимы, такие как режим допуска, относительный, режим сравнения и режим записи.

  1. Режим допуска: полезен для сортировки и тестирования большого количества компонентов.
  2. Относительный режим: полезен, когда пользователю необходимо «обнулить» счетчик на основе эталонного значения.
  3. Режим сравнения: для сортировки конденсаторов и настройки 25 наборов предельных диапазонов.
  4. Режим записи: лучше всего подходит для регистратора данных и настраивается на ПК через USB (Virtual COM).

Плюсы:
  • Широкий диапазон измерений
  • Интерфейс USB
  • Функция автоматического выбора диапазона
  • 3-летняя гарантия
Минусы:
Часто задаваемые вопросы :

Q: Поддерживает ли он автоматическое измерение диапазона?

A: Да, он поддерживает быстрое автоматическое определение диапазона для измерений компонентов.

Q: Что необходимо сделать перед измерением?

A: Обязательно отключите питание и разрядите конденсатор, чтобы предотвратить возможное повреждение измерителя.

Q: Как эффективно измерить емкость?

A: Емкость измеряется измерителем, заряжающим конденсатор известным током, в результате чего определяется время периода зарядки, а затем вычисляется емкость. Чем больше емкость, тем больше времени требуется на измерение. Для этого измерителя вам необходимо выбрать подходящий диапазон измерения, чтобы ускорить измерение.

2. KKMoon M6013 [Другой автономный вариант]

Всегда лучше иметь другой вариант для покупки. В этом случае вариант KKMoon M6013. Это не подведет. Будучи вторым по величине после BK Precision 830C, этот продукт подходит для большинства домашних пользователей и профессиональных инженеров.

Самая сильная особенность - диапазон измерения от 0,01 пФ до 470 мФ, что шире, чем у BK Precision 830C. Простой и минимальный интерфейс делает его удобным даже для новичков.Режим может быть установлен как автоматический или ручной в зависимости от ваших предпочтений. Он поддерживает два источника питания (2 аккумулятора AA или micro-USB). Его цена почти в десять раз дешевле, чем у BK Precision 830C. Таким образом, это будет полезно для вас.

Плюсы:
  • Недорогой
  • Большой диапазон измерения
  • Простой и удобный интерфейс
  • Подходит для HVAC
Минусы:
  • Кабели датчика слишком короткие
Часто задаваемые вопросы

Q: Какие режимы измерения доступны на глюкометре?

A: В нем есть автоматический и ручной режимы измерения дальности.

Q: Сколько ручных диапазонов установить?

A: Он имеет только три типа ручных диапазонов, что упрощает его использование.

Q: Какое практическое применение лучше всего подходит для этого измерителя?

A: Лучше всего подходит для домашних пользователей и профессиональных инженеров, таких как HVAC (отопление, вентиляция и кондиционирование воздуха)

3. Honeytek A6013L [Лучший автономный тестер конденсаторов для бюджета]

Бюджет иногда составляет Фактор, который является серьезной причиной, когда речь идет о покупке определенного счетчика.Неудивительно, что его можно было ограничить. Вот почему выбор Honeytek A6013L в качестве лучшего тестера конденсаторов с ограниченным бюджетом, несомненно, пойдет вам на пользу.

Сама цена почти в три раза дешевле KKMoon M6013. Несмотря на то, что он дешевый, он по-прежнему поддерживает стандартные и базовые функции измерения емкости. Диапазоны измерения разделены на 9 позиций от 0,1 пФ до 20 мФ, что более чем достаточно для дешевого измерителя. В этом измерителе доступны дополнительные функции, такие как сохранение данных, ЖК-дисплей с подсветкой, настройка НУЛЯ, по всему диапазону и индикация низкого заряда батареи.Его уникальная особенность заключается в том, что он автоматически разряжает конденсаторы ниже 1000 В. Он упакован в компактную структуру и карманный размер с защитной кобурой.

Плюсы:
  • В три раза дешевле, чем KKMoon M6013
  • Функция автоматического разряда
  • Карманный размер
Минусы:
Часто задаваемые вопросы:

Q: Поддерживает ли он авто -диапазон?

A: Нет.

Q: Сколько диапазонов у измерителя?

A: Есть девять диапазонов от 200 пФ до 20 мФ.

Q: Какая у него самая лучшая функция?

A: Имеет функцию автоматического разряда конденсаторов ниже 1000 В.

4. Автономный тестер конденсаторов Elike DT6013 [Лучшая альтернатива]

Наличие альтернативы означает, что вы можете получить больше преимуществ, сравнивая характеристики продуктов нескольких компаний. Более того, если альтернатива стоит немного. Elike DT6013 - лучшая альтернатива, которая у вас есть, помимо Honeytek A6013L.

Расходомер такой же недорогой, как и Honeytek A6013L.Предоставляемые функции в основном такие же, как у Honeytek. Например, диапазон измерения, удержание данных, настройка нуля и LDC с подсветкой. Тем не менее, он соответствует стандарту безопасности IEC 61010 и является хорошим выбором для поиска и устранения неисправностей бытовой электросети. На ЖК-дисплее также есть большие цифры, что упрощает чтение для пользователей.

Плюсы:
  • Легко читаемый дисплей с подсветкой
  • Недорого, как Honeytek A6013L
  • Хорошо подходит для устранения бытовых электрических проблем
  • Стандарт безопасности IEC 61010
Минусы:
Часто задаваемые вопросы :

В: Есть ли в этой модели режим автоматического выбора диапазона?

A: Нет, эта модель не поддерживает режим автоматического выбора диапазона.

В: Подходит ли он для такого серьезного использования?

A: Соответствует стандарту безопасности 61010, касающемуся электрических требований к лабораторному испытательному и измерительному оборудованию.

В: Для чего это лучше всего?

A: Лучше всего решать бытовые проблемы с электричеством.

5. Тестер конденсаторов Supco MFD10 [Автономная модель с простейшим интерфейсом]

Типичный тестер конденсаторов может быть довольно утомительным и требовать больше времени для работы. Тем более, если у вас есть несколько лет опыта.Поэтому логично, что счетчик с действительно простым интерфейсом даст новый пользовательский опыт. Supco MFD10, безусловно, может быть правильным выбором из-за своей простоты.

Стоит разумная цена. Несмотря на то, что его диапазон измерения меньше, он по-прежнему имеет другие преимущества для пользователей. Время измерения будет короче. Это связано с его функцией автоматического выбора диапазона и нажатием одной кнопки. Это означает, что нажимать кнопку нужно только после того, как конденсатор будет готов к измерениям. Измеритель покажет OPEN для открытых конденсаторов и SHRT для закороченных конденсаторов на светодиодном дисплее.Помимо этого, он предназначен для удовлетворения промышленных и сервисных нужд. Так что не нужно беспокоиться о его применении в реальной жизни.

Плюсы:
  • Интерфейс действительно простой
  • Умеренная цена
  • Режим автоматического выбора диапазона
Минусы:
  • Выводы слишком короткие
  • Меньший диапазон измерения
Часто задаваемые вопросы:

В: Какой режим измерения предоставляет измеритель?

A: Обеспечивает режим автоматического выбора диапазона.

В: Почему кнопка только одна?

A: Потому что он разработан компанией для кнопочного управления.

Q: В чем он хорош?

A: Это достойный вариант для промышленных и сервисных нужд.

6. Fluke-117 [Лучший мультиметр с измерением емкости]

Всегда существует потребность в том, чтобы пользователи нуждались в большом количестве измерительных функций в одном измерителе. Это пригодится; приятно использовать в экстремальных условиях. Таким образом, для удобства пользователей требуется такой практичный измеритель.Если вы ищете такой, то Fluke-117 - правильный выбор.

Fluke-117 - цифровой мультиметр для измерения сопротивления, напряжения, силы тока, целостности цепи, частоты и емкости. Диапазон измерения емкости составляет от 1000 нФ до 9999 мкФ. Несмотря на то, что его диапазон меньше, чем у любого типичного тестера конденсаторов, он выполняет больше функций измерения. Этот измеритель также поддерживает режим автоматического выбора диапазона. Среди других предлагаемых функций - низкое входное сопротивление для лучшего чтения и «VoltAlert» для определения напряжения без контакта.Он соответствует стандарту CAT III 600 В. Он совместим с громкой связью с использованием дополнительного магнитного подвеса и лучше всего подходит для коммерческих зданий.

Плюсы:
  • VoltAlert
  • True RMS
  • Низкое входное сопротивление
  • Работа в режиме громкой связи
Минусы:
  • Дорогой
  • Меньший диапазон измерения
Часто задаваемые вопросы :

Q: Как измерить емкость в этом измерителе?

A: поверните поворотный переключатель к значку диода, затем нажмите желтую кнопку, чтобы переключиться на функцию измерения емкости, и автоматический выбор диапазона выполнит свою работу в зависимости от диапазонов, указанных в технических характеристиках измерителя.

Q: Какие замечательные функции предлагает этот измеритель?

A: Компания предлагает «VoltAlert» для бесконтактного обнаружения напряжения и низкого входного сопротивления для предотвращения ложных показаний, вызванных паразитным напряжением.

Q: Для каких реальных приложений это лучше всего?

A: Лучше всего подходит для коммерческих зданий, больниц и школ.

7. Neoteck 8233D PRO [Лучший недорогой мультиметр с измерением емкости]

Цифровой мультиметр с измерением емкости также доступен по доступной цене.Neoteck 8233D PRO доступен для продажи компанией по недорогой цене для пользователей. Однако о его производительности не стоит беспокоиться.

Neoteck 8233D PRO - компактный портативный цифровой мультиметр. Он соответствует стандарту безопасности IEC 61010-1. Диапазон его емкости составляет от 1 мкФ до 2000 мкФ. Собственно, диапазоны неплохие, учитывая невысокую цену и другие функции. Он поддерживает режим автоматического выбора диапазона. Его цена почти в десять раз дешевле Fluke-117. Для защиты от ударов при падении предлагается резиновый чехол.Что касается дисплея, компания разработала ЖК-дисплей с подсветкой и индикатором хранения данных. Измеритель будет упакован вместе с проводами зонда, проводами с зажимом типа «крокодил» и руководством.

Плюсы:
  • Недорогой
  • Режим автоматического выбора диапазона
  • Стандарт безопасности IEC 61010-1
Минусы:
  • Меньшие диапазоны емкости, чем у Fluke-117
Часто задаваемые вопросы :

Q: Поддерживает ли он режим автоматического выбора диапазона?

A: Да, этот измеритель поддерживает режим автоматического выбора диапазона.

Q: Есть ли дополнительные аксессуары в упаковке?

A: Поставляется с проводами зонда и зажимами типа «крокодил».

8. Signstek MESR-100

Важно понимать, что существуют различные методы проверки конденсаторов. Один из них - с помощью измерителя СОЭ. В то время как тестер конденсаторов и мультиметр показывают единицы измерения в Фарадах, ESR показывает значение в Ом. И емкость, и ESR (эквивалентное последовательное сопротивление) являются отличными индикаторами для определения состояния конденсатора.Signstek MESR-100 может стать первым измерителем СОЭ, который вы, вероятно, захотите попробовать.

Этот измеритель использует 100 кГц для измерения значения ESR. Диапазон измерения довольно широк - от 1 мкФ до 1 мФ. Пользовательский интерфейс подходит как для новичков, так и для профессионалов благодаря своей простоте. Он оснащен распечатанной таблицей СОЭ для быстрой проверки. Вы можете переключиться в автоматический или ручной режим в зависимости от ваших предпочтений. Он поддерживает два типа питания (2 аккумулятора AA и USB).

Плюсы:
  • Простой пользовательский интерфейс
  • Типы двух источников питания
  • Поддерживает автоматический и ручной диапазон
Минусы:
  • Очень короткие провода датчика
Часто задаваемые вопросы :

Q: Как настроить автоматический / ручной режим?

A: Для автоматического режима нажмите и отпустите кнопку RANGE, пока на ЖК-дисплее не отобразится AUTO.Он автоматически выберет подходящий диапазон.

В ручном режиме после нажатия и отпускания кнопки RANGE на ЖК-дисплее отобразится MANUAL. Затем вы можете выбрать диапазоны от 1R, 10R и 100R.

В: Что такое таблица СОЭ?

A: Это таблица, которая действует как справочная и определяет соотношение между емкостью и ожидаемым измеренным сопротивлением.

9. Atlas ESR70

Хорошо иметь еще один измеритель СОЭ по другой цене.Всегда есть больше пользы, если тратить больше бюджета. Atlas ESR70 будет достойным выбором, так как у него есть уникальные особенности для вас.

Он имеет форму, не похожую на другие типичные счетчики, представленные на рынке. Таким образом, он действительно выделяется среди измерителей ESR. Его диапазон шире, чем у MESR-100, от 1 мкФ до 22 мФ. Он может автоматически разряжать заряженные конденсаторы перед их измерением. Эта функция называется «Уникальный контролируемый разряд». Он также имеет звуковые оповещения, чтобы помочь пользователям.

Плюсы:
  • Уникальный дизайн счетчика
  • Звуковые оповещения
  • Простота использования
  • Более широкий диапазон, чем MESR-100
Минусы:
  • Дорогой
  • Предоставляются только зажимы типа «крокодил»
  • не прилагается распечатанная таблица ESR
Часто задаваемые вопросы:

Q: Как определить характеристики конденсатора?

A: Более низкое значение ESR считается лучше, чем большее значение ESR.Хорошее значение ESR конденсатора обычно ниже, чем значение, указанное в таблице ESR.

Q: Что такое уникальный контролируемый разряд?

A: Это функция автоматического разряда заряженного конденсатора перед измерением емкости и ESR.

10. Интеллектуальный пинцет ST5-S [Подходит для SMD]

Иногда электронные компоненты имеют размер SMD (устройства для поверхностного монтажа). Это не может быть измерено с помощью обычного метра. Другими словами, для этого нужен специально разработанный инструмент.Smart Tweezers ST5-S будет лучшим выбором для измерения конденсаторов SMD.

Он представлен как портативный измеритель LCR, который может измерять сопротивление, индуктивность, емкость, импеданс и ESR соответственно. Диапазон емкости составляет от 3 пФ до 199 мкФ в автоматическом режиме и от 0,5 пФ до 999 мкФ для максимальных диапазонов. Выберите емкость в меню РЕЖИМ для измерения емкости. Доступен автоматический режим для измерения индуктивности, емкости и сопротивления. Аккумулятор вставлен внутрь, и его нужно будет перезарядить с помощью зарядного устройства USB, как только загорится индикатор.

Плюсы:
  • Богатые возможности
  • Многоплатформенное подключение
Минусы:
Часто задаваемые вопросы:

В: Поддерживается ли автоматический режим?

A: да, глюкометр поддерживает автоматический режим. Для этого войдите в меню РЕЖИМ и выберите АВТО.

Что такое тестер конденсаторов?

Тестер конденсаторов - это измеритель, который обеспечивает автономное измерение емкости. Наличие такого измерителя позволяет нам проводить измерение емкости быстрее, чем с помощью мультиметра.

По сравнению с тестером конденсаторов, нам по-прежнему требуется мультиметр с измерением емкости, чтобы выполнять на несколько шагов больше, чем при использовании автономного тестера конденсаторов для измерения емкости. Фактически, стандартный мультиметр может проверять конденсатор, но единицы измерения, используемые для измерения, - это единицы сопротивления или напряжения. Вот почему тестер конденсаторов по-прежнему остается лучшим выбором для измерения емкости.

Использование тестера конденсаторов можно также заменить другим вариантом, например, измерителем ESR.Эта опция полезна, когда вам нужно проверить конденсатор, не распаивая его. Однако использование ESR не позволяет напрямую измерить его емкость. Вы только собираетесь измерить сопротивление (эквивалентной серии).

Что следует учитывать при покупке тестера конденсаторов

1. Диапазон измерений

Типичный тестер конденсаторов должен иметь несколько диапазонов измерения. Это первая функция, которую вы должны учитывать перед покупкой, которая определит гибкость того, как вы будете использовать ее в реальной жизни.

2. Интегрированные функции

Имеет смысл, если некоторым пользователям удобнее иметь счетчик с большим количеством функций или возможностей. Однако имейте в виду, что нет ничего странного в том, что существует компромисс между встроенным измерителем и автономным тестером конденсаторов.

3. Точность

Тестер конденсаторов с большей точностью лучше, чем с меньшей точностью. Он определяет близость измерения к фактическому или стандартному значению.

4. Разрешение

Более высокое разрешение предоставит пользователям больше деталей, чем более низкое.Если при измерениях требуется много деталей, то лучше приобрести тестер конденсаторов с более высоким разрешением.

5. Точность

Хорошая точность означает, что измерения будут повторять одни и те же или почти одинаковые значения в нескольких измерениях. С другой стороны, плохая точность приведет к значительной разнице в значениях измерения.

6. Чувствительность

Чувствительность означает способность прибора обнаруживать малейшие изменения в измерениях.Таким образом, прибор с хорошей чувствительностью полезен для тех, кому необходимо обнаруживать действительно небольшие изменения в реальных условиях использования.

Заключение

Подводя итог, можно сказать, что существуют различные способы проверки конденсаторов. Каждый из них может быть выполнен под счетчики определенного типа. Вы должны иметь в виду, что здесь мы пытаемся предложить лучшее, основываясь на наших собственных исследованиях и знаниях. Вы всегда можете принять решение.

Вкратце, мы настоятельно рекомендуем следующие продукты:

  1. BK Precision для лучшего автономного тестера конденсаторов .
  2. Fluke-117 для лучшего цифрового мультиметра с функцией измерения емкости .
  3. Atlas ESR70 для лучшего измерителя ESR .
  4. Smart Tweezer ST5-S для , лучший для SMD .

Надеюсь, этот пост вам поможет. Спасибо!

как измерить емкость в цепи

Дисплеи на электронной бумаге создают видимое изображение, отражая окружающий свет от белых частиц (а не отражая его от черных), точно так же, как напечатанный штрих-код виден для глаз или сканер.Таким образом, лучшим решением для проверки конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Они достаточно хороши для устранения основных неисправностей, но, как правило, недостаточно точны, чтобы полагаться на точные измерения. В этом посте мы обязательно найдем способ проверить конденсатор, не снимая его с корпуса. Такое устройство называется ТВС «малой емкости». В отличие от традиционных ЖК-дисплеев TFT, которые требуют постоянного источника питания для отображения чего-либо, когда на дисплее электронной бумаги отображается изображение, оно остается там и не потребляет энергии.Выбранное значение зарядного тока определяет наклон отображаемой формы волны. Вы это читаете. Обратите внимание - я использовал острый край простого зажима, чтобы вручную связаться с узлом заземления, создав соединение с очень низкой емкостью. Я рекомендую и люблю этот измеритель СОЭ (ссылка на Amazon). Поскольку тестируемое устройство заряжено постоянным током, емкость устройства проста: параметры времени и напряжения (крутизна захваченной формы сигнала напряжения) могут быть измерены непосредственно по отображаемой форме сигнала.Надеюсь, вы отлично проводите время здесь. Вы должны находиться прямо перед дисплеем электронной бумаги, чтобы прочитать ее. 10. U1 - источник постоянного тока (LM334) в эмиттерной ветви транзистора. Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR). Единственное решение для проверки конденсатора без демонтажа припайки - это измерение его эквивалентного последовательного сопротивления (ESR). Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор.То, что вы измеряете с помощью щупов мультиметра, будет общей емкостью в этой точке цепи (затем сделайте приблизительное предположение о ближайшем стандартном значении конденсатора, но это зависит от вашей схемы). Некоторые люди могут откладывать эксперименты с электронной бумагой в дизайне своих продуктов, потому что они считают, что дисплейные панели доступны только в виде индивидуальных продуктов, что означает длительное время выполнения заказа, высокую стоимость и / или необходимость покупать оптом. Les compteurs numériques LCR sont équipés d'un mode d'emploi spécifique pour chaque appareil.Chaque fois que vous frottez vos pieds sur un tapis, que vous vous asseyez sur un siège de voiture ou que vous vous peignez les cheveux, vous acculez une charge électrique statique. К счастью, в большинстве случаев ежегодная замена батареи маловероятна. Комментарий mesurer la Capacité électrique. Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра.

Deplike для Windows 10, Капо Бэй Отель, 1080 джоулей равняется тому, сколько вольт, Лучший плагин для дизайна блогов для WordPress, Лучшая педаль мультиэффектов для лампового усилителя, Не безопасно для работы Мем, Семья Нэнси Никлаус, Атлас студентов Оксфорда 2020, Рори Макилрой Pga Tour Ps4, Тема Estore WordPress Woocommerce, Доставка суши Ёсизуми, Ожидания против реальности, Гц Значение Монитор, Тайский слон, Меню Падстоу, Майкл Мердок Пропавший без вести, Городской номер телефона Уилсона,

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *