Как измеряется сила тока – Сила тока — Википедия

Содержание

Сила тока — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка.

Сила тока — физическая величина I{\displaystyle I}, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего через некоторую поверхность за некоторое время Δt{\displaystyle \Delta t}, к величине этого промежутка времени[1]:

I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.

Обычно обозначается символом I{\displaystyle I}, от фр. intensité du courant.

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A), ампер является одной из семи основных единиц СИ. 1 А = 1 Кл/с.

По закону Ома сила тока I{\displaystyle I} для участка цепи прямо пропорциональна приложенному напряжению U{\displaystyle U} к участку цепи и обратно пропорциональна сопротивлению R{\displaystyle R} проводника этого участка цепи:

I=UR.{\displaystyle I={\frac {U}{R}}.}

По закону Ома для полной цепи

I=εR+r{\displaystyle I={\frac {\varepsilon }{R+r}}}

Носителями заряда, движение которых приводит к возникновению тока, являются заряженные частицы, в роли которых обычно выступают электроны, ионы или дырки. Сила тока зависит от заряда q{\displaystyle q} этих частиц, их концентрации n{\displaystyle n}, средней скорости упорядоченного движения частиц vcp→{\displaystyle {\vec {v_{cp}}}}, а также площади S{\displaystyle S} и формы поверхности, через которую течёт ток.

Если n{\displaystyle n} и vcp→{\displaystyle {\vec {v_{cp}}}} постоянны по объёму проводника, а интересующая поверхность плоская, то выражение для силы тока можно представить в виде

I=qnvcpcos⁡αS,{\displaystyle I=qnv_{cp}\cos \alpha S,}

где α{\displaystyle \alpha } — угол между скоростью частиц и вектором нормали к поверхности.

В более общем случае, когда сформулированные выше ограничения не выполняются, аналогичное выражение можно записать только для силы тока dI{\displaystyle dI}, протекающего через малый элемент поверхности площадью dS{\displaystyle dS}:

dI=qnvcpcos⁡αdS.{\displaystyle dI=qnv_{cp}\cos \alpha dS.}

Тогда выражение для силы тока, протекающего через всю поверхность, записывается в виде интеграла по поверхности

I=∫Sqnvcpcos⁡αdS.{\displaystyle I=\int \limits _{S}qnv_{cp}\cos \alpha dS.}

В металлах заряд переносят электроны, соответственно в этом случае выражение для силы тока имеет вид

I=∫Senvcpcos⁡αdS.{\displaystyle I=\int \limits _{S}env_{cp}\cos \alpha dS.}

где e{\displaystyle e} — элементарный электрический заряд.

Вектор qnvcp→{\displaystyle qn{\vec {v_{cp}}}} называют плотностью электрического тока. Как следует из сказанного выше, его величина равна силе тока, протекающей через малый элемент поверхности единичной площади, расположенный перпендикулярно скорости vcp→{\displaystyle {\vec {v_{cp}}}}, а направление совпадает с направлением упорядоченного движения заряженных частиц[2].

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи[3] в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).

ru.wikipedia.org

Прибор для измерения силы тока. Как измерить силу тока мультиметром

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «

PА2».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1

, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А

» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Удачи!

sesaga.ru

В чем измеряется сила тока и чем его можно измерять

Сила тока — скалярная величина, выведенная Андре-Мари Ампером и занесенная в международную измерительную систему. Более подробно о том, как называется единица тока, как правильно измерить электроэнергию и от чего она зависит далее.

Единица измерения силы тока

Это физическая и скалярная величина, которая равна заряду, прошедшему через определенное время на поверхность. Измеряется в амперах, что равно одному кулону, поделенному на секунду, в дополнение к теме, в каких единицах измеряют силу электрического тока. Ампер — единица измерения, названная в честь своего создателя — французского физика, математика и естествоиспытателя. Стоит указать, что именно он впервые представил миру понятие электротока и отметил его значение для общества.

Единица измерения

Формула

Это явление, изучаемое в электростатике, магнитостатике, электродинамики и электроцепи. Равно количеству заряда, поделенному на время, напряжению, поделенному на проводниковое сопротивление. Вычисляется по закону Ома для полной электроцепи. Для этого необходимо источник напряжения поделить на выражение сопротивления внешних сетевых элементов и внутреннего сопротивления источника напряжения. При этом значение электродвижущей силы источника напряжения может быть меньше или больше, чем сопротивление, если токовая энергия зависит от величины нагрузки или нет.

Обратите внимание! Стоит указать, что электроток может быть найдет через перемножение заряда, его концентрации, среднего напряжения и косинуса угла площади, если поверхность имеет плоскую форму. Также электроток может быть найдет через перемножение всех указанных ранее элементов и интеграла по поверхности.

Формула измерения

Приборы для измерения силы тока

Прибором для измерения токовой силы называется амперметр, в дополнение к теме, чем измеряют ток. Бывает стрелочным, цифровым и электронным. Активно применяется в электролаборатории, автомобилестроении, точной науке и строительстве. По принципу действия бывает электромагнитным, магнитоэлектрическим, термоэлектронным, ферродинамическим, электродинамическим и цифровым. Измеряет как переменный, так и постоянный электроток.

Работает благодаря взаимодействию магнитного поля с подвижной катушкой или сердечником, который находится в корпусе. Пользоваться всеми типами очень просто. Все что нужно от пользователя, это внимательно изучить инструкцию и руководство к эксплуатации. Как правило, для начала измерения необходимо с помощью щупов прикоснуться к проводнику и нажать соответствующую кнопку. После на экране будет выведено значение в амперах. Стоит указать, что измеряет токовую силу также вольтметр, мультиметр и измерительная отвертка.

Амперметр

От чего зависит ток

Поскольку токовая сила является скалярной величиной, имеющей положительный и отрицательный заряд, то зависит она от мощности заряда, концентрации сосредоточенных в заряде частиц, скорости их движения и площади проводника. Стоит также указать, что зависит она от значения сопротивления с напряжением, величиной магнитного поля, числом катушечных витков, мощностью работы ротора, диаметром проводника и параметром генераторной установки.

Зависимости электротока от сопротивления и напряжения

Источники

Источником тока называется генератор, любой источник электрической энергии. Бывают механическими, тепловыми, световыми и химическими. К первым относятся газовые и паровые генераторы, турбогенераторы и механические преобразователи. Ко вторым относятся радиоизотопные термоэлектрические генераторы, а к третьим — солнечные батареи. К последним относятся гальванические солевые, щелочные или литиевые элементы, свинцово-кислотные, литий-ионные и никель-кадмиевые аккумуляторы.

Обратите внимание! Стоит указать, что источник электротока бывает идеальным и реальный. Первый — это двухполюсник, зажимы которого поддерживают электродвижущую постоянную силу. Второй же — двухполюсник, не имеющий постоянную силу из-за того, что зависит от внутреннего сопротивления. К реальному относится вторичная трансформаторная обмотка, катушка индуктивности, биполярный транзистор или генератор тока.

Виды источников

В целом, сила электротока — скалярная величина, измеряемая в амперах и равная одному кулону на секунду. Вычисляется при помощи выведенных формул, в частности по закону Ома, а также специальными измерительными приборами. Зависит от сопротивления, скорости магнитного потока и напряжения. Источниками выступают механические с тепловыми, световыми и химическими элементами, перечисленными выше.

rusenergetics.ru

Как измерить силу тока мультиметром: постоянного и переменного тока

Для проведения расчетов и подбора необходимых элементов электрической цепи часто требуется измерить силу тока в ней. Сделать это можно с помощью расчетов, но наиболее простой способ — это использование специальных приборов.

Чем можно измерить силу тока

Чтобы определить мощность потребления и силу тока, требуется электрический измерительный прибор, который может измерять эти параметры с учетом особенностей переменного и постоянного тока. Типов таких устройств существует всего два:

Стационарные амперметры

  • Амперметр — специальное устройство для измерения исключительно силы тока в цепи. Амперметр включается в тестируемую цепь последовательно с потребителями электрического тока. На шкале прибора, помимо основных значений, в амперах используются также миллиамперы. На ампераж нужно обращать особое внимание. Существуют электронные и механические варианты устройства.

Обычный амперметр

  • Мультиметр — это электронное измерительное устройство, которое помогает мерить различные параметры цепи (сопротивление, напряжение, разомкнутая цепь, пригодность для аккумулятора, включая и силу тока).

Мультиметр

Что такое мультиметр?

Мультиметр — это универсальное комбинированное измерительное устройство, которое объединяет функции нескольких измерительных устройств, то есть измеряет практически все показатели цепи. Самый маленький набор функций мультиметра — это измеритель напряжения, силы заряда и сопротивления. Однако современные производители не останавливаются на достигнутом, а вместо этого добавляют ряд функций, таких как емкостное измерение конденсаторов, частоты тока, проверку диодов (измерение падения напряжения на pn-переходе), звуковых датчиков, измерений температуры и измерения определенных параметров транзистора, встроенный генератор низких частот и многое другое.

Мультиметр может быть:

  • Аналоговый. В этом типе приборов присутствует индикатор, который имеет несколько шкал (по одной на каждый вид измерения). Аналоговые тестеры имеют ряд недостатков, в первую очередь — это большие ошибки и погрешности в измерении. В конструкцию многих моделей включен специальный подстраиваемый резистор, который при правильной настройке несколько улучшает работу прибора, повышая точность выдаваемых результатов. Но все же сейчас большее распространение получили цифровые модели.
  • Цифровой. Единственная внешняя разница между цифровым устройством и аналоговым устройством — это экран, который численно представляет измеренные параметры. Старые модели оснащены дисплеем из светодиодов, более новые варианты оснащены жидкокристаллическим экраном. Недостатком этих устройств является то, что они имеют высокую стоимость: их цена в несколько раз превышает стоимость аналогового тестера.

Подключение различных мультиметровых приборов в цепь

Требования для измерения силы тока

Чтобы померить силу заряда в розетке, нужно обязательно следить за выполнением некоторых требований:

  • Важным условием для измерения силы тока является включение резисторов или обычных ламп в цепь ограничения сопротивления. Этот элемент защитит прибор от нагрева и возгорания из-за слишком большой нагрузки.
  • Если текущая сила в цепи не отображается на индикаторе, выбранное предельное значение является неправильным и должно быть уменьшено на одну позицию. (Так надо продолжать до тех пор, пока на экране не появится истинное значение). Требуется быстрое измерение — время контакта с кабелем составляет менее одной или двух секунд. Это особенно актуально для аккумуляторов с низким энергопотреблением.

Важно! Предел выбирается с учетом наибольших возможных отклонений полученных измерений от ожидаемого результата.

Приборы для измерения силы тока должны также соответствовать утвержденным стандартам ГОСТа:

  • показывающие устройства должны иметь точность в пределах от 1 до 2,5,
  • приборы на подстанциях допускаются 4 класса точности,

Класс по точности приборов, установленных на трансформаторах указаны в таблице:

Класс прибораКласс измерительных трансформаторовКласс шунта и добавочного сопротивления
4,03,0
2,51,0 (3,0)0,5
1,50,5 (1,0)0,5
1,00,50,5
0,50,20,2

Как проверить силу тока

Измерение силы постоянного и переменного тока не имеет кардинальных отличий, но все же данные операции имеют свои тонкости.

Наглядная схема подключения амперметра

Постоянный ток

Измерение постоянного тока выполняется в несколько несложных этапов:

  1. На мультиметре требуется изменить положение красного щупа. Если неизвестно даже приблизительное значение силы в цепи, то из соображений безопасности и сохранности прибора придется выбрать наибольшее значение.
  2. Регулятор нужно поставить в положение из сектора «А», выбрав самый подходящий предел значений.
  3. Последовательно подключить мультиметр к цепи, где должно быть измерено текущее значение.
  4. Далее необходимо включить питание и наблюдать за появлением числовых значений на цифровом табло.

Как проверить переменный ток мультиметром

В случае, когда должна измеряться сила переменного электричества, требуется поставить регулятор в соответствующее положение, также предварительно выбрав предел. Далее процесс измерения ничем не отличается от нахождения силы постоянного заряда.

Измерение силы переменного тока

Меры безопасности

Процесс измерения тока с помощью мультиметра несложен. При его прохождении требуется соблюдение определенных норм безопасности:

  • Перед непосредственным проведением измерительных работ необходимо обесточить цепь.
  • Также периодически нужно проводить проверку изоляции кабеля — иногда он может повредить сам себя при длительном использовании и привести к значительному увеличению вероятности поражения электрическим током.
  • Использовать при проведении любых ремонтных, монтажных и измерительных работах только резиновые перчатки, которые обладают изоляционными свойствами.
  • В помещениях с высоким уровнем влажности воздуха запрещается проведение измерительных работ. Дело в том, что влага обладает высокой электропроводностью, и риск удара током возрастает. При ударе током незамедлительно нужно сообщить об этом в скорую помощь или экстренную службу.
  • Проводить работы с электричеством лучше вдвоем.
  • После завершения всех работ можно обратно включить питание.

Замер силы тока проводится амперметром или мультиметром. При использовании последнего важно правильно выбрать режим работы и предел, которого может достигнуть ток в цепи. Оба эти прибора боятся высокого напряжения.

rusenergetics.ru

Сила тока. Амперметр — урок. Физика, 8 класс.

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока \((I)\) — скалярная величина, равная отношению заряда (\(q\)), прошедшего через поперечное сечение проводника, к промежутку времени (\(t\)), в течение которого шёл ток.

I=qt, где \(I\) — сила тока, \(q\) — заряд, \(t\) — время.

 

Единица измерения силы тока в системе СИ — \([I] = 1 A\) (ампер).


В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:


при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.


 

За единицу силы тока \(1 A\) принимают силу тока, при которой два параллельных проводника длиной \(1\) м, расположенные на расстоянии \(1\) м друг от друга в вакууме, взаимодействуют с силой \(0,0000002\)\(H\).

Единица силы тока называется ампером (\(A\)) в честь французского учёного А.М. Ампера.

 

Андре-Мари Ампер

(1775 — 1836)

 

А.М. Ампер ввёл такие термины, как электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток и т.д.


Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую \(100\) Вт лампочку накаливания проходит ток с силой, приблизительно равной \(0,5A\). Ток в электрическом обогревателе может достигать \(10A\), а для работы карманного микрокалькулятора достаточно \(0,001A\).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
\(1 мA = 0,001 A\), \(1 мкA = 0,000001 A\), \(1 кA =1000 A\).
То есть \(1 A = 1000 мA\), \(1 A = 1000000 мкA\), \(1 A = 0,001 кA\).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением \(220\) В и частотой \(50\) Гц. Это означает, что ток за \(1\) секунду \(50\) раз движется в одном направлении и \(50\) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

 

Силу тока измеряют амперметром. В электрической цепи он обозначается так:

 

Обрати внимание!

Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить. Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!

Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры.

 

Микроамперметр

Миллиамперметр

Амперметр

Килоамперметр

 

Обрати внимание!

Различают амперметры для измерения силы постоянного тока и силы переменного тока.

Их можно различить по обозначениям: 

  • «~» означает, что амперметр предназначен для измерения силы переменного тока;
  • «» означает, что амперметр предназначен для измерения силы постоянного тока.

Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного тока.


Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.
 

Для измерения силы постоянного тока

Для измерения силы переменного тока

 

Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

 

 

Обрати внимание!

Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (см. рисунок): провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «+»; провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «-».

Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.


 

В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.

 

Обрати внимание!

В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова.

Это видно из опыта, изображённого на рисунке.

 

 

Обрати внимание!

Безопасным для организма человека можно считать переменный ток силой не выше \(0,05 A\), ток силой более \(0,05 — 0,1 A\) опасен и может вызвать смертельный исход.

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://class-fizika.narod.ru/8_28.htm
http://school.xvatit.com/index.php?title=%D0%A1%D0%B8%D0%BB%D0%B0_%D1%82%D0%BE%D0%BA%D0%B0
http://physics.kgsu.ru/index.php?option=com_content&view=article&id=217&Itemid=72

http://kamenskih3.narod.ru/untitled74.htm

 

www.yaklass.ru

Как измерить ток и напряжение мультиметром?

Как измерить силу тока мультиметром

Запомните одно правило при измерениях: при измерении силы тока, щупы соединяются последовательно с нагрузкой, а при измерении других величин – параллельно.

На рисунке ниже показано, как надо правильно соединять щупы и нагрузку для того, чтобы замерить силу тока:

Черный щуп, который воткнут в гнездо СОМ – его не трогаем, а красный переносим в гнездо, где написано mA или хA, где вместо х – максимальное значение силы тока, которую может замерить прибор. В моем случае это 20 Ампер, так как рядом с гнездом написано 20 А. В зависимости от того, какое значение силы тока вы собираетесь замерять, туда и втыкаем красный щуп. Если вы не знаете, какая примерно сила тока будет протекать в цепи, то ставим в гнездо хА:

Давайте проверим, как все это работает в деле. В нашем случае нагрузкой является вентилятор от компьютера. Наш блок питания имеет встроенную индикацию для показа силы тока, а как вы знаете с курса физики, сила тока измеряется в Амперах. Выставляем 12 Вольт, на мультиметре ручку крутим на измерение постоянного тока. Мы выставили предел измерения на мультике до 20 Ампер. Собираем как по схеме выше и смотрим показания на мультике. Оно в точности совпало со встроенным амперметром на блоке питания.

Для того, чтобы измерить силу тока переменного напряжения мы ставим крутилку мультиметра на значок измерения силы тока переменного напряжения – “А~”  и точно также по такой же схеме делаем замеры.

Как измерить постоянное напряжение мультиметром

Возьмем вот такую вот батарейку

Как мы видим, на ней написан ток 550 мАh , который она может выдавать в  нагрузку в течение часа, то есть миллиампер в час, а также напряжение, которым обладает наша батарейка – 1,2 Вольта. Напряжение – это понятно, а вот что такое “ток в течение часа”? Допустим, наша  нагрузка -лампочка  кушает ток 550 мА. Значит лампочка будет светить один час. Или возьмем лампочку, которая светит послабее, и пусть она у нас кушает 55 мА, значит она сможет проработать 10 часов.

Значение 550 мА, которое у нас написано на батарейке, делим на значение, которое написано на нагрузке и получаем время, в течение которого все это  будет работать, пока не сядет батарейка.  Короче говоря, кто дружен с математикой, тому не составит труда понять сие чудо 🙂

Давайте замеряем напряжение на батарейке, один щуп мультиметра ставим на плюс, а другой на минус, то есть подсоединяем параллельно, и вуаля!

В данном случае напряжение на батарейке 1,28 Вольт.  Значение на новой батарейке всегда должно превышать то, которое написано на этикетке.

Давайте замеряем напряжение на блоке питания. Выставляем 10 Вольт и замеряем.

Красный  – это плюс, черный  – минус. Все сходится, напряжение 10,09 Вольт.  0,09 Вольт спишем на погрешность.

Если же мы спутаем  щупы мультиметра или щупы блока, то ничего страшного не произойдет. Мультиметр покажет нам такое же значение, но со знаком “минус”.

Имейте ввиду, на таких мультиметрах это не прокатывает

Для того, чтобы точно определить полярность не имея мультиметра, можно прибегнуть к нескольким советам, которые описаны в этой статье.

Как измерить переменное напряжение мультиметром

Ставим  на  мультике предел измерения переменного напряжения и замеряем напряжение в розетке. Без разницы, как совать щупы. У переменного напряжения нет плюса и минуса. Там есть фаза и ноль. Грубо говоря, один провод в розетке не представляет опасности – это ноль, а другой может здорово попортить ваше самочувствие или даже здоровье – это фаза.

По идее в розетке должно быть 220 Вольт. Но у меня показывает 215. Ничего страшного в этом нет. Напряжение в розетке “играет”. Ровно 220 Вольт вам вряд ли придется увидеть  при измерениях напряжения в розетках вашего дома 🙂

www.ruselectronic.com

Как измерить силу тока мультиметром

Очень хорошо, когда в инструментальном «арсенале» владельца дома или квартиры имеются контрольно-измерительные приборы. В частности если речь идет об электрохозяйстве, нередко приходится прибегать к помощи мультиметра. Этот компактный и относительно недорогой по нынешним временам прибор позволяет тестировать бытовую технику и освещение, выявлять неполадки в домашней электрической сети, контролировать уровень заряда батареек и аккумуляторов, становится незаменимым при различных электромонтажных работах.

Но кроме наличия самого мультиметра, необходимо еще и умение работать с ним. Вот здесь бывает сложнее. Если, скажем, с прозвоном провода, определением наличия и величины напряжения обычно проблем не возникает, то с замером силы тока у многих возникают неясности. И, кстати, эта операция, по сравнению с другими упомянутыми, наиболее сложна и в определенных условиях бывает наиболее опасна.

Поэтому темой предлагаемой публикации станет вопрос, как измерить силу тока мультиметром.

Несколько слов о силе тока, и для чего ее бывает нужно измерять

Для начала вспомним, что же это такое – сила электрического тока.

Этот показатель (I) измеряется в амперах и входит в число основных физических величин, определяющих параметры той или иной электрической цепи. К двум другим относят напряжение (U, измеряется в вольтах) и сопротивление нагрузки (R, измеряется в омах).

Как преподносилось в школьном курсе физики, электрический ток является направленным движением заряженных частиц по проводнику. Если рассматривать с большим упрощением, вызывается он электродвижущей силой, возникающей из-за разности потенциалов (напряжения) на полюсах (клеммах, контактах) подключенного источника питания. По своей сути сила тока показывает количество этих самых заряженных частиц, проходящих через конкретную точку (элемент схемы) в единицу времени (секунду).

На величину силу тока в цепи влияют два других параметра. Напряжение связано прямой пропорциональностью – так, например, его увеличение вызывает и повышение силы тока. Сопротивление – наоборот, то есть с его ростом при том же напряжении сила тока снижается.

А слева на иллюстрации показано графическое, удобное для восприятия, изображение закона Ома, показывающего эти взаимосвязи. Из этой «пирамиды» легко составляются формулы в их привычном написании:

U = I × R

I = U / R

R = U / I

Итак, сила тока измеряется в амперах. С некоторым упрощением можно объяснить так, что 1 ампер – это ток, который возникнет в проводнике сопротивлением 1 ом, если к нему приложить напряжение, равное одному вольту.

Кроме основной единицы, используют и производные. Так, довольно часто приходится иметь дело с миллиамперами. Из самого термина понятно, что 1 мА = 0.001 А.

Кстати, сразу упомянем, и про мощность. Ток в 1 ампер, вызванный напряжением 1 вольт, выполнит работу в 1 джоуль. А если это привести к единице времени (секунде), то получится значение мощности, равное 1 ватту.

Это определяется формулой закона Джоуля-Ленца:

P = U × I

где Р – мощность, выраженная в ваттах.

Для чего все это рассказывалось? Да просто потому, что большинство случаев замера силы тока, так сказать, на бытовом уровне, так или иначе связано с определением других параметров. Согласитесь, мало кому придет в голову мысль: «а дай-ка я проверю силу тока просто так», то есть без дальнейшего практического приложения. Тем более что, как уже упоминалось выше, работа с амперметром – наиболее сложная и зачастую небезопасная.

Например, в каких случаях чаще всего замеряют силу тока:

  • Для уточнения реальной потребляемой мощности того или иного бытового электроприбора. Промерив значения силы тока и напряжения несложно по формуле вычислить и мощность.
  • Этот же промер и последующий расчет позволяют оценить, советует ли подводимая линия питания таким нагрузкам.
  • Случается, что подобные «ревизии» позволяют выявить пока еще скрытые, незамеченные дефекты прибора – когда значение силы тока (и мощности, соответственно) намного отличаются от заявленного в паспорте номинала в ту или иную сторону.
  • Измерения силы тока позволяют оценить степень заряженности автономных источников питания – аккумуляторов и батареек. Проверка их по напряжению никогда не дает объективной картины. Вольтметр может показать, скажем, положенные 1.5 вольта, но уже спустя несколько минут элемент питания безнадежно «сядет». То есть проверку следует проводить именно измерением силы тока.
  • Таким измерением можно выявить утечку тока, там, где ее по идее быть не должно. Это часто практикуется автомобилистами, если у них есть подозрения, что аккумулятор слишком активно разряжается, когда машина «отдыхает» в гараже или на стоянке. Проведенная проверка позволяет локализовать участок утечки и избежать, кстати, немалых проблем, к которым она может привести.

  • Иногда требует проверки зарядное устройство аккумулятора – выдает ли оно необходимое значение тока зарядки.

Возможны и иные случаи, когда требуется иметь объективные данные о реальной силе тока. Но основные случаи все же перечислены.

Разбираемся с устройством мультиметра

Для измерения силы тока используются специальные приборы, название которых говорит само за себя – амперметры. В продаже чаще всего встречаются амперметры стационарной установки, в виде панелек или для DIN-рейки. Они обычно монтируются в распределительном щите и позволяют отслеживать текущие показатели силы тока, например, за всю локальную систему электроснабжения или на какой-то выделенной её линии.

Устанавливают такие приборы, если в этом есть необходимость, только специалисты электрики. Измерить силу протекающего тока с помощью них – проще простого. Необходимо просто взглянуть на текущие показания при включенной на линии нагрузке.

Этим, по сути, их функциональность и ограничивается. Естественно, у хозяина квартиры (дома) не будет возможности снять подобный прибор с места его стационарной установки для проведения замеров в другом месте.

Другой вариант, который уже позволяет работать в нужном месте – это так называемый лабораторный амперметр. Настольный прибор, в котором имеются клеммы, то есть предусмотрена возможность подключения измерительных проводов со щупами для проверки силы тока на том или ином участке цепи.

Но приобретать такой «девайс» для домашнего инструментального «арсенала» — вряд ли имеет смысл. Просто по той причине, что замером силы тока все и ограничивается. А это измерение, кстати, как уже говорилось, проводится на «бытовом» уровне, пожалуй, реже всего.

Поэтому такие приборы популярности себе не снискали. И оптимальным вариантом является мультитестер (мультиметр).

Эти измерительные многофункциональные приборы представлены в продаже в очень большом разнообразии. Первое, сразу бросающееся в глаза различие – приборы могут быть стрелочными, со снятием показаний со шкал. Несмотря на то что считаются уже «вчерашним днем», некоторые мастера отдают предпочтение именно им. Но для новичка может быть затруднительно на первых порах считывать показания – со шкалами и шагом из градуировки по неопытности несложно запутаться.

Поэтому максимальной популярностью пользуются все же цифровые мультиметры, демонстрирующие на дисплее показания в абсолютном выражении. Умение пользоваться такими приборами приобретается гораздо быстрее. Стоимость многих моделей – весьма доступная, и подобные мультитестеры прочно вошли в домашний инструментальный набор.

Но и среди них бывают существенные различия, которые необходимо знать и учитывать при проведении измерения электрических параметров.

Наиболее удобны, наверное, мультиметры, в которых достаточно выставить лишь режим измерений. Допустимый диапазон при этом не указывается – прибор автоматически подстроится под параметры цепи, проведет замер и выдаст искомый результат.

Пример показан на иллюстрации:

Рукоятка переключателя режимов (поз.1) имеет всего несколько положений. Это напряжение – объединено переменное V AC (значок ~) и постоянное DC (—), в вольтовом и милливольтом диапазоне. Аналогично и с силой тока – А, тоже без разделения на тип тока, но с градацией на амперы и миллиамперы. Кроме того, обязательно имеется опция замера сопротивления и прозвона цепи. Могут быть и другие заложенные функции.

В нижней части расположены гнезда для подключения измерительных проводов со щупами. Их бывает три или четыре. Обязательно имеется гнездо СОМ – для «общего» провода (поз. 2), как правило – черного цвета. Гнездо поз. 3 – для красного провода при проведении подавляющего большинства измерений. Под гнездом имеется надпись с указанием допустимых пределов измерений по напряжению и току. И, наконец, гнездо поз. 4 – выделено для замеров силы тока, исчисляемой в амперах. Также указан допустимый предел — не более 10 А.

Показания высвечиваются на цифровом дисплее (поз. 5).

Такие приборы удобны, однако их стоимость в несколько раз превышает цену на широкодоступные мультиметры. Поэтому их чаще можно увидеть у профессионалов.

Более распространенный вариант – мультиметры, при пользовании которыми необходимо не только переключать режим и переставлять измерительные провода, но еще и указывать предполагаемый диапазон измерений.

При пользовании таким мультиметром требуется не только указать режим работы, но и выставит переменный или постоянный ток. И уже в этом секторе установить переключатель в предполагаемый диапазон измерений, выраженный в миллиамперах мА (бывает еще и в микроамперах, µА) или в амперах А.

Аналогично дело обстоит и с режимами замера напряжения.

Еще нюанс – показан пример с четырьмя гнездами подключения проводов. Здесь для измерения силы тока для красного провода выделено два гнезда. Одно – с токами до 200 мА, второе – до 10 А.  Все остальные замеры (напряжения, сопротивления, емкости и другие) проводятся через отдельное гнездо.

Но обычно под этими гнездами-клеммами располагается понятная схема, позволяющая избежать ошибок. Просто надо быть внимательным.

А теперь – еще один очень важный нюанс. Показанные выше приборы позволяют проводить замер силы тока как постоянного, так и переменного. Но очень часто обычными пользователями приобретаются мультиметры с «усеченными» возможностями. Такие приборы широко популярны из-за своей супердоступной цены. И некоторые потенциальные владельцы не обращают внимание на этот их недостаток.

Так, наиболее распространенными на бытовом уровне являются мультитестеры типа DT830 или DT832. Они позволяют выполнить бо́льшую часть возможных измерений. Но, обратите внимание, функции амперметра для переменного тока у них НЕ ПРЕДУСМОТРЕНА.

Таким образом, если есть необходимость проверить силу тока в цепи работающего от сети 220 В/50 Гц бытового прибора, то просто так это не получится. Потребуется искать другой, более совершенный мультиметр. Или придумывать дополнительные «усовершенствования», которые позволят обойтись и таким тестером. Об этом будет сказано ниже.

Основные принципы замера силы тока

Главной особенностью работы с мультитестером в режиме амперметра является то, что он обязательно должен быть включен в разрыв цепи. Такое подключение называется последовательным. По сути, прибор становится частью этой цепи, то есть весь ток должен пройти именно через него. А как известно, сила тока на любом участке неразветвленной электрической цепи постоянна. Проще говоря, сколько «вошло» столько должной и «выйти». То есть место последовательного подключения амперметра особого значения не имеет.

Чтобы стало понятнее, ниже размещена схема, в которой показывается разница в подключении мультиметра в разных режимах работы.

  • Итак, при замере силы тока мультиметр включается в разрыв цепи, сам становясь одним из ее звеньев. То есть будет проблема, как этот разрыв цепи организовать практически. Решают по-разному – это будет показано ниже.
  • При замере напряжения (в режиме вольтметра) цепь, наоборот, не разрывается, а прибор подключается параллельно нагрузке (участку цепи, где требуется узнать напряжение). При замере напряжения источника питания щупы подключаются напрямую к клеммам (контактам розетки), то есть мультиметр сам становится нагрузкой.
  • Наконец, если меряется сопротивление, то внешний  источник питания вообще не фигурирует. Контакты прибора подключаются непосредственно к той или иной нагрузке (прозваниваемому участку цепи). Необходимый ток для проведения измерений поступает из автономного источника питания мультитестера.

Вернемся к теме статьи — к замерам силы тока.

Очень важно изначально правильно установить на мультиметре, помимо постоянного или переменного тока, диапазон измерений. Надо сказать, что у начинающих с этим часто возникают проблемы. Сила тока – величина крайне обманчивая. И «спалить» свой прибор, а то и наделать больших бед, неправильно установив верхний предел измерений – проще простого.

Поэтому настоятельная рекомендация – если вы не знаете, какая сила тока ожидается в цепи, начинайте измерения всегда с максимальных величин. То есть, например, на том же DT 830 красный щуп должен быть установлен в гнездо на 10 ампер (показано на иллюстрации красной стрелкой). И рукоятка переключатель режимов работы также должно показывать на 10 ампер (голубая стрелка). Если измерения покажут, что предел завышен (показания получаются менее 0,2 А), то можно, чтобы получить более точные значения, переставить сначала красный провод в среднее гнездо, а затем ручку переключателя – в положение 200 мА. Бывает, что и этого многовато, и приходится переключателем снижать еще на разряд и т.д. Не вполне удобно, не спорим, но зато безопасно и для пользователя, и для прибора.

Кстати, о безопасности. Никогда не следует пренебрегать мерами предосторожности. И особенно если речь идет об опасных напряжениях (а сетевое напряжение 220 В – чрезвычайно опасно) и высоких токах.

Мы здесь спокойно ведём разговор об амперах, а между тем, безопасным для человека считается ток не выше 0.001 ампера. А ток всего в 0.01 ампера, прошедший через тело человека, чаще всего приводит к необратимыми последствиям.

Что важно знать об опасности электрического тока

Электричество – это величайший помощник человечества. Но при неграмотном, беспечном или откровенно наплевательском отношении к соблюдению безопасности – карает мгновенно и беспощадно. Что необходимо накрепко запомнить об опасности электрического тока, прежде чем приступать к любым электромонтажным работам – читайте в специальной публикации нашего портала.

Проведение замеров силы тока, особенно если работа ведется в самом высоком диапазоне, рекомендуется проводить максимально быстро. В противном случае мультитестер может просто перегореть.

Об этом, кстати, могут информировать и предупреждающие надписи около гнезда подключения измерительного провода.

Обратите внимание. Слово «unfused» в данном случае обозначает, что прибор в этом режиме не защищен плавким предохранителем. То есть при перегреве он просто выйдет полностью из строя. Указано и допустимое время замера – не более 10 секунд, да и то не чаще одного раза в 15 минут («each 15 m»). То есть после каждого такого замера придется еще и выдерживать немалую паузу.

Справедливости ради – далеко не все мультиметры настолько «привередливые». Но если такое предупреждение есть – пренебрегать им не стоит. И в любом случае замер силы тока проводить максимально быстро.

Как проводится измерение силы тока

В этом разделе статьи рассмотрим несколько наиболее характерных случаев.
И для начала ответим на один почему-то весьма часто задаваемый, и при этом – совершенно безграмотный вопрос.

Как измерить силу тока в розетке?

Ответ категоричный – НИКАК!

Никакого тока в розетке не ищите – там есть только напряжение на контактах, между фазой и нулем. А ток возникнет лишь тогда, когда к розетке будет подключена нагрузка – неважно что это, лампочка накаливания или бытовой прибор. Естественно, рассчитанный на работу с сетевым напряжением 220 вольт.

А что будет, если в режиме амперметра все же вставить щупы мультитестера в розетку? Да все произойдет очень просто и быстро. Собственное сопротивление прибора – невелико, то есть практически гарантированно получается короткое замыкание. Вспомните закон Ома – при стремящемся к нулю сопротивлении сила тока возрастает до огромных значений. Хорошо, если все ограничится срабатыванием защиты и перегоранием плавкого предохранителя в мультитестере. Если он «unfused», о чем говорилось выше – гарантированное перегорание, и прибор нередко остается только выбрасывать. И это еще в лучшем случае – иногда бывают и «фейерверки».

Запомните «золотую истину» – пока к розетке ничего не подключено, ток в ней однозначно равен нулю. И проверять это экспериментально – себе дороже!

А вот замер силы тока в цепи подключённого к розетке бытового прибора – это уже совсем другой случай.

Как измерить силу тока в цепи подключенного бытового прибора

Нельзя сказать, что подобная проверка проводится часто, но иногда она помогает разобраться с правильностью организации домашней электросети. То есть сопоставить соответствие реальной силы тока подведенным к розетке проводам и возможностям другого электротехнического оборудования. Или же дает возможность проверить реальную потребляемую мощность бытового прибора. Если она сильно отличается от паспортной в ту или иную сторону, это может говорить о пока еще не выявленной неисправности.

Схема в общих чертах выглядит следующим образом

1 – розетка 220 вольт.

2 – условно – бытовой прибор.

3 – кабель питания прибора.

4 – точки разрыва цепи (подсоединения щупов тестера). В данном случае они показаны на фазном проводе, хотя для проверки силы переменного тока это не имеет никакого значения — могут быть и на нулевом.

5 – мультиметр, установленный в режим измерения переменного тока 10 А

6 – измерительные провода мультитестера.

Все просто – после сборки такой схемы необходимо подсоединить кабель питания к розетке, а затем запустить бытовой прибор в нужном режиме выключателем. И спустя 3÷5 секунд (некоторым приборам требуется время для выхода на номинальный режим) снять показания силы тока в амперах.

Но как это осуществить, так сказать, технологически? Резать изоляцию и затем – один из проводов кабеля питания, чтобы подключить в разрыв амперметр? Иногда поступают и так. Пример показан на иллюстрации.

Согласитесь, не слишком привлекательный вариант. Нарушается целостность внешней оплетки провода. Концы придется после замеров сращивать и изолировать. Для разовой срочной проверки – может, и сгодится, но не более того.

Городить дополнительные провода между розеткой и вилкой, чтобы «вклинить» между ними амперметр? Тоже довольно неудобно.

Чтобы замеры были безопасными, а их проведение занимало минимум времени и усилий, можно изготовить специальное приспособление. Для этого потребуется небольшая фанерная площадка, две накладные (внешние) розетки (самые дешевые) и отрезок сетевого шнура с вилкой.

Схематично этот «испытательный стенд» будет выглядеть так:

На небольшом жестком фрагменте (поз. 1) например, фанерном, текстолитовом и т.п., крепятся две розетки, так, как показано на схеме. Розетки совершенно условно пронумеруем №1 и №2, а их контакты назовем соответственно 1а и 1б, 2а и 2б.

К розеткам поводится сетевой шнур (поз.4) с вилкой (поз.3). Эта вилка будет подключаться в обычную сетевую розетку.

Шнур разделан, и два его провода подключены к клеммам одноимённых контактов обеих розеток. То есть на схеме это 1а и 2а. А вторая пара, 1б и 2б контактов соединена перемычкой из одножильного провода.

Как проводить замеры с таким приспособлением?

  • Для начала – витка сетевого шнура подключается к розетке (к любой или к тестируемой, то есть к той, к которой подключается на постоянной основе испытываемый бытовой прибор). Вся конструкция у нас после сборки полностью закрыта, изолирована, никаких открытых токопроводящих деталей нет.
  • Имеет смысл для начала проверить напряжение в розетке. Если конечной целью ставится определение реальной мощности прибора, то этот параметр желательно уточнить. Иногда, если домашняя сеть не имеет стабилизатора, он значительно отличается от заявляемых 220 вольт. То есть это может повлиять на конечный результат.

Проверить напряжение несложно. Мультиметр переключается в режим ~V (ACV) с диапазоном больше 220 вольт (обычно это 750 вольт). Штекера проводов устанавливаются в соответствующие гнезда прибора (СОМ и ~V). Затем щупы прибора вставляются в контакты розеток 1а и 2а, как показано на схеме ниже.

  • После этого в одну розетку (любую) вставляется вилка сетевого шнура испытываемого прибора. Цепь не замкнута – разрыв ее получается на второй розетке.
  • Мультитестер переводится в режим амперметра переменного тока (~A или ACA) в максимальный диапазон. Штекер красного измерительного провода переставляется в соответствующий разъем.

  • После этого щупы мультитестера вставляются в гнезда оставшейся свободной розетки. И теперь осталось только включить испытываемый бытовой прибор и снять с мультитестера показания силы тока.

Все исходные данные есть – можно рассчитать потребляемую мощность прибора на момент замера. Можно воспользоваться расположенным ниже калькулятором:

Калькулятор расчета мощности электроприбора

 

Укажите запрашиваемые значения и нажмите
«РАССЧИТАТЬ ПОТРЕБЛЯЕМУЮ МОЩНОСТЬ ЭЛЕКТРОПРИБОРА»

Уточненное напряжение в сети, В

Измеренное значение силы тока, А

Как видите, и довольно сложную задачу замера силы тока питания бытового прибора вполне можно решить с должным уровнем безопасности и комфорта.

А что делать, если мультитестер не рассчитан на измерение силы переменного тока?

Бывает, что требуется измерить силу переменного тока, примерно так, как показывалось выше. но в распоряжении лишь мультиметр, не рассчитанный на такую операцию. И приобретать новый – нет желания или возможности. Если ли выход?

Да, можно выполнить замер и в такой ситуации. Существует для этого несколько способов. Но в любом случае придётся сначала провести некоторые подготовительные работы.

Измерение силы переменного тока с помощью вольтметра и дополнительного сопротивления.

Да, это совершенно серьезно, именно с помощью вольтметра. Снова вспомним закон Ома для участка электрической цепи:

I = U / R

Но если сопротивление на этом участке будет равно ровно одному ому, то получается, что номиналы силы тока и напряжения – совпадут.

I (A) = U(V) / 1 = U(V)

Значит, задача состоит в том, чтобы в разрыв цепи поместить резистор номиналом ровно в 1 ом, а затем промерить напряжение на его концах.

Талой резистор можно приобрести в магазине. Правда, не забываем, что на нем будет потребляться весьма внушительная мощность, и лучше приобретать керамический резистор на 10 или даже 50 Вт.

Правда, такие резисторы далеко не всегда есть в продаже. Да и стоить они могут немало. Можно обойтись и самодельным, накрутив спираль из нихромовой проволоки.

В интернете полно таблиц с удельными сопротивлениями нихромовых проводников различных диаметров. То есть провести расчет требуемой длины, чтобы «выскочить» на 1 ом – не столь сложно.

Например, будет использоваться нихромовая проволока диаметром 0,4 мм (сечение 0,123 мм²). Ее удельное сопротивление составляет 7,94 Ом/м. Несложно рассчитать, что для сопротивления 1 ом потребуется 126 мм проволоки.

Из этого отрезка навивается спираль. Или, что еще удобнее и безопаснее – можно намотать проволоку на панельку их стеклотекстолита, как показано на иллюстрации. После намотки проводят проверку мультиметром в режиме омметра. При необходимости – корректируют длину, чтобы сопротивление было 1 ом с максимально возможной точностью.

Концы резистора можно прикрепить, например, к штырям разобранной вилки – чтобы удобнее было их подключать к разрыву цепи.

Если резистор готов, можно приниматься за измерения.

В свободную розетку к ее контактам присоединяют самодельный резистор. После этого можно сразу к его концам «крокодильчиками» подцепить щупы мультиметра. Провода и сам тестер должны быть настроены на режим вольтметра для переменного тока.

Включается прибор-нагрузка. Но дисплее мультиметра показывается  напряжение (в вольтах) для участка цепи сопротивлением 1 ом . Это же значение, но только в амперах – искомая сила тока в замкнутой цепи.

Важно – резистор при таком замере может очень быстро нагреваться, буквально докрасна. Поэтому снятие показаний должно выполняться с максимальной оперативностью. Как только подключенный прибор вышел на свою мощность, показания на дисплее стабилизировались – их записывают и выключают нагрузку.

Есть и другой способ измерения силы переменного тока при отсутствии соответствующего амперметра. Ток можно выпрямить с помощью диодного моста. Подробнее об этом – в предлагаемом видеосюжете.

Видео: Как можно переделать амперметр постоянного тока под переменный

Как с помощью амперметра можно проверить элементы питания

Еще один частый случай, когда приходится переключать мультитестер в режим измерения силы тока. Речь идет о проверке элементов питания. Помогает как при приобретении батареек в сомнительных торговых точках, так и при ревизии накопившегося дома запаса.

Безусловно, для начала будет неплохо проверить батарейки по напряжению. Для этого переключатель режимов мультиметра устанавливается на постоянное напряжение (DCV). Предел измерений – в соответствии с заявляемым напряжением элемента питания. Если это наиболее распространенные 1.5 вольта, то оптимальным будет предел 2000 мВ (= 2В). Можно установить и 20 В – в этот предел вкладываются практически все используемые элементы питания.

Щуп черного провода (СОМ) прикладывается к отрицательному полюсу элемента питания. Красный, установленный в соответствующее гнездо – к положительному. Производится быстрый замер напряжения. И если оно менее 1.2 В, то такую батарейку можно смело отправлять на утилизацию – она села, и чудес от нее ждать не приходится.

Кстати, о полярности. При работе с переменным током, ясное дело, это не имеет значения. А при замерах постоянного напряжения или тока ее соблюдение важно для стрелочных мультиметров. Если щупы расположены неправильно – стрелка начнет валиться влево, и никаких показаний не будет. Для цифровых же приборов ошибка не станет большой проблемой – просто перед числовым показателем на дисплее появится минус. Тем не менее, «культура пользования» все же предполагает правильное расположение полярности. Тем более что бывают ситуации, когда это имеет важное значение. И хорошо, если правильное расположение щупов просто войдет в привычку.

Вернемся к проверке. Измерение напряжения – это лишь первый шаг, позволяющий отсеять явно негодные элементы питания. А само значение еще ни о чем не говорит – неизвестно, как поведет себя батарейка под нагрузкой. Поэтому и следует проверить ее еще и по току.

Для этого мультиметр переключается в режим DCA с максимальным пределом измерения, то есть на 10 или 20 А (в зависимости от модели прибора). Это важно, так как токи при замыкании батарейки через амперметр бывают нешуточные. Красный провод, естественно, переставляется в соответствующее гнездо.

После этого опять черный провод прикладывается к отрицательному полюсу батарейки. А красным производят кратковременное замыкание цепи на положительном полюсе. Это очень важный момент: замер не должен превышать одной – двух секунд. Можно постараться уложиться и менее чем за секунду. Необходимо быстро засечь пиковое значение силы тока, когда оно перестанет расти. Если же затянуть с измерением, это повлечет активный разряд элемента питания.

  • В новых, качественных элементах питания проверка может показать порядка 4÷6 ампер. Они подойдут для самых ответственных мест установки.
  • Диапазон от 3 до 3.9 ампера говорят, что батарейка вполне работоспособная, хотя ее функциональные способности все же несколько снижены. Но она еще послужит немало.
  • От 2 до 3 ампер – элемент питания уже «посажен», но еще вполне пригоден для использования в приборах с незначительным потреблением энергии.
  • Менее 2 ампер – батарейка, скорее всего, пригодна лишь для пульта дистанционного управления.
  • Ну а если ток едва достигает 1.1 ампер или ниже – это почти всё. Возможно, такую батарейку еще можно поставить в пульт ДУ, но только если на текущий момент вообще нет другой замены. И вполне можно ожидать, что отказ в работе способен произойти в любой момент.

Проведя такую ревизию нередко скапливающегося дома запаса батареек, можно сразу избавиться от «балласта». А остальные — отсортировать по возможности дальнейшего применения.

Проверка тока утечки электросети автомобиля

Еще одно практическое приложение измерения силы тока мультиметром. Это — самостоятельная диагностика своего автомобиля на предмет токов утечки, которые способны привести к быстрому разряду аккумулятора.

Проводится она примерно в следующем порядке:

  • Проверка должна проводиться при полностью заряженном аккумуляторе.
  • Перед тестированием требуется выключить все потребляющие электроэнергию приборы. Имеется в виду освещение, аудиосистема, парктроник, и т.п. При проверке, возможно, придётся открывать двери в салон. Поэтому необходимо каким-то образом закрепить в нажатом положении концевые выключатели, ответственные за габаритные огни на дверях.

Безусловно, следует учитывать и иные особенности своего авто. Так, нередко требуется определенное время на полное «засыпание» бортового компьютера. Могут быть нюансы и с системой сигнализации. Хозяин машины должен с этим разобраться.

  • С клеммы аккумулятора снимается кабель массы («минус»).
  • Мультитестер переводится в режим амперметра с пределом измерений постоянного тока до 10 ампер. Ток утечки, безусловно, намного меньше, но подстраховаться никогда не мешает. А на точности снятия показаний это особо не отразится – двух знаков после десятичной запятой будет вполне достаточно. Красный провод устанавливается в соответствующее гнездо на 10 А.
  • Далее, черный провод мультитестера необходимо подсоединить к минусовой клемме аккумулятора. Это можно сделать, например, с использованием обычного хомута.
  • Замыкаться же цепь будет контактом щупа красного провода с клеммной снятого кабеля массы. Значение, высвечивающееся при этом на дисплее мультиметра, как раз и покажет ток утечки.

Нормальным считается ток утечки в пределах 0,03÷0,05 А (30 ÷ 50 мА), и чем ниже, тем лучше. Иногда может быть и больше, если автомобиль «нафарширован» электроникой. Но даже в таком случае – никак не выше 0,08 А.

  • Если ток в пределах нормы – то можно только порадоваться. Но в том случае, когда он явно выходит за пределы допустимого, следует сразу локализовать проблему, то есть выявить участок, где такая утечка происходит.
  • Для этого последовательно вынимаются предохранители, отвечающие за разные участки электросети автомобиля. При этом необходимо проверить все – не только в коробке под капотом, но и размещенные в салоне.

Итак, предохранитель достали из гнезда. Если показания не изменились, его можно сразу вернуть на место. Значит, на этом участке   проблем нет.

  • Рано или поздно снятие какого-то предохранителя приведет к резкому снижению показаний силы тока на мультиметре. Вот он – тот самый участок, более детальной диагностикой которого предстоит заняться.

Кстати, причин утечки может быть и несколько. Например, снятие одного из предохранителей снизило показания силы тока с 0,25 до 0,12 А. Да, это проблемный участок, но очевидно, что ток все равно великоват. Значит, не устанавливая обратно этот предохранитель, поиск продолжают, пока не будет отыскано следующее «слабое звено». И так далее – пока показатель утечки не войдет в пределы нормы.

Ну а дальше – предстоит проводить более детальную диагностику, чтобы окончательно разобраться с проблемой. Но это уже – совсем другая тема.

poptiz.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *