Как определить мощность импульсного трансформатора. Какие формулы использовать при расчете обмоток. Как правильно намотать импульсный трансформатор своими руками. На что обратить внимание при выборе сердечника.
Что такое импульсный трансформатор и его особенности
Импульсный трансформатор — это специальный вид трансформатора, предназначенный для передачи коротких электрических импульсов с минимальными искажениями. В отличие от обычных силовых трансформаторов, работающих на частоте 50-60 Гц, импульсные трансформаторы способны эффективно передавать сигналы с крутыми фронтами длительностью от долей микросекунд до миллисекунд.
Основные особенности импульсных трансформаторов:
- Малая индуктивность рассеяния и межвитковая емкость обмоток
- Высокая скорость нарастания магнитного потока в сердечнике
- Широкая полоса пропускания (до десятков МГц)
- Возможность передачи как положительных, так и отрицательных импульсов
- Малые габариты и вес по сравнению с силовыми трансформаторами той же мощности
Благодаря этим свойствам импульсные трансформаторы широко применяются в импульсных источниках питания, модуляторах, системах управления и других устройствах, где требуется передача коротких мощных импульсов.
Расчет мощности импульсного трансформатора
Мощность импульсного трансформатора рассчитывается иначе, чем для обычных силовых трансформаторов. Основные формулы для расчета:
1. Импульсная мощность:
Pимп = U2 * I2
где U2 — напряжение вторичной обмотки, I2 — ток вторичной обмотки
2. Средняя мощность:
Pср = Pимп * τ * f
где τ — длительность импульса, f — частота следования импульсов
3. Габаритная мощность:
Pгаб = K * Sс * Sок
где K — коэффициент заполнения окна, Sс — сечение сердечника, S ок — площадь окна магнитопровода
Выбор сердечника для импульсного трансформатора
При выборе сердечника для импульсного трансформатора необходимо учитывать следующие факторы:
- Материал сердечника (феррит, пермаллой, аморфные сплавы)
- Форма сердечника (тороидальная, броневая, стержневая)
- Площадь сечения и объем сердечника
- Индукция насыщения материала
- Потери в сердечнике на заданной частоте
Оптимальным выбором для большинства применений являются ферритовые сердечники из материалов с низкими потерями на высоких частотах (например, MnZn ферриты). Тороидальная форма обеспечивает минимальное рассеяние магнитного поля.
Расчет числа витков обмоток импульсного трансформатора
Число витков первичной обмотки рассчитывается по формуле:
N1 = (U1 * τ) / (Bм * Sс)
где U1 — напряжение первичной обмотки, τ — длительность импульса, B
Число витков вторичной обмотки:
N2 = N1 * (U2 / U1)
При расчете важно учитывать, что индукция Bм не должна превышать индукцию насыщения материала сердечника.
Особенности намотки импульсного трансформатора своими руками
При самостоятельной намотке импульсного трансформатора следует придерживаться следующих рекомендаций:
- Использовать провод с качественной изоляцией, способной выдержать высокое импульсное напряжение
- Обеспечить плотную равномерную намотку витков
- Минимизировать длину выводов обмоток
- Применять секционирование обмоток для снижения паразитных емкостей
- Использовать экранирование между обмотками при необходимости
Важно также правильно выбрать направление намотки обмоток для обеспечения требуемой полярности выходных импульсов.
Проверка и тестирование импульсного трансформатора
После изготовления импульсный трансформатор необходимо проверить и протестировать. Основные этапы:
- Измерение сопротивления и индуктивности обмоток
- Проверка коэффициента трансформации на разных частотах
- Измерение индуктивности рассеяния
- Проверка формы выходных импульсов осциллографом
- Тестирование трансформатора под нагрузкой
При обнаружении искажений формы импульсов или значительных потерь может потребоваться корректировка числа витков или способа намотки.
Применение импульсных трансформаторов
Основные области применения импульсных трансформаторов:
- Импульсные источники питания
- Драйверы затворов силовых транзисторов
- Модуляторы в радиопередатчиках
- Системы зажигания двигателей
- Генераторы высоковольтных импульсов
- Импульсные усилители мощности
В каждом конкретном применении к импульсным трансформаторам предъявляются свои специфические требования, которые необходимо учитывать при расчете и конструировании.
Как узнать мощность трансформатора. Определение мощности трансформатора. Способы определения мощности трансформатора
Меня неоднократно спрашивали о том, как определить мощность 50Гц трансформатора не имеющего маркировки, попробую рассказать и показать на паре примеров.Вообще способов определения мощности 50Гц трансформатора есть довольно много, я перечислю лишь некоторые из них.
1. Маркировка.
Иногда на трансформаторе можно найти явное указание мощности, но при этом данное указание может быть незаметно с первого взгляда.
Вариант конечно ну очень банальный, но следует сначала поискать.
2. Габаритная мощность сердечника.
Есть таблицы, по которым можно найти габаритную мощность определенных сердечников, но так как сердечники выпускались весьма разнообразных конфигураций размеров, а кроме того отличались по качеству изготовления, то таблица не всегда может быть корректна.
Да и найти их не всегда можно быстро. Впрочем косвенно можно использовать таблицы из описаний унифицированных трансформаторов.
3. Унифицированные трансформаторы.
Еще при союзе, да и впрочем после него, было произведено огромное количество унифицированных трансформаторов, их вы можете распознать по маркировке начинающейся на ТПП, ТН, ТА.
Если ТА распространены меньше, то ТПП и ТН встречаются весьма часто.
Например берем трансформатор ТПП270.
Находим описание маркировки данной серии и в описании находим наш трансформатор, там будет и напряжения, и токи и мощность.
В раздел документация я выложил это описание в виде PDF файла. Кстати там же можно посмотреть размеры сердечников трансформаторов и определить мощность по его габаритам, сравнив со своим. Если ваш трансформатор имеет немного больший размер, то вполне можно пересчитать, так как мощность трансформатора прямо пропорциональна его размеру.
На трансформаторе ТН61 маркировка почти не видна, но она есть 🙂
Для него есть отдельное описание, я его также выложил у себя в блоге.
Иногда трансформатор имеет маркировку, но найти по ней что либо вразумительное невозможно, увы, таблицы для таких трансформаторов большая редкость.
4. Расчет мощности по диаметру провода.
Если никаких данных нет, то можно определить мощность исходя из диаметра проводов обмоток.
Можно измерить первичную обмотку, но иногда она бывает недоступна.
В таком случае измеряем диаметр провода вторичной обмотки.
В примере диаметр составляет 1.5мм.
Дальше все просто, сначала узнаем сечение провода.
1.5 делим на 2, получаем 0.75, это радиус.
0.75 умножаем на 0.75, а получившийся результат умножаем на 3.14 (число пи), получаем сечение провода = 1.76мм.кв
Значение плотности тока принято принимать равным 2.5 Ампера на 1мм.кв. В нашем случае 1.76 умножаем на 2.5 и получаем 4.4 Ампера.
Так как трансформатор рассчитан на выходное напряжение 12 Вольт, это мы знаем, а если не знаем, то можем измерить тестером, то 4.4 умножаем на 12, получаем 52.8 Ватта.
На бумажке указана мощность 60 Ватт, но сейчас часто мотают трансформаторы с заниженным сечением обмоток, потому по ольшому счету все сходится.
Иногда на трансформаторе бывает написано не только количество витков обмоток, а и диаметр провода. но к этому стоит относиться скептически, так как наклейки могут ошибаться.
В этом примере я сначала нашел доступный для измерения участок провода, немного поднял его так, чтобы можно было подлезть штангенциркулем.
А когда измерил, то выяснил что диаметр провода не 0.355, а 0.25мм.
Попробуем применить вариант расчета, который я приводил выше.
0.25/2=0.125
0.125х0.125х3.14=0.05мм.кв
0.05=2.5=0.122 Ампера
0.122х220 (напряжение обмотки) = 26.84 Ватта.
Кроме того вышеописанный способ отлично подходит в случаях, когда вторичных обмоток несколько и измерять каждую просто неудобно.
5. Метод обратного расчета.
В некоторых ситуациях можно использовать программу для расчета трансформаторов. В этих программах есть довольно большая база сердечников, а кроме того они могут считать произвольные конфигурации размеров исходя из того, что мы можем измерить.
Я использую программу Trans50Hz.
Сначала выбираем тип сердечника. в основном это варианты кольцевой, Ш-образный ленточный и Ш-образный из пластин.
Слева направо — Кольцевой, ШЛ, Ш.
В моем примере я буду измерять вариант ШЛ, но таким же способом можно выяснить мощность и других типов трансформаторов.
Шаг 1, измеряем ширину боковой части магнитопровода.
Заносим измеренное значение в программу.
Шаг 2, ширина магнитопровода.
Также заносим в программу.
Шаг 3, ширина окна.
Здесь есть два варианта. Если есть доступ к окну, то просто измеряем его.
Если доступа нет, то измеряем общий размер, затем вычитаем четырехкратное значение, полученное в шаге 1, а остаток делим на 2.
Вводим значение.
Шаг 4, длина окна.
По сути это длина каркаса под провод, часто его можно измерить без проблем.
Также вводим это значение.
После этого нажимаем на кнопку — Расчет.
И получаем сообщение об ошибке.
Дело в том, что в программе изначально были заданы значения для расчета мощного трансформатора.
Находим выделенный пункт и меняем его значение на такое, чтобы мощность (напряжение умноженное на ток) не превысило нашу ориентировочную габаритную мощность.
Можно туда вбить хоть 1 Вольт и 1 Ампер, это неважно, я выставил 5 Вольт.
Заново нажимаем на кнопку Расчет и получаем искомое, в данном случае программа посчитала, что мощность нашего магнитопровода составляет
Полученные данные примерно сходятся с расчетом по диаметру провода, тогда я получил 26.84 Ватта, значит метод вполне работает.
5. Измерение максимальной температуры.
Обычные (железные) трансформаторы в работе не должны нагреваться выше 60 градусов, это можно использовать и в расчете мощности.
Но здесь есть исключения, например трансформатор блока бесперебойного питания может иметь большую мощность при скромных габаритах, это обусловлено тем, что работает он кратковременно и он раньше отключится, чем перегреется. Например в таком варианте его мощность может быть 600 Ватт, а при длительной работе всего 400.
Еще есть китайские производители, которые бывает используют в дешевых адаптерах трансформаторы «маломерки», которые греются как печки, это ненормально, часто реальная мощность трансформатора может быть в 1.2-1.5 раза меньше заявленной.
Чтобы измерить мощность вышеуказанным способом, берем любую нагрузку, лампочки, резисторы и т.п. Как вариант, можно использовать электронную нагрузку, но в этом случае подключаем ее через диодный мост с фильтрующим конденсатором.
Ждем примерно с час, если температура не превысила 60, то увеличиваем нагрузку. Дальше думаю процедура понятна.
Есть правда небольшая оговорка, температура трансформатора может заметно отличаться в зависимости от того, есть ли корпус и насколько он большой, но зато дает весьма точный результат. Единственный минус, тест очень долгий.
Подобные трансформаторы я использую в последние 10-15 лет крайне редко, потому они лежат где нибудь на дальних полках балкона и когда искал, наткнулся на весьма любопытные индикаторы, ИН-13. Покупал для индикатора уровня в усилитель, но так и забросил в итоге. Теперь вот нашел и думаю, что из них можно сделать, возможно у вас есть идеи и предложения. В случае интересной идеи, попробую сделать и показать процесс в виде обзора.
На этом все, а в качестве дополнения видео по определению габаритной мощности трансформатора.
Как выбрать трансформатор — Гиды по покупкам DirectIndustry
Трансформатор напряжения HARTING
Существует 5 основных технологий трансформаторов.
Трансформатор напряжения
Трансформатор напряжения позволяет изменять значения переменного напряжения и тока, сохраняя при этом ту же частоту. Это преобразование происходит с высокой эффективностью.
Трехфазный трансформатор
Трехфазный трансформатор позволяет преобразовывать напряжение и ток трех фаз одновременно. Благодаря этому можно использовать один трансформатор вместо трех: в одном устройстве объединены три фазы. Таким образом, эта система обходится дешевле и занимает меньше места, чем если используется по одному трансформатору на фазу.
Тороидальный трансформатор
Тороидальный трансформатор содержит магнитопровод (сердечник) тороидальной формы. Таким образом, он отличается от других трансформаторов своей кольцеобразной формой. Он имеет небольшой вес, занимает меньше места в электронной аппаратуре и легко монтируется. Он образует мало шума и электромагнитных помех по сравнению с обычными трансформаторами. Тороидальные сердечники также потребляют меньше энергии для поддержания магнитного поля, за счет чего снижается расход электроэнергии. Тороидальные трансформаторы имеют хорошее соотношение цены и качества.
Трансформатор-преобразователь
Это трансформатор невысокой мощности, выравнивающий напряжение и предназначенный для повседневного использования. Используется, в частности, для телефонов и ноутбуков.
Трансформатор-преобразователь имеет довольно высокую стоимость по сравнению с обычным трансформатором.
Автотрансформатор
Автотрансформатор содержит лишь одну обмотку с тремя выводами для выполнения электрических соединений. Он способен повышать или понижать напряжение таким образом, что оборудование, произведенное в Соединенных Штатах, может получать питание от источника более высокого напряжения. Преимущество автотрансформаторов заключается в том, что они более легкие, компактные и менее дорогостоящие по сравнению с трансформаторами с двойной обмоткой. Они также используются для запуска асинхронных двигателей или в железнодорожной промышленности в Великобритании.
формула для нахождения сечения магнитопровода, как рассчитать обмотки
Простейший расчет силовых трансформаторов и автотрансформаторов
Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100—200 Вт проводится следующим образом.
Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.
Далее, принимая КПД трансформатора небольшой мощности, равным около 80 %, определяем первичную мощность:
Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:
где s — в квадратных сантиметрах, а Р1 — в ваттах.
По значению S определяется число витков w’ на один вольт. При использовании трансформаторной стали
Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w’ на 20—30 %.
Теперь можно рассчитать число витков обмоток
В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5—10 % больше рассчитанного.
Ток первичной обмотки
Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:
Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:
Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.
В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз — диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2—3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.
В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.
Определяем общую мощность вторичных обмоток:
Мощность первичной цепи
Находим площадь сечения сердечника из трансформаторной стали:
Число витков на один вольт
Ток первичной обмотки
Число витков и диаметр проводов обмоток равны:
• для первичной обмотки
• для повышающей обмотки
• для обмотки накала ламп
Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.
Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:
• для первичной обмотки
• для повышающей обмотки
• для обмотки накала ламп
Общая площадь сечения обмоток составляет примерно 430 мм2.
Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.
Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.
Эта мощность определяется по формулам:
— для повышающего автотрансформатора
— для понижающего автотрансформатора, причем
Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.
Затем определяется расчетная мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д
алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий.
KOMITART – развлекательно-познавательный портал
Разделы сайта
DirectAdvert NEWS
Друзья сайта
Осциллографы
Мультиметры
Купить паяльник
Купить Микшер
Купить Караоке
Статистика
Простой расчет понижающего трансформатора.
Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.
Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.
1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.
Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.
Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.
Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.
Трансформаторы с витыми кольцевыми магнитопроводами.
Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.
Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.
Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.
Сначала определяем сечение, для чего перемножаем размеры А и Б.
Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.
Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:
Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.
О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.
Максимальные ориентировочные значения индукции.
КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.
В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.
В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт .
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт .
В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт . Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.
Если вы найдете лампочку другой мощности, например на 40 ватт , нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.
Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт
Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт ;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт ;
I2 — ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1 , мощности потребляемой от сети 220 вольт , зависит площадь поперечного сечения магнитопровода S .
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.
По значению S определяется число витков w на один вольт по формуле:
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв .
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
Число витков во вторичной обмотке на 36 вольт:
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков .
Величина тока в первичной обмотке трансформатора:
Ток во вторичной обмотке трансформатора:
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:
Для первичной обмотки диаметр провода будет:
Диаметр провода для вторичной обмотки:
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА , то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
где: d — диаметр провода.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм .
Площадь поперечного сечения провода диаметром 1,1 мм равна:
Округлим до 1,0 мм² .
Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм² .
Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .
Или два провода:
— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм² .
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам
Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.
Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.
Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.
Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.
Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.
От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
Подготовка исходных данных за 6 простых шагов
Шаг №1. Указание формы сердечника и его поперечного сечения
Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.
Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:
- Ширину пластины под катушкой с обмоткой.
- Толщину набранного пакета.
Вставьте эти данные в соответствующие ячейки таблицы.
Шаг №2. Выбор напряжений
Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.
Заполните указанные ячейки.
Шаг №3. Частота сигнала переменного тока
По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.
Их создают из других материалов сердечника и рассчитывают иными способами.
Шаг №4. Коэффициент полезного действия
У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
Но, вы можете откорректировать его значение вручную.
Шаг №5. Магнитная индуктивность
Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.
По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.
Шаг №6. Плотность тока
Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.
Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.
Выполнение онлайн расчета трансформатора
После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Этап №3. Как вычислить диаметры медного провода для каждой обмотки
При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.
Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.
Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.
Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.
Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.
Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.
Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.
Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).
В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.
Этап №5. Учет свободного места внутри окна магнитопровода
На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.
Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.
Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.
Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.
Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.
4 практических совета по наладке и сборке трансформатора: личный опыт
Сборка магнитопровода
Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.
Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.
Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.
Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.
Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.
Расчет провода по плотности тока
Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.
Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.
Способы намотки витков
Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.
Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.
Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.
Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.
Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).
Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.
Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.
Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.
Замер тока на холостом ходу трансформатора
Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.
Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.
Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.
Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.
Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.
Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.
Расчет трансформатора
Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.
Расчет силового трансформатора
Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.
В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.
Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).
Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2: . С помощью сечения сердечника необходимо определить количество витков n , соответствующее 1 вольту напряжения: n = 50/Q.
На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xn xU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…
Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1.Здесь используется общая мощность трансформатора.
Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d1 2 n1 + d2 2 n2 +d3 2 n3 + d4 2 n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.
Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.
Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.
Как рассчитать мощность трансформатора
Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.
Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.
Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.
Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.
Расчёт трансформатора по сечению сердечника
Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.
Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.
Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.
В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.
Как определить число витков обмотки трансформатора не разматывая катушку
При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.
Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.
Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.
Силовые трансформаторы, простой расчет
В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.
- Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.
Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.
Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.
Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.
Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.
К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.
В нашем случае принимаем к.п.д. равным 0,8.
При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:
120 Вт : 0,8 = 150 Вт.
- По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.
S (см 2 ) = (1,0 ÷1,2) √Р
Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.
Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2 .
- Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.
Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:
Округлим это значение до 4,5 витка на вольт.
Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.
Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.
- Осталось определить диаметр провода обмоток.
Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.
Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).
I1 = 150 Вт / 220 В = 0,7 А
Диаметр провода определяем по формуле:
Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.
Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.
Диаметр провода первичной обмотки:
D1 = 0,75 √0,7 = 0,63 мм
Диаметр провода вторичной обмотки:
D2 = 0,75 √6 = 1,84 мм
Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.
Вот и весь расчет.
Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.
Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.
Материал статьи продублирован на видео:
Расчет трансформатора
В раздел : Советы → Расcчитать силовой трансформатор
Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника – сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток – амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.
Формула для расчета витков трансформатора
Сопутствующие формулы: P=U2*I2 Sсерд(см2)= √ P(ва) N=50/S I1(a)=P/220 W1=220*N W2=U*N D1=0,02*√i1(ma) D2=0,02*√i2(ma) K=Sокна/(W1*s1+W2*s2)
50/S – это эмпирическая формула, где S – площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
Если вы планируете намотать трансформатор с достаточно “жёсткой” характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.
Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.
Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.
Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:
1. Определяют значение тока, протекающего через вторичную обмотку трансформатора: I2 = 1,5 Iн , где: I2 – ток через обмотку II трансформатора, А; Iн – максимальный ток нагрузки, А. 2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора: P2 = U2 * I2 , где: P2 – максимальная мощность, потребляемая от вторичной обмотки, Вт; U2 – напряжение на вторичной обмотке, В; I2 – максимальный ток через вторичную обмотку трансформатора, А. 3. Подсчитываем мощность трансформатора: Pтр = 1,25 P2 , где: Pтр – мощность трансформатора, Вт; P2 – максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт. Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора. 4. Определяют значение тока, текущего в первичной обмотке: I1 = Pтр / U1 , где: I1 – ток через обмотку I, А; Ртр – подсчитанная мощность трансформатора, Вт; U1 – напряжение на первичной обмотке трансформатора (сетевое напряжение). | 5. Рассчитываем необходимую площадь сечения сердечника магнитопровода: S = 1,3 Pтр , где: S – сечение сердечника магнитопровода, см2; Ртр – мощность трансформатора, Вт. 6. Определяем число витков первичной (сетевой) обмотки: w1 = 50 U1 / S , где: w1 – число витков обмотки; U1 – напряжение на первичной обмотке, В; S – сечение сердечника магнитопровода, см2. 7. Подсчитывают число витков вторичной обмотки: w2 = 55 U2 / S , где: w2 – число витков вторичной обмотки; U2 – напряжение на вторичной обмотке, В; S-сечение сердечника магнитопровода, см2. 8. Высчитываем диаметр проводов обмоток трансформатора: d = 0,02 I , где: d-диаметр провода, мм; I-ток через обмотку, мА. |
Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.
Таблица 1 | |
Iобм, ma | Еще один способ расчета мощности трансформатора по габаритам. Ориентировочно посчитать мощность трансформатора можно используя формулу: P=0.022*S*С*H*Bm*F*J*Кcu*КПД; P – мощность трансформатора, В*А; S – сечение сердечника, см² L, W – размеры окна сердечника, см; Bm – максимальная магнитная индукция в сердечнике, Тл; F – частота, Гц; Кcu – коэффициент заполнения окна сердечника медью; КПД – коэффициент полезного действия трансформатора; Имея в виду что для железа максимальная индукция составляет 1 Тл. Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 – магнитная индукция [T], j =2.5 – плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 – 0,33. Если вы располагаете достаточно распространенным железом – трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма Подключение обмоток трансформаторов ТППРассмотрим на примере ТПП-312-127/220-50 броневой конструкции, параллельное включение вторичных обмоток.
По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины. Соединение обмоток отдельных трансформаторовИногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения? |
принцип работы, виды и расчёт
Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.
Область применения
Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.
Видео: Как работает импульсный трансформатор?
Требования к приборам
Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.
Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.
Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.
Принцип работы
Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.
На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.
Разновидности
Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:
- Тороидальный.
- Броневой.
- Стержневой.
- Бронестержневой.
Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:
- Спиральные.
- Цилиндрические.
- Конические.
В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.
Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.
Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.
Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.
Преимущества
Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.
Трансформаторы импульсного типа отличаются следующими преимуществами:
- Малый вес.
- Низкая цена.
- Повышенный уровень КПД.
- Расширенный диапазон напряжения.
- Возможность встроить защиту.
Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.
Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.
Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.
Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.
Разновидности материалов
Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:
- Электротехническая сталь.
- Пермаллой.
- Феррит.
Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.
Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.
Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.
Расчет
Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.
Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:
П = (40-25)/2*11 = 82,5 мм².
Далее можно просчитать минимальное количество витков:
На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:
Д = 78/181 = 0,43 мм.
Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:
ГМ = 300 * 0,6 = 180 Вт.
На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.
Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.
От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.
Интересное видео: Импульсный трансформатор своими руками
Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.
Мощность трансформатора, какая должна быть, как правильно выбрать, рассчитать.
Трансформатор является преобразователем электрической энергии. С его помощью можно легко трансформировать одну величину тока и/или напряжения в другую. Конструкция его достаточно проста. Он состоит из следующих основных функциональных частей: магнитопровод определенной формы, катушки, каркас, на который и наматываются рабочие катушки. Магнитопровод делают в виде тора (круглой формы), Ш-образной и П-образной формы. Каждая форма имеет свои особенности в работе.
Магнитопровод трансформатора, рассчитанный на работу с низкой частотой (промышленная частота в 50 Гц) делают из листового железа. Это позволяет снизить потери при работе устройства. Трансформатор, что работает на более высоких частотах уже имеет магнитопровод из феррита различных марок. Мощность трансформатора напрямую связана с размерами магнитопровода, материалом (из которого он сделан), частотой, на которой устройству приходится работать.
Самый простой вариант трансформатора содержит в себе две обмотки, называемые первичной и вторичной. Первичная обмотка является входной, вторичная — выходной. Первичная может состоять из нескольких обмоток (или одной, но с отводом), рассчитанных на различное входное напряжение (обычно можно встретить на 220 вольт и на 110). У вторичной может быть гораздо больше обмоток, в зависимости от количества различных напряжений, что нужно получить под разные нужды от одного трансформатора.
Теперь, что касается самой электрической мощности трансформатора. На практике обычно бывает так — есть электротехническое устройство потребитель (нагрузка), которое нужно запитать. Известно напряжение его питания и сила тока, что оно потребляет при своей работе. Под это устройство нужно подобрать соответствующий блок питания. Напомню, что электрическую мощность можно найти по следующей простой формуле: P=U*I (мощность в ваттах равна напряжение в вольтах умноженное на силу тока в амперах). Следовательно, зная напряжение и ток нагрузки мы легко вычисляем мощность устройства. Блок питания должен иметь чуть большую мощность, чем нагрузка, которую он будет питать (запас по мощности должен быть не менее 25%).
Поскольку трансформатор является основным функциональным элементом, определяющий общую мощность блока питания (трансформаторного), то именно его мощность должна быть правильно рассчитана и подобрана под нагрузку. Итак, к примеру, есть небольшой, двухканальный усилитель звуковой частоты, мощность которого 20 ватт на канал. Питание у него 12 вольт. Под него нужно собрать (найти) подходящий трансформаторный блок питания. Общая мощность этого усилителя будет равна 40 ватт (два канала по 20 ватт). Следовательно, с учетом запаса, нам нужно найти понижающий силовой трансформатора, у которого мощность будет не меньше 50 ватт. Поскольку нагрузка нуждается в 12 вольтах, то и вторичная обмотка трансформатора должна быть рассчитана на это напряжение.
Минимальные размеры (при той же мощности) будет у трансформатора круглой формы (тора), но его сложнее мотать (если это делать самому). Ш-образные и П-образные легче наматывать, они проще в своей разборке и сборке, хотя и имеют чуть большие размеры и вес. Мощность трансформатора (если говорить о трансформаторах, рассчитанных на стандартную частоту сети 50 герц, имеющие железные магнитопровод) имеет прямую зависимость от площади поперечного сечения основной части сердечника, где намотан провод обмоток. Формулу зависимости площади сечения магнитопровода трансформатора от его мощности можно выразить так: мощность трансформатора (ватты) равна квадрату площади поперечного сечения основной части магнитопровода (квадратные сантиметры).
То есть, если мы имеем понижающий силовой трансформатор (с металлическим сердечником), но мощность его нам неизвестна, то нужно взять и измерить его толщину и ширину основной его части (где намотан провод). Далее узнаем сечение этой части, перемножаем эту ширину и толщину (в сантиметрах). Полученный результат возводится в квадрат. Вот и получаем мощность, которой обладает этот трансформатор, с этим магнитопроводом. Либо при покупке сразу смотрим или узнаем номинальную мощность приобретаемого трансформатора.
Поскольку электрическая мощность равна произведению силы тока на напряжение, то при одной и той же мощности нам нужно будет учитывать, что если мы увеличиваем напряжение, то придется жертвовать уменьшением силы тока (уменьшая диаметр, сечение провода вторичной обмотки), и наоборот, увеличивая ток на выходе трансформатора, мы будем вынуждены снижать напряжение (уменьшая количество витков в обмотке). Если важен и ток и напряжение на выходе трансформатора, а вся вторичная обмотка не помещается в магнитопровод, то, естественно, нужно увеличивать размеры этого магнитопровода, повышая общую мощность трансформатора.
P.S. В каком-то смысле импульсные трансформаторы, рассчитанные на работу с более высокими частотами, нежели стандартные 50 герц, можно назвать резиновыми по своей мощности. То есть, при пропускании через них тока одной частоты они будут выдавать одну мощность, если же частоту этого тока увеличить, то и мощность этого трансформатора также будет увеличена, при тех же самых его размерах магнитопровода. Но для таких высокочастотных трансформаторов уже используются специальные электронные схемы преобразователей, и содержат в себе сердечники из феррита различных марок (вместо железа).
Расчет силовых трансформаторов при произвольных законах изменения напряжения и тока
Расчету трансформаторов посвящено много работ, например [1–5]. В данной статье представлен подход к их расчету,
основанный на обеспечении:
заданного нагрева магнитопровода (МП) при намагничивании его переменным напряжением произвольной формы и нагрева обмоток рабочим током произвольной формы;
получения заданной индуктивности рассеивания, то есть получения заданного значения напряжения короткого замыкания или заданной длительности фронта импульса.
Первый подход хорошо зарекомендовал себя при расчете дросселей с магнитопроводом при произвольной форме тока [6]. Созданная теория подтверждалась результатами статистической обработки значений удельной энергии промышленных дросселей, которая выявила зависимость удельной энергии дросселя как степень 1/7 от значения самой энергии в широких пределах изменения энергий от долей до тысяч джоулей.
Далее не рассматривается расчет «строчных» трансформаторов, которые по виду выполняемых функций являются двухобмоточными дросселями.
В трансформаторе закон изменения индукции задается напряжением, в дросселе — током. Другими словами, сердечник трансформатора намагничивается напряжением, а дросселя — током. Можно выделить несколько типичных несинусоидальных режимов работы трансформатора.
Минимальное и максимальное значения напряжения близки по абсолютному значению, но имеют противоположные знаки
(рис. 1а). Имеет место режим переменного тока.Минимальное и максимальное значения напряжения намного отличаются друг от друга, например,
одно равно 5–10% другого (рис. 1б). Время действия положительного и отрицательного напряжения сильно отличаются.
Режим принято называть импульсным. Разность между максимальным и минимальным значением индукции называют перепадом ΔB
(иногда размахом), а половину этого значения — амплитудой переменной составляющей Bm.
В обоих режимах постоянная составляющая индуктированного напряжения равна нулю. В противном случае индукция в магнитопроводе стала бы непрерывно нарастать.
Дроссель и трансформатор состоят из одинаковых частей: магнитопровода и обмоток. Задачей конструктивного расчета трансформатора и дросселя является определение основных геометрических размеров магнитопровода, числа витков обмоток, сечения проводов обмоток, а для дросселя — еще и определение размеров воздушного зазора.
Исходными данными для расчета трансформатора являются:
Закон изменения напряжения u(t) и тока i(t) с заданными параметрами: средним
значением напряжения Uср, эффективным значением тока I или амплитудой Im
и коэффициентом амплитуды импульса ka = Im/I, а также скважностью импульсов
ν = τи/T (рис. 1б).Ls — индуктивность рассеивания, или напряжение короткого замыкания uк,
или τs = Ls/Rн — постоянная времени, где Rн — сопротивление нагрузки
трансформатора.
Если трансформатор работает совместно с формирующей линией, то при вычислении постоянной времени сопротивление
нагрузки должно быть удвоено, так как сопротивление нагрузки и, как правило, равное ему волновое сопротивление
линии включены последовательно с индуктивностью рассеивания трансформатора.
Далее будут рассмотрены броневые и стержневые типы трансформаторов. Самые плохие условия охлаждения, ввиду закрытости
магни-топровода катушками, имеет стержневой тип с катушками на обоих стержнях. Стержневой тип трансформатора с двумя
катушками эквивалентен тороидальному трансформатору. Удельные потери для этих магнитопроводов, как правило, должны
составлять 3–5 Вт/кг, а для остальных — 7–10 Вт/кг.
Предварительно по принятому значению удельных потерь в магнитопроводе при известном законе изменения индукции
определяют допустимую амплитуду переменной составляющей индукции Вmc или перепад индукции
ΔBи.
Рассмотрим выбор и расчет режима работы магнитопроводов.
Самым простым является выбор рабочей индукции для работы на очень низких частотах — 10–20 Гц.
В этом случае могут быть применены шихтованные или витые магнитопро-воды из обычных трансформаторных
сталей с толщиной листа или ленты 0,3–0,5 мм. Для импульсных трансформаторов перепад индукций может
быть близким к значению 2Вs. Для обеспечения такого режима должно быть применено смещение рабочей
точки на кривой намагничивания путем подмагничивания МП постоянным током.
На частотах в десятки и сотни герц должен быть проведен традиционный выбор материалов и режимов работы.
На частотах несколько десятков килогерц потери в МП являются определяющими в выборе марки и толщины магнитного
материала. На этих частотах вихревые потери можно регулировать выбором толщины материала. Особо тонкими выпускаются
ленты из пермаллоев (толщиной 10–20 мк) и аморфные или нанокристаллические материалы (25 мк). Гистерезисные потери
не зависят от толщины материала, а на высоких частотах становятся определяющими. Необходимо выбирать материалы с
узкой петлей гистерезиса или с высокой начальной магнитной проницаемостью. Здесь МП из аморфных сплавов практически
не имеют преимуществ по сравнению с МП из высоколегированных сплавов (пермаллоев).
Радикальный способ снижения потерь — это уменьшение рабочего значения индукции вплоть до десятых долей тесла.
Повышенное значение индукции насыщения материала часто оказывается невостребованным. При малом значении индукции
размеры магнитопровода и трансформатора сильно возрастают.
Для повышения индукции и уменьшения размеров трансформатора может быть применен интенсивный обдув или масляное
охлаждение, повышающие теплосъем с поверхностей в 1,5-2 раза. Ферритовые сердечники при естественном охлаждении
позволяют работать с индукцией 0,3-0,4 Тл.
Выше 10-15 кГц — область работы ферри-товых сердечников или обычных сплавов с очень низкими значениями рабочей
индукции или принудительным охлаждением. К сожалению, изготовление ферритовых сердечников больших размеров связано
с технологическими трудностями. Выбор рабочей индукции производится расчетным путем или по графикам справочных
материалов [7, 8].
Объективным способом контроля качества расчета является экспериментальная проверка теплового режима магнитопровода
при выбранной рабочей индукции на опытном сердечнике или его модели. На сердечник наматывается контрольная обмотка
из тонкого провода с числом витков, обеспечивающим выбранное значение индукции при известной амплитуде импульса
контрольного генератора w=Uг × τи/(s × ΔВи).
Такой генератор имеет небольшую мощность, так как обеспечивает намагничивание сердечника только на холостом ходу.
Те участки сердечника, на которых будет располагаться обмотка, могут быть закрыты теплоизоляционным материалом.
Пример результатов проверки приведен на графиках (рис. 2). Выбором магнитного материала и величины рабочей индукции заканчивается первый этап расчета трансформатора.
В последующих выводах принято допущение, что тепловой режим магнитопровода не влияет на тепловой режим катушки. При тепловом расчете магнитопровода и катушек не должны учитываться поверхности их соприкосновения.
Второй этап — расчет обмоток. За основную переменную величину принимаем сечение магнитопровода (первая строка таблицы).
Сечение — единственный геометрический параметр, входящий в формулу закона электромагнитной индукции. Закон инвариантен
по отношению к форме сечения. Через сечение при выбранной конфигурации трансформатора могут быть определены все
остальные размеры трансформатора, например, короткая сторона сечения a=0,5×s1/2 (вторая строка таблицы), длинная
сторона в=2а, высота окна h=4,6а, длина средней силовой линии lc=(4,6+4,6+2+2+3,14)×а=k2×s1/2
(третья строка таблицы), длина витка lм=k4×s1/2 , сечение окна
sок=k6×s. При вычислении площади охлаждения катушек участки поверхности,
соприкасающиеся с маг-нитопроводом, исключены из общей площади охлаждения.
В таблице приведены данные об отношении открытой для охлаждения поверхности магнитопровода к его объему (k12),
определяющие допустимые удельные потери в сердечнике Вт·м/кг.
Выбор в качестве аргумента сечения s удобен тем, что после определения основных геометрических размеров трансформатора
стержень с прямоугольным сечением может быть заменен стержнем любой формы (например, круглым, ступенчатым) с
равновеликим сечением при сохранении основных электрических параметров трансформатора. В таблице представлен ряд
типовых конструкций трансформаторов броневого и стержневого типов. Два первых — броневые с квадратным и прямоугольным
сечением магнитопровода, два следующих — стержневые с квадратным и прямоугольным сечением магнитопровода с катушками
на каждом стержне, и два последних — тоже стержневые с катушкой на одном стержне.
Проблема рассматривается без учета нелинейности вебер-амперных характеристик и при предположении, что в обмотках
отсутствуют дополнительные каналы охлаждения.
Напряжение, индукция, сечение магнитопровода и число витков связаны законом электромагнитной индукции:
при переменном напряжении:
отсюда может быть найдено число витков:
при синусоидальном напряжении:
при импульсном напряжении:
где ΔBи=2Bmc — перепад индукций, Bmc — максимальное
значение индукции в материале сердечника.
Видно, что при произвольном законе изменения напряжения роль импульса намагничивания играет среднее значение
напряжения за ту часть периода, в которой напряжение выше (или ниже) нуля; эффективное значение тока вычисляется
за целый период. Импульсный режим отличается от периодического, в первую очередь, наличием скважности, отличием
амплитуд и длительностей положительной и отрицательной частей кривой напряжения.
Умножая левую и правую части первых уравнений при переменном режиме на I, а при импульсном режиме на Iи,
с учетом того, что I=Im/ka√v и T=1/f, получим:
при переменном напряжении:
при синусоидальном напряжении:
при импульсном напряжении:
Покажем, что МДС (Iw)1 катушек каждого магнитопровода имеет некоторое предельное значение, ограниченное
нагревом катушек. Пусть в окне сердечника площадью sок размещается w витков обмотки, коэффициент заполнения
окна проводниковым материалом kм=0,35, тогда активное сопротивление обмотки:
где lм1 — средняя длина одного витка обмотки, ρ=1,85 × 10–8 Ом·м — удельное
сопротивление медного провода.
Для того чтобы сопротивление обмотки и выделяющаяся мощность не увеличивались с ростом рабочей частоты (кГц)
трансформатора, его обмотки должны быть намотаны проводом типа литцендрат. Жила провода литцендрат состоит из
многих изолированных проводников. Диаметр одного проводника (мм) не должен превышать значения [9]:
Мощность, выделяемая в катушке и рассеиваемая ее поверхностью:
где sохл — поверхность охлаждения обмотки, то есть поверхность обмотки за исключением частей,
обращенных к стержню; q=650 Вт/м2 — допустимая плотность теплового потока при превышении температуры
поверхности обмотки над окружающим воздухом на 55 °С.
Для уменьшения индуктивности рассеивания (см. далее) бывает целесообразно при заданной площади окна снизить
толщину намотки, то есть занять обмоткой лишь часть ширины окна. Эта же задача возникает при необходимости
разместить в окне высоковольтную изоляцию первичной или вторичной обмотки.
Введем параметр ß
Предельная МДС зависит от геометрических размеров катушки, коэффициента теплоотдачи с ее поверхности,
удельного сопротивления провода и коэффициента использования ширины окна.
Поверхность охлаждения, площадь окна, площадь сечения сердечника, средняя длина витка для выбранной
формы сердечника могут быть выражены через сечение зазора s, и поэтому
для распространенных геометрических форм магнитопроводов приведены в таблице (при расчетах предполагается
использование системы СИ).
В каждой катушке стержня трансформатора имеется минимум две обмотки, их магнитодвижущие силы равны:
(Iw)1=(Iw)2=(Iw)пред/2. С учетом этого уравнения (3) и (4) примут вид:
- при переменном напряжении:
- при синусоидальном напряжении:
- при импульсном напряжении:
Это первая группа формул для определения сечения магнитопровода проектируемого трансформатора. Затем могут
быть определены остальные размеры, например, короткая сторона сечения магнитопровода a=√s при
квадратной или a=√(s/2) при прямоугольной форме сечения, высота окна h=4a и т. д.
Обратим внимание, что исходными данными для расчета трансформатора на переменном токе являются среднее напряжение
за полпериода и эффективный ток обмоток без учета фазы их взаимного расположения во времени. Другими словами,
размеры трансформатора зависят не от передаваемой активной мощности, а от полной или кажущейся мощности S.
Однако если производить расчет трансформатора исходя только из условий охлаждения, то может оказаться, что
индуктивность рассеивания Ls обмоток будет очень большой, что приведет к недопустимо большому падению напряжения
uк при синусоидальном режиме работы трансформатора, искажению формы кривой при другом законе изменения напряжения
или к недопустимо большой длительности фронта τs/τи в импульсном режиме.
Значение индуктивности рассеивания Ls пропорционально площади сечения катушек трансформатора в плоскости,
перпендикулярной оси катушек, и обратно пропорционально их длине. Если одна обмотка короче другой, то индуктивность
рассеивания резко возрастает, поэтому длины обмоток должны совпадать. При малом числе витков для выполнения этого
условия секции с малым числом витков должны быть повторены необходимое число раз, а затем соединены параллельно.
Эффективная площадь рассеивания ss представляет сумму третьей части от площади сечения обмоток и полной площади
сечения зазора между обмотками. Если обмотки занимают не всю ширину окна, то:
Значения коэффициента kLs приведены в таблице.
У стержневого трансформатора с двумя катушками длина катушек вдвое больше, чем у трансформаторов остальных видов,
а их толщина вдвое меньше. Индуктивность рассеивания получается примерно в 4 раза меньше, чем у других видов.
Она сопоставима с индуктивностью рассеивания трансформатора, выполненного на тороидальном сердечнике с обмоткой,
расположенной не по всей длине средней силовой линии МП (из-за необходимости выполнить выводы от нижней обмотки).
Однако, если на высоких частотах из-за плохого охлаждения сердечника придется вдвое снизить индукцию, то потребуется
вдвое увеличивать число витков, в четыре раза возрастет индуктивность рассеивания. Преимущества тороидальной конструкции
полностью теряются.
Подставим в формулу (12) значения витков (1) и (2) для обоих режимов и получим:
- при переменном напряжении
- при импульсном напряжении
Мы получили вторую пару формул для определения размеров трансформатора. Она определяет размеры трансформатора при
любой форме кривой напряжения. Предполагается, что известно значение индуктивности рассеивания и напряжение той
обмотки, относительно которой определяется эта индуктивность.
Если значение Ls неизвестно, то размеры могут быть определены через относительные величины: напряжение короткого
замыкания для синусоидального режима (понятие напряжение короткого замыкания существует только для синусоидального
режима, когда существует величина — круговая частота ω=2πf) или относительную длительность фронта импульса для
импульсного режима.
Умножим левую и правую части уравнения (13) для синусоидального режима на I, а для импульсного режима
(15) — на Iи и после несложных преобразований получим:
- при синусоидальном напряжении
- при импульсном напряжении
где uк=100ω>LsI/U — напряжение короткого замыкания в %, а
для импульсного режима τs/τи — относительная длительность фронта импульса.
Таким образом, мы получили третью пару формул для определения площади сечения магнитопровода.
Если известны Ls и uк или τs/τи,
то вторая и третья группы формул дают одинаковый результат. Из найденных по (9-11) сечения s1
и по (14, 16-18) сечения s2 должно быть выбрано большее по величине,
и с ним проведены расчеты остальных геометрических параметров, чисел витков и др. Однако, если сечение,
найденное из (14, 16-18), окажется много больше сечения, полученного из (9-11) с учетом только тепловой
нагрузки трансформатора (через kIw),, то должен быть произведен повторный расчет с β s20/21 ≡ s1) значение р может быть принято равным отношению полученных на первом шаге
сечений s1/s2.
Тепловыделение внутри обмоток трансформатора, поверхность охлаждения и принятая допустимая температура поверхности
катушек определяют максимально допустимую плотность тока в проводах обмоток:
Значения коэффициента kΔ также приведены в таблице.
С учетом найденных соотношений могут быть определены объемы меди обмотки и стали сердечника.
Зная плотность меди и стали, предполагая массу конструктивных элементов (10%), найдем массу этих частей и
общую массу трансформатора, кг:
Значения коэффициентов kg , kg и kg приведены в таблице.
В формулу для определения общей массы трансформатора mТ (21) может быть подставлено
значение сечения из (9). Получим выражение для вычисления массы трансформатора без учета влияния индуктивности
рассеивания:
Используя формулу (17), найдем выражение для массы через полную мощность и напряжение короткого замыкания:
Используя формулу (18), определим массу трансформатора при одновременном задании энергии импульса и постоянной времени цепи нагрузки:
Значения коэффициентов kgSu=kgWz приведены в таблице.
При анализе этих коэффициентов видно, что если проектировать трансформатор с одинаковым уровнем индукции
(если позволяют условия охлаждения МП), то самым легким является стержневой трансформатор с прямоугольным
сечением магнитопровода.
Порядок применения формул для инженерных расчетов покажем на примерах.
Пример 1
Требуется спроектировать трансформатор, работающий от генератора напряжения прямоугольной формы («меандр») с
амплитудой 375 В. Ток нагрузки в виде резонансного контура обуславливает синусоидальную форму тока с эффективным
значением I=Im/(ka√v) = 43 А, рабочая частота 15 кГц, индуктивность рассеивания
должна составлять 9,5 мкГн.
Высокая рабочая частота заставляет сразу обраться к применению ферритового магнитопровода. Коэффициент заполнения
материалом сердечника kc=1. В соответствии с приведенным на рис. 2 графиком выбираем уровень рабочей индукции
Bcm=0,22 Тл.
Выбираем магнитопровод стержневого типа с прямоугольным сечением. Рассчитываем сечение магнитопровода без учета
требований к напряжению короткого замыкания по (9), первоначально с Β=1.
Теперь с учетом требований к индуктивности рассеивания рассчитаем по (16):
Очевидно, трансформатор должен быть выполнен на магнитопроводе с большим сечением — 8,6 см2. По найденному сечению
могут быть определены остальные размеры трансформатора. Например, а=0,71√s=0,02 м,
высота окна h=4a=0,08м; ширина окна 1,6а=0,032м; площадь окна 0,0026 м2 и т. д.
Число витков рассчитываем по формуле (1):
Плотность тока вычисляем по формуле (19):
Сечение провода 43/2,9 = 14,8 мм2, или иначе:
Диаметр составляющих литцендрат проводников по (6) составит 1/√15 = 0,26 мм.
Число витков и сечение другой обмотки будут отличаться в коэффициент трансформации раз.
Масса трансформатора составит mТ= kgs((β+1)/2)s3/2,
mТ=1,40×105×1×(8,6×104)3/2 = 3,5 кг.
Пример 2
Требуется рассчитать трансформатор, работающий совместно с формирующей линией, импульсным напряжением 40 кВ,
током 300 А (импульсная мощность 12 МВт), длительностью импульса 360 мкс, длительностью фронта tф = 10% и частотой
повторения импульсов 1 Гц.
Скважность импульсов 1/0,00036 = 2780. Трансформатор, работающий на активную нагрузку без формирующей линии,
будет иметь постоянную времени фронта вдвое больше — 20%. Длительность фронта — 360×0,2 = 72 мкс = 3τs.
Постоянная времени фронта трансформатора тs составит 72/3=24 мкс. При этом сопротивление нагрузки
Rн=40 000/300=133 Ом, и индуктивность рассеивания Ls=τsRн=24×133 = 3200 мкГ.
Расчет начинаем с выбора режима работы магнитного материала сердечника. При частоте повторения 1 Гц можно использовать
любой магнитомягкий материал — листовую трансформаторную сталь. Максимальное значение индукции может
быть ΔВи=2Bs=2,4 Тл.
Выбираем стержневой магнитопровод с квадратным (круглым, ступенчатым) сечением стержня с двумя катушками.
Рассчитываем сечение магнитопровода по энергии импульса без учета требований к длительности фронта (11)
первоначально β=1.
Теперь по энергии импульса с учетом требований к длительности фронта (18) находим s:
Масса трансформатора с сечением 255·10–4 м2 составит в соответствии с (21):
Редкие импульсы не могут сильно нагреть обмотки, поэтому первое сечение и магнитопровод получаются небольшими.
Второе большое сечение является следствием требований, связанных с длительностью фронта, то есть с индуктивностью
рассеивания. Два полученных сечения отличаются примерно в пять раз. Можно в 2-3 раза уменьшить толщину обмотки.
Проведем расчет по тем же формулам (11) и (18) при β=0,4:
Дальнейшие вычисления необходимо производить с этим значением сечения, например, масса трансформатора будет не 1006 кг, а:
Значение В может быть еще уменьшено.
Пример 3
Оценим размеры трансформатора с прямоугольной формой кривых рабочего напряжения и тока (меандр) 50 В, ток 1 А (эфф.) для работы на частоте 50 кГц.
Предполагаем применение ферритового броневого магнитопровода (Ш-образного) с индукцией 200 мТл.
По формуле (9) находим необходимое сечение магнитопровода: 0,31 см2 = 31 мм2.
По формуле (22) его массу: 0,012 кг =12 г и т. д.
Далее могут быть проанализированы другие варианты конструкций, иные соотношения размеров с целью проведения уточнений при той или иной оптимизации (по массе, объему, стоимости, введению каналов охлаждения и т. п.).
Расчет по разработанным формулам типовых, выпускаемых промышленностью рядов трансформаторов серии ТН, ОСМ дает совпадение расчетных параметров с фактическими.
Одинаково успешный расчет и малых, и больших трансформаторов при различных законах изменения напряжения и тока указывает на фундаментальность приведенной теории расчета.
Литература
1. Тихомиров П. М. Расчет трансформаторов. М.: Госэнергоиздат, 1953.
2. Ицхоки Я. С. Импульсная техника. М.: Советское радио, 1949.
3. Булгаков Н. И. Расчет трансформаторов. М.: Госэнергоиздат, 1950.
4. Ицхоки Я. С. Импульсные устройства. М.: Советское радио, 1959.
5. Черкашин Ю. С. Определение условий эквивалентности электрических режимов мощных силовых и импульсных трансформаторов // Электричество. 1966. № 5.
6. Черкашин Ю. С. Расчет дросселей с маг-нитопроводом при произвольной форме тока // Силовая электроника. 2008. № 3.
7. Черкашин Ю. С. Процесс и энергия намагничивания листового магнитопровода при прямоугольном напряжении // Электричество. 1978. № 6.
8. Бабин С. В., Карасев В. В., Филиппов Ф. Е. Характеристики магнитопроводов трансформаторов тока при одновременном воздействии постоянного и переменного магнитного поля // Электротехническая промышленность. 1981. Вып. 6.
9. Черкашин Ю. С. Проектирование катушек индуктивности для мощных радиотехнических устройств // Радиотехника. 1986. № 6.
Расчет и намотка импульсного трансформатора
Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.
Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.
Расчет импульсного трансформатора.
Для начала загружаем себе программу расчета импульсного трансформатора Lite-CalcIT и запускаем её.
Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт” схема преобразования –полумостовая.
Напряжение питания указываем постоянное. Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.
Тип контроллера указываем ir2153, частоту генерации 50кГц.
Стабилизации выходов – нет.Принудительное охлаждение – нет.
Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.
Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.
Схема выпрямления – двухполярная со средней точкой.
Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.
Далее выбираем параметры сердечника, в моем случае это “R” – тороидальный сердечник, с размерами 40-24-20 мм.
Нажимаем кнопочку “Рассчитать!”. В результате получаем количество витков и количество жил первичной и вторичной обмоток.
Намотка импульсного трансформатора.
Итак, вот мое колечко с размерами 40-24-20 мм.
Теперь его нужно изолировать каким-либо диэлектриком. Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов. Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.
Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.
Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.
Далее мотаем первичку, в моем случае 33 витка проводом диаметра 0,85мм двумя жилами (это я перестраховался). Мотайте по часовой стрелке, как показано на картинке ниже.
Выводы первичной обмотки скручиваем и залуживаем.
Далее надеваем сверху несколько сантиметров термоусадки и подогреваем.
Следующим шагом вновь изолируем диэлектриком еще пару слоев.
Теперь начинаются самые «непонятки» и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?
В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.
Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.
Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.
Соединили начало одного провода с концом другого. Залудили. Надели термоусадку. Далее вновь обмотаем лавсановой пленкой.
Напомню, что мне нужно было две вторичных обмотки, если вам нужен трансформатор с одной вторичной обмоткой, то на этом этапе финиш. Вторую вторичную обмотку мотаем аналогично.
После чего сверху опять обматываем лавсановой пленкой, чтобы крайняя обмотка плотно прилегала и не разматывалась.
В результате получили вот такой аккуратный бублик.
Таким образом, можно рассчитать и намотать любой трансформатор, с двумя или одной вторичной обмоткой, с отводом или без отвода от середины.
Программа расчета импульсного трансформатора Lite-CalcIT СКАЧАТЬ
Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.
Назначение Импульсные трансформаторы используются в высокочастотных преобразователях мощности, когда требуется передать электрический импульс от блока управления к силовому каскаду, сохраняя гальваническую развязку между цепями, в соответствии со стандартами безопасности, относящимися к каждому применению поля. Электрический сигнал подается на первичную сторону и передается на вторичную сторону для включения силовых BJT, силовых MOSFET, IGBT, SCR, GTO, TRIAC. | Характеристики
Импульсные трансформаторы Sirio классифицируются по размерам и производственным профилям и сгруппированы по семействам.Доступны некоторые стандартные импульсные и приводные трансформаторы, они перечислены по семействам. Их можно использовать для многих приложений, но, поскольку возможностей решения очень много, иногда необходимо разработать собственный продукт (см. Лист Custom Design). Просматривая стандартную таблицу кодов, легко понять общие характеристики каждого типоразмера импульсного / приводного трансформатора. |
Что такое импульсный трансформатор?
Импульсные трансформаторы — это трансформаторы, которые проводят и направляют электрические токи в импульсном ритме, поднимаясь и падая волнами с постоянной амплитудой.Эти пульсирующие волны иногда также называют прямоугольными импульсами из-за их формы вверх-вниз при нанесении на карту; они больше похожи на прямоугольники, чем на холмы импульсов от таких вещей, как, например, человеческое сердце. Большинство трансформаторов, используемых для питания таких объектов, как городские сети и стандартные электрические устройства, обеспечивают более или менее постоянный или равномерный ток. Пульсирующие прямоугольные волны обычно не используются в этих сценариях, но есть несколько ситуаций, в которых они идеальны, если не требуются.К ним относятся определенные телекоммуникационные схемы и ситуации цифровой логики, а также некоторые ситуации освещения, такие как вспышки фотокамер в сложном фотооборудовании. Некоторые радиолокационные системы тоже используют их. Обычно существует два основных типа сигналов, а именно сигнал и мощность . У каждого свой темп, но обычно они имеют очень низкий допуск по распределенной емкости и индуктивности рассеяния, а также высокую индуктивность холостого хода. Сборка любого типа импульсного трансформатора обычно является довольно сложной задачей, но сборочные комплекты доступны во многих местах для мастеров-самоделок или любителей электроники.
Основное назначение
Как правило, трансформаторы проводят электричество и фильтруют сигналы к различным станциям управляемым расчетным способом.Импульсные трансформаторы ничем не отличаются, но их отличает способ регулирования выходной мощности. Прямоугольные электрические импульсы имеют быстрое время спада и нарастания и необходимы для приложений, которые включают такие вещи, как переключающие элементы или необходимый сброс энергии. Самые маленькие модели часто бывают очень маленькими и используются в портативной электронике и многих цифровых приложениях. Трансформаторы большего размера часто необходимы, помимо прочего, для управления потоком в мощных полупроводниках.
Типы сигналов
Размер устройства и, как следствие, общая конструкция трансформатора определяют его функции.Существует два основных типа импульсных трансформаторов: сигнальные и силовые. Типы сигналов, которые представляют собой трансформаторы меньшего размера, работают с относительно низкими уровнями мощности и выдают серию импульсов или импульсных сигналов. Они используются в ситуациях, когда требуется всего несколько вольт на несколько микросекунд, например, в телекоммуникационных цепях и приложениях с цифровой логикой. Даже в некоторых осветительных приборах используются небольшие импульсные трансформаторы.
Модели Power Pulse
Другой основной тип импульсного трансформатора — это силовой импульсный трансформатор.Эти устройства требуют низких емкостей связи, что критично для защиты цепей на первичной стороне от высокомощных переходных процессов от электрической нагрузки. Модели Power также нуждаются в высоком пробивном напряжении и сопротивлении изоляции для эффективной работы. Они должны иметь адекватную переходную характеристику, чтобы сохранять прямоугольную форму импульса, поскольку импульсы с менее чем оптимальным временем нарастания и спада имеют тенденцию вызывать коммутационные потери в большинстве силовых полупроводников.
В таких устройствах, как контроллеры для вспышек фотокамер или другие схемы управления питанием, часто используется так называемый импульсный трансформатор средней мощности.Более крупные модели используются в отрасли распределения электроэнергии, где они облегчают взаимодействие между цепями низкого напряжения и затворами высокого напряжения, используемыми в силовых полупроводниках. Некоторые специальные версии используются в радиолокационных системах и других приложениях, требующих импульсов большой мощности.
Трансформаторы высокого напряжения
Существуют также устройства, аналогичные по функциям обычным импульсным трансформаторам, которые называются высоковольтными импульсными трансформаторами.В отличие от традиционных трансформаторов, эти трансформаторы имеют открытую конструкцию и обычно используются в изоляционном масле высокого напряжения. Типичное импульсное выходное напряжение составляет от 100 до 500 киловольт. Длительность импульса может варьироваться от 0,25 микросекунды до 50 микросекунд.
Сборочные комплекты и другие инструменты оптимизации
Сборки для этих трансформаторов включают в себя полный комплект инструментов и оборудования, которые могут оптимизировать работу любого трансформаторного устройства.Помимо импульсного трансформатора, блок обычно включает в себя датчик тока и напряжения, байпасные конденсаторы и трансформатор нагревателя. Отводная сеть, розетка клистрона и система водяного охлаждения также являются частью сборки. Все эти компоненты являются частью схемы, которая поддерживает постоянную передачу импульсов и низкий уровень искажений. Конкретные измерения для каждой сборки, такие как количество киловольт, мегаватт и длительность импульса в микросекундах, указаны на веб-сайте компании или на этикетке продукта.
Испытательный импульсный трансформатор с осциллографом
Импульсные трансформаторы немного отличаются от обычных трансформаторов переменного тока.В трансформаторах переменного тока магнитный поток в сердечнике чередуется между отрицательными и положительными значениями, тогда как в импульсных трансформаторах магнитный поток является униполярным. Импульсные трансформаторы используются в телевизорах, блоках питания компьютеров. Если вам нужно проверить импульсный трансформатор, это может быть практически невозможно сделать с помощью омметра, даже цифрового, потому что обмотки импульсных трансформаторов имеют скудное активное сопротивление, за исключением высоковольтных.
Один из способов проверки — это измерить индуктивность обмоток и сравнить их со значениями, указанными в технических характеристиках.Тем не менее, не у всех есть возможность измерить индуктивность, и не всегда у вас есть возможность изменить характеристики поблизости. Таким образом, есть другой способ проверки импульсных трансформаторов, который может быть приемлем почти для каждого радиолюбителя, с использованием низкочастотного генератора, работающего на резонансной частоте контура, состоящего из внешнего конденсатора и обмотки импульсного трансформатора.
Для этого вам даже не понадобится отдельный генератор частоты, как обычно, это встроенный осциллограф для калибровки.Обычно этот генератор работает на частоте 1… 2 кГц. Но опять же, проверка и поиск резонанса не всегда удобны. Так что другой способ проще. Подключите трансформатор к генератору следующим образом:
В этом случае вы должны измерить сигнал в контрольной точке (TP). Дифференцированный сигнал на обмотке должен иметь амплитуду, близкую к амплитуде генератора сигналов. Тогда импульсный трансформатор можно считать исправным; в противном случае, если нет импульсов, возможно, что по крайней мере одна обмотка замкнута накоротко.
Может случиться так, что амплитуда измеренного сигнала очень мала по сравнению с амплитудой сигнала источника. Это тоже результат короткого замыкания в одной из обмоток.
Такой метод проверки удобен тем, что можно проверять импульсные трансформаторы, не вынимая их из цепи. Отсоедините или отпаяйте один вывод первичной обмотки и подключите его к калибровочному генератору осциллографа. По измеренным сигналам вы можете диагностировать неисправности, такие как отказ диода, подключенного к вторичной обмотке, или просто короткое замыкание обмоток из-за перегрева и так далее.
Закладка.Power Quality Products — Эдисон, Нью-Джерси
(нажмите на миниатюру, чтобы увеличить)
Продукты качества электроэнергии
Продукты качества электроэнергии
Продукты качества электроэнергии
Продукты качества электроэнергии
В AFP Transformers мы предлагаем трансформаторы, реакторы и индукторы, предназначенные для повышения качества электроэнергии.Наши продукты используются в оборудовании для кондиционирования питания, пассивных и активных фильтрах, регуляторах напряжения и во многих типах оборудования центров обработки данных, например, в оборудовании ЦП, PDU и PDU. Мы специализируемся на разработке и производстве индивидуальных трансформаторов на классы напряжения от 600 В до 34,5 кВ для множества применений. К распространенным типам трансформаторов, используемых в системах контроля качества электроэнергии, относятся трансформаторы с номиналом К, фазосдвигающие, импульсные и феррорезонансные трансформаторы. Определенные выходы, типы сердечников и конфигурации могут быть настроены для конкретных приложений при рабочих частотах 50 Гц, 60 Гц или 400 Гц.
У нас очень разносторонние производственные возможности, и мы можем производить трансформаторы на заказ в любом объеме. Все трансформаторы проходят испытания в соответствии с применимыми отраслевыми требованиями и спецификациями клиентов. Наши программы управления запасами и запасами очень гибкие и предназначены для удовлетворения потребностей OEM и коммунальных предприятий. Эти программы включают Kanban-менеджмент и JIT-доставку.
Для получения дополнительной информации о нашем ассортименте продукции для обеспечения качества электроэнергии см. Таблицу ниже или свяжитесь с нами напрямую.
Запросить информациюВозможности продуктов для обеспечения качества электроэнергии
- Продукт
- Трансформаторы с рейтингом K
Фазовые трансформаторы
Феррорезонансные трансформаторы
Многоимпульсные трансформаторы - Инверторные входные трансформаторы
Инверторные выходные трансформаторы
Реакторы с фильтром переменного тока
Дроссели переменного тока
Дроссели с фильтром постоянного тока
- Трансформаторы с рейтингом K
- Класс напряжения
- 600 В
5 кВ - 15 кВ
34.5 кВ
- 600 В
- Частота
- 50 Гц
60 Гц - 400 Гц
- 50 Гц
- Материал обмотки
- Медь
- Алюминий
- Класс изоляции системы
- До 220 ° C
- Номинальные параметры тепловой системы
- Все стандартные повышаются до 150 ° C
- Приложения для оборудования
- ИБП
Оборудование для дата-центров - Регуляторы напряжения
Кондиционеры
Системы активных фильтров
Пассивные системы фильтрации
- ИБП
- Тестирование и проверка
- 100% тестирование продукции
IEEE C57.12.91 Special, Standard или Custom
Сохраненные параметры тестирования- Напряжение
- Ток
- Вт
- Вар
- ВА
- Коэффициент мощности
- КПД
- Испытание приложенного потенциала (HiPot) до 100 кВ переменного тока RMS
Мощность БИЛ до 300 кВ
Тестирование частичного разряда- Приложенный потенциал до 100 кВ
- Наведенный потенциал более 70 кВ
- 100% тестирование продукции
- Программы складирования
- Канбан
JIT Доставка - Мин-Макс
Custom
- Канбан
- Объем производства
- Опытный образец
Низкий объем - Высокий объем
- Опытный образец
- Время выполнения
- Обычно от 3 до 6 недель
- Ускоренный ремонт всего за 1 неделю
Дополнительная информация
- Отрасль и области применения
- Производители распределительных устройств
Производители центра управления двигателем
Утилиты
Производители оборудования для коррекции коэффициента мощности
Производители оборудования для кондиционирования электроэнергии- Производители PDU
- Производители ИБП
- Производители регуляторов напряжения
- ЦП для центров обработки данных
- Производители промышленного отопительного оборудования
- Печи
- Источники питания для индукционного нагрева
- Радиочастотные и микроволновые нагревательные машины
Очистка сточных вод
OEM-производители машин- Станкостроители
- Упаковочные машины
- Производители полупроводникового оборудования
- Производители машин для обработки паутины
- Производители распределительных устройств
- Отраслевые стандарты
- IEEE C57.12.01
Общие требования к распределительным и силовым трансформаторам сухого типа, включая цельнолитые
IEEE C57.12.91
Стандартный код испытаний для сухих распределительных и силовых трансформаторов)
UL 508
Стандарт UL для промышленного управляющего оборудования
UL 506
Стандарт UL для специальных трансформаторов
UL 1561
Промышленный стандарт для сухих трансформаторов общего назначения и силовых трансформаторов, класс 600 В
UL 1562
Промышленный стандарт для сухих трансформаторов общего назначения и силовых трансформаторов среднего напряжения, до 34.5 кВ
NEMA ST 20
Стандарт для сухих трансформаторов общего назначения
NEMA TR1
Код испытаний для трансформаторов, регуляторов и реакторов
NEMA ICS 2
Промышленный стандарт для контроллеров, контакторов, реле перегрузки и сопутствующего оборудования. (Автотрансформаторы и реакторы для пуска двигателей)
Международные стандарты
IEC 60076
Силовой трансформатор и реакторы — среднее напряжение)
IEC 61558
Силовые трансформаторы и реакторы — 600 В, класс
Сертификация CE в соответствии со стандартами IEC
Морские стандарты
ABS
Американское судовое бюро
DNV
Det Norske Veritas
Конструкция, типы и использование
Импульсный трансформатор также известен как триггерный трансформатор, трансформатор управления затвором, трансформатор затвора, трансформатор сигнала (или) широкополосный трансформатор в некоторых приложениях, a.Основная функция этого трансформатора — передача импульсов напряжения между обмотками и нагрузкой. Эти трансформаторы используются для гальванической развязки (передачи сигналов), схем управления малой мощностью и основных компонентов, используемых в мощных импульсных источниках питания. Используя этот трансформатор, можно изменять амплитуду импульса напряжения; полярность импульса можно инвертировать, соединяя различные каскады в импульсном усилителе и развязывающем трансформаторе.
Что такое импульсный трансформатор?
Определение: Трансформатор, улучшенный для генерации электрических импульсов с высокой скоростью, а также стабильной амплитудой, известен как импульсный трансформатор.Они регулярно используются при передаче цифровой информации, а также в транзисторах, в основном в схемах управления затвором.
Идеальный трансформатор должен иметь гальваническую развязку и распределенную емкость. Для защиты цепи емкость с низкой связью также жизненно важна для защиты цепи.
импульсный трансформатор
Типы сигналов импульсных трансформаторов варьируются от дополнительных логических приводов до линий передачи. Эти трансформаторы работают с меньшими порогами мощности.Некоторые такие трансформаторы служат как широкополосные трансформаторы. Для типов трансформаторов с цифровой передачей данных они усовершенствованы, чтобы уменьшить искажения сигнала.
Соответствие сигнала и частотный диапазон можно определить по внешним характеристикам, таким как межобмоточная емкость, индивидуальная емкость каждой обмотки, а также сопротивление.
Отрицательные эффекты этих функций приведут к спаду, перерегулированию, обратному ходу и времени спада, а также к задержке подъема. Таким образом, импульсные трансформаторы проектируются на основе индуктивности, рабочей частоты, классов мощности, номинального напряжения, размера, диапазона частот, сопротивления и емкости обмотки.
Типы импульсных трансформаторов
Эти трансформаторы делятся на два типа, например:
- Силовой импульсный трансформатор
- Трансформатор импульсных сигналов
1). Силовой импульсный трансформатор
Эти трансформаторы изменяют напряжение с уровня мощности (одна конфигурация уровня / фазы) на другой. Конфигурации этих трансформаторов доступны в однофазном или трехфазном исполнении и различаются в зависимости от способа подключения обмотки.
2).Преобразователь импульсов сигнала
Эти трансформаторы представляют собой один из видов импульсных трансформаторов, в которых используется электромагнитная индукция для передачи информации одной цепи в другую. Они регулярно используются для повышения или понижения напряжения в силовом трансформаторе с одной поверхности на другую. Используя сигнальные трансформаторы, нет. передаточного числа обмоток решает изменить напряжение.
Эти трансформаторы содержат сердечники с низкими потерями, предназначенные для работы на высоких частотах. Паразитные элементы, такие как емкость обмотки и индуктивность рассеяния, можно уменьшить, разработав конфигурацию обмотки, чтобы можно было улучшить связь.
Технические характеристики
Эти трансформаторы в основном включают технические характеристики, такие как частота повторения, рабочий цикл, ширина импульса, диапазон, напряжение ввода / вывода, ток, частота и физические размеры, такие как длина (L), ширина (W) и высота (H).
Частота следования импульсов стандартная №. импульсов за каждую единицу времени в конкретный период. Ширина импульса — это период между первичным и последним случаями, когда мгновенная амплитуда достигает определенной доли пиковой амплитуды импульса.
Строительство
Конструкция трансформатора тороидальной формы показана ниже. Основная задача этого трансформатора — генерировать импульс для полупроводниковых устройств, а также обеспечивать электрическую изоляцию.
импульсный трансформатор строительный
На рисунке выше показан трансформатор тороидальной формы. Он включает в себя две обмотки: первичную и вторичную. Каждая обмотка включает в себя равное количество оборотов, поэтому любая из них может работать как первичная, иначе вторичная.
Импульс на тиристор может подаваться через 1: 1, иначе импульсный трансформатор 1: 1: 1, а импульс на непрерывный тиристор может подаваться через трехобмоточный трансформатор. На приведенном выше рисунке резистор (R) должен останавливать ток удержания кремниевого управляемого выпрямителя. Основная функция диода в схеме — избежать реверсивного тока затвора. Импульсный трансформатор 1: 1: 1 в основном используется для создания импульса для непрерывного тиристора.
Эта конструкция трансформатора обсуждалась выше.После завершения проектирования КПД трансформатора должен быть высоким. Индуктивность первичной обмотки трансформатора должна быть высокой для уменьшения тока намагничивания. Постоянный ток подается через главную обмотку трансформатора, чтобы избежать насыщения сердечника. Между обмотками должна быть изоляция, чтобы защитить обмотку от насыщения. Требуется фиксированная связь между двумя обмотками. Паразитный сигнал дает полосу во время межфазной емкости на высокой частоте.
Преимущества и недостатки импульсного трансформатора
К достоинствам этого трансформатора можно отнести следующее.
- Малый размер
- Стоимость меньше
- Работает на высокой частоте
- Высокое напряжение изоляции
К недостаткам этого трансформатора можно отнести следующее.
- На низкой частоте первичная и вторичная формы сигналов отличаются друг от друга.
- Ток насыщения сердечника может быть уменьшен за счет постоянного тока через первичную обмотку.
Импульсный трансформатор использует
- Использование этого трансформатора включает следующее.
- Сигнальные импульсные трансформаторы применяются в телекоммуникационных, цифровых схемах
- Силовые импульсные трансформаторы используются для изоляции силовых цепей от цепи управления.
- Высоковольтные импульсные трансформаторы используются в радиолокационных устройствах и в системах импульсного питания.
- Силовая электроника
- Радары
- Цифровая электроника
- Связь
Таким образом, все дело в импульсном трансформаторе, который используется для оцифровки компьютеров, измерительных устройств, а также для импульсной связи.Некоторые виды трансформаторов используются в сфере электроснабжения, чтобы сделать частую границу между низковольтным управлением схемами и высоковольтными затворами в силовых полупроводниках. Вот вам вопрос, каковы принципы работы импульсного трансформатора ?
Импульсные трансформаторы — Компонент УТК
Техническое описание
Импульсные трансформаторыUTK, обычно используемые для управления полупроводниками, такими как тиристоры и симисторы, могут передавать прямоугольную волну или импульс с очень коротким временем нарастания и спада без заметного искажения формы волны.В таких приложениях они обеспечивают как пусковой импульс на затвор полупроводника, так и изоляцию между схемой управления малой мощностью и силовыми полупроводниками в соответствии с международными стандартами безопасности трансформаторов.
Импульсные трансформаторыУТК имеют следующие характеристики.
- Компактная конструкция. Они заполнены вакуумом и заключены в пластиковую коробку из самозатухающего материала UL94-HB, подходящего для применения на печатных платах высокой плотности.
- Доступность в стандартном температурном диапазоне (0 + 80 °) или расширенном диапазоне
- Безопасная и надежная гальваническая изоляция
- Превосходная магнитная связь между первичной и вторичной обмотками, обеспечивающая высокую точность передачи импульса с наименьшим временем распространения и низкий ток намагничивания.
- Передача высоких мгновенных значений мощности
- Высокая степень защищенности от шума и помех благодаря низкой емкости связи между первичной и вторичной обмотками.
- Низкие потери.
- Максимальное рабочее напряжение до 1кВ. Испытания на электрическую прочность проводятся в соответствии с международными стандартами EN61558 и EN60950.
Доступен широкий спектр стандартных продуктов для управления устройствами малой и большой мощности. Для удовлетворения конкретных требований ЮТК Компонент может разрабатывать специальные продукты в соответствии с потребностями клиентов.
UTK Component тщательно контролирует производство в процессе и в конце, обеспечивая качество и надежность продукта.Проведенные испытания включают:
- Визуальный осмотр
- Распиновка и проверка полярности
- Значение эталонных параметров (n, Lp, Ld, Ck, Rp, Rs)
- Диэлектрическая прочность
Справочные параметры
Соотношение витков n
Отношение витков первичной обмотки к вторичной.
Зона времени напряжения ∫udt
Время напряжения Интеграл на вторичной обмотке или временная зона напряжения.В случае подачи униполярного импульса на первичную обмотку, udt показывает максимально допустимое значение интеграла вторичного напряжения, чтобы избежать насыщения магнитопровода. Выражается в В мкс.
Время нарастания Ts
Временной интервал, рассчитанный по нарастающей кривой вторичного сигнала, между 10% и 90% пикового значения, с резистивной нагрузкой, равной Rn, и управляющим напряжением 12 В с рабочим циклом 50%. Этот параметр в основном связан с качеством магнитной связи между первичной и вторичной обмотками и со значением индуктивности рассеяния Ld.
Пиковый ток Ip
Максимально допустимый вторичный ток
Сопротивление нагрузки Rn
Номинальное сопротивление нагрузке
Индуктивность Lp
Номинальное значение индуктивности первичной обмотки. Максимальное отклонение от номинала (допуск) составляет + \ — 30%. Измерено измерителем LCR на первичной обмотке (температура окружающей среды 25 ° C, частота 10 кГц, UAC привода, среднеквадратичное значение = 250 мВ).
Емкость связи Ck
Емкость связи между первичной и вторичной обмотками, в зависимости от электрической связи катушек.Низкие значения Ck обеспечивают высокий уровень помехоустойчивости цепи зажигания, предотвращая передачу всплесков напряжения или высокочастотной помеховой связи на вторичную обмотку и предотвращая ложное срабатывание. Измерено измерителем LCR между первичной и вторичной обмотками, при этом обе обмотки закорочены (частота 10 кГц, UAC привода, действующее значение = 250 мВ).
Сопротивление обмотки Rp, Rs
Сопротивление, измеренное измерителем LCR на первичной и вторичной обмотках.
Расчет и применение трансформатора — Европейский институт пассивных компонентов
Как показано на эквивалентной схеме трансформатора, трансформаторы обладают множеством паразитных свойств, которые могут отрицательно влиять на сигнал.Поэтому в этой главе объясняется, почему и где применяются трансформаторы. В дополнительном разделе рассматриваются требования к трансформаторам сигналов. В заключение главы описаны некоторые стандартные трансформаторы, имеющиеся в продаже.
3.1 Функции и области применения трансформаторовБлагодаря своей функциональности трансформаторы могут использоваться для различных задач:
- Изоляция: трансформаторы состоят из нескольких обмоток.В зависимости от дополнительной изоляции различные потенциалы могут быть разделены или изолированы друг от друга
- Преобразование напряжения: Преобразование напряжения пропорционально соотношению витков
- Преобразование тока: токи преобразуются обратно пропорционально соотношению витков (см. Главу I / 1.9).
- Согласование импеданса: импедансы преобразуются как квадрат отношения витков
Это дает основания для различных применений трансформаторов:
- Источники напряжения (питания): здесь основными функциями трансформатора являются преобразование напряжения и изоляция.
- Преобразователи тока: здесь основная функция заключается в преобразовании больших токов в малые измеримые токи.
- Импульсные трансформаторы, эл.грамм. приводные трансформаторы для транзисторов: основная функция — изоляция; иногда для управления транзистором также требуются более высокие напряжения.
- Преобразователи данных: здесь также основная функция — изоляция. Кроме того, иногда приходится согласовывать разные импедансы или увеличивать напряжения.
используются в линиях передачи данных в основном для развязки и согласования импеданса. В этом случае сигнал не должен измениться.Из главы I / 1.9 мы знаем, что ток намагничивания не передается на вторичную обмотку. По этой причине трансформатор должен иметь максимально возможную главную индуктивность.
Профили сигналов обычно представляют собой прямоугольные импульсы, т. Е. Содержат большое количество гармоник. Для трансформатора это означает, что его трансформирующие свойства должны быть как можно более постоянными вплоть до высоких частот. Взглянув на эквивалентную схему трансформатора (глава I / 2.3, стр. 81 и далее), становится очевидным, что индуктивности рассеяния вносят вклад в дополнительное частотно-зависимое затухание сигнала.Следовательно, индуктивность рассеяния должна быть как можно ниже. Поэтому в сигнальных трансформаторах обычно используются кольцевые сердечники с высокой проницаемостью. Обмотки как минимум бифилярные; намотать скрученными проводами еще лучше. Поскольку передаваемая мощность довольно мала, DCR имеет второстепенное значение.
Прямые параметры, такие как индуктивность рассеяния, межобмоточная емкость и т. Д., Обычно не указываются в технических характеристиках сигнальных трансформаторов, а скорее указываются соответствующие параметры, такие как вносимые потери, возвратные потери и т. Д.
Наиболее важные параметры определены следующим образом:
• Вносимые потери IL: Измерение потерь, вызванных трансформатором
U o = выходное напряжение; U i = входное напряжение
• Обратные потери RL: Измерение энергии, отраженной обратно от трансформатора из-за несовершенного согласования импеданса
Z S = полное сопротивление источника; Z L = сопротивление нагрузки
• Подавление синфазного сигнала: мера подавления помех постоянного тока
• Общее гармоническое искажение: соотношение между полной энергией гармоник и энергией основной гармоники
• Полоса пропускания: диапазон частот, в котором вносимые потери менее 3 дБ
3.3 Влияние трансформатора на возвратные потери Обратные потериОбратные потери — это выражение в децибелах (дБ) мощности, отраженной в линии передачи от несовпадающей нагрузки, в зависимости от мощности передаваемого падающего сигнала. Отраженный сигнал нарушает полезный сигнал и, если он достаточно сильный, вызовет ошибки передачи данных в линиях данных или ухудшение качества звука в речевых цепях.
Уравнение для расчета обратных потерь на основе характеристического комплексного полного сопротивления линии Z O и действительной комплексной нагрузки Z L показано ниже:
Разложив уравнение обратных потерь на сопротивление и реактивное сопротивление, мы получим следующую формулу:
Поскольку обратные потери являются функцией полного сопротивления линии и нагрузки, характеристическое сопротивление трансформатора, катушки индуктивности или дросселя будет влиять на обратные потери.Простая развертка импеданса магнитного компонента показывает, что импеданс изменяется по частоте, следовательно, возвратные потери меняются по частоте. Мы обсудим влияние трансформатора на возвратные потери позже. Теперь давайте исследуем связь возвратных потерь с другими распространенными терминами отражения.
Коэффициент отражения
В то время как возвратные потери обычно используются для обозначения отражений линий в магнитной промышленности; Более распространенным термином в электронной промышленности для обозначения отражений является комплексный коэффициент отражения, гамма, который обозначается либо латинским символом G, либо, чаще, эквивалентным греческим символом Γ (гамма).Комплексный коэффициент отражения Γ имеет часть величины, называемую ρ (rho), и часть угла фазы Φ (Phi). Те из вас, кто знаком с диаграммой Смита, знают, что радиус круга, охватывающего диаграмму Смита, равен единице.
Коэффициент отражения, гамма, определяется как отношение сигнала отраженного напряжения к сигналу падающего напряжения. Уравнение для гаммы:
Имейте в виду, что так же, как импеданс — это комплексное число, так и гамма, и она может быть выражена либо в полярном формате с помощью rho и Phi, либо в прямоугольном формате:
Обратные потери, выраженные в единицах гаммы, показаны в уравнении ниже:
Коэффициент стоячей волны
Отражения на линии передачи, вызванные рассогласованием импеданса, проявляются в огибающей комбинированных форм падающей и отраженной волны.Коэффициент стоячей волны, КСВ, представляет собой отношение максимального значения результирующей огибающей РЧ E MAX к минимальному значению E MIN .
Рис. 2.63: Коэффициент стоячей волны
Коэффициент стоячей волны, выраженный через коэффициент отражения, показан ниже:
Потери передачи
Последнее выражение отражения сигнала, которое мы обсудим, — это потери передачи. Потери при передаче — это просто отношение мощности, передаваемой нагрузке, к мощности падающего сигнала.Потери при передаче в сети без потерь, выраженные через коэффициент отражения, показаны ниже:
Не забывайте, что величина гаммы (| Γ |) равна rho (ρ), и любую форму можно найти в публикациях и документах, касающихся отражений.
Связанные термины
Просматривая формулу комплексного коэффициента отражения, мы видим, что чем ближе импеданс нагрузки Z L к характеристическому импедансу ZO линии, тем ближе к нулю коэффициент отражения.По мере увеличения несоответствия между двумя импедансами коэффициент отражения увеличивается до максимальной величины, равной единице.
В таблице ниже показано, как изменяющийся комплексный коэффициент отражения соотносится с КСВ, обратными потерями и потерями при передаче. Как можно видеть, идеальное совпадение приводит к КСВ, равному 1, и бесконечным обратным потерям. Точно так же обрыв или короткое замыкание в нагрузке приведет к возвращению бесконечного КСВ и возвратных потерь 0 дБ.
Табл. 2.32: Связь между коэффициентом отражения и коэффициентом стоячей волны
При отображении на диаграмме Смита взаимосвязь становится еще более очевидной, поскольку постоянные значения всех четырех параметров изображены на диаграмме в виде кружков.
Рис. 2.64: Диаграмма Смита
Максимальная передача мощности
Максимальная передача мощности достигается от источника к нагрузке, когда полное сопротивление источника равно комплексно сопряженному сопротивлению нагрузки. Это не только максимизирует мощность, но и минимизирует энергию отражения назад к источнику.
Рис. 2.65: Комплексный источник и загрузка
Обратные потери при согласованной нагрузке
Давайте возьмем пример согласованной строки и загрузки.Предположим, что Z O = 100 Ом в приложении ADSL, и что оно ограничено чисто резистивной нагрузкой 100 Ом.
Рис. 2.66: Обратный убыток
где:
Z O = 100 + 0j Ом; Z L = 100 + 0j Ом
Поскольку нагрузка и источник являются чисто резистивными, обратные потери будут одинаковыми на любой частоте. Подстановка и вычисление показывают, что RL = ∞.
Обратные потери при несоответствующей нагрузке
Давайте возьмем тот же пример идеального трансформатора, но с немного несоответствующей нагрузкой.Предположим, что Z O = 100 + 0j Ом, как и раньше, но теперь мы рассчитаем возвратные потери для ряда чисто резистивных сопротивлений нагрузки, чтобы показать, как на возвратные потери влияет рассогласование. Снова используется резистивная нагрузка, так что обратные потери не зависят от частоты.
Табл. 2.33: Возвратные потери при несовпадении
Результаты показывают, что обратные потери являются функцией несоответствия и независимо от направления несоответствия. Если мы посмотрим на случай слегка несовпадающей линии в зависимости от нагрузки, мы увидим, что она не зависит от частоты, если линия и нагрузка чисто резистивный.Также обратите внимание, что если бы совпадение было идеальным, возвратные потери были бы бесконечными.
Рис. 2.67: Обратный убыток
Обратные потери с почти идеальным трансформатором
Теперь давайте возьмем тот же пример согласованной линии и нагрузки, но добавим трансформатор 1: 1, который идеально подходит, за исключением того, что индуктивность первичной обмотки составляет L P = 600 мкГн. Мы снова предполагаем, что полное сопротивление линии равно 100 Ом, как и полное сопротивление нагрузки.
Когда у нас был идеальный трансформатор с полностью резистивным импедансом как линии, так и нагрузки, наши возвратные потери не изменялись по частоте и были одинаковыми на любой частоте.Однако теперь индуктивность будет изменяться по частоте, в результате чего эффективная нагрузка будет изменяться по частоте. Расчет обратных потерь также становится более сложным из-за сложного сопротивления нагрузки.
Вместо того, чтобы проводить все сложные вычисления импеданса, я покажу шаги, необходимые для расчета обратных потерь.
Шаг 1 : Используя вычисления преобразования импеданса, преобразуйте импеданс на той же стороне идеального трансформатора, что и индуктивность первичной обмотки.В этом случае идеальным трансформатором является трансформатор 1: 1, и нагрузка не изменяется.
Рис. 2.68: Обратные потери трансформатора
Шаг 2 : Объедините X L текущую Z L = R L + 0j с результирующим Z L ’, который является комплексным.
Рис. 2.69: Обратные потери с импедансом ZL ‘
Шаг 3 : Рассчитайте обратные потери, используя результирующую нагрузку и исходное сопротивление резистивной линии.
Результаты : Глядя на результаты по частоте, мы видим, что индуктивность на нижнем конце несоответствует из-за индуктивности, замыкающей нагрузку. Чем ниже индуктивность первичной обмотки, тем больше будет шунтироваться нагрузка. Глядя на графики, мы видим, что возвратные потери из-за первичной индуктивности будут вести себя так же, как фильтр, поскольку у него есть изгиб, который будет изменяться в зависимости от индуктивности, а наклон после изгиба составляет 20 дБ за декаду.
Табл.2.34: Обратные потери при 600 мкГн L pri на идеальном трансформаторе
Рис. 2.70: Обратные потери при 600 мкГн L pri
Обратные потери с добавленной индуктивностью рассеяния
Рис. 2.71: Обратные потери с индуктивностью рассеяния
Теперь добавим индуктивность рассеяния 1 мкГн к тому же трансформатору при тех же условиях нагрузки. Эффективная нагрузка рассчитывается таким же образом, как ZL ’- реактивное сопротивление первичной обмотки параллельно импедансу нагрузки после преобразования.ZL ’’ — это ZL ’с добавленным к нему последовательным реактивным сопротивлением индуктивности рассеяния.
Рис. 2.72: Обратные потери с индуктивностью рассеяния и Z L ‘
Используя ту же формулу возвратных потерь, мы можем затем рассчитать наши возвратные потери на различных частотах. Из представленных на графике результатов видно, что на возвратные потери на высоких частотах влияет индуктивность рассеяния
.Табл. 2.35: Обратные потери с 600 мкГн L pri при индуктивности рассеяния 1 мкГн
Фиг.2.73: Обратные потери при 600 мкГн L при и индуктивности рассеяния 1 мкГн
Для большинства трансформаторов индуктивность первичной обмотки и индуктивность рассеяния будут иметь наибольшее влияние на возвратные потери, при условии, что выбранное соотношение витков эффективно согласовывает сопротивление нагрузки с полным сопротивлением линии.
Обратные потери с неидеальным трансформатором
С помощью модели линейного трансформатора, которая обычно используется при проектировании низкочастотных трансформаторов, мы можем рассчитать теоретические возвратные потери на основе анализа сосредоточенных параметров.За исключением межобмоточной емкости, мы можем уменьшить модель линейного трансформатора до импеданса нагрузки, комбинируя элементы параллельно или последовательно. Имейте в виду, что сопротивление вторичной обмотки постоянному току и Z L должны быть преобразованы путем деления на n2 при поднесении к линейной стороне модели.
Рис. 2.74: Обратные потери реальных трансформаторов
Межобмоточная емкость не может быть смоделирована так просто, потому что она не находится ни на стороне линии, ни на стороне нагрузки модели и не может быть преобразована в эквивалентную нагрузку.На низких частотах межобмоточная емкость действует как разрыв трансформатора, и обычно ею можно пренебречь. Фактически, большинство программ моделирования трансформаторов игнорируют межобмоточную емкость, поскольку индуктивность рассеяния и индуктивность первичной обмотки являются доминирующими элементами. Однако в некоторых конструкциях, где межобмоточная емкость довольно велика, а рабочие частоты высоки, она может стать очень важным фактором. Достаточно сказать, что если в модель необходимо включить межобмоточную емкость, было бы разумно использовать более сложную программу анализа, такую как LTspice.
Давайте теперь взглянем на модель линейного трансформатора для теоретического трансформатора ADSL, показанного ниже, с нагрузкой, которая немного отличается от идеальных 25 Ом для идеального согласования. Мы возьмем это и смоделируем влияние различных элементов, смотря на это параметр за параметром.
Рис. 2.75: Обратные потери трансформатора ADSL
Эффект обратных потерь DCR
Эффект обратных потерь сопротивления постоянному току в приведенном ниже примере выделяет два наблюдения.Во-первых, даже несмотря на то, что сопротивление вторичной обмотки на 1,5 Ом ниже по сравнению с сопротивлением первичной обмотки 3,0 Ом, влияние на возвратные потери намного больше. Причина этого в том, что вторичная обмотка 1,5 Ом при отражении от первичной обмотки трансформатора воспринимается как 6,0 Ом.
Также обратите внимание, что на меньшее число возвратных потерь лишь незначительно влияют другие элементы, которые имеют значительно лучшие возвратные потери в одиночку. Обратные потери, связанные только с сопротивлением вторичной обмотки, составляют примерно 30 дБ, в то время как обратные потери из-за сопротивления первичной обмотки составляют примерно 37 дБ.В совокупности чистый эффект — это возвратные потери 27 дБ.
Рис. 2.76: Возвратный убыток
Эффект обратных потерь индуктивности рассеяния и распределенной емкости
Также интересно сравнить влияние на возвратные потери индуктивности рассеяния и параметров распределительной емкости трансформатора. Из приведенного ниже примера видно, что эффекты, обусловленные исключительно индуктивностью рассеяния, показывают уменьшающиеся возвратные потери со скоростью 20 дБ за декаду.Теперь, глядя на распределенную емкость, мы видим, что она вызывает затухание высоких частот с той же скоростью, что и колено, на более высокой частоте.
Сравнение становится интересным, когда мы рассматриваем комбинированный аффект. В совокупности чистый результат — улучшение возвратных убытков. Почему это? Если вы помните в нашем предыдущем обсуждении, обратные потери являются функцией рассогласования независимо от того, в каком направлении находится рассогласование. В этом примере рассогласование происходит в противоположных направлениях, поэтому добавление эффекта распределенной емкости фактически улучшает общие возвратные потери.
Если подумать об этом с аналитической точки зрения, что происходит в эквивалентной схеме? Отраженная нагрузка увеличивается на реактивное сопротивление из-за индуктивности рассеяния, вызывая рассогласование. Однако реактивное сопротивление распределенной емкости параллельно за счет уменьшения рассогласования до оптимальной отраженной нагрузки 100 Ом.
Рис. 2.77: Обратные потери с индуктивностью рассеяния
Эффект обратных потерь межобмоточной емкости
Как упоминалось ранее, влияние межобмоточной емкости очень трудно рассчитать с помощью простых преобразований эквивалентного импеданса.Проблема в том, что межобмоточная емкость разделяется обеими обмотками и не явно находится на одной стороне идеального трансформатора или другой. Таким образом, влияние на модель схемы не так однозначно и требует более сложных методов моделирования. Пример ниже был смоделирован с помощью PSPICE, а не с помощью простых вычислений.
Однако обычно межобмоточная емкость очень мало влияет на возвратные потери по сравнению с индуктивностью рассеяния, и ею можно пренебречь.Однако следует сделать предупреждение, поскольку в случаях, когда индуктивность рассеяния очень мала, а межобмоточная емкость очень высока, межобмоточная емкость может стать фактором, с которым нужно считаться.
Рис. 2.78: Обратные потери и межобмоточная емкость
Эффект обратных потерь из-за потерь в резистивном сердечнике и индуктивности
В этом примере мы сравниваем возвратные потери из-за индуктивности первичной обмотки, а также с резистивными потерями в сердечнике, предполагая, что коэффициент потерь в сердечнике R cAlpha равен 0.44. Как видно из обратных потерь из-за комбинированного эффекта, резистивные потери в сердечнике имеют очень минимальное влияние. В приложениях с очень низкой частотой, таких как аудио, резистивные потери в сердечнике могут иметь значение.
Рис. 2.79: Обратные потери и потери в сердечнике / L-значение
Влияние возвратных потерь всех параметров
Наконец, глядя на влияние всех параметров вместе взятых, мы можем определить, какие факторы являются существенными в типичном применении трансформатора.Как видно из результатов ниже, индуктивность рассеяния и индуктивность первичной обмотки являются движущими факторами. В то время как другие паразитные параметры действительно играют роль в формировании реакции на возвратные потери, они играют относительно незначительную роль в типичной конструкции трансформатора.
Рис. 2.80: Обратные потери со всеми параметрами
Более пристальный взгляд на доминирующие параметры
В заключение мы более подробно рассмотрим основные параметры трансформатора.На верхнем графике показаны возвратные потери различных моделей в сравнении с идеальным трансформатором с немного несовпадающей нагрузкой. Затем нижний график просто увеличивает масштаб неидеальных трансформаторов.
Практический совет:
Эти графики подчеркивают тот факт, что первичная индуктивность и индуктивность рассеяния являются параметрами, которые обычно определяют возвратные потери, и что в большинстве приложений есть основания игнорировать межобмоточную емкость.
Фиг.2.81: Обратные потери и влияние доминирующих параметров L первичный / L утечка
ABC CLR: Глава L Индукторы
Применения для трансформаторов
Контент, лицензированный EPCI: Würth Elektronik eiSos, Trilogy of Magnetics, распечатки справочника можно заказать здесь.