Как определить тип транзистора. Как определить и проверить выводы транзистора: подробное руководство

Как узнать, где база, эмиттер и коллектор транзистора. Как проверить исправность транзистора мультиметром. Какие существуют типы транзисторов и чем они отличаются. Как определить тип транзистора по маркировке.

Содержание

Основные типы транзисторов и их устройство

Транзисторы являются ключевыми элементами современной электроники. Существует два основных типа транзисторов:

  • Биполярные транзисторы — работают за счет движения носителей заряда обоих знаков (электронов и дырок). Имеют три вывода: база, эмиттер и коллектор.
  • Полевые транзисторы — управляются электрическим полем и работают на носителях заряда одного знака. Имеют выводы исток, сток и затвор.

Биполярные транзисторы в свою очередь делятся на два типа:

  • NPN — с двумя n-областями и одной p-областью
  • PNP — с двумя p-областями и одной n-областью

Структура биполярного транзистора состоит из трех полупроводниковых областей. Средняя область называется базой, а крайние — эмиттером и коллектором. Между этими областями образуются два p-n перехода.


Как определить выводы биполярного транзистора

Для проверки и использования транзистора необходимо точно знать назначение его выводов. Существует несколько способов определить, где у транзистора база, эмиттер и коллектор:

По маркировке корпуса

На корпусе многих транзисторов нанесена маркировка, указывающая расположение выводов. Обычно это точка, полоса или скос корпуса рядом с выводом эмиттера.

С помощью мультиметра

Если маркировка отсутствует, можно определить выводы с помощью мультиметра:

  1. Установите мультиметр в режим проверки диодов
  2. Подключайте щупы к разным парам выводов, пока не найдете два перехода с прямым падением напряжения около 0.6-0.7 В
  3. Общий вывод для этих двух переходов и будет базой
  4. Из оставшихся двух выводов эмиттер будет иметь чуть меньшее прямое падение напряжения, чем коллектор

По схеме или справочным данным

Если известна модель транзистора, можно найти его цоколевку в справочнике или datasheet.

Проверка исправности биполярного транзистора мультиметром

Чтобы проверить работоспособность биполярного транзистора, нужно выполнить следующие шаги:


  1. Установите мультиметр в режим проверки диодов
  2. Проверьте переход база-эмиттер:
    • Красный щуп к базе, черный к эмиттеру — должно быть прямое падение 0.6-0.7 В
    • Поменяйте щупы местами — должно быть высокое сопротивление
  3. Проверьте переход база-коллектор аналогичным образом
  4. Проверьте переход эмиттер-коллектор:
    • В обоих направлениях должно быть высокое сопротивление

Если все переходы соответствуют описанным параметрам, транзистор исправен.

Как определить тип транзистора (NPN или PNP)

Тип биполярного транзистора можно определить следующими способами:

  • По маркировке — обычно в обозначении присутствуют буквы N или P
  • По результатам проверки мультиметром:
    • NPN — прямой ток идет от базы к эмиттеру и коллектору
    • PNP — прямой ток идет от эмиттера и коллектора к базе
  • По справочным данным на конкретную модель

Особенности проверки полевых транзисторов

Проверка полевых транзисторов имеет свои особенности:

  • Между затвором и остальными выводами должно быть высокое сопротивление
  • Между стоком и истоком должно быть некоторое сопротивление в обоих направлениях
  • При подаче напряжения на затвор сопротивление сток-исток должно изменяться

Для точной проверки полевых транзисторов лучше использовать специальные приборы-тестеры.


Распространенные причины выхода транзисторов из строя

Транзисторы могут выйти из строя по следующим причинам:

  • Перегрев при пайке или работе
  • Превышение максимально допустимых напряжений
  • Воздействие статического электричества
  • Механические повреждения
  • Старение полупроводниковой структуры

При обнаружении неисправности транзистор следует заменить на аналогичный исправный.

Использование специальных приборов для проверки транзисторов

Помимо мультиметров существуют специализированные приборы для проверки транзисторов:

  • Транзистор-тестеры — позволяют автоматически определять тип и проверять параметры транзисторов
  • Измерители h-параметров — для точного измерения коэффициента усиления и других характеристик
  • Приборы для снятия вольт-амперных характеристик

Такие устройства дают более полную информацию о состоянии и параметрах транзисторов по сравнению с обычным мультиметром.


Как проверить транзистор мультиметром

Содержание:

  • Проверка биполярного транзистора мультиметром
  • Проверка варистора на исправность мультиметром и без тестера
    • Причины неисправности
    • Способы проверки
  • Проверка работоспособности полевого транзистора
  • Цоколевка
  • Проверка на плате
    • Проверка биполярного транзистора PNP типа
    • Тестируем исправность NPN транзистор
    • Как определить базу, коллектор и эмиттер
  • Как проверить полупроводниковый транзистор биполярного типа
  • Основные типы транзисторов

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Проверка варистора на исправность мультиметром и без тестера

Причины неисправности

Как проверить предохранитель мультиметром

Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.

Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор — он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше — тем больше энергии способен рассеять варистор.

Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает.

Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:

Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов. Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться

Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Материалы по теме:

Проверка работоспособности полевого транзистора

Как проверить диод мультиметром

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности

Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов

После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Цоколевка

Как проверить сколько ампер выдает генератор мультиметром

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять

Это важно, так как при определении работоспособности, эта информация нам понадобится

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов

Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Как проверить полупроводниковый транзистор биполярного типа

Прежде чем начинать проверку, необходимо точно определить, какой именно вид транзистора вы сейчас проверяете. Помимо транзисторов биполярного типа существует великое множество иных типов транзисторов, проверять которые нужно совершенно другим образом. В рамках данной статьи будет рассмотрена проверка транзисторов биполярного типа. Биполярный транзистор можно представить в виде компоновки из 2 диодов. Эти диоды соединены в полумост с помощью одноименных электродов. На выходе из транзистора выходит 3 электрода, обозначенных условно как база, коллектор и эмиттер. В зависимости от полярности соединения диодов выделяют NPN и PNP транзисторы биполярного типа. Переход «база-эмиттер» — управляющий переход, а переход «коллектор-эмиттер» — управляемый переход. Транзистор устроен так, что малый токовый сигнал, который подается на переход «база-эмиттер», при грамотном соотношении резисторов в цепи коллекторного, базового и эмиттерного перехода, вызывает более высокий токовый сигнал на переходе «коллектор-эмиттер».

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Как мультиметром проверить транзистор


Почему не работает транзистор

Наиболее вероятные причины, по мнению специалистов, выхода из строя триода в схеме следующие:

  • когда пропадает (обрывается) один из переходов;
  • пробой перехода;
  • пробой на одном из участков эмиттера или коллектора;
  • потеря мощности полупроводниковым прибором в работе;
  • визуальные повреждения выводов транзистора.

Признаки, по которым можно определить визуально поломку триода в схеме: потемнение или изменение первоначального цвета полупроводникового прибора, изменение его формы «выпуклость», наличие черного пятна.

Как проверить транзисторКак проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов.

Проверка транзистора мультиметром (тестером) (прозвонка транзистора) производится следующим образом. Для лучшего понимания процесса на рисунке изображён “диодный аналог” npn-транзистора. Т.е. транзистор как бы состоит из двух диодов. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.

  • База – Эмиттер (BE): соединение должно вести себя как диод и проводить ток только в одном направлении.
  • База – Коллектор (BC): соединение должно вести себя как диод и проводить ток только в одном направлении.
  • Эмиттер – Коллектор (EC): соединение не должно проводить ток ни в каком направлении.

При прозвонке pnp-транзистора “диодный аналог” будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае “Эмиттер – Коллектор” – ни в каком направлении.


Классификация транзисторов.


Проверка простой схемой включения транзистора

Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора.

Это очень важно, иначе транзистор “сгорит” во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть. Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.

Проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов. Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Будет интересно➡ Схема подключения проходного двухклавишного выключателя

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода. Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом. Делая вывод из всех замеров, база располагается на правом выводе.

Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.


Методы проверки различных транзисторов.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Материал в тему: все о переменном конденсаторе.

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно. Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE.

Будет интересно➡ Как выбрать зарядное устройство для телефона и сделать его своими руками

Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31. Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры.

Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Проверка транзистора.

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный.

Первый образует канал управления, а второй – силовой канал. Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом. Теперь необходимо убедиться в функциональности транзистора.

Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору.

На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Основные типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления. Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства.

Будет интересно➡ Как проверить диодный мост мультиметром?

Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору. Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее. Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время.

Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения. Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального.

Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную. Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра.

Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.


Подключения транзистора к тестеру

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы – затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в импульсных блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный – к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

Виды, типы, характеристики, принцип работы

Транзистор… По-моему самая сложная и очень любопытная тема во всей электронике. Ничего нигде  про них толком не написано.   Ну что же, дорогие читатели, попробуем пролить свет истины на самое величайшее изобретение XX века, с которого началась Великая Эра цифровой электрон ики.

Что такое транзистор?

Транзистор – это  (от англ. transfer — переносить и resistor — сопротивление) радиоэлектронный компонент, способный усиливать слабые электрические сигналы. Все, пока на этом хватит… Дальше интереснее.

Более подробно в видео:

Из чего состоит транзистор?

Как вы знаете, все мы из чего-то состоим. Люди состоят из мяса, воды и костей. А некоторые состоят вообще из другого материала, поэтому не тонут в воде ))). Так и наш транзистор — он тоже из чего-то состоит. Но из чего? 

Как вы все знаете, материалы делятся на  проводники и диэле ктрики, а между ними находятся полупроводники. Еще раз напомню вам, что проводники прекрасно проводят электрический ток, диэлектрики не проводят электрический ток, а вот полупроводники проводят электрический ток, но очень плохо.

«И зачем нам нужен этот полупроводниковый материал?» — спросите вы. Сам по себе материал полупроводник с практической точки зрения не представляет никакого интереса, но вот когда в него добавить малюсенькую долю некоторых элементов из таблицы Менделеева, по-научному «пролегировать», то мы получим полупроводниковый материал, но с очень странными свойствами.

Самым знаменитым полупроводником является кремний

и германий

Как вы видите, они  мало чем отличаются.

Кремний составляет почти 30% (!) земной коры, германий 1.5х10-4% . Может быть поэтому полупроводниковые радиоэлементы очень дешевые, особенно из кремния?

P и N полупроводники

Когда в кремний добавляют мышьяк, получается так, что в кремнии стает очень много свободных электронов. А материалы, в которых очень много свободных электронов, мы уже называем проводниками. Следовательно, кремний, после легирования (смешивания) с мышьяком превращается из полупроводника в очень хороший проводник. Электроны обладают отрицательным зарядом, и их в полупроводнике как песчинок в пустыне, значит такой полупроводник будем называть полупроводником N-типа. N — от англ. Negative — отрицательный. 

А вот если пролегировать кремний с индием, то мы получим очень забавную вещь… В первом случае у нас появились лишние электроны, которые превратили полупроводник в проводник. Но здесь ситуация абсолютно противоположная. Представьте себе, как это бы странно не звучало, электрон с положительным зарядом. Да да, именно так. Но самое-самое интересное знаете что? Его не существует! Он как бы есть, но его как бы нет))). 

Это все равно, что магнитное, электрическое или гравитационное поле. Оно существует, но мы его не видим.

Такой «электрон» мы будем называть дыркой. Так как дырка обладает положительным зарядом,  то полупроводниковый материал в котором очень-очень много этих дырок, мы будем называть полупроводником P-типа. P — от англ. Positive  — положительный.

По отдельности полупроводники P и N типа не представляют никакого интереса. Все самое интересное начинается тогда, когда они спаиваются с друг другом и образуется PN-переход.

PN-переход

В настоящее время PN-переход спаивается по специальной технологии, что, конечно же, увеличивает проводимость для электрического тока. Ширина этой спайки очень мала и достигает  одну тысячную миллиметра.

Свойство PN-перехода

Думаю, будет излишним рассказывать как на физическом уровне работает PN переход. Это долго, муторно и непонятно. Да и вам это точно не пригодится). Самое главное свойство P-N перехода — это односторонняя проводимость! Односторонняя ЧТО? ОДНОСТОРОННЯЯ ПРОВОДИМОСТЬ. Но что означает это словосочетание?

Давайте представим себе воронку, наподобие этой:

С какой стороны нам будет удобней наливать жидкость?  Думаю, что сверху, не так ли?  Тем самым мы переливаем нашу жидкость далее в какой-либо сосуд.

Ну а что будет, если мы перевернем нашу воронку и будем  наливать жидкость через узенькую трубочку таким же напором? Совсем малюсенькая часть жидкости попадет через узкую трубочку и окажется по ту сторону воронки. Остальная же часть тупо прольется мимо воронки.

А давайте теперь на секундочку представим, что вместо жидкости мы будем «наливать» электрический ток. С широкой стороны воронки ток прекрасно зайдет и потечет дальше через узенькую трубочку, а если перевернуть воронку совсем малюсенькая часть электрического тока протиснется на другой конец воронки, остальная же часть электрического тока «прольется» мимо воронки.

Так вот, дорогие мои читатели, P-N переход работает точно таким же способом, как и эта воронка! P — это широкая часть воронки, N — узкая часть воронки, ну то есть та самая тонкая трубочка.

Таким образом, подавая на «воронку» полупроводника P, плюс от источника питания (это может быть батарейка или блок питания ) , а к N-полупроводнику, к узкой трубочке воронки, минус, то у нас ток течет как ни в чем не бывало.  Но как только мы поменяем полярность, то есть подадим на P  минус, а на N плюс, то у нас ток никуда не потечет. То есть цепь будет находиться в обрыве.

Диод, как самый простой PN-переход

А вам знаком вот такой радиоэлемент? Да, это самый простой диод.

а вот его схематическое изображение

А знаете ли вы, что диод состоит из самого обычного PN-перехода? Можем даже вот так нарисовать диод:

Проведем опыт. Возьмем простой советский диод марки Д226:

Интересно, что же внутри у него?  На наждаке стачиваем одну треть корпуса диода, чтобы не повредить внутренности:

Интересно, где же этот PN-переход? С помощью цифрового микроскопа Prima Expert M100 увеличиваем  наш парированный диод и видим кристалл кремния.

Судя по книге Шишкова «Первые шаги в радиоэлектронике»,  PN-переход находится где-то здесь:

Хотя я увидел там только одну пластинку кремния. Видать полупроводники P и N сплавлены  в один бутербродик.

Итак, классика жанра… Как вы видите на этой картинке, диод имеет анод и катод. Анод — это P полупроводник, катод — это N полупроводник.  Все элементарно и просто.

Односторонняя проводимость PN-перехода

Далее проведем классический опыт, который описывается во всех учебниках физики. Собираем цепь из блока питания, лампочки и нашего диода вот по такой схеме (снизу перечеркнутый кружочек — это лампочка).

Теперь собираем эту схемку в реале. Красный щуп — это плюс от блока питания, черный щуп — это минус от блока питания.

Видим, что лампочка загорелась. Это означает, что электрический ток течет через диод как ни в чем не бывало.

Теперь меняем щупы местами и собираем вот по такой схеме:

 

Лампочка не горит. Ну ладно, не переживайте, ведь мы для себя сейчас открыли важнейшее свойство диода, а следовательно и PN-перехода! Диод пропускает электрический ток, если подать на его анод плюс, а на катод минус. Такое включение называют прямым включением диода. А если подать на анод минус, а на катод плюс — диод не будет пропускать электрический ток.

Как проверить целостность PN-перехода

Как проверить целостность PN-перехода, а соответственно и диода? Для этого ставим крутилку на мультиметре в режим прозвонки вот на этот значок :

В этом режиме измеряется падение напряжения. Прямое падение напряжения для кремниевых диодов составляет значение от 0,5 Вольт  и до 0,7 Вольт,  а для германиевых 0,3-0,4 Вольта.

Цепляем анод у диода к положительному щупу мультиметра (красный щуп), а катод цепляем к отрицательному щупу (черный щуп):

Итак, на дисплее мультиметра мы видим так называемое прямое падение напряжения PN-перехода. В данном случае оно равно 554 милливольта или 0,55 Вольт.

Если поменять щупы местами, то на дисплее мультиметра высветится единичка. Это значит, что падение напряжения в данном случае не влазит в диапазон измерения мультиметра в функции прозвонки. При функции «прозвонка» можно наблюдать падение напряжения только  в диапазоне от 0  и до 1999 милливольт.  Мультиметр же выдает 2,8-3 Вольта в этом режиме.

Зависимость падения напряжения на PN-переходе от температуры

Также у PN-перехода есть очень интересное свойство. Его прямое падение напряжения зависит от температуры.

Вот прямое падение напряжения на диоде при обычной комнатной температуре: 554 милливольта.

Начинаем жарить паяльным феном при 200 градусах по Цельсию и смотрим на дисплей мультиметра:

Опа-на, 392 милливольт, а было 554 …

А давайте охладим наш диод. Для этого используем морозильную камеру холодильника:

615 милливольт…

При повышении температуры, прямое падение напряжения на PN-переходе понижается, а при понижении температуры — повышается.   Из Закона Ома вы знаете, что чем меньше сопротивление (а следовательно и падение напряжение на нем), тем лучше течет электрический ток. Может быть, именно поэтому вся современная электроника очень плохо работает на холоде, но прекрасно работает в жаре, потому как почти полностью построена на полупроводниках.

Зависимость сопротивления прямого перехода от температуры радиолюбители используют даже в своих схемах, например в схеме умного вентилятора.

Биполярный транзистор

История возникновения

На дворе стоял послевоенный 1947 год. Декабрь. Холодно, голодно, жутко…  но только не в лаборатории Bell Labs!  Трое ученых: Джон Бардин, Уильям Шокли и Уолтер Браттейн, бились над радиоэлементом, который перевернул весь мир с ног на голову! 16 декабря 1947 года  можно назвать днем второго рождения электроники! Да, черт побери! В этот день впервые миру был продемонстрирован биполярный транзистор.

Именно биполярный транзистор сделал революцию в электронике. Обладая усилительными свойствами, он заменил собой электронные лампы, что сделало электронику намного надежнее, мобильнее и компактнее. Без такого изобретения, как транзистор, мы с вами до сих пор бы жили без компьютеров, мобильных телефонов, планшетов и других различных электронных гаджетов.

Внутреннее строение биполярного транзистора


Помните, о чем мы беседовали выше? Да-да, о полупроводниках P и N типа, а также об их совместном воздействии. В итоге у нас получился диод.

А почему бы нам не добавить еще один полупроводник с такой же проводимостью, как слева? Сказано — сделано! Ну что же, прошу любить и жаловать! Получился БИПОЛЯРНЫЙ ТРАНЗИСТОР!

Если читать слева-направо или справа-налево, из каких полупроводников он состоит, то можно узнать какой он проводимости. Значит, транзистор на рисуночке выше у нас проводимости PNP, или, как у нас говорят, прямой проводимости.

А вот у этого транзистора проводимость NPN или обратной проводимости.

Вывод со среднего полупроводникового материала называется базой, а по краям эмиттер и коллектор. Откуда такие названия? Так как транзистор придумали американцы, то и названия они дали соответствующие:

Эмиттер —  на буржуйском Emitter — источник, излучатель, генератор. То есть вывод, на который что-то подается. В данном случае электрический ток.

БазаBase — основа. Cамый главный вывод.

Коллектор Collector — сборщик, собиратель, токоприемник. Он  как-бы «собирает» электрический ток.

Обозначение на схеме биполярного транзистора

Как же на схемах обозначаются биполярные транзисторы? Мы разобрали, что  существуют транзисторы прямой и обратной проводимости, значит и на схемах они будут обозначатся совсем по-другому.

Схемотехническое обозначение P-N-P транзистора, то есть транзистора прямой проводимости

будет выглядеть вот так:

А схемотехническое обозначение транзистора обратной проводимости или N-P-N транзистора

будет выглядеть вот так:

В  старинных советских схемах транзисторы обозначались буквой T, в  современных схемах они уже обозначаются буквами VT. Как нетрудно догадаться, вывод со стрелочкой — это эмиттер.

Как не путаться в проводимостях транзистора и в их схемотехнических изображениях? Тут все просто. Как вы помните, в полупроводнике P-типа у нас очень много дырок, а дырки обладают положительным зарядом, то есть они со знаком «плюс».

Полупроводник N-типа содержит большое количество электронов, а электроны — это отрицательные частицы со знаком «минус». Как вы помните, электрический ток течет от «плюса» к «минусу». Стрелка эмиттера показывает направление движения электрического тока. То есть, если у нас база состоит из полупроводника P-типа, то значит ток течет от базы, следовательно, стрелка эмиттера направлена от базы, если же база из N-полупроводника, то стрелка эмиттера направлена в базу. Все просто как дважды два.

Как выглядят биполярные транзисторы

Как же в реале выглядят транзисторы? Уууу…. тут фантазиям разработчиков нет предела. Ниже фоты самых распространенных корпусов транзисторов:

Но! Имейте ввиду! Если вам попался радиоэлемент в таком корпусе — это  не обязательно транзистор! Это может быть и тиристор, и  диодная сборка или даже стабилизатор напряжения, или вообще что угодно. Как же тогда распознать транзистор? Читаем ниже).

Эквивалентная схема биполярного транзистора

Итак, как же нам распознать биполярный транзистор среди кучи радиоэлементов, имеющих схожий корпус? Давайте рассмотрим еще раз его внутреннюю структуру. Для транзистора прямой проводимости она будет выглядеть так:

а для транзистора обратной проводимости вот так:

А знаете что? Давайте-ка резанём серединный слой пополам… Предположим, мы взяли тонкий-тонкий ножик и разделили полупроводник базы на две части.

Итак, рисуночки у нас становятся такими:

для транзистора прямой проводимости

для транзистора обратной проводимости

Вот этот или вот этот участок транзистора вам ничего не напоминает?

Едрить-колотить! Так ведь это же  диод!

Так что тогда  получается? Что транзистор тупо состоит из двух диодов? Грубо говоря, так оно и есть.

Значит, схематически мы можем транзистор нарисовать как два диода. Итак, что у нас тогда получиться? Для транзистора прямой проводимости:

схема будет выглядеть вот так:

а для транзистора обратной проводимости

вот так:

Все элементарно и просто, господа! Итак, мы с вами узнали, что схематически (не физически) транзистор можно заменить как два диода, которые соединены катодами или анодами. А проверять диоды мы с вами умеем без проблем, не так ли? Кто подзабыл, читаем статью как проверить диод мультиметром.

Как проверить транзистор с помощью мультиметра

У нас имеются два транзистора. Стоп! А с чего мы взяли что это вообще транзисторы?

Внимательно смотрим на них и видим какие то буквы и цифры. КТ815Б и КТ814Б. Блин, снизу еще какие-то цифры. Во дела! Ладно, ничего страшного. Для этого открываем яндекс или гугл и вбиваем первую строчку названия транзистора. Вбиваем «КТ815Б» и рядышком пишем незамысловатое слово «даташит» или на буржуйский манер «datasheet».

Качаем документацию на этот радиоэлемент и узнаем что это такое и что он из себя представляет. Теперь я знаю, что это транзистор NPN структуры, а также знаю расположение его выводов.

Вон сколько сразу можно узнать!

А вот и вторая страничка даташита:

Здесь мы видим уже тот же самый транзистор, но уже в другом корпусе.  У нас на фото транзистор в корпусе КТ-27. Видите цифры на выводах транзистора? Смотрим в табличку и узнаем, где какой вывод. Значит, на фото у нас выводы идут таким образом:

Теперь рассмотрим другой транзистор.

Из даташита транзистора КТ815Б мы узнали, что у него есть комплиментарная пара: транзистор КТ814

Комплиментарная пара для кого-либо транзистора – это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть NPN, а КТ814 прямой проводимости, то есть PNP .

Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815 ! Короче говоря, зеркальные братья-близнецы. Также самой популярной комплиментарной парой транзисторов в Советском Союзе были транзисторы КТ315 и КТ361.

 

Проверка NPN-транзистора с помощью мультиметра

Берем наш знаменитый мультиметр, цепляем щупы-крокодилы  и ставим на значок «прозвонка»

Будем проверять транзистор КТ815. Так как он структуры NPN, следовательно, его можно схематически заменить вот на такую диодную схему:

Вспоминаем распиновку нашего транзистора:

Как мы помним, диод пропускает постоянный ток только в одном направлении. Проверяем первый диод транзистора. Для этого ставим на базу плюс, на эмиттер  — минус.

Видим падение напряжения при прямом включении на PN-переходе в милливольтах.

Меняем щупы местами. То есть на базу подаем минус, а на эмиттер – плюс:

Единичка, значит первый диод транзистора исправен.

Проверяем второй диод транзистора. Ставим на базу плюс, а на коллектор – минус:

Видим падение напряжения на PN-переходе. Все гуд.

Меняем щупы местами:

Мультиметр показывает единичку. Все в порядке. Второй диод тоже в полном здравии. Значит, транзистор в полной боевой готовности!

Проверка PNP-транзистора с помощью мультиметра

Ну что, теперь проверим комплиментарный транзистор – КТ814 ;-). Его эквивалентная схема будет выглядеть уже по другому, так как он прямой проводимости.

Здесь так же проверяем два диода. Для этого ставим минус на базу, а на эмиттер – плюс.

Падение напряжения на PN-переходе. Все ОК.

Меняем так же местами щупы:

Единичка – все ОК.

Проверяем второй диод транзистора точно так же. Для этого на базу также ставим минус, а на коллектор – плюс.

Опять видим падение напряжения при прямом включении на PN-переходе.

Меняем щупы местами.

Единичка – гуд!

КТ814 у нас тоже полностью жив и здоров!

Проверка неисправного транзистора

Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.

Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит.  Можно смело выкидывать такой транзистор в мусорку.

Как проверить транзистор с помощью транзисторметра

Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр

Для этого всего лишь достаточно поместить выводы транзистора в разные отверстия и нажать зеленую кнопку. Как вы видите, прибор полностью нам показал цоколевку (расположение выводов) транзистора, его коэффициент усиления в схеме с общим эмиттером (об этом ниже), а также напряжение открытия, то есть напряжение, при котором он начинает открываться и пропускать ток через коллектор-эмиттер (об этом также ниже).

Принцип работы транзистора

Что такое усиление

Давайте для начала разберем, что мы вообще подразумеваем под словом «усиление»? Ну… усиление это когда мы производим какое-то действие, чтобы было лучше, качественнее, комфортнее, удобнее, безопаснее. По-моему как-то так. Усиливаем подвеску на машине, чтобы езда была комфортнее. Усиливаем фундамент под дом, загоняя туда железную арматуру, чтобы дом стоял долго и не трещал. Усиливаем армию военной техникой, чтобы обеспечить себе и своему народу безопасность, усиливаем свое тело, чтобы выглядеть уверенно и дать отпор гопникам.

Но какое слово идет рядом в паре со словом «усиление»? Мне кажется — это слово «мощность». 

Усиливаем подвеску на машине, то есть делаем ее мощнее. Усиливаем фундамент — делаем его мощнее. Усиливаем армию танками и самолетами — делаем ее мощнее :-), усиливаем свою тушку — значит делаем ее опять же мощнее.

Давайте рассмотрим на примере человека. Как же его усилить? Здесь я вижу два варианта:

Увеличить человека в размерах

Либо усилить его с помощью экзоскелета:

Тут уже даже и ежу понятно, что мощности каждого из этих персонажей хватит для того, чтобы размотать целую роту вояк в рукопашном бою. В первом случае их проще будет давить либо пяточкой, а если попадется воспитанный великан с хорошими манерами — то пальчиками :-). Во втором случае, с экзоскелетом, хуком справа и слева.

Значит, для того, чтобы сделать сигнал мощнее, мы должны либо увеличить его амплитуду, либо увеличить его… Хм… Зачем наш Тони Старк сделал себе костюм? Чтобы он защищал его тело, то есть чтобы оказывать сопротивление ударам, пулям и тд. Какая-бы пулька или удар не влетали в него, он бы стоял колом (разумеется в разумных пределах) То есть его экзоскелет защищает его от разного рода сопротивления.

Получается,  для нашего сигнала какое бы сопротивление он не встретил на своем пути, он будет таким же «бодрым и энергичным», каким был и до встречи с нагрузкой. Если Тони Старк брал энергию из своего реактора на груди, то сигнал должен брать энергию от какого-либо мощного источника. Сравнение, конечно, так себе, но думаю, суть вы уловили.

Как усиливает транзистор

Итак, представим себе нашу сборную России по футболу. Ну да, ребята частенько лажают), но суть не в этом. Для того, чтобы наши футболисты играли хорошо, надо к каждому футболисту приставить хорошего тренера, установить нормальный график труда и отдыха, кормить самой лучшей спортивной едой, пичкать допингами и тд. Как результат — команда может быть дотянет до полуфинала на чемпионате мира.

Но… есть и другой вариант. Почему бы в команду не пригласить таких футболистов, как Месси, Рональдо, Роналду, Бекхэма и других знаменитостей? То есть в этом варианте мы полностью заменили всю команду. Но для нас ведь главное  — победа, и не волнует, кто играет в нашей команде. Главное, чтобы наша команда порвала всех на чемпионате.

И там и там мы усилили эти команды. Но как вы думаете, какой вариант будет лучше? Ну тут уже и ежу понятно, что второй вариант — стопроцентный! Если провести параллельную грань с электроникой, то можно сказать, что транзистор использует именно второй вариант. В нем нет ничего такого, чтобы он сам бы усиливал сигнал. Он его полностью заменяет другим сигналом. То есть усиливаемый сигнал, который выходит из транзистора, является копией входного слабенького сигнала, но это не тот же самый слабенький сигнал.

Тяжко для понимания? Ну давайте приведем тогда еще один пример.

Вернемся в детство. Вам купили маленького хомячка. Вы за ним ухаживаете, меняете водичку, убираете какашки, покупаете колесико, чтобы он бегал и радовался жизни. Через год из маленького хомячка вырастает здоровый пушистый хомяк. Вы очень рады, что у вас вырос такой здоровый хомячок. Но…  как-то летом вы решили съездить в деревню к бабушке, за хомяком никто не ухаживал и он сдох. Ваши родители, конечно же, ничего вам не сказали. Они быстренько сбегали в зоомагазин и купили точно такого же хомяка! Один в один! Вы приезжаете к себе домой и продолжаете радоваться своему хомяку, даже не догадываясь, что это вообще не он))). Именно точно также ведет себя транзистор).

Транзистор не усиливает сигнал, а просто выводит усиленную копию на выходе.

Откуда берется энергия для усиления

Вспомните  также в своей жизни моменты, когда вы или кто-то другой прилагали очень малую силушку, но наворотили делов.

Получается, какое-то слабенькое движение хвостиком привело к нехорошим последствиям, но энергия использовалась извне. Для мышки-норушки это будет гравитационная сила.

Тот же самый принцип заложен и в транзисторе. Он не может сам по себе усиливать. Он использует энергию извне. А для энергии извне используется источник постоянного тока.

Можно сказать, транзистор представляет из себя именно такую же систему — слабенький управляющий базовый ток управляет огромным током коллектор-эмиттер. Справа это все показано на бачке с водой. То есть чуток открыв краник, чтобы из трубки «База»(Б) полилась водичка, мы открываем клапан, который держит закрытым бачок «Коллектор» (К). Вода сразу же из бачка «Коллектор» стремится в тазик «Эмиттер» (Э). Если же мы закрываем краник «База», то пружинка возвращает клапан и закрывает прохождение водички из бачка «Коллектор».

Из всего выше рассказанного и показанного можно сделать некоторые выводы:

— выходной сигнал с транзистора — это усиленная копия входного сигнала

— транзистор для усиления сигнала использует энергию извне, а точнее, источник постоянного тока.

— малый управляющий базовый ток управляет намного большим коллекторным током (рисунок выше)

— независимо от схемы включения управляющий PN переход — эмиттерный, а управляемая цепь — эмиттер-коллектор

Усиление в электронике

Увеличивая амплитуду сигнала, мы меняем его напряжение, а делая сигнал «неуязвимым», мы добавляем ему силу. Силу тока. Поэтому, увеличивая или напряжение, или силу тока, либо сразу два этих параметра, мы делаем сигнал мощнее.

Для тех, кто позабыл:

P=IU

где

P — это мощность, измеряется в Ваттах

I — сила тока, в Амперах

U — напряжение, в Вольтах

В своих электронных разработках вы должны точно решить для себя, что именно собираетесь делать с сигналом:

— увеличить его амплитуду напряжения, при этом силу тока оставить неизменной

— оставить амплитуду напряжение такой же, но прибавить мощности с помощью силы тока

— увеличить и напряжение и силу тока

В основном применяют усиление сразу по обоим параметрам.   Поэтому, в электронике чаще всего используется схема с ОЭ (Общим Эмиттером), которая увеличивает сигнал и по силе тока, и по напряжению одновременно.

Для транзистора PNP проводимости подключение транзистора  с ОЭ выглядит так:

А для NPN транзистора вот так:

Но вы также должны иметь ввиду, что в электронике нам не просто надо усилить сигнал, а усилить его правильно, чтобы он не потерял свой первозданный вид. Мощная копия сигнала должна пропорционально усиливаться по амплитуде. По времени мы не должны ее трогать, иначе изменится частота сигнала. Тогда это уже будет совсем другой сигнал.

На рисунке ниже мы можем увидеть входной слабенький сигнал, а на выходе усиленный сигнал после транзисторного каскада.

Как мы видим, сигнал по амплитуде изменился линейно и пропорционально, но период сигнала не изменился. То есть T1=T2. Это пример идеального усилителя.

Принцип усиления

Усилители в электронике в большинстве случаев усиливают именно напряжение. То есть на вход загоняем какой-либо маленький сигнал напряжения, а на выходе получаем точную копию сигнала, но уже бОльшего напряжения. Но как это сделать на практике?

А почему бы нам не использовать делитель напряжения, у которого один резистор будет постоянным, а другой — переменным:

Что будет, если мы на переменном резисторе будем менять сопротивление? Правильно! Будем меняться напряжение на выходе U. А теперь представьте, что мы не ручками меняли бы сопротивление, а за нас это бы делало напряжение? Чем больше меняем напряжение, тем больше меняется сопротивление. То есть сопротивление переменного резистора менялось бы прямо пропорционально напряжению. Было бы круто, так ведь?

Транзистор можно сравнить с краником? Открываем чуток — напор воды слабый, открываем больше — сильнее. Открываем полностью — вода бежит полным потоком.

В биполярном транзисторе происходят похожие процессы. Меняя значение напряжения на базе, а следовательно силу тока в цепи база-эмиттер, мы тем самым меняем сопротивление между коллектором и эмиттером 😉 Следовательно, наша схема из такого вида:

примет вот такой вид

Выглядеть должно все приблизительно так, но не совсем так… и далее вы поймете почему.

Режимы работы транзистора

Режим отсечки

Режим отсечки — это когда транзистор полностью закрытый, то есть нет напряжения смещения на базе-эмиттере 0,6-0,7. Вольт. В этом случае у нас сопротивление между коллектором и эмиттером очень большое.

Режим насыщения

Режим насыщения — это когда транзистор полностью открытый. В этом режиме смещение на базе-эмиттере более, чем 0,6-0,7 Вольт и сопротивление между коллектором и эмиттером равняется почти нулю.

В режиме отсечки и насыщения работает транзисторный ключ.

Активный режим

В активном режиме напряжение смещения более, чем 0,6-0,7 Вольт, но у нас сопротивление между коллектором и эмиттером не равняется ни нулю, ни бесконечности. В этом режиме мы можем регулировать сопротивление с помощью силы тока, проходящего между базой и эмиттером. А чтобы регулировать эту силу тока , мы можем подавать большее или меньшее напряжение на базу.

Если все объяснить заумной фразой получается так: небольшое изменение силы тока в цепи базы-эмиттер приводит к пропорциональному изменению силы тока в цепи коллектор-эмиттер.

Коэффициент, показывающий, во сколько раз увеличивается сила тока коллектор-эмиттер от силы тока базы-эмиттер называется коэффициентом усиления по току в схеме с ОЭ. Этот коэффициент часто называют h21э или просто  β.

Думаю, большинство из вас сидело за рулем авто. Может быть, вы когда-нибудь даже пользовались педалью газа)

Допустим, мы поставили первую скорость и решили проехаться по трассе. Топим педаль в пол и едем на всей первой скорости, не переключая коробку скоростей. По аналогии с транзистором — это и есть режим насыщения.

Вообще убираем ногу от педали — машина встает колом. Это режим отсечки (о понятии отсечки в самом авто мы с вами сейчас не говорим). В этом режиме мы вообще не касаемся педали.

Ну а в активном режиме мы нажимаем педаль с такой силой, которая нам нужна 😉 В этом режиме мы сами регулируем скорость. Хотим — едем быстрее, а хотим медленнее 😉  То есть мы управляем автомобилем между режимами отсечки и насыщения. Именно в этом режиме работает транзистор в режиме усиления сигналов.

Основные схемы включения транзистора

Итак, существуют три основные схемы соединения биполярного транзистора:

 

— с Общей Базой (ОБ)

Эта схема усиливает по напряжению. Схема с общей базой используется редко.

 

— с Общим Эмиттером (ОЭ)

Эта схема усиливает и по напряжению, и по току, и на практике используется наиболее часто.

 

— с Общим Коллектором (ОК)

Эта схема усиливает по току. Ее часто называют эмиттерный повторитель.

Здесь все просто: какой вывод является общим для входного и выходного сигнала, такая и схема включения транзистора.

Обозначение напряжений выводов транзистора

А теперь давайте поговорим об условностях, которые применяются в схемотехническом жаргоне транзистора.

Итак, если вы слышите, что напряжение на базе равно 1 Вольт, то это означает, что это напряжение между базой и общим проводником. На общий в основном садят «минус» и обозначается общий проводник вот таким значком:

Например, UБ  (напряжение на базе)  транзистора VT1 замеряется как-то вот так:

Напряжение между выводами обозначается двумя индексами. Например, напряжение между базой и эмиттером обозначается как UБЭ . Также на схемах часто можно увидеть обозначения типа UКК (в буржуйском варианте VCC ) – это напряжение питания коллектора, обычно положительное. Также есть и UЭЭ (в буржуйском варианте VEE) – напряжение питания эмиттера, обычно отрицательное. Короче говоря, это в основном напряжение питания схемы.

Также имейте ввиду, что каждый транзистор характеризуется основными максимальными параметрами такими как:

1) Iк  ток коллектора

2) UКЭ  напряжение между коллектором и эмиттером

3) P  мощность, которая рассеивается на транзисторе. Р = IК UКЭ 

4) UБЭ  напряжение между базой и эмиттером

Attention!

Превышение какого-либо параметра из списка выше приведет к неминуемой гибели транзистора!

Как усиливает транзистор?

Для того, чтобы понять принцип работы транзистора, давайте рассмотрим вот такое фото:

Условимся считать, что это самая простая модель транзистора. Направление потока воды – это направление электрического тока. Пусть у нашего «транзистора» будет проводимость NPN, то есть он будет выглядеть вот так:

С помощью краника (Базы) мы уменьшаем или увеличиваем скорость потока воды через трубу. В нашем случае вода бежит с жёлтой трубы к чёрной трубе, или по аналогии с транзистором: от коллектора к эмиттеру, потому что стрелочка эмиттера показывает направление электрического тока.

Итак, в таком положении краник полностью закрыт, следовательно поток воды не проходит через трубу:

А вот так краник полностью открыт и поток воды бежит на полной мощности через трубу:

Краник открыли, вода через трубу побежала на полной мощности:

Краник закрыли, вода не бежит:

С помощью одного только пальчика, я включал и выключал ОГРОМНЫЙ поток воды, который бы мог смыть все какашки на вашей тельняшке). То есть поток воды из трубы обладает огромнейшей силой, по сравнению с силой пальчика, которую я прикладывал к рычагу краника.

Транзистор работает аналогичным образом! Прикладывая небольшое напряжение к базе, я могу управлять огромнейшим током проходящим через коллектор и эмиттер. В данном случае я показал только два положения, краник полностью включен, или краник полностью выключен. Режим, при котором я включал и отключал краник до упора, в транзисторе называется «ключевым режимом» (о нем ниже). Не от слова «ключевой» – типа главный, важный, а от слова «ключ». А что у нас делает ключ? Что-то отпирает и закрывает, да хотя бы те же самые двери или бабушкин комод.

Режим, когда я ЗАКРЫВАЛ краник полностью, называется в транзисторе закрытый или в простонародье «зАпертый». В этом случае на базу ток не идет и транзистор не пропускает электрический ток между коллектором и эмиттером.

Режим, когда я полностью ОТКРЫВАЛ краник, называется в транзисторе режимом «насыщения». В этом случае через эмиттер и коллектор ток бежит по полной. Хочу сказать, что дальнейшее открывание краника бессмысленно, так как от этого ток не увеличится между коллектором и эмиттером, то есть нет резона подавать еще большее напряжение на базу, если транзистор уже работает в режиме насыщения.

Как работает биполярный транзистор на практике

Ну что же, надо теперь все это дело проверить на реальном транзисторе. У нас в гостях всеми вами любимый транзистор КТ815Б:

Его проводимость NPN, то есть он выглядит вот так:

Мы с вами разобрали, что краник – это база, а большой поток воды должен течь с коллектора на эмиттер. Направление стрелки на эмиттере показывает направление движения электрического тока.

В транзисторе все то же самое. Давайте используем его в деле. Для этого собираем вот такую схемку:

Ну что, вроде бы все элементарно и просто. Есть батарея, есть лампочка. Электрический ток должен бежать от «плюса» к «минусу» и лампа должна гореть. Собираем схему в реале. Щупы-крокодилы идут от блока питания. Красный – плюс, черный – минус. Напряжение на них около 13,5  Вольт, лампа на такое же напряжение. Лампа  не горит… В чем же дело?

Помните эту картинку?

Елки-палки, нам базу-то надо «повернуть» так, чтобы электрический ток мог бежать от коллектора к эмиттеру!  Но как «повернуть» базу? Да все просто! Для этого нам надо всего-то подать на нее напряжение.

Теперь наша схема будет выглядеть вот так:

Собираем схему. Крокодилы с синими проводами идут от блока питания Bat1.

Но теперь вопрос. Какое минимальное напряжение должно быть на Bat1, чтобы «краник начал открываться»?

Помните мы с вами разбирали статью, что на PN переходе у кремниевых транзисторов (а у нас как раз кремниевый) «падает» напряжение где-то 0,5-0,7 В. А давайте выставим на Bat1 где-то 0,5 В.

Нет… лампочка не зажигается.

Кручу крутилку и выставляю 0,6 Вольт и вуаля! В простонародье говорят, что транзистор «открылся».

Отсюда делаем вывод: для того, чтобы через коллектор-эмиттер побежал электрический ток, мы должны на базу подать напряжение более чем 0,5-0,7 В, то есть  больше падения напряжения на PN-переходе данного транзистора.

Но как много мы можем подать напряжения в базу? Давайте крутанем крутилку на уровень 0,7 В.

При 0,7 В базовый ток составляет уже 20 мА.

Давайте еще чуток добавим:

При 0,8 В уже 140 мА.

А при 0,9 Вольтах:

чуть меньше пол-Ампера! Дальнейшее увеличение напряжения может привести … к полному выходу транзистора из строя!

Максимальные параметры транзистора

Каждый транзистор характеризуется основными максимальными параметрами такими как:

1) Iк  ток коллектора

2) UКЭ  напряжение между коллектором и эмиттером

3) P  мощность, которая рассеивается на транзисторе. Р = IКЭ х UКЭ

4) UБЭ  напряжение между базой и эмиттером

Коэффициент бета транзистора

Итак, давайте заранее договоримся, что в своих примерах мы будем использовать схему с ОЭ (Общим Эмиттером):

Плюсы этой схемы таковы, что эта схема усиливает и по напряжению, и по току. Поэтому, это схема чаще всего используется в электронике.

Ну что же, начнем изучение усилительных свойств транзистора именно с этой схемы. Есть у этой схемки очень интересный параметр. Называется он коэффициент усиления по току  в схеме с Общим Эмиттером и обозначается буквой β (бета). Этот коэффициент показывает во сколько раз коллекторный ток превышает базовый в активном режиме работы транзистора

Также частенько, особенно на мультиметрах,  его обозначают как h31э или Hfe.

Находим бету на практике

Давайте соберем схемку,  с помощью которой, думаю, все встанет на свои места. С помощью этой схемы мы будет приблизительно замерять коэффициент β.

Для NPN транзистора схема будет выглядеть следующим образом:

Для PNP транзистора  вот так:

Так как его проводимость NPN, следовательно, будем использовать вот эту схему:

Итак, что мы тут видим? Есть транзистор, два блока питания и два амперметра. Один амперметр ставим на измерение микроампер (мкА), а второй на измерение миллиампер (мА). На блоке питания Bat 2 выставим напряжение в 9 Вольт. Блок питания Bat 1 у нас со стрелочкой. Значит его значение будем менять от 0 и до 1-ого Вольта.

Схема у нас с ОЭ. Через базу-эмиттер и далее по контуру у нас протекает базовый ток IБ , а через коллектор-эмиттер и далее по контуру несется коллекторный ток IКДля того, чтобы замерить этот ток (силу тока), мы в разрыв цепи цепанули по амперметру. Остается дело за малым. Замерить базовый ток (IБ), замерить коллекторный ток (IК) и потом тупо разделить ток коллектора на ток базы. И из этого отношения мы приблизительно найдем коэффициент β. Все просто).

Вот два блока питания:

Выставляем на  Bat 2 напряжение в 9 Вольт:

Вся схема выглядит примерно вот так

Желтый мультиметр у нас будет  замерять миллиамперы, а красный — микроамперы, поэтому на запятую на красном мультиметре не обращаем внимания.

Добавляем напряжение на Bat 1 от 0,6 Вольт и крутим крутилку до 1 Вольта, не забывая при этом фотографировать результаты. Высчитываем коэффициент β для некоторых замеров:

24,6мА/0,23мА=107

50,6мА/0,4мА=126,5

53,4мА/0,44мА=121,4

91,1мА/0,684мА=133,2

99,3мА/0,72мА=137,9

124,6мА/0,827мА=150,6

173,3мА/1,095мА=158

Находим среднее арифметическое:

β≈(107+126,5+121,4+133,2+137,9+150,6+158)/7=133

В даташите на КТ815Б коэффициент β может иметь значение в диапазоне от 50 и до 350. Наш коэффициент вполне укладывается в этот диапазон, значит транзистор жив и здоров. Усиливать будет.

Хочу добавить, что истинное значение коэффициента β измеряется чуток по другому. Для определения истинного значения надо измерять не постоянные токи, как мы это делали, а очень малые приращения этих токов, то есть производить измерения на переменном токе и малом сигнале:

При малом постоянном токе измеренное значение коэффициента бета меньше чем реальное, а при большом постоянном токе больше, чем реальное. Истина где-то посередине. Радиолюбители — народ не привередливый и в полевых условиях главное приблизительно узнать значение β.

Работа транзистора в активном режиме

В этой статье мы рассмотрим и даже посчитаем небольшой каскад, а также соберем его в реале и испытаем на практике.

Активный режим транзистора

Если вы читали прошлую статью, то наверняка помните, что транзистор в режиме усиления работает только в активном режиме. Этот активный режим находится между режимами отсечки и насыщения:

Следовательно, выходной усиленный сигнал должен находиться в области активного режима, иначе он будет сильно искажаться.

Далее вспоминаем нехитрую формулу

Коэффициент бета  — это коэффициент усиления по току в схеме с общим эмиттером (ОЭ). Ну и что все это значит? А значит это то, что в любом транзисторе в активном режиме ток коллектора в β (бета) раз больше, чем ток базы. Задав крохотную силу ток через базу, мы в бета раз можем увеличить силу тока в цепи коллектора.

Что будет, если на базу мы подадим переменный сигнал напряжения? Следовательно, в цепи базы переменный сигнал будет либо увеличивать, либо уменьшать силу тока, протекающую через базу, а переменная сила тока через базу в свою очередь будет «тащить» за собой  силу тока в цепи коллектора, который будет в бета раз больше, чем базовый ток.

Если вставить резистор в цепь коллектора, то можно будет с него снимать переменное напряжение. Ну разве не замечательно? А откуда возьмется напряжение на резисторе? Дело в том, что резистор и переход коллектор-эмиттер обладают сопротивлением. Самый прикол в том, что переход коллектор-эмиттер — это управляемое сопротивление, зависящее от тока базы. Получаем простой делитель напряжения 😉

Но для того, чтобы усиливать переменный сигнал правильно, есть одно НО… И это «НО» заключается еще в одном резисторе.

Двухрезисторная схема смещения

Я хочу усилить синусоидальный сигнал и поэтому подаю его на базу транзистора. На выходе хочу получить усиленную копию.

Для того, чтобы получить красивую усиленную копию, надо чтобы эта копия не выходила за границы режима отсечки и насыщения и желательно, чтобы она располагалась посередине активной области. То есть надо этот сигнал сместить в середину активной области:

Поэтому, требуется добавить к схеме еще один резистор, чтобы получилась схема смещения.

Итак, давайте рассмотрим самую простую схему смещения и на ее примере разберемся, что к чему

Что здесь имеем?

Uпит  — напряжение питания. На Uвх подаем  переменный сигнал, на Uвых получаем усиленную копию. Или более понятно:

Итак, давайте рассмотрим назначение радиоэлементов в этой схеме. Транзистор используется для усиления. Я думаю, вы это уже поняли 🙂  Резистор  R2  служит для того, чтобы у нас получился делитель напряжения и  потом можно будет снять с резистора это напряжение.

Конденсаторы  С1  и С2 у нас пропуска ют переменный ток, а постоянный не пропускают. А нам постоянный ток на входе и на выходе не нужен. Мы ведь хотим усиливать переменный ток, не так ли?

И самый главный радиоэлемент в этой схеме считается резистор R1, который как раз и задает режим работы усилителя. Зачем он здесь нужен?

Во-первых, чтобы отпереть транзистор. Вывести его из режима отсечки в активный режим. А для этого, как вы помните, достаточно подать напряжение более, чем падение напряжения на переходе база — эмиттер, которое для кремниевых транзисторов составляет 0,6-0,7 Вольт. Поэтому, Uпит  должно быть больше, чем падение напряжения на переходе база-эмиттер.

Во-вторых, задать базовый ток, так как через цепь +Uпит —-> R1—-> база —-> эмиттер —-> земля потечет ток, сила тока которого будет зависеть от того, какой резистор мы туда воткнем.

В-третьих, задавая нужный базовый ток этим резистором, мы выбираем режим работы нашего усилителя. Сейчас нас интересует режим, при котором сигнал будет «болтаться» между режимами отсечки и насыщения примерно в середине активного режима.

Как этого добиться?

Для удобства пусть у нас R1 называется RБ  (базовый резистор), а R2  назовем Rк (коллекторный резистор):

Так как мы хотим получить усиленную копию сигнала в активном (линейном) режиме транзистора, следовательно, нам надо добиться того, чтобы через базу протекала такая сила тока,  чтобы напряжение на коллекторе (в узле, куда цепляется конденсатор С2) было ровнёхонько половинка от Uпит.

Не забываем, что у нас входной сигнал, подаваемый на базу, может принимать как положительные значения, так и отрицательные. Следовательно, напряжение на коллекторе будет принимать меньшее или большее значение. А чтобы уже усиливаемый сигнал не доходил до режима отсечки или насыщения, мы его как раз и будем держать в серединке активной области.

Расчет каскада с двумя резисторами

Берем рыжий советский транзистор КТ315Б  и рассчитаем вот такую схемку  при напряжении питания в 9 Вольт

Для того, чтобы рассчитать схему, надо действовать с конца, то есть с выхода схемы.

Для получения усиленной копии сигнала, нам надо, чтобы напряжение на коллекторе было равно половине напряжения питания, то есть получаем Uк = 9 В/2 = 4,5  Вольт. Это значит, что на Rк падает напряжение в 4,5 Вольт и на транзисторе между выводами коллектора и эмиттера тоже падает 4,5 Вольт. Для маломощных усилительных каскадов в основном ток коллектора Iк берут в 1 миллиампер, это значит, что ток потечет по цепи +9 В —> Rк —-> коллектор—> эмиттер—->земля и если его замерить в этой цепи, то получим 1мА.

Долго не думая, находим, чему равняется RкВспоминаем дядюшку Ома  и получаем, что Rк = Uк /Iк =4,5 В/1 мА=4,5 кОм. Берем ближайший из ряда, то есть на 4,7 кОм.

Следующим шагом нам надо приблизительно узнать коэффициент бета. В этом нам может помочь простой мультиметр с функцией замера HFE (β) либо RLC-транзистор метр. В моем случае на RLC-транзистор-метре получилось что-то около 142.

Высчитываем ток  базы. Так как мы знаем, что

Из этой формулы находим IБ. Получается, что IБ = Iк / β = 1мА/142 = 7 микроампер.

Следующим делом находим сопротивление базового резистора: RБ =(Uпит -0,6)/ IБ = 9 В/7мкА=1,2 Мегаом. В этой формуле 0,6 В мы берем, как падение напряжения на переходе база-эмиттер.

Следующим шагом вставляем ближе к номиналу этот резистор из ближайшего ряда и замеряем  силу тока по цепи +9 В —> Rк —-> коллектор—> эмиттер—->земля с помощью миллиамперметра. Скорее всего вы не получите на миллиамперметре значение в  1мА, поэтому надо будет подгонять значение RБ либо с помощью потенциометра либо магазина сопротивления, чтобы амперметр показал нам 1 мА на табло. В моем случае RБ я подобрал номиналом в 1 Мегаом.

Ну теперь дело за малым. Конденсаторы  С1  и С2 используются для того, чтобы пропускать  и снимать только переменное напряжение, так как мы с вами знаем, что конденсатор постоянный ток через себя  не пропускает. Для усиления звуковых частот (от 20 и до 20 000 Герц) , а также частот более 20 000 Гц вполне подойдут конденсаторы в 10 мкФ.

Вот фото моего усилителя, амперметр показывает ток в 1,04 миллиампер.

Теперь подаю на вход конденсатора С1 слабый синусоидальный сигнал. У нас получается интересная штука. После того, как я настроил каскад, на базе  имеется постоянное напряжение. Если добавить к этому напряжению еще напряжение, ток базы увеличится, что приведет к увеличению коллекторного тока. Если же уменьшить, то наоборот у нас ток базы уменьшится и следовательно, коллекторный ток тоже уменьшится. Переменный сигнал, подаваемый на базу уменьшается и увеличивается поочередно, следовательно, получается типа что-то этого:

А вот и осциллограммы, которые у меня получились. Красный сигнал — это входной, который мы подаем на  С1 , а желтый — выходной, который снимаем с С2. Частота сигнала и его цена деления показаны в нижнем левом уголке скриншота осциллографа. 

Ну вот! Более менее похоже на правду!

Если вы заметили своим наблюдательным глазом, есть одно НО… Фаза усиленного сигнала противоположна фазе исходного сигнала. Если еще помните алгебру, то можно сказать, что фаза усиленного сигнала и фаза исходного различаются на 180 градусов. Получается, что усилитель по схеме с ОЭ (Общим Эмиттером) инвертирует фазу сигнала.

Давайте увеличим амплитуду исходного сигнала:

Как мы видим, усиленный сигнал исказился. В дело вступили так называемые нелинейные искажения, потому что наш усиленный сигнал добрался до области отсечки (верхний уровень желтого графика) и до области насыщения (нижний уровень желтого графика). Вы ведь не забыли, что сигнал инвертированный? В режиме отсечки, как мы видим, синусоида закруглилась, а в режиме насыщения она не могла стать более 9 Вольт, то есть больше, чем Uпит, поэтому ее резко срезало.

Давайте усилим треугольный сигнал

Получились чуток «пухловатые» горки. Как мы видим, данный тип усилителя обладает плохой линейностью. Это значит, что он не пропорционально увеличивает исходный сигнал.

Давайте усилим прямоугольный сигнал

Вроде бы нормально.

Даже если добавить амплитуду, то сигнал остается по форме таким же.

Прямоугольные сигналы усиливать, передавать, обрабатывать намного проще, поэтому цифровая электроника шагнула далеко вперед.

Данный тип усилителя,  работает в классе «А» , то есть в режиме линейного усилителя. Это означает, что мы полностью усиливаем форму сигнала, который подаем на вход такого усилителя.

Минусы схемы

В чем минусы этой схемы? В этой схеме рабочий режим  зависит от коэффициента бета.  Это не есть гуд.

«Схему можно считать плохой, если на ее характеристики влияет величина параметра бета»

Хорвиц и Хилл «Искусство схемотехники»

Дело в том, что коэффициент бета «гуляет» в зависимости от температуры. Следовательно, наш график будет смещен, что приведет к нелинейным искажениям, так как он будет ближе находится или к области насыщения, либо к области отсечки.

Усилитель с общим эмиттером. Расчет схемы

Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.

Описание работы

Выше мы с вами говорили о самой простой схеме смещения транзистора. Эта схема зависит от коэффициента бета, а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала. Чтобы такого не произошло, в эту схему добавляют еще парочку резисторов и в результате получается схема с 4-мя резисторами:

Резистор между базой и эмиттером назовем Rбэ , а резистор, соединенный с эмиттером, назовем Rэ. Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»

Начнем, пожалуй, с Rэ.

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->Rк ——> коллектор—> эмиттер—>Rэ —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как Iэ = Iк + Iб ) Грубо говоря, у нас получается вот такая цепь:

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина  будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Чуток упростим схемку:

Rкэ  — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

В результате, у нас получается простой делитель напряжения, где

Мы видим, что  на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет  равняться падению напряжения на резисторе Rэ .

А чему равняется падение напряжения на Rэ ? Вспоминаем закон ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора Rэ . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

Какую же функцию выполняют резисторы Rб и Rбэ ?

Именно эти два резистора представляют из себя опять же простой делитель напряжения. Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит, что бывает крайне редко.  В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к Rэ .

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе Rэ .

б) падение напряжения на резисторе Rэ  — это и есть напряжение на эмиттере Uэ.  Следовательно, из-за увеличения силы тока в цепи Uэ стало чуток больше.

в) на базе у нас фиксированное напряжение Uб , образованное делителем из резисторов Rб  и Rбэ

г) напряжение между базой эмиттером высчитывается по формуле Uбэ = Uб — Uэ . Следовательно, Uбэ станет меньше, так как Uэ увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз Uбэ уменьшилось, значит и сила тока Iб , проходящая через базу-эмиттер  тоже уменьшилась.

е) Выводим из формулы ниже Iк

Iк =β х Iб

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток 😉 Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор Rэ . Забегая вперед, скажу, что Отрицательная Обратная Связь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Расчет усилительного каскадас ОЭ


Рассчитать каскад на биполярном транзисторе КТ315Б с коэффициентом усиления равным KU =10Uпит = 12 Вольт.

1) Первым делом находим из даташита  максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт.  Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

Pрас = 150х0,8=120 милливатт.

2) Определим напряжение на Uкэ . Оно должно равняться половине напряжения Uпит.

Uкэ = Uпит / 2 = 12/2=6 Вольт.

3) Определяем ток коллектора:

Iк = Pрас / Uкэ  = 120×10-3 / 6 = 20 миллиампер.

4) Так как половина напряжения упала на коллекторе-эмиттере Uкэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах Rк  и Rэ . То есть получаем:

Rк + Rэ  = (Uпит / 2) / Iк = 6 / 20х10-3 = 300 Ом.

Rк + Rэ  = 300, а Rк =10Rэ  , так как KU = Rк / Rэ , а мы взяли KU =10 ,

то составляем небольшое уравнение:

10Rэ + Rэ = 300

11Rэ = 300

Rэ = 300 / 11 = 27 Ом

Rк = 27х10=270 Ом

5) Определим ток базы Iбазы из формулы:

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.

Значит,

Iб = Iк  / β = 20х10-3 /140 = 0,14 миллиампер

6) Ток делителя напряжения Iдел , образованный резисторами Rб  и Rбэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток Iб :

Iдел = 10Iб = 10х0,14=1,4 миллиампер.

7) Находим напряжение на эмиттере по формуле:

Uэ= Iк Rэ= 20х10-3 х 27 = 0,54 Вольта

8) Определяем напряжение на базе:

Uб =  Uбэ + Uэ

Давайте возьмем среднее значение падения напряжения на базе-эмиттер Uбэ = 0,66 Вольт. Как вы помните — это падение напряжения на P-N переходе.

Следовательно, Uб =0,66 + 0,54 = 1,2 Вольта. Именно такое напряжение будет теперь находиться у нас на базе.

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на Rб называется U1 , а падение напряжения на Rбэ будет U2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

Rб = U1 / Iдел = 10,8  / 1,4х10-3 = 7,7 КилоОм. Берем из ближайшего ряда 8,2 КилоОма

Rбэ = U2 / Iдел = 1,2 / 1,4х10-3 = 860 Ом. Берем из ряда 820 Ом.

В результате у нас будут вот такие номиналы на схеме:

Проверка работы расчетной схемы на практике


Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:

Итак, беру свой цифровой осциллограф и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты:

Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10.   Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Давайте подадим еще треугольный сигнал:

Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.

Если вспомнить осциллограмму схемы с двумя резисторами

то можно увидеть существенную разницу в усилении треугольного сигнала

Плюсы и минусы схемы

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых, эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI.

Во-вторых, ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе мощный и простой усилок.

 

Транзисторный ключ

Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой. Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.

Нажали на черную большую пипочку — ток побежал, отжали — получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку — сигнал есть, отжали пипку — сигнала нет.

Схема транзисторного ключа

Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между «включено» и «выключено» мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:

Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор «R» здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Условия для работы транзисторного ключа

Итак, давайте вспомним, какие требования должны быть, чтобы полностью «открыть» транзистор?

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется «режимом насыщения«.

Этот рисунок — воображение моего разума. Здесь я нарисовал тот самый режим насыщения.

Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.

Базовая схема транзисторного ключа

А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:

Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже

В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!

Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉

И что, теперь каждый раз  при отключении заземлять базу? В идеале — да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.

Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:

Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.

Второй способ. Добиться того, чтобы UБЭ<0,6 Вольт или чтобы ток базы IБ = 0. Этот способ чаще всего используется в МК и других логических схемах.

Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме «отсечки«.

Формула расчета транзисторного ключа

Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:

Для начала можно найти ток базы:

где

IБ — это базовый ток, в Амперах

kНАС  — коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

I— коллекторный ток, в Амперах

β — коэффициент усиления тока транзистора

Ну а дальше дело за малым

Это самый простой расчет без всяких заморочек.

Расчет транзисторного ключа на практике

Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.

Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.

Транзистор КТ819Б структуры NPN

А вот и его цоколевка

Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.

Лампочка при питании 6 В светит примерно вот так:

А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.

0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.

Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у  меня получилось значение 148

Итак, находим ток базы по формуле

Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения.  Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН

где

P — это мощность в Ваттах

UКЭ — напряжение между коллектором и эмиттером, В

IН — сила тока, протекающая через нагрузку и коллектор-эмиттер, А

Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор

Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:

Теперь считаем базовый резистор по формуле:

Берем ближайший из ряда, то есть 1 кОм.

Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.

Собираем схему и смотрим, как она работает

В данном случае синие провода — это питание с Bat2 (MEILI), а другие два провода — это питание с блока питания Bat1 (YaXun)

Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.

Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.

Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.

Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.

Применение транзисторного ключа в связке с МК

Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:

В резистор RБЭ нет необходимости, потому как выходы МК «подтягивается» к нулю еще при программировании.

Плюсы и минусы транзисторного ключа

В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.

Инвертор на транзисторе

В данном контексте под инвертированием подразумевается битовая операция НЕ. То есть если была 1, то станет 0, и наоборот, если был 0, то станет единица. Инвертор на транзисторе — прародитель цифровых микросхем. Именно в те далекие времена, благодаря транзистору, цифровая электроника стала развиваться быстрыми темпами.

Схема инвертора на ключе

Рассмотрим вот такую простенькую схемку:

Что мы здесь видим? Видим ключ, резистор и источник питания. Резистор R мы повесили для того, чтобы не было короткого замыкания в источнике питания, когда замыкается ключ S. На клемму +U мы подаем плюс питания, а на землю, соответственно, минус. В схеме возможны два варианта развития событий: ключ замкнут и ключ разомкнут. Давайте рассмотрим каждый из этих двух вариантов:

1) Ключ замкнут

В результате в цепи +U——-> R——-> S ——-> земля побежит электрический ток.

Будет ли в этом случае напряжение между клеммой «А» и землей?

Чешем свою репу и думаем… Так как ключ у нас замкнут, следовательно, в идеале его сопротивление 0 Ом. Вспоминаем закон Ома для участка цепи: I=U/R, отсюда U=IR. Получается, что падение напряжения на сопротивлении 0 Ом будет равно U=IR= I х 0 = 0 Вольт. Значит, напряжение между землей и клеммой «А» будет 0 Вольт. Получается, что напряжения на клемме «А» не будет.

2) Ключ разомкнут

Что  в результате у нас будет на клемме «А»? Давайте также посчитаем по закону Ома. Мы знаем, что электрический ток бежит от плюса к минусу. Но так как у нас минус вообще не при делах, так как цепь разорвана ключом, следовательно,  сила тока  в цепи +U——->R——->клемма «А» будет равняться 0 Ампер. Значит, падение напряжения на резисторе R будет равняться U=IR=0 х R = 0 Вольт. Получается, что все полноценные +U Вольт доходят до клеммы «A». Поэтому, на клемме «А» будет напряжение +U.

Транзистор в ключевом режиме

А почему бы нам не заменить ключ S транзисторным ключом? Вводя транзистор в режим насыщения или отсечки, мы можем управлять сопротивлением между коллектором и эмиттером.

Следовательно, в режиме отсечки схема примет вот такой вид:

а в режиме насыщения вот такой:

Хотя, если честно, падение напряжения в этом случае на коллекторе-эмиттере будет составлять доли Вольт, что на самом деле не критично.

Как мы видим, ключ на транзисторе у нас имеет Вход и Выход:

Допустим, мы на Вход не подаем никакого сигнала. Что будет на Выходе? Не подавая никакого сигнала на базу транзистора через резистор R1, в данном случае на Вход, у нас транзистор НЕ откроется и ключ будет разомкнут (как вы помните, для открытия мы должны подать на базу более 0,6-0,7 Вольт), поэтому на Выходе  (клемма «А» ) у нас будет +U Вольт

Но если правильно рассчитать резистор R1 и подать сигнал, значение напряжения которого будет больше, чем 0,6-0,7 Вольт, то у нас транзистор войдет в режим насыщения и ключ будет замкнут

В этом случае на Выходе (на клемме «А») у нас будет напряжение близкое к нулю.

Итак, что получаем? Подаем сигнал и имеем на выходе 0 Вольт, если НЕ подаем сигнал — имеем +U.

Такая схема в народе называется инвертором.

— Закрой окно.
— Я не расслышала, закрыть окно или открыть?
— Инвертируй!

Если за входной сигнал и +U взять напряжение, допустим, в 5 Вольт, и договориться, что значение напряжения близкое к 5 Вольтам принять за логическую единичку, а напряжение близкое к нулю принять за логический ноль, то можно вывести самую простую закономерность:

— подаем логическую единичку на вход, получаем логический ноль на выходе

— подаем логический ноль на вход, получаем логическую единичку на выходе

На осциллограмме все это будет выглядеть вот так:

Также в цифровой электронике есть такое понятие, как таблица истинности, которая показывает значение Выходов каких-либо логических элементов со всеми возможными комбинациями на Входе. Для нашего инвертора таблица истинности примет вот такой вид:

Как рассчитать инвертор на биполярном транзисторе

Давайте построим инвертор на транзисторе КТ815Б, рассчитаем его и испытаем. +U возьмем 5 Вольт. На Вход также будем подавать управляющий сигнал в 5 Вольт.  Вся схема  у нас будет вот такая:

Как мы уже сказали, резистор R2 будет ограничивать силу тока в цепи +5 Вольт ——-> R2——-> коллектор——-> эмиттер——-> земля, когда транзистор будет полностью открыт, то есть будет находиться в режиме насыщения.  Также R2 будет задавать силу тока через нагрузку в режиме отсечки, которую мы цепанем на Выход схемы. В принципе, резистора Ом на 500 вполне хватит, чтобы в цепи +U——->R2——->коллектор——->эмиттер——->земля в режиме насыщения протекал ток силой в 10 миллиАмпер (I=U/R= 5 В / 500 Ом = 10 мА)

Дело за малым. Надо рассчитать резистор R1. Для этого щелкаем на статью работа транзистора в режиме ключа, и берем из этой статьи формулы для расчета резистора R1.

Для начала рассчитываем базовый ток по формуле:

где

IБ — это базовый ток, в Амперах

kнас  — коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

I— коллекторный ток, в Амперах

β — коэффициент усиления тока транзистора, для расчетов берут минимальное значение в даташите или замеряют на практике

С помощью своего китайского транзистор-тестера я без труда замеряю β . Здесь он обозначается как hFE.

Теперь kнас берем 3, так как у нас будет типа переключающая схема. Iк у нас 10 миллиампер, это значение мы высчитывали выше. Считаем базовый ток:

Iб = (3 х 0,01) / 78 = 3,84 х 10-4 А

Так как управляющее напряжение у нас будет 5 Вольт, применяем закон Ома:

Iб = U/R1

R1 = U/Iб = 5 / 3,84 х 10-4 =1,3 х 104 Ом. Берем ближайший из ряда на 12 Килоом.

Следовательно, схема будет с такими параметрами:

Вот так она выглядит на макетной плате:

Давайте вместо нагрузки подцепим светодиод. Когда я НЕ подаю 5 Вольт на Вход, светодиод светится:

Когда беру 5 Вольт с другого блока питания и подаю на Вход схемы, то светодиод тухнет:

Как мы видим, схема работает.

Осциллограммы инвертора на транзисторе

Ну а теперь момент истины, смотрим осциллограммы.  Желтый — входной сигнал амплитудой в 5 Вольт с китайского генератора частоты, а красный  — выходной сигнал:

Подали прямоугольный сигнал в 5 Вольт и с частотой в 7 Килогерц, вышел прямоугольный сигнал в 5 Вольт 7 Килогерц. Выйти-то он вышел, но обратите внимание на то, что его фаза абсолютно противоположна фазе входного сигнала. Если взять 5 Вольт за логическую единичку, а 0 Вольт за логический ноль, то у нас получается, что загоняя единичку на вход, получаем ноль на выходе, и наоборот, загоняя ноль на вход, получаем единичку на выходе. Инвертор во всей своей красе 😉

Минусы инвертора на транзисторе

Все, конечно, замечательно, но и здесь есть свои подводные камни. Дело все в том, что транзистор не может сразу быстро выключаться. Проблема заключается в физическом строении самого биполярного транзистора. Для выключения ему требуется некоторое время. В медленно переключающих схемах это не имеет значения, а вот схемы, которые работают на высоких частотах, уже будут иметь искажения. Вот осциллограмма выходного красного сигнала на частоте в 50 Килогерц :

А вот на частоте в 100 Килогерц:

Как видите, сигнал очень сильно искажается. Как же с этим бороться? Можно спроектировать ключ так, чтобы он переключался чуть выше границы насыщения. В этом случае коэффициент насыщения должен быть равен хотя бы единице. Но в этом случае у нас будет падать бОльшее напряжение между коллектором и эмиттером, что приведет к нагреву транзистора и лишним энергозатратам.

Второй вариант, использовать полевые транзисторы. Их еще называют МОП-транзисторы. Характеристики у МОПов намного лучше  и энергозатраты на переключение даже меньше, чем у биполярных транзисторов. Поэтому в основном сейчас везде применяются МОП-транзисторы в роли ключей. Ну и самый пик моды — это IGBT-транзисторы. Может быть мы когда-нибудь дойдем и до них…

Обратный коллекторный ток

Как мы помним, транзистор состоит из трех полупроводников. PN-переход, который у нас база-эмиттер называется эмиттерным переходом, а переход, который база-коллектор — коллекторным переходом.

Так как в данном случае у нас транзистор NPN, значит ток будет течь от коллектора к эмиттеру, при условии, что мы будем открывать базу, подавая на нее напряжение более чем 0,6 Вольт (ну чтобы транзистор открылся).

Давайте гипотетически возьмем тонкий-тонкий ножик и вырежем эмиттер прямо по PN-переходу. У нас получится как-то вот так:

Стоп! У нас что, получился диод? Да, он самый! Помните, в статье вольтамперная характеристика (ВАХ) мы рассматривали ВАХ диода:

В правой части ВАХ мы с вами видим как веточка графика очень резко взлетела вверх. В этом случае мы подавали на диод постоянное напряжение вот таким образом, то есть это было прямое включение диода.

Диод пропускал через себя электрический ток. Мы с вами даже проводили опыты с прямым и обратным включением диода. Кто не помнит, можно прочитать здесь.

Но если поменять полярность

то диод у нас не будет пропускать ток. Нас всегда так учили, и в этом есть доля правды, но… наш мир не идеален).

Помните принцип работы PN-перехода? Мы его представляли как воронку. Так вот, для этого рисуночка

наша воронка будет перевернута горлышком к потоку

Направление потока воды — это направление движения электрического тока. Воронка — это и есть диод. Но вот вода, которая попала через узкое горлышко воронки? Как же ее можно назвать? А называется она обратный ток PN перехода (Iобр).

А как вы думаете, если  прибавить скорость течения воды, увеличится ли количество воды, которое пройдет через узкое горлышко воронки? Однозначно! Значит, если прибавлять напряжение Uобр , то и увеличится обратный ток Iобр , что мы с вами и видим в левой части на графике ВАХ диода:

Но до какого предела можно увеличивать скорость потока воды? Если она будет очень большой, наша воронка не выдержит, стенки треснут и она разлетится по кусочкам, так ведь? Поэтому на каждый диод можно найти такой параметр, как Uобр. макс , превышение которого для диода равнозначно летальному исходу.

Например, для диода Д226Б:

Uобр.макс = 500 Вольт, а максимальное обратное импульсное Uобр. имп.макс = 600 Вольт. Но имейте ввиду, что электронные схемы проектируют, как говорится «с 30% запасом». И если даже в схеме обратное напряжение на диоде будет 490 Вольт,  то в схему поставят диод, который выдерживает более 600 Вольт. С критическими значениями лучше не играть). Импульсное обратное напряжение — это резкие всплески напряжения, которые могут достигать амплитудой до 600 вольт. Но здесь тоже лучше взять с  небольшим запасом.

Обратный коллекторный ток транзистора

Так… а что я это все про диод да про диод… Мы же вроде как транзисторы изучаем. Но как ни крути, диод — кирпичик для построения транзистора. Значит, если приложить к коллекторному переходу обратное напряжение, то у нас через переход потечет обратный ток, как в диоде? Именно так. И называется такой параметр в транзисторе  обратный коллекторный ток. У нас он обозначается как IКБО , у буржуев — ICBO . Расшифровывается как «ток между коллектором и базой, при открытом эмиттере». Грубо говоря, ножка эмиттера никуда не цепляется и висит в воздухе.

Чтобы замерять обратный ток коллектора, достаточно собрать вот такие простенькие схемки:

для NPN транзистора                                                для PNP транзистора

У кремниевых транзисторов обратный ток коллектора меньше, чем 1 мкА, у германиевых: 1-30 мкА. Так как у меня мультиметр замеряет только от 10 мкА,  а германиевых транзисторов под рукой нет, то провести этот опыт я не смогу, так как разрешение прибора не позволяет.

Мы так и не ответили на вопрос, почему обратный ток коллектора имеет такое важное значение и приводится в справочниках? Все дело в том, что при работе транзистор рассеивает какую-то мощность в пространство, значит нагревается. Обратный ток коллектора очень сильно зависит от температуры и на каждые 10 градусов по Цельсию увеличивает свое значение в два раза. Не, ну а что такого? Пусть возрастает, никому же вроде не мешает.

Влияние обратного коллекторного тока

Все дело в том, что в некоторых схемах включения часть этого тока проходит через эмиттерный переход. А как мы с вами помним, через эмиттерный переход течет базовый ток. Чем больше управляющий ток (ток базы) тем больше управляемый (ток коллектора).Следовательно, малейшее изменение базового тока ведет к большому изменению коллекторного тока и вся схема  начинает работать неправильно.

Как борются с обратным коллекторным током

Значит, самый главный враг транзистора — это температура. Как же с ней борются разработчики радиоэлектронной аппаратуры (РЭА)?

— используют транзисторы, у которых обратный коллекторный ток имеет очень малое значение. Это, конечно же, кремниевые транзисторы. Небольшая подсказка — маркировка кремниевых транзисторов начинается с букв «КТ», что означает Кремниевый Транзистор.

— использование схем, которые минимизируют обратный ток коллектора.

Если хотите узнать какая маркировка резисторов у Вас, кликайте.

Обратный ток коллектора — важный параметр транзистора. Он приводится в даташите на каждый транзистор. В схемах, которые используются в экстремальных температурных условиях, обратный ток коллектора будет играть очень большую роль. Поэтому, если собираете схему, где не используется радиатор и вентилятор, то, конечно же, лучше взять транзисторы с минимальным обратным коллекторным током.

Основные характеристики транзистора

Проводимость транзистора

Проводимость NPN или PNP. С этим, думаю, уже все понятно

Коэффициент усиления по току

Коэффициент усиления по  току в схеме с Общим Эмиттером (ОЭ) (Бета)

Обратный коллекторный ток

Обратный коллекторный ток  IКБО (ICBO)

Обозначения и индексы

Откуда вообще берутся эти обозначения индексов? Снизу синим маркером я пометил эти индексы:

Оказывается, все до боли просто.

Первая буква индекса — первый вывод транзистора, вторая буква — второй вывод транзистора, ну а третья буква обозначает оставшийся вывод и его условие, при котором производится этот замер. Самая распространенная третья буква — это «О». Но скорее всего это даже и не буква, а цифра «ноль». Она говорит о том, что на третьем выводе напряжение равняется нулю. Это достигается тем, что оставшийся третий вывод никуда не подключен и висит в воздухе.

Например, IКБО говорит нам о том, что это ток (сила тока), между коллектором и базой, при условии, что напряжение на эмиттере равняется нулю. То есть эмиттер отключен.

Есть также более интересные условия, но они встречаются редко. Например, буква «К» от слова «короткий» (в англ.варианте «Shot»). Такой параметр как UКЭК говорит нам о том, что это напряжение между коллектором и эмиттером, при условии, что база и эмиттер замкнуты накоротко, или детским языком, база  с эмиттером соединены проводочком. Здесь последняя буква говорит нам об оставшемся выводе и условии, которое происходит между этим выводом и буковкой-выводом которая рядом.

Также иногда встречается буква «R», которая обозначает, как ни странно, сопротивление. Например UКЭR говорит о том, что это напряжение между коллектором и эмиттером при условии что база и эмиттер соединены сопротивлением. И рядышком в справочнике приводится номинал этого сопротивления.

Также часто встречается вместо третьей буквы индекса обозначение «нас» или на буржуйский манер «sat». «Нас» — кратко от «насыщение», то же самое и «»sat» — saturation  в переводе на русский  — насыщение. Например, UКЭ нас (VCEsat) — это напряжение насыщения коллектор-эмиттер.

И еще один нюанс… порядок индексов совпадает с положительным направлением тока. Что это значит? Например, UКЭ напряжение между коллектором и эмиттером. Значит ток движется от коллектора к эмиттеру. Но если мы поменяем индексы вот так UЭК у нас это будет уже обозначать, что электрический ток движется от эмиттера к коллектору. Справедливы также следующие выражения:

UКЭ= — UЭК и так далее.

Максимальное допустимое обратное напряжение между коллектором и базой

Максимальное допустимое обратное напряжение между коллектором и базой UКБ макс (VCBO — это максимальное обратное напряжение, которое может выдержать коллекторный P-N переход при открытом эмиттере (эмиттер ни с чем не связан и его ножка болтается в воздухе, короче говоря, на эмиттере ноль)

Для NPN транзистора это будет выглядеть так:

Для NPN транзистора этот параметр показан с плюсом. Оно и понятно, индексы  идут как «КБ», что означает коллектор «плюсовый» а база «минусовая».

Вот, например, этот параметр для транзистора BC337 структуры NPN:

Как вы видите, параметр VCBO показан с плюсом.

Чтобы не мудрить с индексами, для PNP транзистора ставят просто тупо минус перед циферками в даташите, которое говорит нам о том, что напряжение подаем в обратной полярности. В некоторых даташитах знак «минус» не указан, но все равно имейте ввиду, что это обратное напряжение на P-N переходе.

Например как в этом даташите на транзистор S8550 PNP структуры. Видите перед цифрой «30» знак минус? Если бы мы поменяли индексы, то получили бы, что VBCO =30 Вольт. Знак «минус» тогда бы исчез, но в то же время у нас индексы поменялись (я их даже выделил жирным шрифтом).

То есть тут мы видим, что это напряжение тоже обратное.

Максимальное допустимое значение напряжения между эмиттером и базой

Максимальное допустимое напряжение между эмиттером и базой UЭБ макс (VЕВО)  — это напряжение, которое может выдержать эмиттерный P-N переход, если приложить напряжение в обратном направлении, при условии, что коллектор у нас никуда не цепляется. Похожий параметр, но только  уже для эмиттерного перехода.

Для NPN транзистора это выглядит вот так и напряжение в даташите указывается с плюсом:

А для PNP как-то так:

Для PNP этот параметр также идет с минусом, чтобы не переставлять индексы:

Максимальное допустимое напряжение между коллектором и эмиттером

Максимальное допустимое напряжение между коллектором и эмиттером UКЭ макс (UКЭО). Максимальное напряжение между коллектором и эмиттером по направлению стрелочки эмиттера , при условии что база  никуда не цепляется. Для PNP транзистора этот параметр также идет с минусом.

Максимальная рассеиваемая мощность

Максимальная мощность, рассеиваемая на коллекторе PK макс (PC max). Это максимальная мощность, которую транзистор может рассеять на себе в окружающее пространство.

Например, для транзистора S8550 это значение равняется 1 Ватту.

Чтобы его не превысить, нужно рассчитать какую мощность будет рассеивать ваш транзистор по формуле:

P=UK x IK

где

P — это мощность, которая рассеивается на транзисторе

U— напряжение на коллекторе относительно минуса

I— ток коллектора

Рассеивание мощности транзистором означает, что на нем будет выделяться тепло, которое рассеивается в окружающее пространство. Поэтому, чтобы отвести это тепло от транзистора, применяют радиаторы:

Особенно это касается мощных транзисторов, через которые текут большие токи и напряжения. Как я уже говорил, для кремниевых транзисторов критическая температура нагрева это 150 градусов по Цельсию, для германиевых 70. Так что следите за температурой, если не хотите получить в результате уголек с дымом. Иными словами если Р превысит PК макс, то вашему транзистору придет жопа.

Максимальный допустимый коллекторный ток

Максимально допустимый коллекторный ток IK макс (Ic max). Превышение этого номинала приводит к пробою переходов, выгоранию тонких токоведущих проводов, которые соединяют ножку транзистора с кристаллом полупроводника. Ну и чем больше ток, тем разумеется и больше мощность, выделяемая транзистором, значит  будет больше нагрев.

Граничная частота передачи тока

Граничная частота передачи тока fгр .  Это частота, на которой коэффициент β (коэффициент усиления по току) становится равным единице. Так что отсюда вывод, что не каждый транзистор будет усиливать высокочастотные колебания. Поэтому в радиоприемной и радиопередающей аппаратуре используются транзисторы с высокой граничной частотой.

Различных других параметров транзистора туева куча. Здесь же я привел те параметры, на которые следует обращать внимание при проектировании своих электронных безделушек. Некоторые параметры в одной книге обозначают так, в другой эдак, в третьей совсем по-другому. Не могу сказать, что мои названия и обозначение параметров образцовые, но все-таки старался обозначить как в большинстве учебной литературы, чтобы было понятно каждому начинающему электронщику.

 

Как определить выводы неизвестного биполярного транзистора

Что будет, если перепутать коллектор и эмиттер


Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:

Соберем знакомую вам схемку:

На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке

На Bat2  я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.

Ну и как вы видели, лампочка горит и схема нормально работает:

Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.

Но на практике лампочка гореть не хочет.

Потребление на блоке питания  Bat2 каких-то 10 миллиампер. Значит, ток через лампочку все-таки течет, но очень слабый.

Почему  при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, транзистор делают не симметричным.

В транзисторах площадь соприкосновения  коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они «ловятся» коллектором, а когда мы путаем выводы, то не все электроны из коллектора «ловятся»  эмиттером.

Кстати, чудом не пробило PN переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите UЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:

Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны. Если  в схеме мы перепутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!

Как определить выводы транзистора

Способ №1

Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово «даташит». Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.

Способ №2

Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:

Здесь все просто, ставим мультиметр на значок прозвонки «•)))» и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами — это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах.  Между  коллектором и базойом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?

Для начала рассмотрим транзистор КТ315Б:

Э — эмиттер

К — коллектор

Б — база

Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 милливольт

Падение напряжения на коллекторе-базе 785 милливольт.  Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод — это коллектор, а красный слева — эмиттер.

Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):

Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.

Делаем первый замер.

Делаем второй замер:

Следовательно, средний синий вывод — это коллектор, а желтый слева — эмиттер.

Проверим еще один транзистор  — КТ814Б. Он у нас PNP структуры. База у него — синий вывод. Замеряем напряжение между синим и красным выводом:

а потом между синим и желтым:

Во фак! И там и там 720 милливольт.

Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ…

Способ №3

Почти в каждом современном мультиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета. Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).

Ставим крутилку мультиметра на значок «hFE«.

Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением  диодов в транзисторе, если не подзабыли.  Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка «В».

Далее суем оставшихся два вывода в дырочки С и Е в этом ряду и смотрим на показания мультика:

Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С — коллектор. Все элементарно и просто ;-).

Способ №4

Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transis tor-metr и сунуть выводы транзистора в клеммы прибора:

Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.

Как работает PNP транзистор

Принцип работы PNP транзистора

Рассмотрим вот такой рисунок:

Здесь мы видим трубу, по которой течет вода снизу вверх под высоким давлением. В данный момент труба закрыта красной заслонкой и поэтому потока воды нет.

Но как только  мы оттягиваем заслонку, чуток потянув зеленый рычажок, то красная заслонка оттягивается и бурный поток воды бежит по трубе снизу вверх.

Но вот мы снова отпускаем зеленый рычажок, и синяя пружина возвращает заслонку в исходное положение и преграждает путь воде

То есть мы чуток притянули заслонку к себе, и вода побежала через трубу бешеным потоком. Почти точно также ведет себя PNP транзистор. Если представить эту трубу как транзистор, то его выводы будут выглядеть вот так:

Значит, для того, чтобы ток бежал от эмиттера к коллектору (а вы ведь помните, что ток должен бежать туда, куда показывает стрелка эмиттера)

мы должны сделать так, чтобы из базы вытекал ток, или выражаясь дилетантским языком, подавать на базу минус питания («оттягивать» напряжение на себя).

Работа PNP транзистора на реальном примере

Ну что, давайте проведем долгожданный опыт. Для этого возьмем транзистор КТ814Б, который является комплиментарной парой транзистору КТ815Б.

Кто плохо читал прошлые статьи, хочу напомнить, что комплиментарная пара для кого-либо транзистора — это транзистор точно с такими же характеристиками и параметрами, НО  у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у  нас обратной проводимости, то есть NPN, а КТ814 прямой проводимости, то есть PNP. Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815. Короче говоря, зеркальные братья-близнецы.

Транзистор КТ814Б является транзистором PNP проводимости:

Вот его цоколевка:

Для того, чтобы показать принцип его работы, мы его соберем по схеме с Общим Эмиттером (ОЭ):

На деле вся схема выглядит как-то так:

Синие проводки-крокодилы идут от блока питания Bat1, а другие два провода с крокодилами, черный и красный, от блока питания Bat2.

Итак, для того, чтобы схема заработала, выставляем на Bat2 напряжение для питания лампочки накаливания. Так как лампочка у нас на 6 Вольт, то и выставляем 6 Вольт.

На блоке питания Bat1 аккуратно добавляем напряжение от нуля и пока не загорится лампочка накаливания. И вот при напряжении в 0,6 Вольт

у нас загорелась лампочка

То есть транзистор «открылся» и через цепь эмиттер-коллектор побежал электрический ток, который заставил гореть нашу лампочку. Напряжение открытия — это падение напряжение на PN-переходе база-эмиттер. Как вы помните, для кремниевых транзисторов ( а транзистор КТ814Б у нас кремниевый, об этом говорит буква «К» в начале его названия) это значение находится в диапазоне 0,5-0,7 Вольт. То есть чтобы «открыть» транзистор, достаточно подать на базу-эмиттер напряжение более, чем 0,5-0,7 Вольт.

Схемы включения NPN и PNP транзисторов

Итак, посмотрите на две схемы и найдите разницу. Слева NPN транзистор КТ815Б в схеме с ОЭ, а справа КТ814Б по такой же схеме включения:

Ну и в чем заключается различие? Да в полярности питания! И вот теперь можно с уверенностью сказать, что транзистор проводимости PNP открывается «минусом», так как на базу мы подаем «минус», а транзистор проводимости NPN открывается «плюсом».

Приобрести биполярные транзисторы можно тут.

Как проверить транзистор мультиметром — картинки, рекомендации, видео

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Полевой транзистор

Как проверить полевой моп (mosfet) — транзистор цифровым мультиметром

Полевой транзистор — это полупроводниковый прибор, в котором ток стока (С) через полупроводниковый канал п- или р-типа управляется электрическим полем, возникающим при приложении напряжения между затвором (З) и истоком (И).

Полевые транзисторы изготавливают:

— с управляющим затвором типа p-n-перехода для использования в высокочастотных (до 12_18 ГГц) преобразовательных устройствах. Условное их обозначение на схемах приведено на рис. 24, а, б;

— с изолированным (слоем диэлектрика) затвором для использования в устройствах, работающих с частотой до 1_2 ГГц. Их изготавливают или со встроенным каналом в виде МДП_структуры (см. их условное обозначение на рис. 24, в и г), или с индуцированным каналом в виде МОП_структуры (см. их условное обозначение на рис. 24, д, е).

Рисунок 24-Виды полевых транзисторов

Схема включения полевого транзистора с затвором типа p-n-перехода и каналом n-типа, его семейство выходных характеристик IС= f(UС), UЗ = const и стокозатворная характеристика IC= f(UЗ), UС= const изображены на рис. 25.

Рисунок 25 — Схема включения полевого транзистора и его стокозатворной характеристикой

При подключении выходов стока С и истока И к источнику питания Un по каналу n- типа протекает ток IC, так как p-n-переход не перекрывает сечение канала (рис. 25, а).

При этом электрод, из которого в канал входят носители заряда, называют истоком, а электрод, через который из канала уходят основные носители заряда, называют стоком.

Электрод, служащий для регулирования поперечного сечения канала, называют затвором. С увеличением обратного напряжения UЗ уменьшается сечение канала, его сопротивление увеличивается, и уменьшается ток стока IC.

Итак, управление током стока ICпроисходит при подаче обратного напряжения на p-n-переход затвора З. В связи с малостью обратных токов в цепи затвор-исток, мощность, необходимая для управления током стока, оказывается ничтожно малой.

При напряжении -UЗ = -UЗО, называемым напряжением отсечки, сечение канала полностью перекрывается обеднённым носителями заряда барьерным слоем, и ток стока I(ток отсечки) определяется неосновными носителями заряда p-n-перехода (см. рис. 25, б).

Схематичная структура полевого транзистора с индуцированным n-каналом представлена на рис 26. При напряжении на затворе относительно истока, равным нулю, и при наличии напряжения на стоке, ток стока оказывается ничтожно малым. Заметный ток стока появляется только при подаче на затвор напряжения положительной полярности относительно истока, больше так называемого порогового напряжения UЗПОР.

Рисунок 26-Схематичная структура полевого транзистора с индуцированным n-каналом

При этом в результате проникновения электрического поля через диэлектрический слой в полупроводник при напряжениях на затворе, больших UЗПОР, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком.

Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, соответственно будет изменяться ток стока. Так происходит управление тока стока в полевом транзисторе с индуцированным затвором. Важнейшей особенностью полевых транзисторов является высокое входное сопротивление (порядка нескольких мегаом) и малый входной ток. Одним из основных параметров полевых транзисторов является крутизна S стоко-затворной характеристики (см. рис. 25, в). Например, для полевого транзистора типа КП103Ж S = (3…5) мА/В.

  • Типы биполярных транзисторов и их диодные схемы замещения.
  • Полевые транзисторы с изолированным затвором.
  • Силовые (мощные) полевые транзисторы. IGBT-транзистор.
  • Транзисторы со статической индукцией.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Основные типы транзисторов

Как проверить стабилитрон мультиметром

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка работоспособности полевого транзистора

Как проверить емкость аккумулятора мультиметром

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности

Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов

После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Если Вы не знаете, как использовать данный прибор, рекомендуем прочитать подробную инструкцию для чайников о том, как пользоваться мультиметром!

Советы: как проверить полевой транзистор

Чтобы диод начал пропускать ток, необходимо к аноду подключить щуп красного цвета (плюс), а щуп черного цвета (минус) подключить к катоду, после чего на мультиметре будет отражено прямое напряжение

Важно понимать, что на величину напряжения влияет тип полупроводника. Так, например, кремниевые диоды характеризуются напряжением от 650 до 800 мВ, в то время как на германиевых транзисторах от 180 до 300 мВ

Как только вы поменяете плюс и минус местами, мультиметр покажет «1», что подтверждает закрытие перехода, т.е. ток не проходит.

В целом, прозвонить биполярный транзистор можно следующим образом:

  1. Производим проверку обратного сопротивления, для чего необходимо подключить плюс к базе транзистора.
  2. Производим подключение минуса к эмиттеру, чтобы протестировать переход.
  3. Чтобы проверить коллектор, к нему нужно подключить минус.

По итогам измерительных операций на дисплее должны появляться показатели в пределах единицы, что говорит о бесконечности сопротивления. Если же ток проходит в двух направлениях, то переход «пробит» (что сопровождается характерным звуковым сигналом), а если ток не проходит вообще, то это является признаком «обрыва». В этом случае можно утверждать о неисправности транзистора. Стоит отметить, что данным способом можно проверять только транзисторы биполярного типа, а вот для полевых или составных приборов это может оказаться бесполезным.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять

Это важно, так как при определении работоспособности, эта информация нам понадобится

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Читать также: Лазерный излучатель для резки металла

Определение вывода базы (затвора)

Наиболее простой способ определить назначение выводов транзистора (цоколевку) — скачать на него документацию. Поиск ведется по маркировке на корпусе. Этот буквенно-цифровой код набирают в строке поиска и далее добавляют «даташит».

Если документацию обнаружить не удается, базу и прочие выводы биполярного транзистора распознают исходя из его особенностей:

  • p-n-p транзистор: открывается приложением к базе отрицательного напряжения;
  • n-p-n транзистор: открывается приложением к базе положительного напряжения.

Действуют так:

  1. Настраивают мультиметр: красный щуп подсоединяют к разъему со значком «V/Ω» (плюсовой потенциал), черный — к разъему COM (минусовой потенциал), а  переключатель устанавливают в режим «прозвонка» или, если такого нет, в сектор измерения сопротивления (значок «Ω») на верхнюю позицию (обычно «2000 Ом»).
  2. Определяют базу. Красный щуп подсоединяют к первому выводу транзистора, черный — поочередно к остальным. Затем красный подсоединяют ко второму выводу, черный снова по очереди к 1-му и 3-му. Признак того, что красный подсоединен к базе, — одинаковое поведение прибора при контакте черного щупа с другими выводами. Прибор оба раза пискнул или показал на дисплее некое конечное сопротивление — транзистор относится к n-p-n типу; прибор оба раза промолчал или отобразил на дисплее «1» (отсутствие проводимости) – транзистор принадлежит p-n-p типу.
  3. Распознают коллектор и эмиттер. Для этого к базе подсоединяют щуп, соответствующий типу проводимости: для n-p-n транзистора – красный, для p-n-p транзистора: черный.

Конструкция полевого транзистора с управляющим p-n-переходом и канлом n-типа а) с затвором со стороны подложки; b) с диффузионным затвором

Второй щуп поочередно подсоединяют к другим выводам. При контакте с коллектором на дисплее отображается меньшее значение сопротивления, чем с эмиттером.

Выводы полевого транзистора обычно промаркированы:

  • G: затвор;
  • S: исток;
  • D: сток.

Если маркировки нет, затвор обнаруживают по той же схеме, что и у биполярного транзистора.

Полевые транзисторы чувствительны к статическому электричеству. Из-за этого их выводы при хранении закорачивают фольгой, а перед началом манипуляций надевают антистатический браслет или хотя бы касаются заземленного металлического предмета (приборный шкаф), чтобы снять статический заряд.

Оцените статью:

Как проверить тарнзистор — тестирование биполярных, полевых, цифровых, однопереходных транзисторов

Прежде чем рассмотреть способы как проверить исправность транзисторов необходимо знать, как проверять исправность p-n перехода или как правильно тестировать диоды. Именно с этого мы и начнем…

Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении — бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5…0,8 В, для германиевых — 0,2…0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Как проверить исправность транзистора

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов, так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45…0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев. Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления — более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2…1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В — прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. «программировать» его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже — для ОПТ — рис. слева, для программируемого ОПТ — рис. справа).

Рис. 3

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа — схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение — «тестирование цифровых транзисторов затруднено… Лучший вариант — замена на заведомо исправный транзистор». Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис. 4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 — 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор, с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить полевой МОП-транзистор

Существует несколько разных способов проверки полевых МОП-транзисторов. Например такой:

  • Проверить сопротивление между затвором — истоком (3-И) и затвором — стоком (3-С). Оно должно быть бесконечно большим.
  • Соединить затвор с истоком. В этом, случае переход исток — сток (И-С) должен прозваниваться как диод (исключение для МОП-транзисторов, имеющих встроенную защиту от пробоя — стабилитрон с определенным напряжением открывания).

Самой распространенной и характерной неисправностью полевых МОП-транзисторов является короткое замыкание между затвором — истоком и затвором — стоком.

Другим способом является использование двух омметров. Первый включается для измерения между истоком и стоком, второй — между истоком и затвором. Второй омметр должен иметь высокое входное сопротивление — около 20 МОм и напряжение на выводах не менее 5 В. При подключении второго омметра в прямой полярности транзистор откроется (первый омметр покажет сопротивление близкое к нулю), при изменении полярности на противоположную транзистор закроется. Недостаток этого способа — требования к напряжению на выводах — второго омметра. Естественно, цифровые мультиметры для этих целей не подходит. Это ограничивает применение такого способа проверки.

Еще один способ похож на второй. Сначала кратковременно соединяют между собой выводы затвора и истока для того, чтобы снять имеющийся на затворе заряд. Далее к выводам истока-стока подключают омметр. Берут батарейку напряжением 9 В и кратковременно подключают ее плюсом к затвору, а минусом — к истоку. Транзистор откроется и будет открыт некоторое время после отключения батарейки за счет сохранения заряда. Большинство полевых МОП-транзисторов открывается при напряжении затвор-исток около 2 В.

При тестировании полевых МОП-транзисторов следует соблюдать особую осторожность, чтобы не вывести его из строя транзистор статическим электричеством.

Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

При определении структуры транзистора, тип которого неизвестен, следует путем перебора шести вариантов — определить вывод базы, а затем измерить прямое напряжение на переходах. Прямое напряжение на переходе база-эмиттер всегда на несколько милливольт выше прямого напряжения на переходе база-коллектор (при пользовании стрелочного мультиметра сопротивление перехода база-эмиттер в прямом направлении несколько выше сопротивления перехода база-коллектор). Это связано с технологией производства транзисторов, и правило применимо к обыкновенным биполярным транзисторам, за исключением некоторых типов мощных транзисторов, имеющих встроенный демпферный диод. Полярность щупа мультиметра, подключенного при измерениях на переходах в прямом направлении к базе транзистора укажет на тип транзистора: если это «+» — транзистор структуры n-p-n, если «-» — структуры р-n-р.

Как проверить биполярный транзистор. Как проверить работоспособность разных видов биполярных транзисторов мультиметром

Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.

Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.

Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.

Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.

Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.

Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.

Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.

Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p . Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.

Транзистор со структурой n-p-n в виде двух диодов.

Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+ ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+ ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.

Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.

Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.

Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.

Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.

Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный ) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп (красный ) в гнездо с обозначением буквы омега Ω , буквы V и, возможно, других букв. Всё зависит от функционала прибора.

Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!

Теперь, когда сухая теория изложена, перейдём к практике.

Какой мультиметр будем использовать?

Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503 . Он имеет структуру n-p-n . Вот его цоколёвка.

Для тех, кто не знает, что означает это непонятное слово цоколёвка , поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С ), эмиттер (Э или англ.- Е ), база (Б или англ.- В ).

Сначала подключаем красный (+ ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).

Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.

Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении . В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1 ». Если на дисплее единица «1 », то это означает, что сопротивление перехода велико, и он не пропускает ток.

Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…

…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.

Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1 », что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении .

Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.

Пробой P-N перхода транзистора.

В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.

Обрыв P-N перехода транзистора.

При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1 ». При таком дефекте p-n переход как бы превращается в изолятор.

Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.

В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.

В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.

Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.

То же самое проделываем и для перехода Б-Э.

Как видим, он также исправен. На дисплее – 724 мВ.

Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.

Переход Б-К при обратном включении…

Переход Б-Э при обратном включении.

В обоих случаях на дисплее прибора – единичка «1 ». Транзистор исправен.

Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:

    Определение цоколёвки транзистора и его структуры;

    Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;

    Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;

При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т. д.

Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал .

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э .

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и .

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n .

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200 ».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.

Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.

В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.

Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.

Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.

При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.

В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.

Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из следующих этапов:

  • проверка работы измерительного прибора;
  • определение типа транзистора;
  • измерение прямых сопротивлений эмиттерного и коллекторного переходов;
  • измерение обратных сопротивлений эмиттерного и коллекторного переходов;
  • оценка исправности транзистора.

Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.

Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.

На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».

Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.

При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.

Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.

Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:

  1. если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
  2. если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.

В обоих случаях транзистор является неисправным.

Оценка коэффициента усиления

Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.

Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.

Выводы :

  1. С помощью мультиметра можно определить исправность биполярных транзисторов.
  2. Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
  3. С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.

Видео о том, как проверить транзистор мультиметром

Как проверить транзистор мультиметром. Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.


Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.


Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.


Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.


Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.


Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.


Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.


Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.


IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.


Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.


Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.


Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Идентификация

— Как идентифицировать транзисторы?

спросил

Изменено 1 год, 5 месяцев назад

Просмотрено 1к раз

\$\начало группы\$

Я начинающий любитель, я пытаюсь добраться до точки, где я могу смотреть на базовую схему (физическую, а не на схему) и размышлять о том, что она делает. Транзисторы сбивают с толку, потому что их так много типов, и некоторые из них визуально похожи. Очевидно, я мог бы погуглить все, что я найду напечатано на них, определить производителя и т. д. Предполагая, что я не хочу ломать свой ноутбук каждый раз, когда вижу транзистор, что я могу определить?

То, что я спрашиваю, это то, что я могу узнать по:

  • Глядя. Он имеет 3 контакта с одной стороны, он D-образный, прямоугольный со сквозным отверстием, в форме шляпы, круглый, Размер, насечки сбоку, Любые правила, такие как «Если он D-образный, это всегда BJT» (это правда?)

  • Тестирование. Вещи, которые я могу легко определить, потыкав их обычным мультиметром. Правила типа «если между контактами 1 и 2 есть высокое/бесконечное сопротивление…». Будут ли такие тесты работать, пока он находится в цепи, или его нужно удалить, чтобы знать наверняка.

  • Идентификационные номера. Существуют ли какие-либо схемы именования, которые достаточно широко используются, чтобы с ними можно было заморачиваться?

Я собираю некоторые заметки, которые я могу хранить в гараже, с такими вещами, как цветовые коды резисторов, различные названия каждого компонента, их символ на диаграмме, что делает каждый вывод и т. д. Я надеюсь, что это не слишком открыто. , если бы я знал больше, я бы спросил что-то более конкретное. Я нашел много ресурсов, которые объясняют типы транзисторов, их функции и их символы, что отлично подходит для проектирования, но мне трудно найти ресурсы, которые объясняют, как определить тип транзистора, исследуя фактический вещь.

идентификация транзисторов

\$\конечная группа\$

3

\$\начало группы\$

При осмотре транзистора ничего не видно. Все они бывают разных форм и имеют три контакта.

Проверка возможна при условии, что транзистор исправен, но проверка не работает, пока транзистор находится в цепи.

Идентификационные номера или номера деталей на транзисторе говорят о том, что это за конкретная часть, поэтому просмотр его показывает, что это такое, и вы можете прочитать таблицу данных о важных параметрах.

Схема вокруг транзистора и то, как он используется, может дать подсказки о том, каким он может быть или, по крайней мере, каким не может быть.

Чрезвычайно грубое определение возможно путем измерения цепи или просто выяснения того, что делает транзистор в цепи. Если схема не является специализированной, обычно транзисторы представляют собой биполярные транзисторы или полевые МОП-транзисторы. Если он управляет нагрузкой, можно определить, является ли он N-FET или NPN, если транзистор переключает землю нагрузки, или P-FET или PNP, если он переключает питание нагрузки. Если транзистор управляется током, то это BJT, если напряжением, то это FET. JFET используются для очень специализированных операций в аналоговых схемах. Но, как я уже сказал, это ужасно общее, и может быть много исключений.

В общем, проще всего прочитать, что напечатано на транзисторе, и взять таблицу данных, чтобы узнать, с чем вы работаете и какую распиновку он использует.

\$\конечная группа\$

3

\$\начало группы\$

Общий ответ на ваш вопрос: нет (как упоминалось в комментариях Дастона). К сожалению, вы действительно не можете окончательно идентифицировать что-либо, не посмотрев номер детали и не получив техническое описание.

Даже среди однотипных транзисторов в одинаковых корпусах (скажем, BJT в корпусе ТО-92) порядок выводов может быть разным. Я только что выполнил быстрый поиск по «TO-92 BJT» и выбрал первые два BJT от Mouser, которые точно демонстрируют мою точку зрения:

Diodes Incorporated ZTX618:

WeEn PHE13003C:

Изображения, взятые из таблиц данных соответствующих частей (ссылка выше).

Если вы не знаете подробностей о конкретном производителе и номере детали навскидку, не существует однозначного способа узнать подробности о конкретном корпусе транзистора только путем визуального осмотра.

\$\конечная группа\$

\$\начало группы\$

Нет, по форме не скажешь. И многие микросхемы имеют одинаковые пакеты.

Определенные типы транзисторов более распространены, поэтому вы можете использовать омметр, чтобы попытаться идентифицировать их.

Наиболее распространены NPN и N-Channel MOSFET. С точки зрения омметра они выглядят как символы справа. Для NPN вы не сможете сказать, что является коллектором, а что эмиттером, и они должны быть правильными в схеме, они не будут работать очень хорошо в обратном направлении. Если у него металлический корпус или язычок, это обычно коллектор.

В PNP (не показан), конечно, два диода перевернуты.

Если он действительно старый (1950–1960-е годы), то, вероятно, это не полевой МОП-транзистор.

имитация этой схемы – Схема создана с помощью CircuitLab

\$\конечная группа\$

Твой ответ

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Как проверить транзистор с помощью мультиметра (DMM+AVO)

Как запомнить направление транзистора PNP и NPN и идентификацию контактов, проверить, хорошее оно или плохое.

Следующее базовое руководство, основанное на использовании цифрового (DMM) или аналогового (AVO) мультиметра, поможет вам:

  • Запомнить направление транзисторов NPN и PNP
  • Определите базу, коллектор и эмиттер транзистора
  • Проверьте состояние транзистора.

Похожие сообщения:

  • Биполярный переходной транзистор (BJT) | Строительство, работа, типы и области применения
  • Типы транзисторов – BJT, FET, JFET, MOSFET, IGBT и специальные транзисторы

Содержание

Как запомнить направление PNP и NPN транзистора?

  • PNP = Указано
  • NPN = не указано.

Если вы думаете, что это немного сложно, попробуйте более простой способ, как показано ниже.

                                                            Нажмите на изображение, чтобы увеличить его.

PNP   NPN

  • P = баллы                      N = никогда
  • N = IN                            P = Баллы
  • P = постоянно           N = iN

Теперь давайте перейдем к пошаговому руководству, чтобы узнать, как проверить транзистор?

Проверка транзистора с помощью цифрового мультиметра в режиме диодов или в режиме проверки целостности цепи

Для этого следуйте приведенным ниже инструкциям.

  1. Удалите транзистор из схемы, т.е. отключите питание транзистора, который необходимо проверить. Разрядите все конденсаторы (замкнув выводы конденсатора) в цепи (если есть).
  2. Установите мультиметр в режим «Тест диодов», повернув поворотный переключатель мультиметра.
  3. Подсоедините черный (общий или -Ve) щуп мультиметра к 1-й клемме транзистора, а красный (+Ve) щуп — ко 2-й клемме (рис. ниже). Вы должны выполнить 6 тестов, подключив черный (-Ve) щуп и красный (+Ve) щуп к 1 к 2, 1 к 3, 2 к 1, 2 к 3, 3 к 1, 3 к 2 соответственно. просто замените измерительные провода мультиметра или поменяйте местами клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показано ниже). Цифры красного цвета обозначают красный щуп, а цифры черного цвета подключены к черному (-Ve) щупу мультиметра.
  4. Проверьте, измерьте и запишите показания дисплея мультиметра в таблице ниже.

У нас есть следующие данные из таблицы, приведенной ниже.

Из 6 тестов мы получили данные и результаты только по двум тестам, т. е. точки 2 к 1 и 2 к 3. Где мы получили в точках 2 к 1 0,733 В постоянного тока и 2 к 3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также его коллектор, базу и эмиттер.

  1. Точка 2 — база транзистора в транзисторе BC55.
  2. BC 557 — это PNP-транзистор, в котором 2 -й (средний вывод — база) подключен к красному (+Ve) щупу мультиметра.
  3. Вообще, Клемма 1 = Эмиттер, Клемма 2 = База и Клемма 3 = Коллектор (транзистор BC 557 PNP), поскольку результат проверки для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, т. е. 2-1 > 2-3.
БК 557 ПНП Точки измерения Результат
1-2 ПР
1-3 ПР
2-1 0,733 В постоянного тока
2-3 0,728 В постоянного тока
3-1 ПР
3-2 ПР
Поиск БАЗЫ транзистора :

Как уже упоминалось в приведенном выше руководстве, общее число, найденное в приведенных выше тестах, является базовым. В нашем случае 2 терминала и является Базовым и 2 является общим из 1-2 и 2-3.

2
nd Метод с использованием цифрового мультиметра для определения основания транзистора.

Если вы будете следовать той же схеме и методу подключения выводов мультиметра и выводов транзистора один за другим на рисунке, показанном выше, на рис. «c» и «d», красный (+Ve) измерительный провод подключается к среднему. т. е. 2 и вывод провода, а черный (-Ve) измерительный провод подключается к 1 st одному выводу транзистора.

Опять же, красный (+Ve) щуп подключен к среднему, т.е. 2 -й контакт провода, а черный (-Ve) измерительный щуп подключен к 3--й клемме транзистора, и мультиметр показывает некоторые показания, например, 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.

Общий провод 2 и один подключен к красному (+Ve) тестовому проводу (т.е. P и да, два других провода — N), который является базовым. В случае транзистора BC 557 PNP ситуация обратная.

NPN или PNP?

Все просто. Если черный (-Ve) щуп мультиметра подсоединить к базе транзистора (2 и  клемма в нашем случае), тогда это PNP-транзистор , а когда красный (+Ve) щуп подключен к базе клеммы, это NPN-транзистор .

Похожие сообщения:

  • Разница между транзисторами NPN и PNP
  • Разница между BJT и FET транзисторами
Излучатель или коллектор?

Прямое смещение EB (эмиттер – база) больше, чем CB (коллектор – база), т.е. EB > CB в транзисторе PNP, например. BC557 НПН. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), т. е. BE > BC, например. 547 г. до н.э. ПНП.

Вот вывод.

  1. Точка 2 — база транзистора в BC547 Транзистор
  2. BC 547 — это NPN-транзистор, в котором 2 -й (средний вывод — база) подключен к красному (+Ve) щупу мультиметра.
  3. Во всех случаях Клемма 1 = Эмиттер, Клемма 2 = База и Клемма 3 = Коллектор (транзистор BC 547 NPN), поскольку результат теста для 1-2 = 0,717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т. е. 1-2 > 2-3.
ВС 547 НПН Точки измерения Результат
1-2 0,717 В постоянного тока
1-2 ПР
1-3 ПР
1-3 ПР
2-3 ПР
2-3 0,711 В постоянного тока

Проверка транзистора с помощью аналогового или цифрового мультиметра в омах (Ом) Режим диапазона:

Шаги:

  1. Отключите питание схемы и удалите транзистор из схемы.
  2. Поверните селекторный переключатель и установите ручку мультиметра в положение диапазона Ом (OHM)
  3. Подсоедините черный (общий или -Ve) щуп мультиметра к 1-й клемме транзистора, а красный (+Ve) щуп ко 2-й клемме (рис. 1 (a). (Необходимо выполнить 6 тестов, подключив черный (-Ve) щуп к 1 к 2, 1 к 3, 2 к 1, 2 к 3, 3 к 1, 3 к 2 соответственно, просто заменив измерительные провода мультиметра или поменяв местами клеммы транзистора для подключения, проверки, измерьте и запишите показания в таблице (показаны ниже) (цифры красного цвета показывают выводы транзистора, подключенные к Красный (+Ve) щуп мультиметра, а цифры черного цвета показывают транзисторные выводы, подключенные к Черный (-Ve) щуп мультиметра. (Лучшее объяснение в таблице и на рисунке ниже)
  4. Если мультиметр показывает высокое сопротивление как в первом, так и во втором тесте при изменении полярности транзистора или мультиметра, как показано на рис. 1 (а) и (б). (Обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше). т. е. В нашем случае 2 -я клемма транзистора является БАЗОВОЙ, потому что она показывает высокое сопротивление в обоих тестах 2 на 3 и 3 на 2, где Красный (+Ve) измерительный провод мультиметра подключен к 2 -й клемме транзистора . Другими словами, обычное число в тестах — это База, которая равна 2 из 1, 2 и 3.

Нажмите на изображение, чтобы увеличить

PNP или NPN?

Теперь это NPN-транзистор, потому что он показывает показания только тогда, когда КРАСНЫЙ (+Ve) измерительный провод (т. е. клемма P, где P = положительный) подключен к базе транзистора (см. рис. ниже). Если вы сделаете наоборот, т.е. черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра, подключенный к транзисторной клемме в последовательности (1 к 2 и 2 к 3) и показывает показания в обоих тестах, как указано выше , 2 nd Клемма по-прежнему BASE, но транзистор PNP (см. рис. ниже).

Проверка транзистора с помощью цифрового мультиметра в режиме транзистора или hFE или бета-режиме

hFE, также известном как коэффициент усиления по постоянному току, означает «гибридный параметр усиления по прямому току, общий эмиттер», используемый для измерения hFE транзистора, который может найти по следующей формуле.

h FE = β DC = I C / I B

Его также можно использовать для проверки транзистора и его контактной клеммы, как показано на рис. 1.

Для проверки транзистора в режиме hFE в мультиметре имеется 8-контактный слот, обозначенный PNP и NPN, а также E C B ( Эмиттер, коллектор и база). Просто поместите три контакта транзистора в слот мультиметра один за другим в разные слоты, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).

Если они отображают показания (это будут показания транзистора h FE ), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (позиция CBE) текущее положение на C, B, Слот E — это точные клеммы транзистора (коллектор, база и эмиттер), и транзистор находится в хорошем положении, в противном случае замените его новым.

Related Posts:

  • Как проверить конденсатор с помощью цифрового и аналогового мультиметра — 8 методов
  • Как проверить диод с помощью цифрового и аналогового мультиметра — 4 способа.
  • Как проверить реле? Проверка реле SSR и катушки?
  • Как проверить и исправить дефекты печатной платы (PCB)?
  • Как определить номинал сгоревшего резистора (тремя удобными способами)
  • Как проверить целостность электрических компонентов с помощью мультиметра?
  • Схема цепи тестера кабелей и проводов
  • Как проверить аккумулятор с помощью тест-метра?
  • Как проверить электрические и электронные компоненты с помощью мультиметра?

Показать полную статью

Связанные статьи

Кнопка «Вернуться к началу»

Как правильно определить 3 контакта транзистора: пошаговые методы тестирования транзисторов

Структура биполярного переходного транзистора (BJT)

Что такое транзистор?

Определение транзисторов : Это полупроводниковое устройство с тремя выводами: коллектор, эмиттер и база, а транзисторы в основном используются для усиления и переключения электронных сигналов.

Кто изобрел транзистор?

Транзисторы, изобретенные Джоном Бардином, Уильямом Шокли и Уолтером Браттейном. Сначала они изобрели транзистор с точечным контактом в 1947 году, а затем в 1948 году они изобрели транзистор с биполярным переходом.

Фактическая конструкция и вид изнутри биполярного транзистора (BJT)

Фактическая конструкция и вид изнутри биполярного транзистора (BJT)
Сравнение объема и плотности легирования биполярных транзисторов (BJT)

Основа BJT имеет самый тонкий слой с небольшим объемом, затем эмиттер имеет средний объем, в то время как коллектор занимает самый большой объем в транзисторе с биполярным переходом.

Плотность легирования транзистора изменяется в следующем порядке: коллектор имеет наименьшую плотность легирования, затем база имеет среднюю плотность легирования, а эмиттер BJT транзистора имеет высокую плотность легирования

Биполярные переходные транзисторы (BJT)

Существует два основные типы, когда мы рассматриваем типы транзисторов.

  1. Транзисторы NPN : Два полупроводниковых слоя N-типа разделены одним слоем P-типа.
  2. Транзисторы PNP : Два полупроводниковых слоя P-типа разделены одним слоем N-типа.
Структура NPN-транзистора и PNP-транзистора

10 самых опасных мест в мире, которых следует избегать — путешествия

10 самых опасных мест в мире …

Включите JavaScript вместе с острием стрелки. если стрелка указывает на эмиттер, это NPN-транзистор, а если стрелка указывает на базу, это PNP-транзистор.

Транзисторы NPN и PNP

В транзисторах NPN направление тока от коллектора к эмиттеру, а в транзисторах PNP направление тока от эмиттера к коллектору.

NPN-транзисторы включаются, когда электроны входят в базовый вывод, а PNP-транзисторы включаются, когда дырки входят в базовый вывод.

В NPN-транзисторах основными носителями заряда являются электроны, а в PNP-транзисторах основными носителями заряда являются дырки.

Транзисторы NPN являются наиболее широко используемыми типами транзисторов в промышленности.

Имеется 3 контакта транзистора

  • C – вывод коллектора
  • B – вывод базы
  • E – вывод эмиттера

Идентификация 3 выводов транзистора является важной частью при использовании транзисторов .

Транзисторы изготавливаются из полупроводниковых материалов, в основном из кремния, а некоторые изготавливаются из германия и других полупроводниковых материалов.

Транзисторы меньше по размеру и для работы потребляют меньше энергии по сравнению с электронными лампами, которые использовались на ранних стадиях.

Структура биполярного переходного транзистора (BJT)

При рассмотрении внешнего вида транзисторы имеют пластиковое покрытие, одна сторона транзистора представляет собой плоскую поверхность, а другая сторона изогнута.

Как определить 3 контакта транзистора по его символу

3 контакта символа транзистора можно легко определить, посмотрев в направлении, куда указывает стрелка. Если стрелка указывает на эмиттер, это NPN-транзистор. Если стрелка указывает на базу, это PNP-транзистор.

Как определить 3 контакта транзистора по его внешнему виду

Идентификация 3 контактов транзистора NPN

В большинстве случаев при рассмотрении транзисторов NPN, когда мы держим плоскую сторону транзистора лицевой стороной к себе. Выводы слева направо — коллектор, база и эмиттер соответственно. В большинстве PNP-транзисторов все наоборот. Итак, слева направо будут эмиттер, база и коллектор.

Идентификация 3 контактов транзистора PNP

Как идентифицировать 3 контакта транзистора с помощью мультиметра

Идентификация типа транзистора: NPN-транзистор или PNP-транзистор (Красный) щуп на среднем выводе и отрицательный (черный) щуп на двух других выводах транзистора, мы можем определить тип транзистора.

  1. Установите мультиметр в режим диода.
  2. Затем поднесите положительный (красный) щуп мультиметра к среднему выводу транзистора, а затем поднесите отрицательный (черный) щуп к одному из других выводов транзистора с обеих сторон.
  • Если на экране мультиметра отображаются показания – это NPN-транзистор
  • Если на экране мультиметра нет показаний – это PNP-транзистор

В диодном режиме мультиметр показывает значение напряжения в p-n-переход, где положительный щуп находится на аноде (p), а черный щуп — на катоде (n)

Идентификация 3-х выводов NPN-транзистора с помощью мультиметра
  1. Установите мультиметр в режим диода
  2. Затем поднесите положительный (красный) щуп мультиметра к СРЕДНЕМУ выводу транзистора
  3. Затем поднесите отрицательный (черный) щуп к ЛЕВОМУ выводу и снимите показания с мультиметра.
  4. Затем снимите показания мультиметра, удерживая черный щуп на ПРАВОМ контакте транзистора.
Идентификация 3 контактов NPN-транзистора с помощью мультиметра

При сравнении двух показаний p-n-переход, где получено более высокое значение, является переходом база-эмиттер. А p-n переход, где получено меньшее значение, является переходом коллектор-база.

Таким же образом описанный выше тест можно применить для идентификации контактов PNP-транзистора.

Идентификация 3 контактов транзистора PNP с помощью мультиметра
  1. Установите мультиметр в режим диода.
  2. Затем поднесите положительный (красный) щуп мультиметра к ЛЕВОМУ контакту транзистора.
  3. Затем поднесите отрицательный (черный) щуп к СРЕДНЕМУ выводу и снимите показания с мультиметра.
  4. Затем снимите показания мультиметра, удерживая положительный (красный) щуп на правом выводе транзистора.

При сравнении двух показаний p-n переход, где получено более высокое значение, является переходом база-эмиттер. А p-n переход, где получено меньшее значение, является переходом коллектор-база.

Режимы работы биполярного транзистора

Существует 3 основных режима работы биполярного транзистора

  1. Режим отсечки
  2. Активный или линейный режим
  3. Режим насыщения

Режим отсечки переход база-коллектор и переход коллектор-база смещены в обратном направлении.

В активном или линейном режиме переход эмиттер-база смещен в прямом направлении, а переход коллектор-база смещен в обратном направлении.

В режиме насыщения и переход эмиттер-база, и переход коллектор-база смещены в прямом направлении.

(BJT) Биполярные транзисторы в качестве усилителей

Усилителю требуется 2 клеммы для подключения входного сигнала и 2 клеммы для подключения нагрузки.

Таким образом, всего требуется 4 контакта, а NPN- и PNP-транзисторы имеют только 3 контакта. Поэтому он должен сделать одну клемму общей как для входа, так и для выхода транзистора.

Таким образом, имеется 3 общих шины биполярного транзистора (BJT)

  • Общий эмиттер (CE)
  • Общая база (CB)
  • Общий коллектор (CC)

Когда транзисторы действуют как усилитель, эмиттер -базовый переход остается смещенным в прямом направлении за счет подачи постоянного напряжения смещения.

Ток эмиттера возникает из-за того, что входной сигнал малого напряжения вносит свой вклад в ток коллектора, а ток коллектора проходит через нагрузочный резистор, что приводит к большому падению напряжения.

Небольшое входное напряжение превращается в большое выходное напряжение, используя концепцию транзисторов в качестве усилителей.

(BJT) биполярные переходные транзисторы в качестве переключателя

Работа транзисторного переключателя в основном основана на области, где работает транзистор на кривой ВАХ. Области, в которых может работать транзистор, — это активная область, область насыщения и область отсечки. Если транзистор работает в области насыщения, он действует как полностью открытое состояние, в то время как транзистор работает в области отсечки, он действует как полностью закрытое состояние. Кроме того, транзисторы действуют как усилитель, если он работает в активной области.


ЗНАЕТЕ ЛИ ВЫ о транзисторном радио?

Транзисторный радиоприемник представляет собой портативный радиоприемник небольшого размера, в котором в основном используется транзисторная схема. Regency TR-1 — первый транзисторный радиоприемник, выпущенный в 1954 году, а затем на рынок вышла Sony TR-63. Затем со временем использование транзисторного радиоприемника прекратилось с появлением бумбокса и плеера Sony, а позже и цифровых устройств, таких как mp3-плееры и мобильные телефоны.


ЗНАЕТЕ ЛИ ВЫ Как найти анод и катод диода? ПРОЧИТАЙТЕ ЗДЕСЬ

32 фотографии природы, в которые трудно поверить, но они действительно реальны — наука и тайна

Пожалуйста, включите JavaScript Специалист | Обновлено 29 июня 2022 г.

Транзистор — это полупроводниковое устройство , которое используется для переключения или усиления электронных сигналов в .0129 электрическая цепь . В основном существует 2 типа транзисторов — полевые транзисторы (FET) и биполярные транзисторы (биполярные переходные транзисторы, BJT). В зависимости от характеристик, преимуществ и недостатков может быть еще много типов транзисторов.

  • Полевой транзистор является типом униполярного устройства без PN-перехода на пути прохождения тока. Их можно классифицировать как – N-канальные и P-канальные транзисторы.
  • Биполярный транзистор — это тип транзистора, в котором в качестве носителей заряда используются как дырки, так и электроны. Их можно классифицировать как транзисторы NPN и PNP.
  • Существует еще один тип транзистора – Биполярные транзисторы с изолированным затвором , которые имеют управляемый напряжением МОП-транзистор и сильноточный транзистор.

Содержание

  1. Транзистор
  2. Типы транзисторов
  3. Other Types of Transistor
  4. Applications of Transistors
  5. Things to Remember
  6. Previous Year Questions
  7. Sample Questions

Key Takeaways: Circuits, полупроводники, типы транзисторов, ток, напряжение .


Что такое транзистор?

[Нажмите здесь, чтобы просмотреть примеры вопросов]

Транзистор представляет собой тип электронного устройства, состоящего из полупроводников p-типа и n-типа. Когда полупроводник расположен посередине двух полупроводников одного типа, такое расположение называется транзистором.

  • Транзистор можно также определить как одновременное соединение двух диодов .
  • Транзистор — это устройство, которое управляет прохождением тока или напряжения и служит в качестве кнопки или затвора для электронных сигналов.
  • Он имеет три вывода, а именно эмиттер, базу и коллектор.
  • Транзисторы оказали значительное влияние на революцию в электронной промышленности.
  • Способен как к усилению, так и к выпрямлению сигнала.

Транзисторы

Принцип работы транзистора

Принцип работы транзистора основан на том, что он позволяет управлять протеканием тока по одному пути, изменяя интенсивность наименьшего количества тока, проходящего через второй путь.

Подробнее:


Типы транзисторов

[Нажмите здесь, чтобы просмотреть примеры вопросов]

Существует много типов транзисторов, которые можно классифицировать на основе их применения. Вот некоторые из них:

  • Биполярный транзистор
  • Диффузионный транзистор
  • Лавинный транзистор
  • Шоттки транзистор
  • Дарлингтон Биполярный транзистор

    Теропереход0020

  • Полевой эффект Транзистор
  • Перевод FET Transistor
  • Dual Gate MOSFET
  • Транзистор с несколькими эмиттерами

1. Transistor Bipolar Jounct Transistor

-это биполярный перекресток. из трех областей: базы, коллектора и эмиттера. В отличие от полевых транзисторов, транзисторы с биполярным переходом являются устройствами, управляемыми током.

  • Небольшой ток, протекающий от эмиттера к коллектору транзистора, вызывает значительно больший ток, протекающий от базы к эмиттеру.
  • NPN и PNP — это два основных типа транзисторов с биполярным переходом.

Транзистор с биполярным переходом

i) Транзистор NPN

В этих типах транзисторов используются два полупроводниковых материала p-типа. Эти материалы разделены тонким полупроводниковым слоем n-типа. Большинство носителей заряда в этих транзисторах — дырки, а меньшинство — электронов .

  • В этом транзисторе ток течет от вывода эмиттера к выводу коллектора.
  • Когда клемма базы переводится в положение НИЗКИЙ по сравнению с клеммой эмиттера, транзистор включается.
ii) Транзистор PNP

Транзистор PNP состоит из двух слоев полупроводника n-типа, разделенных тонким слоем полупроводника p-типа. Большинство носителей заряда в транзисторе NPN — это электроны, а меньшинство — дырки.

  • Ток, протекающий внутри базового вывода транзистора, формируется электронами, текущими от вывода эмиттера к выводу коллектора.
  • В транзисторе слабый ток на выводе базы может привести к протеканию большого тока от эмиттера к коллектору.
  • NPN-транзисторы в настоящее время являются наиболее широко используемыми биполярными транзисторами, поскольку в них подвижность электронов больше, чем подвижность дырок.

Подробнее: Разница между транзисторами NPN и PNP

2. Полевые транзисторы (FET)

Полевые транзисторы — это типы транзисторов, которые состоят из трех областей: затвор, исток , и слить. Полевые транзисторы — это управляемые напряжением биполярные транзисторы, которые отличаются от биполярных транзисторов. Напряжение, подаваемое на затвор транзистора, управляет током, протекающим от истока к стоку.

  • Полевые транзисторы имеют чрезвычайно высокие входные импедансы , варьирующиеся от нескольких мегаом (МОм) до очень высоких значений.
  • Из-за высокого входного импеданса на эти типы транзисторов поступает лишь небольшой ток. (Ток находится в обратной зависимости от значения сопротивления цепи в соответствии с Законом Ома .)
  • Ток очень мал, если импеданс высок.
  • В результате полевые транзисторы потребляют очень мало тока от источника питания цепи.
  • Полевые транзисторы можно дополнительно классифицировать как JFET и MOSFET.

Полевые транзисторы (FET)

i) JFET транзисторы (JFET)

Это тип транзисторов FET, которые используются в резисторах 39, 901, усилителях и другие приложения. Этот гаджет управляется напряжением и не требует смещения тока. Ток, протекающий между истоком и стоком полевого транзистора JFET, управляется напряжением, подаваемым между затвором и клеммами истока.

  • В полевом транзисторе с переходом (JFET) отсутствуют PN-переходы в пользу узкого участка полупроводникового материала с высоким сопротивлением, создающего канал из кремния N-типа или P-типа с двумя омическими электрическими соединениями на каждом конце.
  • Обычно его называют Истоком и Сливом.
  • N-канальный JFET и P-канальный JFET представляют собой две основные конфигурации полевого транзистора с переходом.
ii) Металлооксидно-полупроводниковый полевой транзистор (MOSFET)

МОП-транзистор — наиболее часто используемый транзистор. Как следует из названия, он включает в себя терминал металлических ворот. Исток, сток, затвор и подложка или корпус — это четыре вывода этого транзистора.

МОП-транзисторы

  • МОП-транзисторы имеют различные преимущества по сравнению с биполярными и JFET-транзисторами, включая высокое входное (i/p) сопротивление и низкое выходное (o/p) сопротивление.
  • МОП-транзисторы в основном используются в маломощных схемах, особенно в микросхемах.
  • Эти транзисторы бывают двух видов: истощение и улучшение.
  • Эти типы подразделяются на P-канальные и N-канальные.

Другие типы транзисторов

[Нажмите здесь, чтобы задать пример вопросов]

Некоторые другие основные типы транзисторов: область тока коллектора/напряжения коллектор-эмиттер. Он работает в лавинном режиме, когда большие токи меняются менее чем за наносекунды 9.0129 .

  • Диффузионный транзистор: Это тип BJT, который создается путем диффузии легирующей примеси в полупроводниковую подложку. Пример: диффузионный транзистор из микросплава компании Philco.
  • Транзистор Дарлингтона: Это транзисторная схема с двумя отдельными транзисторами. Он более способен набирать ток. Его схема также может содержаться в интегральной схеме.
  • Транзистор Шоттки: Транзисторы Шоттки представляют собой типы транзисторов, которые были интегрированы с Диод Шоттки . При использовании диода такого типа предотвращается насыщение транзисторов из-за отвода высокого входного тока.
  • Биполярный транзистор с гетеропереходом: Эти транзисторы используются в высокочастотных аналоговых или цифровых микроволнах. Он имеет более высокую скорость переключения и более высокий литографический выход. Имеют более высокую эффективность эмиттерной инжекции.
  • Транзистор с несколькими эмиттерами: Эмиттеры используются с входными сигналами в этих транзисторах. Он имеет возможность уменьшить время переключения и энергопотребление.
  • Подробнее:  Конструкция и использование светодиодов


    Применение транзисторов

    [Нажмите здесь, чтобы просмотреть примеры вопросов]

    Транзисторы обычно используются для коммутации или как для усиления, так и для коммутации.

    • Фототранзисторы представляют собой тип транзисторов, которые создают ток в ответ на количество света, отражаемого на них.
    • Когда через базу проходит небольшое количество тока, биполярные переходные транзисторы (BJT) могут генерировать более высокий ток от эмиттера к коллектору.
    • Полевые транзисторы (FET) работают как устройства, управляемые напряжением.
    • В ВЧ-смесителях/умножителях, ВЧ-усилителях и других устройствах, где два управляемых затвора должны быть соединены последовательно, используются МОП-транзисторы с двойным затвором.

    Что следует помнить

    • Транзистор — это электронное устройство, состоящее из полупроводников p-типа и n-типа.
    • Он контролирует прохождение тока или напряжения и служит кнопкой или воротами для электронных сигналов.
    • Биполярные переходные транзисторы состоят из трех частей: базы, коллектора и эмиттера.
      • В транзисторах PNP два полупроводниковых материала p-типа разделены тонким слоем полупроводника n-типа.
      • В транзисторах NPN два полупроводниковых материала n-типа разделены тонким слоем полупроводника p-типа.
    • Полевые транзисторы — это транзисторы, состоящие из трех областей: затвор, исток и сток.
      • JFET используются в резисторах, усилителях, переключателях и других устройствах.
      • МОП-транзистор — наиболее часто используемый транзистор. Исток, сток, затвор и подложка или корпус — это четыре вывода этого транзистора.

    Вопросы предыдущего года

    1. Какой логический элемент представляет следующая таблица истинности?… [JKCET 2012]
    2. ]
    3. Атомы примеси, которыми следует легировать чистый кремний, чтобы получить…  [JEE Advanced 1988]
    4. На следующем рисунке показана схема логического элемента с двумя входами A и B…  [NEET 2010]
    5. Твердые тела которые имеют отрицательный температурный коэффициент сопротивления… [NEET 2020]
    6. Устройство, которое может действовать как полная электронная схема… [NEET 2010]
    7. В собственном полупроводнике при комнатной температуре число электронов… [MET 2012]
    8. Чистый кремний представляет собой… [JIPMER 2018]
    9. Период полураспада радиоактивного радона составляет 3,8 дня… [JEE Advanced 1981]
    10. светоизлучающий диод ) имеет падение напряжения 2 В… [BCECE 2008]
    11. Необходимая минимальная разность потенциалов между базой и эмиттером… [BCECE 2008]
    12. Для определения интенсивности света мы используем… [BCECE 2010]
    13. 9 Коэффициент усиления по току транзистора в режиме с общим эмиттером равен 49…  [BCECE 2003]

    14. Образец чистого германия легирован алюминием. Численная плотность акцепторных атомов составляет…  [GUJCET 2008]
    15. LCD означает…  [COMEDK UGET 2012]
    16. Для транзистора коэффициент тока определяется как отношение…
    17. В конфигурации с общим эмиттером транзистор имеет бета = 50…
    18. Выход Y логической схемы, показанной на рисунке, лучше всего представить как…
    19. Чтобы получить вентиль ИЛИ из вентиля И-НЕ, нам нужно…

    Примеры вопросов

    транзисторный усилитель (1 балл)
    Одинаков для всех частот.
    устойчив в диапазоне промежуточных частот и высок для высоких и низких частот.
    имеет низкую частоту на верхнем конце и постоянную частоту в середине.
    Ничего из вышеперечисленного.

    Ответ: Вариант (c) является правильным ответом.

    Коэффициент усиления по напряжению транзисторного усилителя постоянен только в полосе средних частот. Как на высоких, так и на низких частотах он довольно низкий.

    Вопрос: Слегка повышен уровень легирования базы транзистора. Как это повлияет на (а) ток коллектора и (б) ток базы? (Вся Индия 2011, 2 балла)

    Ответ: Если немного повысить уровень легирования в базе транзистора, то-

    (а) Коллекторный ток упадет.

    (b) Базовый ток возрастет.

    Вопрос: Каково назначение базовой области транзистора? Почему эта часть транзистора утончена и слегка легирована? (Вся Индия, 2006 г., 2 балла)

    Ответ: Ток, идущий в область коллектора, контролируется областью базы. Эта область узкая и слаболегированная, так что большинство носителей заряда движется с током. Он передает 95% тока эмиттера на коллектор.

    Вопрос: Коэффициент усиления по переменному току транзистора равен 120. Как изменится ток коллектора в транзисторе с током базы 100 мкА? (All India 2006, 2 Marks)

    Ans: Given that- β = 120 , Δ I B = 100μA 

    Current gain 

    β =Δ I C /Δ I B

    когда V CE = константа

    120= ΔI C /100 мкА

    ⇒ Δl C = 120 × 100 мкА = 12 мА

    Вопрос: Как вы объясните усиление транзистора по напряжению? (2 балла)

    Ответ: Коэффициент усиления транзистора по напряжению определяется как отношение усиленного выходного сигнала к входному. Другими словами, отношение входного тока к выходному всегда является усилением напряжения в транзисторе.

    Вопрос: Каково основное назначение транзистора? (2 балла)

    Ответ: Транзистор – это твердотельный полупроводниковый прибор, который выполняет множество задач, включая обнаружение, выпрямление, усиление, переключение, стабилизацию напряжения, модуляцию сигнала и т. д. Транзистор может управлять выходным током в зависимости от входного напряжения, потому что это переключатель переменного тока.

    Запрос: Определите термины ниже
    Входной сопротивление R I
    Устойчивость к выходу R 0 . (All India 2011, 3 балла)

    Ответ: (a) Когда напряжение коллектор-эмиттер поддерживается постоянным, входное сопротивление ri определяется как отношение незначительных изменений напряжения база-эмиттер к соответствующему небольшому изменению в базовом токе.

    r i = ΔV EB / ΔI B , когда V CE = постоянная

    (b) Когда ток базы остается постоянным, выходное сопротивление равно отношению изменения напряжения коллектор-эмиттер V CE на эквивалентное изменение тока коллектора I C .

    r выход = ΔV CE / ΔI C

    когда I B = константа

    (c) Когда напряжение коллектор-эмиттер поддерживается постоянным, коэффициент усиления тока транзистора в конфигурации CE равен отношение небольшого изменения тока коллектора к небольшому изменению тока базы.

    β = Δ I C / Δ I B

     когда V CE = константа

    Вопросы: Опишите значение активности транзистора. (3 балла)

    Ответ: Транзистор — это полупроводниковое устройство, которое управляет, усиливает и генерирует электрические импульсы. Ни одна из этих операций не может быть выполнена без использования транзистора.

    Внутри транзистора находятся миллионы активных компонентов интегральной схемы. Их называют микрочипами, потому что они выполняют широкий спектр функций.

    Вопросы: Опишите три компонента транзистора. (3 балла)

    Ответ: Эмиттер, база и коллектор — это три части транзистора.

    1. Эмиттер находится на левой стороне транзистора. Он имеет большое количество легирования и имеет средний размер.
    2. Между эмиттером и коллектором находится база. Он тонкий и слегка легированный.
    3. Коллектор расположен с правой стороны транзистора. Коллектор больше, чем эмиттер, и слегка легирован.

    Вопрос: Транзистор — это устройство, на которое влияет температура. Оправдывать. (3 балла)

    Ответ: Свободные электроны и дырки являются носителями заряда в транзисторах и отвечают за ток как в транзисторе, так и во внешней цепи. По мере повышения температуры разрушается больше ковалентных связей в полупроводниковом материале транзистора, что приводит к увеличению количества свободных электронов и дырок. В результате транзистор и внешняя цепь потребляют больше тока. Эффект может накапливаться со временем, вызывая чрезмерный нагрев и, в конечном итоге, необратимое повреждение структуры транзистора.

    Краткое и очень простое руководство по выбору транзистора

    Вы затрудняетесь с выбором транзистора для своего будущего проекта? Мысль о выборе правильного транзистора заставляет вас нервничать? Если да, то вы в правильном месте!

    В этом посте мы проведем вас через процесс выбора правильного транзистора в соответствии с вашим приложением. Планируете ли вы использовать транзистор в качестве переключателя или усилителя, у нас есть все необходимое!

    Прежде чем перейти к процессу выбора транзистора, давайте сначала разберемся, что такое транзистор. Существуют в основном два типа транзисторов — BJT (транзисторы с биполярным переходом) и FET (транзисторы с полевым эффектом). Транзисторы служат либо для усиления, либо для переключения в большинстве электронных схем. Напряжения, подаваемые на его выводы, определяют режим работы транзистора.

    Транзисторы состоят из двух типов областей – p-типа и n-типа. Эти области создаются путем добавления в полупроводник примесей (обычно кремния), и этот процесс называется легированием. Для формирования области p-типа в качестве легирующего материала используется бор. Поскольку бор имеет три электрона на внешней оболочке, он соединяется с тремя электронами кремния, оставляя «дырку» вместо четвертого электрона. Так формируются дырки, производящие положительный заряд, поэтому эта область называется областью «р-типа».

    Точно так же для формирования области n-типа используется фосфор (имеющий пять валентных электронов). Четыре его электрона спариваются с четырьмя электронами кремния, и один электрон остается свободным для перемещения. Это создает общий отрицательный заряд, поэтому область называется областью «n-типа».

    Биполярный транзистор представляет собой полупроводниковый прибор, состоящий из двух p-n переходов, соединенных встречно-параллельно. Он может иметь два типа конфигураций – PNP или NPN, в зависимости от концентрации легирования. Обычно кремний используется в качестве подложки внутри биполярного транзистора и легируется в соответствии с требованиями по напряжению и току. BJT имеет три вывода — базу, эмиттер и коллектор. Если это PNP-транзистор, вывод базы подключается к области n-типа, а выводы коллектора и эмиттера подключаются к каждой из двух областей p-типа.

    Полевые транзисторы также имеют три контакта, как и биполярные транзисторы, но они изготавливаются с использованием только одного типа материала в качестве основной подложки, то есть либо p-типа, либо n-типа. Три терминала называются затвором, стоком и истоком. Затвор подключен к основной подложке, а исток и сток подключены к сильно легированным областям p- или n-типа.

    При работе в качестве усилителя транзистор преобразует малый входной ток в большой выходной ток, давая на выходе усиленный ток. При работе в качестве переключателя транзистор принимает небольшой ток в качестве входа и использует его для управления большим током в другом месте, поэтому меньший входной ток включает больший ток.

    Чтобы понять, как протекает ток через транзистор, рассмотрим два p-n перехода, соединенных встречно-параллельно. Основными носителями в областях n-типа являются электроны, а основными носителями в области p-типа являются дырки. Учитывая, что у нас есть NPN-транзистор, и мы прикладываем отрицательное напряжение к области n-типа (эмиттеру), электроны утекают от отрицательного напряжения в область p-типа (базу). Мы понимаем, что область эмиттер-база смещена в прямом направлении.

    Электроны, попавшие в область р-типа, некоторые из них рекомбинируют с дырками, присутствующими в базе, в то время как другие продолжают течь к коллектору, образуя ток коллектора. Количество электронов, втекающих в область коллектора, можно варьировать, контролируя базу. Переход коллектор-база смещен в обратном направлении, поскольку на коллектор подается положительное напряжение.

    Теперь мы знаем, что транзисторы работают, когда электроны перетекают от эмиттера к коллектору через базу, и, варьируя концентрации легирования и приложенные напряжения на каждом из трех выводов, можно управлять режимом работы транзистора.

    Прежде чем подавать какое-либо напряжение на транзистор, убедитесь, что вы сверились с его спецификацией и выяснили, какая из его ветвей является базой, какая — эмиттером, а какая — коллектором. Как только вы разберетесь с этим, вы сможете подавать на него питание. Если вы подключите транзистор неправильно, есть вероятность, что вы получите сгоревший транзистор и запах гари!

    Обычно при подключении транзистора в качестве усилителя переход база-эмиттер смещен в прямом направлении, а область база-коллектор смещен в обратном направлении. Например, если вы используете NPN-транзистор, вы должны подключить положительный источник напряжения к области p-типа (базе), а отрицательный вывод — к эмиттеру, который состоит из материала n-типа. Это делает переход база-эмиттер смещенным в прямом направлении. Точно так же, чтобы сместить обратное смещение перехода коллектор-база, вы должны подать положительное напряжение на коллектор и отрицательное напряжение на базу. Входной сигнал усилителя подается через переход эмиттер-база, а выходной сигнал поступает с коллектора.

    При подключении транзистора в качестве переключателя обычная практика заключается в заземлении эмиттера и подаче сигнала переключения в качестве входа на базу. Выходная нагрузка подключена к коллектору, который транзистор будет включать и выключать с помощью сигнала, подаваемого на базу. Транзистор работает в областях «насыщения» и «отсечки», когда он включен и выключен соответственно.

    Вот некоторые из ключевых характеристик транзисторов, которые вы должны знать, прежде чем покупать транзистор для своего будущего проекта.

    Ток коллектора

    Максимальный ток коллектора для обычных транзисторов измеряется в миллиамперах, а для мощных транзисторов — в амперах. Максимальное значение тока коллектора, указанное в паспорте транзистора, не должно превышаться.

    Напряжение насыщения

    Чтобы транзистор работал в режиме насыщения, между коллектором и эмиттером должно быть приложено определенное напряжение. Вы можете легко найти это напряжение, указанное как V CE в техническом описании транзистора. Это напряжение должно присутствовать между коллектором и эмиттером, чтобы транзистор мог войти в режим насыщения.

    Напряжение пробоя

    Важными характеристиками транзисторов являются два напряжения пробоя – напряжение пробоя между коллектором и базой и напряжение пробоя между коллектором и эмиттером. Эти значения не должны превышаться во время работы, потому что избыточное напряжение может повредить ваш транзистор.

    Коэффициент усиления по току

    Другой важной характеристикой является коэффициент усиления по прямому току транзистора, сокращенно обозначаемый как β. Небольшой входной ток на базе используется для управления большим током на коллекторе. Ток в базе усиливается в соответствии со значением β.

    Эта характеристика используется в усилителях на основе транзисторов, которые обычно используются в радиочастотных схемах и других схемах усиления звука. Различные приложения требуют разного коэффициента усиления по току, поэтому важно проверять значение β при выборе транзистора.

    Материал

    Обычно транзисторы изготавливаются из кремния в качестве основной полупроводниковой подложки. Это связано с тем, что кремний обладает превосходными свойствами и обеспечивает напряжение перехода около 0,6 Вольт. Другие полупроводниковые материалы также используются для изготовления транзисторов, но они обладают другими свойствами и имеют другое напряжение перехода.

    Полярность

    Как объяснялось в предыдущих разделах, транзисторы могут быть PNP или NPN. Это влияет на полярность выходного напряжения. Обычно нам требуется положительное выходное напряжение, поэтому транзисторы NPN обычно используются во многих приложениях.

    Выбирая транзистор для своего проекта, вы должны быть уверены в напряжении источника, рассеиваемой мощности и рабочих токах, которые будут использоваться в проекте. Это позволит вам решить, какой транзистор выбрать, исходя из вышеперечисленных параметров — напряжения насыщения, напряжения пробоя, тока коллектора, коэффициента усиления по току. Вы можете найти эти параметры в руководстве производителя, которое прилагается к транзистору. Кроме того, вам нужно посмотреть, требуется ли вам положительная полярность на выходе или отрицательная, как описано выше.

    Убедитесь, что значения тока и напряжения не превышают максимальные значения, указанные изготовителем, иначе вы в конечном итоге разрушите свой транзистор.

    Как проверить транзистор? (с картинками)

    `;

    Т. Л. Чайлдри

    Проверить работоспособность транзистора можно, выполнив несколько простых процедур с помощью цифрового мультиметра. Большинство мультиметров цифрового типа оснащены функцией проверки диодов, которую можно использовать для проверки транзистора. Если транзистор уже подключен к печатной плате, перед тестированием его необходимо удалить с платы. Электронный транзистор может использоваться в цепи как усилитель или как переключатель. Независимо от области применения, процедура, используемая для проверки транзистора, одинакова, потому что все транзисторы в основном работают как два параллельных диода, которые имеют общий элемент.

    Прежде чем приступить к самой процедуре тестирования, вам необходимо определить тип тестируемого транзистора. Транзисторы, известные как положительно-отрицательно-положительные (PNP), имеют две входные клеммы и одну выходную клемму. Транзистор, который является отрицательно-положительно-отрицательным (NPN), будет иметь одну входную клемму и две выходные клеммы. Оба типа транзисторов имеют в общей сложности три вывода, которые известны как вывод базы, вывод коллектора и вывод эмиттера.

    Тип транзистора, а также расположение и идентификация его выводов обычно маркируются на внешней упаковке транзистора. Если тип транзистора не указан на упаковке, для его определения можно выполнить простой тест с помощью мультиметра. Определите ориентацию трех клемм транзистора и подключите положительный вывод мультиметра к базовой клемме транзистора. Затем подключите отрицательный вывод измерителя к клемме коллектора или эмиттера транзистора. Если мультиметр показывает показания выше нуля, то транзистор относится к типу NPN.

    После того, как вы определили тип транзистора и ориентацию его выводов, вы готовы приступить к самой процедуре тестирования. Чтобы проверить работоспособность транзистора, вам нужно будет повернуть шкалу мультиметра на настройку диода. Затем подключите положительный провод мультиметра к базовой клемме транзистора. Затем вы должны прикоснуться отрицательным выводом мультиметра к клемме коллектора транзистора и проверить сопротивление. Затем прикоснитесь отрицательным проводом к клемме эмиттера и проверьте сопротивление. После того, как вы завершили эту процедуру, вам нужно будет снова выполнить полный тест с отрицательным выводом, подключенным к базовой клемме транзистора.

    Если транзистор исправен, показания сопротивления в первой части теста будут очень низкими, а во второй части будут очень высокими. Если транзистор относится к типу PNP, вам нужно будет выполнить первую часть теста с отрицательным выводом, подключенным к базовой клемме, а положительный вывод будет подключен во время второй части.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *