Как отремонтировать светодиодную лампу 220В в домашних условиях. Какие инструменты понадобятся для ремонта LED лампы. Как диагностировать и устранить неисправности в светодиодных лампах. Как восстановить работоспособность драйвера LED лампы.
Конструкция современных светодиодных ламп 220В
Современные светодиодные лампы на 220В состоят из нескольких основных компонентов:
- Светодиодная матрица или филаменты — источник света
- Драйвер (блок питания) — преобразует переменное напряжение 220В в постоянное для питания светодиодов
- Радиатор — отводит тепло от светодиодов
- Корпус — защищает внутренние компоненты
- Цоколь — для подключения к патрону
Светодиодная матрица обычно состоит из нескольких десятков светодиодов, соединенных последовательно или параллельно-последовательно. В филаментных лампах используются светодиодные нити.
Основные причины выхода из строя LED ламп 220В
Наиболее частые причины поломки светодиодных ламп:
- Выход из строя драйвера из-за перегрева или скачков напряжения
- Перегорание одного или нескольких светодиодов в матрице
- Нарушение пайки контактов
- Окисление контактов цоколя
- Механические повреждения корпуса или рассеивателя
В большинстве случаев ремонт светодиодной лампы 220В сводится к замене неисправного драйвера или перепайке отдельных светодиодов.
Необходимые инструменты для ремонта LED ламп
Для ремонта светодиодных ламп 220В своими руками потребуются следующие инструменты и материалы:
- Мультиметр
- Паяльник с регулировкой температуры
- Припой и флюс
- Пинцет
- Отвертки
- Бокорезы
- Нож для зачистки проводов
- Термоусадочная трубка
- Термопаста
Также желательно иметь запасные светодиоды и драйверы для замены неисправных компонентов.
Пошаговая инструкция по ремонту светодиодной лампы 220В
Шаг 1: Диагностика неисправности
Перед разборкой лампы необходимо определить характер неисправности:
- Лампа не включается совсем — вероятнее всего, вышел из строя драйвер
- Часть светодиодов не горит — проблема в светодиодной матрице
- Лампа мерцает — неисправность драйвера или плохой контакт
Шаг 2: Разборка корпуса лампы
Аккуратно разберите корпус лампы, соблюдая следующие рекомендации:
- Отключите лампу от сети и дайте ей остыть
- Найдите стыки частей корпуса
- Используйте тонкий нож или отвертку, чтобы разъединить части
- Не прикладывайте чрезмерных усилий, чтобы не повредить компоненты
Шаг 3: Проверка драйвера
Выполните диагностику драйвера светодиодной лампы:
- Осмотрите плату на наличие видимых повреждений
- Проверьте целостность дорожек и качество пайки
- Измерьте выходное напряжение драйвера мультиметром
- Проверьте исправность электролитических конденсаторов
Шаг 4: Диагностика светодиодной матрицы
Проверьте исправность светодиодов в матрице:
- Визуально осмотрите светодиоды на наличие потемнений
- Прозвоните каждый светодиод мультиметром
- Измерьте прямое падение напряжения на светодиодах
- Выявите неисправные элементы
Шаг 5: Ремонт или замена неисправных компонентов
В зависимости от выявленной неисправности выполните ремонт:
- Замените вышедший из строя драйвер на аналогичный
- Перепаяйте неисправные светодиоды
- Восстановите нарушенные контакты
- Замените окисленный цоколь
Особенности ремонта филаментных LED ламп
Филаментные светодиодные лампы имеют некоторые отличия в конструкции:
- Светодиоды размещены на тонких нитях-филаментах
- Колба заполнена инертным газом для лучшего теплоотвода
- Драйвер расположен в цоколе лампы
При ремонте филаментных ламп следует соблюдать осторожность, чтобы не повредить хрупкие нити. Замена отдельных светодиодов на филаментах затруднительна, поэтому обычно меняется вся нить целиком.
Восстановление работоспособности драйвера LED лампы
Если причина неисправности в драйвере, попробуйте выполнить его ремонт:
- Замените вздувшиеся электролитические конденсаторы
- Проверьте и при необходимости замените диоды и транзисторы
- Восстановите поврежденные дорожки на плате
- Замените сгоревшие резисторы
Если ремонт драйвера невозможен, замените его на аналогичный по характеристикам.
Профилактика и увеличение срока службы светодиодных ламп
Чтобы продлить срок службы LED ламп, соблюдайте следующие рекомендации:
- Не превышайте допустимую мощность и напряжение
- Обеспечьте хорошее охлаждение лампы
- Избегайте частых включений/выключений
- Используйте стабилизаторы напряжения
- Периодически очищайте лампу от пыли
Своевременная профилактика поможет существенно увеличить ресурс светодиодных ламп.
Ремонт светодиодных ламп 220 В за 4 шага
Современные Led светильники прочно входят в наш быт, позволяют значительно снижать потребление электроэнергии, но, в силу разных обстоятельств, периодически выходят из строя.
Поэтому простой ремонт светодиодных ламп 220 В своими руками в домашних условиях является актуальной задачей для любого умельца.
В статье я показываю поэтапный порядок его выполнения за 4 шага, доступных мастеру с начальными навыками электрика.
Содержание статьи
Чтобы отремонтировать неисправный Led светильник домашнему мастеру потребуется:
- оценить его конструкцию;
- выявить неисправность;
- заменить отказавшую деталь.
Эта простая последовательность действий служит базой последующего описания.
Как конструкция светодиодной лампы 220 В влияет на ее ремонт: 3 важных особенности
Здесь важно четко понимать процессы, сопровождающие преобразование электрической энергии в световой поток, которые заложены в устройство светильника.
2 технологии создания светового потока источником света: 2 подхода к ремонту Led ламп
Все лед светильники на 220 В условно можно разделить на 2 класса, использующие:
- обычные твердотельные кристаллы на светодиодах DIP, SMD или COB типа;
- светоизлучающие нитевидные элементы типа «Filament», выполненные из большого количества последовательных цепочек светодиодных кристаллов.
Они обладают общими конструкторскими решениями:
- выполнены под единый стандартизированный тип цоколя, обычно Е 27 или Е14;
- имеют однотипную систему подключения полупроводниковых переходов к сети 220 вольт через упрощенный блок питания или драйвер.
Однако филаментная лампа имеет более сложное устройство:
- у нее цепочки светодиодных кристаллов собраны единой нитью, закрытой в стеклянной колбе с покрытием люминофора, корректирующим качество светодиодного освещения;
- филаментные нити так сориентированы в пространстве, что свет от источника излучается равномерно во все стороны, как у лампочки Ильича;
- вся осветительная конструкция помещена в герметично закрытый стеклянный корпус и заполнена гелием, улучшающим отвод тепла от полупроводниковых элементов;
- мощность одной нити подобрана так, что составляет 1 ватт. Это позволяет визуально оценивать потребление филаментного источника по их количеству.
Ремонт лампы Filament связан с вскрытием корпуса и нарушением его герметичности. Это ухудшает дизайнерский замысел, влияет на интерьер, несколько изменяет теплообмен, что незначительно сказывается на ресурсе отремонтированного светильника.
По этому вопросу существует другое техническое обоснование.
Альтернативное мнение: лампа Филамент, включенная без колбы, обеспечивает работу светодиодов с открытым внутренним пространством, обеспечивающим их охлаждение за счет естественной циркуляции воздуха.
Этот прием вполне можно использовать для источников света, расположенных в сухих помещениях, недоступных для случайного прикосновения человека. Впрочем, выбор вы можете сделать самостоятельно.
Когда какой-то кристалл нити филамента повреждается, то вся цепочка выходит из строя. Ее надо полностью заменять. Других вариантов ремонта нет, как и запчастей в продаже. Поэтому такие дефектные лампочки вначале накапливают, а затем собирают одну исправную из нескольких поврежденных.
С приведенной особенностью ремонта лед ламп с филаментовыми нитями приходится мириться. У домашнего мастера нет технических возможностей обойти эту проблему.
Обычные лампочки на SMD светодиодах допускают разборку корпуса и последующий ремонт любых элементов с полным восстановлением оптических и электрических характеристик завода изготовителя без потери качества.
Почему при ремонте Led светильника 220 В необходимо учитывать температурные условия его эксплуатации
Обратите внимание на то, что нагрев полупроводниковых переходов развивается комплексным действием трех факторов:
- протеканием тока через цепочки светодиодов;
- нагревом драйвера;
- условиями внешней среды, когда светильник расположен в ограниченном пространстве с ухудшенными условиями теплоотвода.
Обычно последние два компонента являются основными причинами возникновения неисправностей. Их обязательно учтите.
Возрастание значения прямого тока через любой светодиод не только повышает световой поток источника, но и увеличивает тепловые потери, которые постепенно отклоняют реальную характеристику от идеальной прямой линии, ухудшая ее.
Нагрев же конструкции полупроводникового перехода значительно снижает общий ресурс светильника.
Чтобы предотвратить повышенный нагрев полупроводников, производители добавляют в конструкцию внутреннего теплоотвода внешние радиаторы охлаждения, которые дополнительно забирают повышенную температуру и рассеивают ее в атмосферу.
При ремонте поврежденных лед светильников необходимо обращать внимание на условия работы, которым они подвергались при эксплуатации. Вполне вероятно, что их учет позволит создать более совершенную конструкцию или продлить ресурс восстановленного источника.
Например, можно усилить внешний радиатор, сделать ему принудительную или естественную вентиляцию, что актуально для led ламп, встроенных в подвесные или натяжные потолки.
Ведь когда комфортная для человека температура на уровне пола достигает порядка +20 градусов, то в верхнем замкнутом пространстве она уже может вырасти до +30.
Если же эту лампочку поместить под навесом на улице, то зимний морозец в -30 на открытом воздухе сам создаст идеальные условия для ее охлаждения.
Учет возможного предела температурного нагрева и необходимости его ограничения — важное условие выполнения качественного ремонта светодиодных ламп.
Что надо знать про конструкцию драйвера для светодиодной и филаментной лампы 220 вольт при ее ремонте
Основная трудность, с которой сталкиваются производители — это ограниченный объем места, в котором необходимо вместить драйвер или блок питания светодиодов.
По этой причине они вынуждены:
- применять упрощенные малогабаритные блоки питания типа ASD JCDR 5,5W GUS.3, собранные на отдельной плате;
- или создавать дополнительную пластиковую вставку внутри колбы около цоколя и монтировать в этом увеличенном пространстве более совершенный драйвер. Один из вариантов его исполнения показываю ниже.
Как видите, схема драйвера, встроенного внутрь лед лампы 220 В, может значительно отличаться у каждой модели. Самый простой вариант имеет в своем составе:
- резистивно-емкостной делитель напряжения, который, кстати, выделяет дополнительное тепло при прохождении тока по активному сопротивлению;
- диодный мост;
- сглаживающий пульсации напряжения конденсатор;
- токоограничивающий резистор.
Это самая проблемная схема для Led ламп не только потому, что она нагревает полупроводниковые переходы, но еще и не обеспечивает стабилизацию тока в них.
А они очень чувствительны даже к незначительным колебаниям напряжения.
Поэтому качественный драйвер создается со встроенной схемой стабилизации тока.
Если же при ремонте возникает мысль упростить модуль питания за счет перехода от габаритной и дорогой конструкции к дешевой, то следует понимать, что полупроводники сразу станут работать в экстремальном режиме и долго не проживут.
Как выполнить ремонт светодиодных ламп 220 В своими руками за 5 шагов: подробная инструкция в картинках
Для работы потребуется не хитрый инструмент домашнего мастера:
- нож электрика, который можно заменить даже канцелярским;
- паяльник электрический с набором для пайки;
- мультиметр цифровой или даже старенький тестер;
- небольшой набор электронных компонентов. Их вполне можно взять из других перегоревших led ламп аналогичной конструкции.
Шаг №1. Особенности вскрытия корпуса и внутреннего осмотра схемы
Любая лампочка имеет защитный кожух, изолирующий электрические детали от внешней среды, предотвращающий их повреждение. Для ремонта его необходимо вскрыть без разрушения, чтобы иметь возможность восстановления работоспособности.
Корпуса светодиодных ламп чаще всего выполняются из пластика. Хотя встречается стеклянная колба, что характерно не только для ламп Филамент. Тонкое стекло хрупкое, а в разбитом состоянии оно очень опасно: можно порезаться.
Как разобрать колбу из пластика
Вариантов сборки пластиковой конструкции довольно много. Корпус собирается из нескольких съемных частей и может крепиться:
- защелками;
- клеем типа силиконового;
- комбинированным способом.
Перед началом разборки его просто надо внимательно осмотреть и прощупать руками места стыковок. Мне рекомендовали их прогревать феном: клей разрушается, позволяя легко отсоединять детали.
Но я этот способ не стал проверять. Допускаю, что нагрев может повредить некачественный пластик. Тогда корпус будет безвозвратно поврежден.
Места стыков следует аккуратно прорезать тонким лезвием острого ножа. Хорошо подходит обычный канцелярский, предназначенный для реза бумаги.
Располагать его надо по линии стыка. Избегать сильных нажатий. Пальцы держать в стороне.
После нескольких прорезов рекомендую осматривать состояние стыка.
Металлическую деталь с цоколя можно снять с помощью любого электрического патрона. Лампа вкручивается в него, а затем движениями рук вытягивается металлическая вкладка из пластикового основания.
Однако надо учитывать, что там припаяны провода, подающие напряжение питания 220 вольт к драйверу питания.
Удаленный второй контакт лампочки также можно подклинить ножом и отсоединить колпачок. На нем тоже с обратной стороны припаян провод.
Вместо ножа удобно использовать инструмент стоматолога или сделать острый крючок. Им процарапывают стык склеенных деталей на небольшую глубину порядка двух миллиметров. Затем царапину углубляют по кругу несколько раз.
Периодически проверяют возможность разъединения деталей руками.
Обращайте внимание на способ крепления электронной платы с драйвером питания и светодиодами. Она тоже может быть приклеена силиконовым клеем, который будет мешать дальнейшей разборке. Его тоже следует удалить.
Как разобрать корпус из стекла
Попытки откручивания цоколя с помощью пассатиж, когда колба зафиксирована защитным покрытием в руке, обычно заканчиваются раздавливанием стекла и повреждением корпуса, который уже не подлежит восстановлению.
Относительно аккуратно можно срезать основание цоколя около пластиковой вставки фрезой бормашинки. Но, необходимо принять меры безопасности от получения травм стеклянной пылью.
Этот метод эффективнее, чем традиционный молоток или обмотка колбы толстой ниткой с керосином, последующим поджиганием, а затем резким охлаждением водой: стекло может лопнуть не в запланированном направлении.
Фреза позволяет сделать ровный срез, который обеспечит склейку колбы после ремонта.
Шаг №2. Как проверить целостность светодиодной сборки
По старой привычке некоторые мастера путают обычные светодиоды DIP типа и модули SMD.
Разница в том, что для современных осветительных приборов выпускаются готовые матрицы с несколькими полупроводниковыми кристаллами, чаще всего тремя и одним общим токоограничивающим резистором, а в светодиодных лентах они подключаются индивидуально.
Старые светодиоды DIP типа достаточно прозванивать мультиметром в режиме омметра или прозвонки.
Проверка SMD матрицы
Схема включения такого SMD модуля тоже имеет два внешних контакта.
К внутренним точкам коммутации доступа нет. Если пытаться зажечь эти светодиоды от цифрового мультиметра, то его выходного напряжения 2-3 вольта просто не хватит для проведения качественной проверки.
Поэтому такую работу выполняют батарейкой «Крона» или блоком питания с выходным напряжением 9-12 В.
Касаться выводов каждого SMD проводами от батарейки необходимо кратковременно, только для выявления момента начала вспышки: ток свечения ничем не контролируется. Не забывайте проверять полярность подключения.
Неисправный SMD модуль нужно заменить другим, который можно взять с аналогичной дефектной лампы, выбранной для разборки.
В сети интернет встречаются рекомендации по шунтированию выводов перегоревшего светодиода. Тогда свечение восстанавливается. Но, общее сопротивление цепочки полупроводниковых переходов при этом уменьшается, что увеличивает нагрузку на драйвер и ток через все полупроводники.
Когда он не справляется с возросшей мощностью, то повышенный ток снижает ресурс всей схемы. Эту особенность надо учитывать. Поэтому рекомендую избегать таких ситуаций или впаивать простые диоды с похожими электрическими характеристиками.
Светодиодная матрица сборки по технологии COB
Здесь используется принцип размещения внутри тела одной матрицы на объединенной подложке довольно большого числа полупроводниковых кристаллов. Их сверху покрывают общим слоем люминофора, улучшающим оптические характеристики.
Проверку исправности светодиодов типа COB лучше проводить питанием от стандартного драйвера.
Аналогичным образом проверяют исправность филаментных нитей ламп Filament.
Шаг №3. Оценка технического состояния и ремонт драйвера питания
Стабильное свечение SMD модулей создает только хорошо стабилизированный ток без пульсаций. Его сглаживают на всех блоках питания полярные электролитические конденсаторы.
Они имеют один существенный недостаток: при нагреве и длительной эксплуатации электролит внутри них высыхает, что приводит к потере емкости, нарушению режима работы.
При внутреннем осмотре схемы всегда визуально оценивайте строгость геометрической формы электролитов. Показываю такой дефект конденсатора на фотографии импульсного блока питания.
Малейшие отклонения от идеального состояния свидетельствуют о его неисправностях.
У проблемных драйверов рекомендую всегда замерять емкость сглаживающих конденсаторов цифровым мультиметром.
При наличии свободного места на корпусе электролит лучше заменить более емким. Тогда риск его будущего повреждения значительно снижается.
Резистор RC делителя напряжения тоже станет лучше работать с сопротивлением такого же номинала, но повышенной мощности — возникнет меньшее выделение тепла.
Выходные параметры блоков питания необходимо оценивать электрическими замерами на рабочем режиме под нагрузкой, а не на холостом ходу.
Проверка электрических характеристик драйвера питания, выполненного по безтрансформаторной схеме подключения, относится к опасным работам под напряжением. Заниматься ей должен только обученный персонал.
Драйверы с трансформаторами на вторичной стороне обмотки имеют менее опасное напряжение.
Нанесение тонкого ровного слоя термопасты между соприкасающимися составными частями радиатора охлаждения снижает нагрев, улучшает теплоотвод.
Шаг №4: Проверка оптических и электрических характеристик: о вреде пульсаций и перенапряжений
Самый вредный для здоровья параметр светодиодных ламп сети 220 вольт: пульсации света
Занимаясь ремонтом важно заботиться о конечной цели восстановления рабочих характеристик, учитывать влияние освещения на глаза человека, создавать наилучшие условия зрению.
Очень многие лед светильники, особенно бюджетных моделей, обладают вредными пульсациями, а то и мигают во включенном состоянии.
Проверить этот параметр в домашних условиях можно визуально или с помощью цифрового фотоаппарата, который сейчас встроен практически в каждый смартфон или мобильный телефон.
Вредные для глаза пульсации будут заметны. Для более точного их определения существуют специальные измерительные приборы.
Светодиодные лампы с излишними пульсациями после ремонта нельзя вводить в эксплуатацию. Их конструкцию необходимо дорабатывать за счет модернизации драйвера питания.
Как защитить светодиодную лампу от перенапряжений при аварийных режимах
Рекомендую обратить внимание на этот вопрос, ибо светодиоды очень чувствительны к повышению напряжения и могут быстро выйти из строя. Особенно актуально это требование для дешевых блоков питания.
Они просто не могут содержать все элементы, обеспечивающие качество работы импульсных блоков питания.
Снизить долю риска повреждения полупроводниковых переходов позволяет модульная защита, устанавливаемая в любом месте перед светильником.
Конденсатор, варистор и резистор — вот и все детали, которые потребуются для сборки такого модуля.
Заканчивая материал, подчеркиваю: прекрасно понимаю, что цена на светодиодные лампы сейчас уже не такая высокая, как раньше. Кому-то проще пойти в магазин, купить новую лампочку взамен сгоревшей и не мучиться с ремонтом.
Тем более, что филаментная лампа белорусского производства обладает хорошим качеством, светит равномерно во все стороны также, как с нитью накаливания, а по цене практически не отличается от Led ламп, продаваемых из Китая.
Однако всегда есть умельцы, желающие делать все самостоятельно. Я описал ремонт светодиодных ламп 220 В своими руками для тех людей, которые ищут информацию по этому вопросу и желают его выполнить.
Эту же тему хорошо излагает владелец видеоролика ElENBlog
Рекомендую его посмотреть и напоминаю, что у вас сейчас благоприятное время для того, чтобы задать вопрос или прокомментировать статью.
Ремонт светодиодной лампы на 220 вольт своими руками
Автор Alexey На чтение 6 мин Просмотров 2. 4к. Опубликовано Обновлено
Содержание
- Ремонт светодиодных ламп
- Поиск неисправных элементов светодиодной лампы
- Проверка светодиодов в сборке
- Ремонт светодиодной люстры
Светодиодные лампы на 220 вольт с точки зрения маркетинга считаются неразборными и не ремонтопригодными. Однако на самом деле такие лампы можно ремонтировать дома своими руками. Часто из нескольких перегоревших светодиодных ламп, можно собрать рабочую используя уцелевшие запчасти.
То же самое можно сказать о светодиодной люстре, снабженной пультом управления – ввиду сложности электронной схемы и множества компонентов, причина поломки может быть в мелких деталях, которые можно обнаружить и заменить, используя запчасти, извлеченные из других светильников.
Ремонт светодиодных ламп
Лампы, использующие светодиодное свечение, собраны из множества светодиодов в одну сборку. Для обеспечения нужного для светодиодов напряжения используется встроенный блок питания, часто называемый драйвером. Поэтому причины неполадок лампы могут быть как в самом драйвере светильника, так и в светодиодах сборки.
В дешевых моделях светодиодных ламп применяется блок питания без трансформатора, с токоограничивающими конденсаторами. Недостатком такой схемы является последовательное включение светодиодов в светодиодной сборке. Если в данной сборке перегорает один светодиод – все остальные источники света в лампе перестают работать.
Светодиоды HL1-HL27 включены последовательноНеобходимо вскрыть корпус светодиодного светильника – отсутствие трансформатора на драйвере укажет его тип. Поскольку в простом драйвере присутствует минимум деталей – диодный мост и несколько резисторов и конденсаторов, то диагностика схемы заключается в проверке элементов. Более сложные драйвера имеют трансформаторный или импульсный блок питания, поэтому более сложные в ремонте, так как требуют познаний в радиотехнике.
Часто резисторы драйвера светодиодной лампы не выдерживают нагрузки и перегорают из-за перегрева. Если на резисторе не сохранилось никаких меток, узнать его номинал можно из схемы данной лампы, или рассчитав сопротивление исходя из максимально допустимого тока светодиодной сборки. Для более сложных драйверов потребуется схема. Процесс разборки лед лампы и ее тестирование показано на видео:
Поиск неисправных элементов светодиодной лампы
Часто только поверхностный визуальный осмотр светодиодной сборки может указать на неисправность – на матрице светильника перегоревший светодиод будет значительно отличаться от остальных, демонстрируя характерные признаки воздействия электрической дуги – почернение, налет копоти и характерный запах.
Перегоревший светодиод видно невооруженным глазомЕсли подать напряжение на светильник и замкнуть перегоревший светодиод в последовательной матрице – остальные должны засветиться, при условии, что в матрице нет других неисправных компонентов. Следует помнить, что простые драйверы не имеют гальванической развязки с сетью, поэтому элементы матрицы пребывают под высоким напряжением относительно земли, что может привести к поражению при неосторожном касании открытых проводников светильника.
Если визуально перегоревший светодиод ничем не отличается от остальных, то определить разорванное звено цепи и отремонтировать светильник можно при помощи описанного выше замыкания выводов, осуществляемого поочередно на контактах каждого светодиода в последовательной сборке или при помощи проверки мультиметром. Пример ремонта бюджетного лед светильника с бестрансформаторным драйвером показан на видео:
youtube.com/embed/rT9diLr6Ccg?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»> Видео простого и быстрого ремонта светодиодной лампочкиЗамыкание на неисправном светодиоде возобновит цепь, но светодиоды будут светить чуть ярче, так как общее напряжение будет разделено на меньшее количество элементов. Поэтому перегоревший светодиод лучше заменить, или вместо него вставить резистор около 100 Ом, иначе при повышенном на каждом отдельном светодиоде напряжении вероятность выхода из строя данных элементов увеличивается.
Проверка светодиодов в сборке
Но, если в матрице светильника вышло из строя больше одного элемента, или драйвер имеет более сложную конструкцию и светодиоды подключены параллельно, то выявить их предыдущим способом замыкания не удастся, а работающий трансформаторный блок питания может сгореть. Поэтому каждый светодиод в сборке проверяют при помощи тестера как и обычный диод.
Для ремонта каждый светодиод в матрице необходимо прозвонитьВ последовательной сборке соседние светодиоды никак не влияют на точность показаний мультиметра, поэтому выпаивать элементы из платы светильника не нужно. При прямом подключении светодиод звонится как обычный диод, при этом возможно его слабое свечение. Выявив испорченные светодиоды их нужно заменить.
Данные светодиоды, как правило, также имеют структуру SMD, поэтому, выпаять их неповрежденными из матрицы неисправной светодиодной лампы при помощи обычного паяльника практически невозможно. Следует использовать специальное жало или сделать подходящую под размеры светодиода насадку. Процесс проверки светодиодов и их пайка при ремонте светодиодной лампы показан на видео:
Видео: Простая светодиодная лампа схема ремонтПри пайке светодиодов необходимо соблюдать полярность – для этого контактные площадки и контакты анода и катода имеют отличающиеся контуры. При пайке следует быть внимательным, чтобы контуры светодиода и контактных площадок совпадали.
Ремонт светодиодной люстры
В светодиодных люстрах, оборудованных пультом управления для изменения яркости свечения, применяются более сложные драйвера, имеющие блок питания и широтно-импульсную модуляцию (ШИМ). При получении сигнала от пульта изменяется скважность импульсов тока, направляемых через светодиоды различных цветов, от чего они выделяют меньшее количество световой энергии, которое воспринимается глазом как уменьшение яркости и создается красочная картина.
В данных светильниках, как и в светодиодной ленте, группы из нескольких последовательно включенных светодиодов могут подключаться параллельно к стабилизированному источнику постоянного напряжения. Поэтому неисправность одного светодиода повлечет отключение только одной группы, в которую он включен последовательно, а остальные сборки должны светиться.
Поиск неисправностей в драйверах лед ламп аналогичен диагностике электронных балластов люминесцентных светильников – последовательное исключение неисправных элементов. Но в сложных драйверах неисправность может заключаться в микросхеме микропроцессора, в модуле приема сигнала от пульта управления, в силовых ключах ключах или в остальных цепях.
Схема светодиодной люстры с дистанционным управлениемВначале нужно проверить наличие постоянного напряжения на выходе блока питания (на плате притронуться щупами к выводам сглаживающего электролитического конденсатора). Выходов напряжения может быть несколько – раздельно для питания силовых ключей и микросхем модулятора и модуля приема сигнала от пульта управления.
Проверить исправность ШИМ микросхемы после исключения остальных неполадок можно при помощи показаний осциллографа и имеющихся шаблонных осциллограмм при их сравнении. Модуль приема сигнала от пульта управления имеет свои микросхемы, и их проверка также осуществляется по осциллограммам в контрольных точках проверки.
В более простых светодиодных люстрах нет регулировки яркости, а смена режимов осуществляется беспроводным переключателем, управляемым пультом или выключателем. Ремонт такой люстры показан на видео:
https://www.youtube.com/watch?v=UAsOujchHkw
Нужно помнить, что вероятность успешного ремонта сложных электронных схем зависит от опыта и знаний мастера. Опытный мастер всегда вначале старается исключить самые легкие для ремонта причины отказа оборудования – например, проверит батарейки в пульте управления, измерит напряжение в патроне лампы, попытается визуально определить причину и так дальше, последовательно переходя к более сложным процедурам.
Лампа— Могу ли я использовать один светодиод от светодиодной лампочки на 220 В для ремонта моего светодиодного фонаря на 1,5 В?
спросил
Изменено 1 месяц назад
Просмотрено 365 раз
\$\начало группы\$ Обновление
: я не смог выпаять светодиоды из донорской платы, не разрушив их. Они просто отказываются отрываться. Это поднимает вопрос для меня:
Они там вообще впаяны или изготовлены как единое целое и их нельзя выпаивать?
Светодиод моего фонарика разбит, торец корпуса светодиода оголен, и он не светится.
Как следует из названия, будет ли возможно использовать один светодиод от светодиодной лампочки на 220 В для ремонта моего фонарика на 1,5 В?
Как мне узнать номинальное напряжение (или, точнее, мне нужно напряжение включения ниже 1,5 В (?) (может быть, нет? —> см. Edit2 ниже)) каждого светодиода внутри моей дополнительной светодиодной лампы 1 $ (9W в моем случае)?
Так как она очень дешевая, эта лампа не имеет полностью переключающего регулятора. Это просто «регулятор», который, вероятно, имеет огромные пульсации, которых мы не видим, потому что он скрытно отключается на частоте 60 Гц.
Вот фото схемы:
Там почти дюжина светодиодов, даже если один вынуть и заменить на короткозамкнутый, лампа будет немного перегружена, но работать будет (с приемлемые потери во время работы, в любом случае это было дешево.
)Редактировать: Этот метод не будет работать на светодиодном фонарике с питанием 1,5 В AA, потому что светодиодная лампа имеет светодиоды, которые включаются только при напряжении 4,5 В. Я проверил с моей 12-вольтовой шиной питания компьютера, и только 2 светодиода из этой серии загорелись. Я не мог подняться до 3. По какой-то причине пороговые напряжения очень высоки для этих типов дешевых осветительных светодиодов. Почему?
Edit2: Мой фонарик имеет простую схему, которая что-то делает с необработанными 1,5 В, прежде чем подавать их на светодиод. Кто-нибудь знает, что это делает? Интересно, сколько вольт было у моего светодиода в качестве порога, прежде чем он сломался.
- светодиод
- лампа
\$\конечная группа\$
18
\$\начало группы\$
https://lumileds.com/products/mid-power-leds/luxeon-2835-architectural/
Фонарик вашего папы будет иметь индуктор SMD, который имеет более темный цвет, чем колпачки или резисторы с колпачком, диодом и 2-транзисторным генератором, установленным в качестве стабилизатора напряжения.
У меня есть сотни сумок, полных сверхъярких белых 5-миллиметровых светодиодов для тех, у кого есть хорошее приложение.
\$\конечная группа\$
\$\начало группы\$
Краткий ответ: нет, светодиод в вашем фонарике работать не будет. Как заявляли другие, светодиодные чипы в бытовых светодиодных лампах имеют более высокое напряжение. Я считаю, что внутри у них есть несколько светодиодов на кристалле для повышения рабочего напряжения.
У создателя контента BigClive на Youtube есть несколько увлекательных разборок светодиодных ламп. Очень познавательно.
\$\конечная группа\$
\$\начало группы\$
В вашей светодиодной лампе несколько микросхем, но на каждой из этих микросхем есть несколько светодиодных переходов. Практически несколько светодиодов в одном корпусе. Поскольку есть несколько последовательных светодиодов, среднее прямое напряжение будет намного выше.
В вашем светодиодном фонарике используется стандартная повышающая схема или интегральная схема для повышения напряжения с 1,5 В до 3,х вольт, необходимых для освещения одного светодиода. Это похоже на похитителя джоулей.
Вы не сможете правильно использовать чипы от лампочки в фонарике, потому что целевые напряжения разные. Вы можете попробовать, схема в фонарике может быть достаточно мощной, но она может не работать без изменения значений компонентов схемы.
\$\конечная группа\$
\$\начало группы\$
Этот метод не будет работать на светодиодном фонарике с питанием 1,5 В AA, потому что светодиодная лампа имеет светодиоды, которые включаются только при напряжении 4,5 В. Я проверил с моей 12-вольтовой шиной питания компьютера, и только 2 светодиода из этой серии загорелись. Я не мог подняться до 3. По какой-то причине пороговые напряжения очень высоки для этих типов дешевых осветительных светодиодов. Почему?
Дешевые лампочки работают от выпрямленного сетевого напряжения, используя линейный регулятор в качестве драйвера. Поскольку линейный стабилизатор рассеивает тепло пропорционально падению напряжения на нем, большая часть напряжения должна падать на светодиодах. Поскольку у вас есть линейное напряжение 220 В RMS и 20 светодиодов, каждый из них должен падать примерно на 15 В при полной яркости.
Если бы они использовали обычные светодиоды на 3 В, потребовалось бы около 100 штук.
Редактировать вопрос на 2023 год:
Обновление: я не смог выпаять светодиоды из донорской платы, не разрушив их. Они просто отказываются отрываться… Тут у меня возникает вопрос: они там вообще впаяны или изготовлены в сборе, и их нельзя выпаять?
Они припаяны, как и любой другой компонент схемы, но это печатная плата с металлическим сердечником, поэтому вам нужно будет нагреть всю печатную плату, чтобы удалить диоды. Если у вас есть предварительный нагреватель, установите его на 150°C, а затем используйте горячий воздух при температуре 350°C или около того. Если у вас нет подогревателя, вы все равно можете сделать это горячим воздухом, но это займет много времени. В любом случае сначала извлеките конденсатор, чтобы он не лопнул (что может представлять опасность для глаз).
\$\конечная группа\$
1
\$\начало группы\$
Хорошей новостью является то, что все белые светодиоды работают при одинаковом напряжении, от 3,0 до 3,2 В. Однако максимальный номинальный ток будет варьироваться в зависимости от светодиодных чипов.
Если у вас есть навыки пайки, возможно, получится перенести светодиод из лампы.
\$\конечная группа\$
2
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.Какое напряжение используется для питания светодиодов внутри светодиодной лампочки?
спросил
Изменено 2 года, 2 месяца назад
Просмотрено 1к раз
\$\начало группы\$
Сегодня вскрыл светодиодную лампочку, а там из центра торчат два толстых провода для питания светодиодов.
Я знаю, что он будет отличаться по конструкции, но я не могу найти даже диапазон напряжений, поэтому и спрашиваю. Какое типичное напряжение используется для питания светодиодов в такой светодиодной лампочке?
\$\конечная группа\$
8
\$\начало группы\$
Вопрос
Какое типичное напряжение используется для питания светодиодов в такой светодиодной лампочке, как показано ниже?
Ответ
Короткий ответ
1W LED0041 Напряжение между анодом и катодом: от 3,0 до 3,5 В (обычное рабочее напряжение: 3,3 В) Ток через светодиод (светоизлучающий диод): от 300 мА до 350 мА (350 мА — абсолютный максимальный прямой ток, допустимый через светодиод) Срок службы: 100000 часов Подробный ответ (TL;DR) Каталожные номера (1) Разборка светодиодной лампы мощностью 6 Вт со схемой — Big Clive, 1 97 июля 20 г. 0005 (2) Учебное пособие по светодиодам (включая светодиод питания) — Nick Poole, Bboyho, SparkFun (3) Светодиодная лампа 1 Вт (3 В ~ 3,5 В, 300 мА ~ 350 мА) Учебное пособие — Компоненты 101 (4) Что это за штука про емкостные блоки питания для светодиодов? — Lee Teschler 2017jun14 (5) Зачем вообще нужны все эти драйверы для светодиодов? — Lee Teschler, 2017jun14 (6) WS3441 Неизолированный понижающий автономный светодиодный драйвер, техническое описание -WinSemi \$\конечная группа\$ \$\начало группы\$ Подсчитайте светодиоды (последовательно) и умножьте на ~2,8 В Я сделал это на днях, получил переменный источник питания, который может достигать 50 В и имеет ограничение по току. Подключите светодиоды к источнику питания, соблюдая правильную полярность (и убедитесь, что электроника удалена). Затем установите ограничение тока, скажем, 50 мА и установите высокое напряжение, например, 40 или 50 В. Затем продолжайте увеличивать ограничение тока и наблюдайте, как растет напряжение. Когда светодиоды станут такими же яркими, как в лампе, запишите напряжение, и это то, сколько они будут потреблять. Убедитесь, что вы не подаете слишком большое напряжение, потому что это может сжечь их. \$\конечная группа\$ 2 \$\начало группы\$ Белые светодиоды запускаются при напряжении 2,85 В и работают при напряжении около 3 В. Разработчик выбирает серии и, возможно, шунтирующие массивы для резервирования, чтобы они соответствовали генерируемому напряжению. Итак, если бы было 80 светодиодов, это почти цепочка на 240 В или две цепочки на 120 В. Большие контакты в центре предназначены для механической жесткости, а не для тока. \$\конечная группа\$ \$\начало группы\$ Обычно светодиоды POWER питаются постоянным током от светодиодного драйвера.