Что такое мегаомметр и для чего он нужен. Как правильно подключить и настроить прибор. Какие меры безопасности необходимо соблюдать при работе с мегаомметром. Как провести измерение сопротивления изоляции кабелей, электродвигателей и других устройств. Какие значения считаются нормальными.
Что такое мегаомметр и принцип его работы
Мегаомметр — это специальный измерительный прибор, предназначенный для определения сопротивления изоляции электрооборудования и кабельных линий. Он позволяет выявить дефекты и повреждения изоляции на ранней стадии, предотвратив аварийные ситуации.
Принцип работы мегаомметра основан на законе Ома: I = U / R. Прибор подает на тестируемый участок высокое напряжение (от 100 В до 2500 В), измеряет протекающий ток и рассчитывает сопротивление. Чем выше сопротивление, тем лучше состояние изоляции.
Основные типы мегаомметров:
- Электромеханические с ручным приводом генератора
- Электронные с питанием от батарей или сети
- Цифровые многофункциональные
Подготовка к работе с мегаомметром
Перед началом измерений необходимо выполнить ряд подготовительных действий:

- Изучить инструкцию по эксплуатации конкретной модели прибора
- Проверить исправность мегаомметра и измерительных проводов
- Обесточить тестируемую цепь или оборудование
- Отключить все потребители электроэнергии от проверяемой линии
- Подготовить переносное заземление для снятия остаточного заряда
Техника безопасности при работе с мегаомметром
Измерения мегаомметром связаны с применением высокого напряжения, поэтому крайне важно соблюдать правила электробезопасности:
- Работать только на полностью обесточенном оборудовании
- Использовать диэлектрические перчатки и инструмент с изолированными ручками
- Не прикасаться к оголенным проводникам и клеммам во время измерений
- После окончания измерений обязательно снимать остаточный заряд заземлением
- Не проводить измерения во влажных помещениях и при повышенной влажности
Порядок проведения измерений мегаомметром
Процесс измерения сопротивления изоляции включает следующие этапы:
- Подключение измерительных проводов к прибору и тестируемому объекту
- Выбор испытательного напряжения в соответствии с нормами
- Проведение измерения путем вращения ручки генератора или нажатия кнопки
- Фиксация показаний прибора после стабилизации
- Снятие остаточного заряда заземлением
- Повторение измерений для всех необходимых участков
Измерение сопротивления изоляции кабельных линий
При проверке кабелей измерения проводят между всеми жилами попарно, а также между каждой жилой и землей (экраном). Порядок работы следующий:

- Отключить кабель с обоих концов
- Очистить и просушить концы жил
- Подключить измерительные провода к жилам
- Провести измерения при выбранном испытательном напряжении
- Сравнить полученные значения с нормативными
Проверка изоляции электродвигателей мегаомметром
Для измерения сопротивления изоляции обмоток электродвигателей выполняют следующие действия:
- Отключают двигатель от сети питания
- Отсоединяют выводные концы обмоток от клеммной коробки
- Измеряют сопротивление между каждой обмоткой и корпусом двигателя
- Проверяют межвитковую изоляцию, измеряя сопротивление между обмотками
- Сравнивают результаты с паспортными данными двигателя
Нормативные значения сопротивления изоляции
Минимально допустимые значения сопротивления изоляции зависят от типа оборудования и рабочего напряжения. Некоторые ориентировочные нормы:
- Силовые и осветительные электропроводки — не менее 0,5 МОм
- Электродвигатели до 1000 В — не менее 0,5 МОм
- Трансформаторы — от 1 до 100 МОм в зависимости от мощности
- Кабельные линии 6-10 кВ — не менее 100 МОм
При получении значений ниже нормативных требуется дополнительная диагностика и ремонт оборудования.

Факторы, влияющие на результаты измерений
На показания мегаомметра могут оказывать влияние следующие факторы:
- Температура и влажность окружающей среды
- Загрязнение поверхности изоляции
- Наличие статического заряда
- Электромагнитные помехи
- Длина и сечение проверяемых кабелей
Для получения достоверных результатов важно учитывать эти факторы и при необходимости вносить поправки.
Обслуживание и поверка мегаомметров
Для обеспечения точности измерений мегаомметры требуют регулярного обслуживания:
- Периодическая калибровка и поверка в специализированных лабораториях
- Проверка состояния измерительных проводов и щупов
- Очистка корпуса и контактов от загрязнений
- Своевременная замена элементов питания
- Хранение прибора в сухом месте при допустимой температуре
Соблюдение этих правил позволит поддерживать мегаомметр в исправном состоянии и получать достоверные результаты измерений.
Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Принцип действия мегаомметра
Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.
В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами – «крокодилами».
Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.
Что это такое
Мегаомметр является специальным измерительным прибором, используемым профессиональными электриками, для того чтобы вычислять электросети и электроприборы. Отличается от омметра работой с высоким напряжением. Напряжение генерируется самостоятельным образом встроенным механическим генератором или батареей. Величина его равна 100-2500 вольт. Выпускается в двух вариантах — в виде индукторного и безындукторного аппарата.
Мегаомметр в помощь электрикам
Он является универсальным переносным электродвигательным устройством, который бывает как ручным, цифровым, аналоговым или электронным, так и механическим и высоковольтным.
Обратите внимание! Стоит указать, что первая модель была изобретена с ручкой. Сегодня самыми стильными являются электронные измерительные модели.
Полное понятие из области электродинамики
Устройство мегаомметра
Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.
Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» — земля, «Л» — линия и «Э» — экран.
Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».
Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.
Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.
Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.
Включение мультиметра в режим омметра и выбор пределов измерений
Управление мультиметром производится с помощью круглой поворотной ручки, вокруг которой расчерчена шкала, поделенная на секторы. Друг от друга они отделены линиями или просто надписи на них отличаются цветом. Чтобы включить мультиметр в режим омметра надо повернуть ручку в зону сектора, обозначенного значком «Ω» (омега). Цифры, которыми будет обозначаться режимы работы могут быть подписаны тремя способами:
- Ω, kΩ – x1, x10, x100, MΩ. Обычно такие обозначения используются на аналоговых устройствах, у которых то, что показывает стрелка еще надо переводить в привычные значения. Если шкала проградуирована, к примеру, от 1 до 10, то при включении каждого из режимов отображаемый результат надо домножать на указанный коэффициент.
- 200, 2000, 20k, 200k, 2000k. Такая запись применяется на электронных мультиметрах и показывает в каком диапазоне можно измерять сопротивление при установке переключателя в определенную позицию.
Приставка «k» обозначает префикс «кило», что в единой системе измерений соответствует цифре 1000. Если выставить мультиметр на 200k и он покажет цифру 186 – это значит, что сопротивление равно 186000 Ом.
- Ω – Если на корпусе омметра есть только такой значок, значит мультиметр способен автоматически определять диапазон. Циферблат такого устройства обычно может отображать не только цифры, но и буквы, к примеру, 15 kОм или 2 MОм.
У первых двух способов подписи шкалы есть прямая зависимость точности отображения результатов и их погрешности. Если сразу включить максимальный диапазон, то сопротивление порядка 100-200 Ом скорее всего будет показано неправильно.
Щупы прибора надо воткнуть в соответствующие гнезда – черный в «COM», а красный в то, возле которого среди других обозначений есть значок «Ω».
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Влияние наведенного напряжения
Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.
Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.
Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.
Действие остаточного напряжения
При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.
После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление. Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.
Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.
Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.
Безопасная эксплуатация мегаомметра
Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.
С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.
Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.
Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.
Где используется
Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.
Применение в условиях промышленности как основная сфера
Сопротивление изоляции: как правильно измерить
Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.
Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.
Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.
На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.
Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.
При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.
Видеоуроки
Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:
Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:
Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:
Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:
Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.
Будет интересно прочитать:
Как пользоваться мегаомметром: устройство, измерения, подключение
При вводе кабеля в эксплуатацию, во время и после ремонтных работ, при проблемах с проводкой — во всех этих случаях требуется проверить состояние изоляции кабеля. Обычный мультиметр может только показать наличие проблемы. А конкретный ее масштаб выяснить можно только при помощи специального прибора — мультиметра. Относится этот прибор к разряду профессиональных, но современные устройства могут иметь несколько функций (измерение других параметров электросетей). Так что некоторые владельцы домов, дач, гаражей предпочитают иметь свой. Как проводить измерения, как пользоваться мегаомметром и поговорим дальше.
Содержание статьи
- 1 Устройство и принцип работы
- 2 Измерения мегаомметром
- 2.1 Подготовка к работе
- 2.2 Требования по безопасности
- 2.3 Подключение мегаомметра к тестируемой линии
- 2.4 Проводим измерения
- 3 Как померить сопротивление изоляции кабеля
- 4 Измерение изоляции асинхронного двигателя мегаомметром
Устройство и принцип работы
Мегаомметр — устройство для измерения сопротивления изоляции проводов и кабелей. При помощи щупов прибор подключается к измеряемой линии, после чего включается. Мегаомметр любого типа содержит источник постоянного напряжения. С его помощью в созданной измерительной цепи он генерирует высокое напряжение, которым и проверяется состояние изоляции кабеля. В зависимости от модели набор калибровочных напряжений может быть разным, могут они подаваться только по одному (более простые и дешевые) или в комбинациях (более сложные и дорогие).
Мегаомметры двух видов — «классический» с динамомашиной и электронный
В данный момент в эксплуатации есть два вида приборов — старого типа со встроенной динамомашиной, которая приводится в действие расположенной на боку прибора ручкой. Есть также электронные мегаомметры, которые могут использовать для создания испытательного напряжения внешние (бытовая электросеть) или внутренние (батарейки, аккумуляторы) источники напряжения. Некоторые модели электронных мегаомметров могут измерять другие электрические параметры сети — напряжение, низкоомное сопротивление и т.п. То есть могут использоваться вместо мультиметра. Правда, у них обычно не очень большой набор калибровочных напряжений для проверки состояния изоляции (обычно это 500 В и 1000 В).
Напряжение калиброванное и его величина выставляется переводом переключателя в нужное положение, выбирается оно в зависимости от типа испытываемого оборудования. Результаты измерений сопротивления изоляции отображаются на шкале (в стрелочных приборах) или на цифровом экране. Для удобства восприятия у стрелочных приборов шкала откалибрована в КОм или МОм.
Схема измерения мегаомметром параметров изоляции кабеля
Принцип работы мегомметра основан на законе Ома: I=U/R, сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению. Во время тестирования необходимо найти сопротивление: R=U/I. Это и проделывает мегаомметр. Он выдает в цепь определенное напряжение (которое вы выставите), измеряет силу тока, пересчитывает и выдает результат на шкале. Это и будет сопротивление изоляции в тестируемой цепи.
Измерения мегаомметром
Сам процесс измерения несложен, но проводить его надо строго соблюдая правила и очередность действий. При поверке создается высокое напряжение, что при небрежном отношении может быть опасным. Потому внимательно читаем правила и строго их придерживаемся.
Измерение сопротивления изоляции одной жилы к экрану
Подготовка к работе
Перед тем как пользоваться мегаомметром необходимо провести подготовительные работы. Для начала тестируемые цепи отключаются от нагрузки. Если измеряется сопротивление изоляции в домашней проводке, отключаем питание при помощи рубильника или выкручиваем пробки. При измерении кабелей розеточных групп, из розеток вынуть все вилки. При измерении проводки для освещения, из всех осветительных приборов (люстр, бра, точечных светильников) выкрутить лампочки. Только в таком виде — без нагрузки — кабели и провода можно проверять.
При проверке сопротивления изоляции домашней электропроводки выключить все приборы, вытащив их из розеток, выкрутить лампочки
Еще один этап подготовки к работе с мегаомметром — подсоединение переносного заземления. Оно необходимо для снятия остаточного напряжения в измеряемых цепях. К шине заземления в щитке крепится медный многожильный провод сечением не менее 1,5 квадрата. Второй его конец зачищается от изоляции, крепится к сухой палке. Провод надо прикрепить так, чтобы медью было удобно прикасаться к проводникам.
Требования по безопасности
На предприятиях измерения мегаомметром могут проводить работники с группой электробезопасности 3 и выше. Даже если измерения проводиться будут дома, надо действовать придерживаясь правил безопасности. Для этого перед тем как пользоваться мегаомметром надо выучить инструкцию. По инструкции надо:
Особое внимание уделите остаточному напряжению. При большой протяженности тестируемой линии накапливается значительный заряд, способный нанести даже летальные повреждения.
Подключение мегаомметра к тестируемой линии
В стандартную комплектацию входит три щупа. Один из низ имеет с одной стороны два наконечника. Он используется при измерениях экранированных кабелей для устранения токов утечки (щуп с буквой «Э» цепляется к кабельному экрану).
В верхней части прибора есть три гнезда, в которые подключаются щупы. Они промаркированы буквами:
При подготовке к работе в гнездо «Л» и «З» вставляются одинарные щупы. Так проводится большинство измерений. Только если надо исключить токи утечки берут двойной щуп. Один его наконечник с буквой «Э» вставляют в гнездо с аналогичной надписью, второй — в гнездо «Л».
Далее, при помощи зажимов-крокодилов, подключаем аппарат к измеряемой линии:
- Если надо измерить сопротивление изоляции между жилами кабеля, оба щупа цепляем на оголенную часть проводов.
- Если проверяется «пробой на землю», один щуп крепим к проводу, второй — к клемме «земля».
Других вариантов нет. Разве что с описанным выше случаем с экранированным кабелем. Но их в частных домах и квартирах практически не используют. Если все-таки есть кабель с экраном и надо исключить токи утечки, используем щуп с раздвоенным концом, провода экранирующей оплетки скручиваем в жгут и добавляем в общий пучок измеряемых проводов.
Проводим измерения
Теперь конкретно о том, как пользоваться мегаомметром. После того, как установили щупы на мегаомметре, надо выбрать тестовое напряжение. Для этого есть специальные таблицы в которых указывается, каким напряжением необходимо проверять сопротивление изоляции для самых разных приборов и устройств, а также какое сопротивление можно считать «нормальным».
Измеряемый объект | Тестовое напряжение | Минимально допустимое значение сопротивления изоляции | Условия, примечания |
---|---|---|---|
Электропроводка и осветительная сеть | 1000 В | 0,5 МОм и выше | Для помещений с нормальными условиями эксплуатации проверять 1 раз в 3 года, с повышенной опасностью — 1 раз в год |
Стационарные электроплиты | 1000 В | 1 МОм и выше | Плиту разогреть и отключить, проверять не реже 1 раза в год |
Электрощиты, распределительные устройства, токопроводы (магистральные кабели) | 1000-2500 В | Не менее 1 МОм | Проверку проводить с каждой линией отдельно |
Устройства с напряжением до 50 В | 100 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | При измерениях полупроводниковые изделия шунтировать |
Устройства с напряжением от 50 В до 100 В | 250 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | |
Устройства с напряжением от 100 В до 380 В | 500-1000 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | Электромоторы и другие изделия |
Устройства с напряжением от 380 В до 1000 В | 1000-2500 В | Смотреть по паспорту изделия, но не менее 0,5 МОм |
При проверке сопротивления изоляции кабелей домашней проводки подают напряжение 500 В или 1000 В. Порядок действий такой:
Если измеренное сопротивление изоляции больше либо равно паспортному значению (или тому, что указано в таблице), с устройством/кабелем все нормально. Если изоляция ниже требуемой есть два пути. Первый — искать причину, устранять, измерять по-новой. Второй — заменять.
Как померить сопротивление изоляции кабеля
Чаще всего приходится измерять сопротивление изоляции кабелей. Как пользоваться мегаомметром в этом случае? Если кабель уже находится в эксплуатации, его отключают от электропитания, убирают подключенную к нему нагрузку. Изменения проводят нескольких видов:
- Каждую жилу кабеля по отношению ко всем остальным, объединенным в пучок и заведенным туда же земляным проводом.
Так измеряется состояние изоляции кабеля
- Каждую жилу относительно земли (остальные провода не заземляются).
- Каждая жила относительно всех других проводников (каждую пару проводов).
Пункты 2 и 3 выполняют, если результаты первого измерения оказались ниже нормы.
Как пользоваться мегаомметром: так измеряют сопротивление изоляции между двумя проводами в кабеле
При измерении на щитке все автоматы переводят в положение «выключено», убирают нагрузку, затем проводят измерения. Провода при этом можно из гнезд не доставать, а щупами касаться контактных винтов. Будьте внимательны: на входном автомате вводную линию (подключается в верхние гнезда) без отключения питания на подстанции измерять нельзя.
Если кабель экранирован (есть металлическая оплетка из проволоки, стальные или алюминиевые ленты), устанавливают щуп с раздвоенным наконечником, а экран добавляют в жгут к проводам и «земле».
Измерение изоляции асинхронного двигателя мегаомметром
Перед измерениями отключают питание, снимают остаточное напряжение. Затем надо получить доступ к выводам обмоток. Один щуп прикрепляем к корпусу двигателя. Следите чтобы контакт был с чистым металлом — надо найти участок без краски и ржавчины. При проверке второй щуп подключаем к каждой из обмоток (также надо позаботиться чтобы под «крокодилом» было чисто.
Согласно таблице асинхронные двигатели, подключаемые к сети 220 В или 380 В, испытываются напряжением в 500 В.
Как пользоваться мегаомметром: измерение, подключение, видео
Какие меры безопасности должны соблюдаться при работе с мегомметром
Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.
Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.
Сам прибор не должен иметь никаких механических повреждений корпуса
Особое внимание — целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру.
Любой тестируемый объект или линия в обязательном порядке обесточивается. Все автоматы переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки
В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.
Перед тестированием сопротивления изоляции проводится полное обесточивание объекта
На намеренно отключенное состояние сети желательно акцентировать внимание установкой таблички, например, «Не включать! Идут работы». Так, чтобы никто из домашних или помощников случайно не включил автоматы во время тестирования
От сети отключаются все приборы. Вилки вынимаются их розеток. Лампочки выкручиваются из патронов светильников
Особое внимание – приборам с точной электроникой. Подаваемое в линию высокое напряжение может запросто их «убить»
Изо всех розеток вытаскиваются вилки. Из светильников (не забываем и про точечные) выкручиваются (вынимаются) лампы.
Готовится к работе так называемое переносное заземление. Мастера пользуются приспособлением заводского изготовления, но вполне можно сделать вполне рабочее устройство и самому.
Переносное заземление заводского производства. Нечто подобное делается и собственными руками.
Оно может представлять собой отрезок медного многожильного провода требуемой длины, сечением не менее 1,5 мм². Один его конец зачищается, и может быть оснащен клеммой или зажимом-крокодилом с расчетом на подключение к шине заземления. Второй конец, также зачищенный, необходимо укрепить на диэлектрической штанге. Хорошо, если найдется пластиковый стержень нужной длины. Если нет, то подойдет и сухая деревянная рейка, на краю которой и крепится зачищенный конец провода, например, несколькими витками изоленты. Место на штанге, за которое придется браться руками, тоже можно «одеть» в пару слоев изоленты. А длина штанги выбирается такой, чтобы было удобно касаться концов тестируемых проводов с безопасного расстояния.
После каждого замера рекомендуется снимать остаточное напряжение в проверяемых проводниках касанием этого переносного заземления. Кстати, при тестировании линий значительной протяженности заряд может оставаться в них нешуточный, способный нанести тяжелую электротравму.
Работы по замеру сопротивления изоляции желательно проводить в диэлектрических перчатках. Многие это игнорируют и, наверное, напрасно. В ходе замеров, особенно по неопытности, ничего не стоит коснуться щупа или токоведущей детали, скажем, тыльной стороной ладони. А работать-то приходится с напряжениями, порой достигающими и 2500 вольт! Не шутка!
Необходимо правильно обращаться со щупами
Если обратить внимание, то на каждом из них на рукоятке имеется бортик, своеобразная гарда. Это не столько для удобства, сколько для обеспечения безопасности
Тем самым задается граница безопасной для пальцев зоны, пересекать которую при проведении замеров – запрещается.
Гарды на рукоятках щупов четко ограничивают расположение пальцев оператора. Ближе к оголённой части – становится опасным.
После каждого замера должно сниматься остаточное напряжение и в щупах мегомметра. Для этого их оголенные концы просто замыкают между собой. Надо сказать, что современные приборы часто оснащаются функцией автоматического разряда после снятия каждого показания. Но лучше перестраховаться, а у многих электриков такое замыкание контактов после каждого замера – просто вошло в привычку.
Действие остаточного напряжения
При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает . Это приводит к образованию емкости, наделенной определенным зарядом.
После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует . Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.
Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.
Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с . В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.
Порядок проверки сопротивления изоляции кабеля мегаомметром
Приходишь на объект, и видишь например следующую картину.
Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:
- на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
- на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
- кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
- если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец – противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
- мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
- вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
- провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение – значение должно быть нулевым, так как изоляции между проводами нет, а если развести – то бесконечность – так как сопротивление воздуха велико)
После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!
Измерение сопротивления изоляции кабеля
Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.
Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).
Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары
Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.
Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.
Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут
Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут
При образовании жгута важно обеспечит хороший контакт
Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.
Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.
https://youtube.com/watch?v=jOaLpf4g1Sk
Устройство прибора
Для ознакомления лучше всего рассмотреть схему аналогового прибора в упрощенном варианте.
Основные элементы конструкции:
- Традиционный для любой модели генератор постоянного тока.
- Собранная по принципу взаимодополняющей совместной эксплуатации пары рамок измерительная головка.
- Коммутирующий резисторные цепочки тумблер переключения измерительных пределов.
- Резисторы токоограничения.
На корпусе, выполненном из герметичного диэлектрического материала, обустроены:
- рукоятка для выработки напряжения генератором;
- транспортировочная ручка;
- тумблерный рычаг;
- выходные клеммы.
Обычно производится монтаж трех клемм, именуемых экраном, линией и землей.
«Л» и «З» нужны при тестировании относительно заземления, а экран предотвращает воздействие токов утечек в случае замеров между токоведущими частями. Его активация производится при помощи специального измерительного провода с концами экранированного исполнения. На одной из клемм провода есть маркировка Э, обозначающая подключение к мегаомметру.
Аббревиатура «rx» и «-» на современных приборах постепенно вытеснила привычное для прежних образцов обозначение «Л» и «З».
Питания от внешней сети или батареек – это работа, основанная на таком же принципе, как и в случае с динамо-мащиной. Просто вместо необходимости крутить ручку следует удерживать в нажатом положении кнопку. Устройства, выдающие несколько комбинаций напряжения, имеют несколько сочетаний кнопок.
Генератор различных модификаций способен выдавать несколько величин напряжение в диапазоне 100-2500 вольт. Есть устройства, обладающими несколькими рабочими диапазонами.
Габариты приборов проверки изоляции для промышленного и бытового оборудования отличаются по причине разных параметров выходной мощности.
Следовательно, при выборе прибора обязательно потребуется скрупулезный подход, который производится со знанием специфики места проведения исследований, характеристик оборудования и масштабов проводимых испытаний. Не всегда компактность становится целесообразным способом, как и приобретение громоздких устройств для сугубо бытовых условий.
Безопасность при измерениях
Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.
Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.
Допустимые значения сопротивления изоляции
Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:
- испытываются мегаомметром на 2500В на протяжении 1 минуты
- значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
- для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев
Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)
Мегаомметр ЭСО-210
Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой – трансформатор, преобразующий переменное напряжение в постоянное.
Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».
Шкала «I» – нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.
Шкала «II» – верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.
Шкала «IIx10» – аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.
В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.
При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.
Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.
Мегаомметр sonel mic-2510
Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом “энтер” и всё – следи за показаниями и не подпускай никого под напряжение.
Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.
Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.
Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм – впечатляющая величина.
Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.
Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.
В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.
Принцип измерения сопротивления изоляции мегаомметром.
В основу работы прибора положен знаменитый закон Ома для участка цепи I=U/R. Для его воплощения внутри корпуса у любой модификации встроены:
- источник постоянного, откалиброванного напряжения
- измеритель тока
- выходные клеммы
Конструкция генератора напряжения может меняться в значительных пределах и создаваться на основе простых ручных динамо-машин, как в старых моделях, или за счет использования питания от встроенного либо внешнего источника. Выходная мощность генератора, как и величина его напряжения, может включать несколько диапазонов или выполнятся единственной, фиксированной величиной. На клеммы прибора подключаются соединительные провода, другой конец которых скоммутирован с измеряемой цепью. Для этих целей обычно используют зажимы типа «крокодил». Встроенный внутрь электрической схемы амперметр замеряет проходящий по цепи ток. С учетом того, что напряжение генератора уже известно и откалибровано, то шкала измерительной головки проградуирована сразу в пересчитанных единицах сопротивления — мегаомах или килоомах.
Так выглядит шкала старого, проверенного пятидесятилетним сроком эксплуатации аналогового прибора. Он позволяет выполнять замеры на двух пределах шкал:
Если мегаомметр создан по новым технологиям обработки цифровых сигналов, то на его дисплее тоже отображается сопротивление, но в более наглядном виде.
Измерение сопротивления изоляции кабеля
Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.
Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).
Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары
Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.
Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.
Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут
Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут
При образовании жгута важно обеспечит хороший контакт
Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.
Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.
https://youtube.com/watch?v=jOaLpf4g1Sk
Устройство и принцип действия
Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:
В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.
Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.
Примерная схема магаомметра
Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.
Мегаомметр
Мегаомметр — что это такое
Мегаомметр — это специальный прибор, который используют профессиональные электрики для измерения сопротивлений обмотки электросетей и электроприборов. Отличие мегаомметра от омметра состоит в том, что мегаомметр измеряет большие значения сопротивления на высоком напряжении. Напряжение для проверки сопротивления мегаомметр генерирует самостоятельно с помощью встроенного механического генератора или батарей. Величина напряжения составляет от 100 до 2500 вольт и устанавливается по значениям 100, 500, 700, 1000 и 2500 вольт.
По внешнему виду магаомметр представляет из себя прямоугольную коробочку с аналоговой шкалой с делениями в два ряда и стрелкой, которая указывает показания сопротивления при измерении изоляции. С боку располагается ручка динамо машины, раскручивая которую, вырабатывается постоянное напряжение, с помощью которого и измеряется сопротивление изоляции на измеряемом участке.
Но это мы описали внешний вид аналогового мегаомметра, современные измерители сопротивления изоляций имеют меньшие габариты, не имеют динамо машины, вместо нее батарейки или даже подключается питание от сети. Вместо аналогового датчика со стрелкой используется цифровое табло, а также есть память на некоторые прошлые циклы измерений.
Для чего нужен мегаомметр
Мегаоммерт используют для выявления повреждений в изоляции электросетей перед вводом в эксплуатацию, так же при выявлении мест уже появившихся аварийных ситуациях. Для проверки изоляции кабеля в трансформаторах, электродвигателях и любых других устройств, которые имеют электрическую обмотку с изоляцией. Основное использование мегаомметра – это измерение изоляции кабелей или другими словами, измерение сопротивления изоляции кабеля.
Испытания изоляции кабелей мегаомметром могут выявить слабые места в электросетях, как электропроводке зданий, так и в электродвигателях. Показатели, которые снимают мегаомметром, используют для определения степени изношенности изоляций, что может предотвратить неожиданные и нежелательные случаи короткого замыкания. А короткое замыкание происходит при механическом повреждении или при старении изоляции, когда токопроводящие жилы соприкасаются между собой.
Принцип работы мегаомметра
Мегаомметр работает по принципу вырабатывания различного напряжения, которое подается на испытуемый участок электросети для проверки сопротивления изоляции кабеля. В зависимости от номинальной нагрузки измеряемого прибора или электрического кабеля используют соответствующее напряжение. Перед испытанием подбирается подходящий мегаомметр, например, если нужно проверить бытовые приборы или проводку в квартире, то используется мегаомметр с напряжением не больше 250В.
Если простыми словами, то мегаомметрт подает постоянное напряжение на участок кабеля, который мы проверяем на наличие нормальной изоляции. Фиксируются показатели утечки напряжения и на основании этих показателей делаются выводы относительно нормы показателя изоляции испытуемого кабеля. Если утечка больше нормы, то считается, что изоляция повреждена и имеет место быть короткому замыканию. Что недопустимо при нормальной эксплуатации электрических сетей, т.к. чревато возгоранием кабелей, если не сработает автоматика отключения контактов при коротком замыкании кабелей.
Какие бывают мегаомметры
Название модели | Диапазон измерения сопротивления | Измерительное напряжение | Масса прибора | Габаритные размеры |
ЦС0202-1, ЦС0202-2 | от 200 кОм до 100 ГОм | от 100 В до 2500 В | до 1 кг. | 220х156х61 мм. |
ЭС0210, ЭС0210-Г | от 0 кОм до 100 ГОм | от 0 В до 600 В | до 1,9 кг. | 155х141х201 мм. |
ЭС0202/1-Г, ЭС0202/2-Г | от 0 кОм до 10 ГОм | от 100 В до 2500 В | до 2,2 кг. | 210х150х230 мм. |
Мегаомметры отличаются внешним исполнением и внутренним устройством. Аналоговые измерители сопротивления кабелей имеют динамо машину, которая, путем вращения за специальную ручку, вырабатывает постоянное напряжение, которым производятся замеры изоляции. Так же имеется аналоговое табло с делениями по двум шкалам и механическая стрелка, которая указывает на показатели. Более современные мегаомметры вместо динамо машины имеют элементы питания: аккумуляторные батареи или непосредственный блок питания. Есть цифровое табло, отображающее снимаемые показатели изоляции и память, которая хранит данные прошлых измерений.
У каждого мегаомметра есть свои плюсы и свои минусы, аналоговый больше по размерам и тяжелее, по сравнению с цифровым, но цифровой имеет прямую зависимость от элементов питания, когда аналоговый готов всегда к работе. Но выбор, каким мегаомметром пользоваться, всегда остается за вами.
{SOURCE}
Проверка мегаомметра
Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.
Для работы в мегаомах:
- подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
- вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
- замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.
Для работы в килоомах:
- на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
- Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
- После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).
Методика измерения сопротивления изоляции мегаомметром
Поделиться на Facebook
Поделиться в ВК
Поделиться в ОК
Поделиться в Twitter
Поделиться в Google Plus
Содержание:
- 1 Особенности работы
- 2 Эксплуатация прибора
- 3 Правила измерения
Мегаомметр является неотъемлемой частью оборудования современного электрика, позволяющей с точностью определять износ или деформацию провода. Они могут быть получены при контакте с воздухом, водой, жарой и морозом, также возможен и механический износ. Он может привести к прорыву тока наружу, а это опасно для человеческой жизни, поэтому необходимо как можно быстрее найти место повреждения и устранить порыв. Для этого требуется мегаомметр.
Особенности работы
Действие прибора связано с применением закона Ома для отдельного участка цепи (I=U/R). В отличие от, например, омметра, это устройство вырабатывает высокие напряжения и определяет сопротивление на них. Оно служит для измерения больших значений сопротивлений, благодаря чему возможно определить участок с поврежденной изоляцией провода.
Существует два типа мегаомметров – старого образца и современные модели. В старых стрелочных моделях встроенная динамомашина приводится в действие ручкой на боковой поверхности. Новые устройства – электронно-цифровые, более легкие и небольшие. Они отличаются количеством калибровочных напряжений – более простые подают по одному, сложные приборы – комбинациями. При этом как пользоваться мегаомметром любого типа, сложности не составляет, хотя не рекомендуется к применению неспециалистами.
Эксплуатация прибора
Измерение сопротивления изоляции мегаомметром всегда должно происходить на отключенной сети или кабеля. Устройство вырабатывает высокое напряжение, а при несоблюдении техники безопасности появляется риск поражения человека электрическим током. В зависимости от типа изоляции кабель большой протяженности имеет тенденцию накапливать большие заряды. Поэтому замер напряжения рекомендуется проводить вдвоем после получения инструкций по технике безопасности. В радиусе 5-10 метров от места проверки в соответствии с ТБ не должно быть третьих лиц.
Перед началом работы прибор необходимо проверить на наличие неисправностей, трещин, сколов, проверить измерительные щупы на повреждения. Перед началом провести пробное испытание прибора, предварительно замкнув щупы и после разведя их. Механическое устройство нужно проверять на плоской поверхности, чтобы избежать погрешности прибора при измерении напряжения.
При эксплуатации аппарата старого образца для произведения замеров ручку генератора следует вращать при 130-150 оборотах. Если замер проводится относительно земли или корпуса, то применяют сразу два щупа. При тестировании жил кабелей используется клемма «Э» и сам экран кабеля для компенсации утечки тока. Стоит помнить, что сопротивление не имеет значения, выражаемого в постоянстве, на него влияют различные внешние факторы. По данной причине время, отводимое для замера, может отличаться — обычно оно составляет не менее 60 секунд, а замер происходит после 15-20 секунд.
Для измерения бытовых сетей требуется напряжение в 500 В, в промышленных сетях — от 1000 до 2000 Вольт. Минимальное сопротивление при 1000 В — 0,5 Ом, для промышленных целей — не менее 1 Ом.
Правила измерения
Сама технология работы очень проста, для замеров следует произвести следующие действия:
- Людей, находящихся поблизости, следует вывести из зоны осмотра электроустановки, предупредить находящихся рядом людей о начале проведения электрических работ, вывесить предупреждающие плакаты.
- Щит полностью обесточивается, напряжение полностью снимается, принимаются дополнительные меры безопасности, устанавливается плакат с предупреждением не включать напряжение, пока проводятся работы.
- Устанавливаем переносное заземление, далее проверяем напряжение сети, оно должно полностью отсутствовать. Устанавливаем щупы, снимаем заземление. Эта процедура должна происходить при каждом отдельном замере, как и описано выше, отдельные элементы имеют тенденцию накапливать относительно большие заряды, что может нести прямую угрозу для жизни человека, также это будет вносить определенный процент погрешности в измерительный прибор. Устанавливать щупы и снимать их можно проводить только с помощью ручек, покрытых изоляцией, работать нужно в резиновых перчатках.
До испытаний необходимо очистить изоляцию кабеля от загрязнений, пыли и влаги.
- Необходима проверка вводного кабеля между фазами (А, В-В, С-С, А-А, РЕN-B, PEN-C, PEN), результаты протоколируются.
- Все приборы, УЗО, автоматы нужно отключить, нулевые провода отсоединить от нулевой клеммы.
- Замеряем все линии между фазами N, PE, N, PE, полученные сведения записываем в измерительный протокол.
- При обнаружении деформации или какой-либо неисправности в сети полностью разбираем составные части на отдельные элементы, производим поиск неисправной части, производим ремонт либо заменяем ее на новую.
После завершения испытания с объекта нужно сбить накопившийся заряд, для чего в цепи и самом приборе создается короткое замыкание посредством смыкания двух щупов.
Таким образом проводятся измерения сопротивления изоляции мегаомметром в кабелях или других изолированных линиях передачи. Основное условие проведения замеров — соблюдение правил безопасности, особенно при работе с напряжением свыше 220 вольт.
Жми «Нравится» и получай только лучшие посты в Facebook ↓
Поделиться на Facebook
Поделиться в ВК
Поделиться в ОК
Поделиться в Twitter
Поделиться в Google Plus
Как пользоваться мегаомметром?
Время чтения: 3 минуты
Безопасность использования бытовых электроприборов и электрооборудования во многом зависит от состояния изоляции.
Сопротивление изоляции величина непостоянная и зависит от ряда факторов:
- уровня влажности;
- температуры эксплуатации прибора;
- наличия дефектов в изолирующем слое;
- режима и срока эксплуатации прибора.
Для измерения уровня сопротивляемости изоляции используют прибор – мегаомметр. Средство для испытания электрической системы выбирается с учетом напряжения, номинального сопротивления в сети и других особенностей.
Виды мегаомметров
Аналоговые (стрелочные)
При помощи рукоятки динамо-машина приходит в действие. Измерение происходит на основании магнитоэлектрического принципа.
Такие аппараты надежны, просты в использовании, но сейчас практически не используются из-за тяжелого веса и большими габаритами по сравнению с современными приборами.
Цифровые
Работают от аккумулятора, либо подключатся к сети. В устройстве встроен генератор импульсов, действующий на полевых транзисторах.
Алгоритм проведения измерений
ВАЖНО: В процессе работы мегаомметр выдает высокое напряжение, поэтому при работе с прибором на производстве допускаются только специалисты с группой допуска не ниже 3.
Перед началом замеров проверяемые цепи обесточиваем.
Например, при проведении работ в жилом помещении сначала
Требования техники безопасности
- работы проводятся только в резиновых перчатках;
- перед подключением щупов к измеряемой цепи следует убедиться в том, что на отключена подача напряжения на прибор;
- щуп можно держать только за изолированные ручки, которые ограничены упорами;
- необходимо снять остаточное напряжение. Заземление можно отключать после установки щупов;
- после каждого замера следует снимать остаточное напряжение с щупов, соединяя их между собой;
- после замера с тестируемого оборудования снимается остаточное напряжение путем подключения заземления.
Измерение сопротивления в кабелях и жилах
Время работы напрямую зависит от того одножильный или многожильный провод. В зависимости от напряжения в сети выбирается тестовое напряжение. Если кабель планируется использовать для проводки на 250В, то следует выставить 1000В.
При проверке одножильного кабеля один щуп присоединяем к жиле, а второй на броню и подаем напряжение. При отсутствии брони второй щуп закрепляем на «земляной» клемме.
При проверке многожильного кабеля каждый кабель проверяется по очереди, а остальные в это время должны быть скручены в один жгут.
Если показания больше 0,5 Мом, то все в норме, если меньше, то изоляция пробита и провода использовать нельзя.
Аналогичным образом проводится проверка розеток. Отключается все электроприборы и питание на щитке. Один щуп устанавливаем в одну из фаз, вторую клемму на заземление. Тестовое напряжение 1000В.
Читайте также: Мультиметр: понятие, функции, рекомендации по использованию
Измерение сопротивления в электродвигателе
В первую очередь отключаем питание. Для проведения измерений необходимо добраться до выводов обмотки. Тестовое напряжение для асинхронных двигателей, работающих при напряжении 1000В – 500В.
При проведении проверки щуп подключается к корпусу двигателя, второй прикладывается к каждому из выводов. Таким образом проверяется целостность обмоток между собой.
Наименование элемента | Напряжение мегаомметра | Минимально допустимое сопротивление изоляции | Примечания |
Электроизделия и аппараты с напряжением до 50 В | 100 В | Должно соответствовать паспортным, но не менее 0,5 МО | Во время измерений полупроводниковые приборы должны быть зашунтированы |
тоже, но напряжением от 50 В до 100 В | 250 В | ||
тоже, но напряжением от 100 В до 380 В | 500-1000 В | ||
свыше 380 В, но не больше 1000 В | 1000-2500 В | ||
Распределительные устройства, щиты, токопроводы | 1000-2500 В | Не менее 1 МОм | Измерять каждую секцию распределительного устройства |
Электропроводка, в том числе осветительная сеть | 1000 В | Не менее 0,5 МОм | В опасных помещениях измерения проводятся раз в год, в других — раз в 3 года |
Стационарные электроплиты | 1000 В | Не менее 1 МОм | Измерение проводят на нагретой отключенной плите не реже 1 раза в год |
Автор:
Косолапов Виктор
Как пользоваться мегаомметром – правила, рекомендации и техника безопасности
Измерение мегаомметром сопротивления изоляции [ править | править код ]
Сопротивление изоляции характеризует её состояние в данный момент времени и может изменяться от влияния внешних условий, так как зависит от ряда факторов, основными влияющими факторами являются температура и влажность изоляции в момент проведения измерения.
В ГОСТ 183-74 нормы на допустимое минимальное сопротивления изоляции не нормируются, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они обычно установливаются в стандартах на конкретные виды машин или в технических условиях на изделия или материалы с обязательным указанием температуры, при которой должны проводиться измерения, и методики пересчета измеренного сопротивления, приведенного к стандартным условиям, если измерения проводились при иной температуре обмоток.
Измерение сопротивления изоляции обмоток устанавливает возможность проведения испытаний изоляции рабочим высоким напряжением без риска электрического пробоя исправной, но имеющей повышенную влажность изоляции.
Измерения проводятся мегаомметром, испытательное напряжение которого выбирается в зависимости от номинального рабочего напряжения испытуемой изоляции. Для устройств с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для устройств с напряжением до 3000 В — мегаомметры на 1000 В, для устройств с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.
О степени увлажнённости изоляции судят не только по значению сопротивления в момент измерения, но и по характеру изменения показания мегаомметра в процессе измерения, которое обычно проводят в течение 1 мин. При этом запись показаний прибора производят спустя 15 с после подачи испытательного напряжения (время достаточное для установления показаний), это сопротивление обозначается R15″ и в конце измерения — через 60 с после начала — обозначение R60″. Отношение этих показаний R60″/R15″ называют коэффициентом абсорбции
(КА). Его значение определяет отношение тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции КА близок к 1. При сухой изоляции величина R60″ на 30—50 % больше, чем величина R15″.
Мегаомметром измеряется также сопротивление изоляции термопреобразователей, встроенных в электрические машины, и сопротивление изоляции проводов, соединяющих термопреобразователи с внешними зажимами.
Сопротивление изоляции термопреобразователей измеряется относительно корпуса устройства и относительно обмоток машины. Эта изоляция не предназначена для работы при высоких напряжениях обмоток машины, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.
Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания токов подшипников машинах со стояковыми подшипниками [ прояснить
] .
Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями, либо мегаомметром с переключаемым испытательным напряжением.
Электрическое сопротивление можно измерять различными приборами. Наиболее популярным среди таких приборов стал мегаомметр. Судя по названию прибора, можно определить, что единицей его измерения являются мегаомы. Он в основном применяется для измерения большой величины сопротивления, электрических цепей, отключенных от питания, а также диэлектрической изоляции, используемой для кабелей, проводов, электродвигателей, трансформаторов и других электроустановок.
Чтобы использовать мегаомметр в работе, необходимо сначала изучить его принцип действия, устройство и технические параметры, так как существуют специфические особенности при использовании такого устройства.
Виды
Существует два основных вида мегаомметров, отличающихся видом источника питания и методом измерения.
Аналоговые
Такие приборы еще называют стрелочными. Они имеют индивидуальную динамо-машину, которая приводится в действие вращением рукоятки, а также градуированную шкалу со стрелочным индикатором. Измерение осуществляется на основе магнитоэлектрического принципа. Стрелка закреплена на одной оси с рамочной катушкой, расположенной в магнитном поле постоянного магнита.
При протекании тока по катушке происходит ее отклонение на определенный угол, зависящий от величины протекающего тока. Такое действие происходит согласно закону электромагнитной индукции. Стрелочный мегаомметр неприхотлив в работе, надежен, хотя и считается уже устаревшим устройством, обладает большой массой и значительными габаритными размерами.
Цифровые
В современных цифровых мегаомметрах встроен мощный генератор импульсов, действующий на полевых транзисторах. Такие приборы оснащены индивидуальным источником питания, в виде сетевого адаптера, который преобразует переменный ток в постоянный, либо аккумуляторной батареей. Измерение выполняется специальным усилителем путем сравнения падения напряжения в тестируемой цепи с эталонным сопротивлением.
Читать также: Ремонт микроволновки супра своими руками видео
Результаты измерений отображаются на цифровом экране. Имеется возможность сохранения результатов в памяти для будущего сравнения данных. Электронный мегаомметр обладает малым весом и небольшими габаритами, позволяет производить множество различных электрических измерений. Однако, для работы с таким прибором необходимо наличие высокой квалификации персонала.
Принцип действия и устройство
Работа мегаомметра заключается в использовании закона Ома, который описывается формулой: I = U / R, где I – это сила тока, U – напряжение, а R – сопротивление. В устройство этого прибора входит источник калиброванного напряжения, амперметр и клеммы, к которым подключают специальные измерительные щупы.
В старых аналоговых приборах имеются обычные ручные генераторы с рукояткой для привода их в действие, а в новых моделях используются внешние или внутренние источники питания в виде аккумулятора или блока питания. Величина мощности на выходе генератора и напряжение могут меняться в широком диапазоне, либо быть постоянными, в зависимости от исполнения прибора. В комплекте мегаомметра имеются измерительные щупы, которые состоят из проводов с наконечниками: на одном конце щупа наконечник для вставления в гнездо прибора, а на другом – «крокодил» для надежности контакта.
Перед измерением щупы вставляются в гнезда на приборе, затем подключаются «крокодилами» к измеряемому объекту. При выполнении измерения генератор вырабатывает высокое напряжение путем вращения рукоятки. Напряжение поступает на измеряемый объект, а итоги измерений выдаются на экран цифрового прибора или на шкалу стрелочного мегаомметра.
Как правильно применять мегаомметр
Во время работы прибор выдает высокое напряжение, опасное для человека – от 500 до 2500 вольт. Поэтому к пользованию прибором необходимо подходить с особой осторожностью. В промышленном производстве к работе с ним допускаются лица с наличием группы электробезопасности не менее третьей.
Перед проведением замеров, проверяемые цепи следует обесточить. Если замеры планируется производить в квартире, то следует отключить автоматы в распределительном щите, затем выключить в квартире все подключенные устройства.
Если проверяются группы розеток, то следует вынуть из них все вставленные вилки устройств. При проверке цепей освещения, необходимо выкрутить лампочки, так как они не рассчитаны на подобное высокое напряжение, и могут сгореть. При тестировании изоляции электродвигателей, их также следует отключить от сети.
Далее, проверяемые цепи следует заземлить. Для этого к шине заземления присоединяется многожильный провод в изоляции сечением более 1,5 мм 2 , что является переносным заземлением.
Требования безопасности
Даже если использовать мегаомметр в бытовых условиях, перед работой следует изучить требования по безопасным приемам работ.
Существует несколько основных правил:
- Щупы следует держать только за изолированные ручки, ограниченные упорами.
- Перед тем, как подключить щупы к измеряемой цепи, следует убедиться в том, что на приборе отключена подача напряжения, и что вблизи измеряемой линии нет людей, которые могли бы случайно попасть под напряжение.
- Следующим шагом является снятие остаточного напряжения, путем касания переносного заземления к измеряемой цепи. Заземление отключается только после установки щупов.
- После каждого замера необходимо со щупов снимать остаточное напряжение, соединяя щупы между собой.
- После замера к тестируемому проводнику следует подключить заземление для снятия остаточного заряда.
- Все работы необходимо производить в резиновых перчатках.
Эти несложные правила необходимо выполнять, так как от этого зависит безопасность людей.
Правила подключения щупов
На корпусе прибора имеется три гнезда. Они обозначены символами «Э», «Л» и «З», что означает соответственно – экран, линия и земля. В комплекте мегаомметра находится три щупа. На одном из них на одной стороне подключены два наконечника. Этот щуп применяется, когда нужно исключить ток утечки, и подключается к экранированной оболочке кабеля, если она имеется. Остальные щупы вставляются в гнезда, соответствующие маркировке щупов с такими же буквами.
На всех щупах имеются упоры. При измерениях следует браться за щупы до упоров чтобы случайно не коснуться пальцами за токоведущие части.
Если необходимо измерить только сопротивление изоляции, не учитывая экран, то подключается два одинарных щупа. Из них один вставляется в клемму «З», а второй – в клемму «Л». Вторые стороны щупов следует подключать «крокодилами»:
- К проверяемым проводам, при необходимости теста на пробой между жилами.
- К заземлению и токоведущей жиле, если нужно протестировать «пробой на землю».
Обычно делается проверка на пробой изоляции, и величину ее сопротивления, а проверка экранированной оболочки выполняется редко, так как кабели с экраном в квартирах почти не применяются. При пользовании прибором основным правилом является снятие остаточного заряда, а также соблюдение аккуратности, так как есть опасность попасть под высокое напряжение.
Порядок проведения измерений
- Перед началом измерения (с помощью индикатора) следует убедиться, что на измеряемой линии нет напряжения.
- Подключить заземление.
- Установить величину напряжения, с помощью которого будет производиться измерение. Оно должно выбираться из таблицы, в зависимости от вида измеряемого элемента. Переключение напряжения осуществляется кнопкой или ручкой на панели. Существуют также приборы, которые работают с фиксированным одним напряжением, и не требуют установки напряжения.
- Подключить щупы, соблюдая правила безопасности, рассмотренные ранее.
- Снять заземление с тестируемого объекта.
- Запустить в работу мегаомметр. Если он электронный, то следует нажать кнопку запуска, которая может называться «тест». Если мегаомметр аналогового вида со стрелочным индикатором, то нужно вращать ручку динамо-машины некоторое время, пока на корпусе прибора не загорится индикатор, свидетельствующий о создании необходимого напряжения.
Цифровой мегаомметр в некоторый момент показания на дисплее стабилизируются. Цифры будут означать величину сопротивления. Если оно выше допустимой нормы, которая указана в приведенной таблице, то все в порядке, если ниже нормы, то следует выявлять повреждение изоляции объекта.
- После фиксации показаний, вращение рукоятки динамо-машины следует прекратить, либо нажать на цифровом приборе кнопку завершения работы.
- Отключить щупы.
- Нейтрализовать остаточное напряжение.
Как проверить изоляцию кабеля
Наиболее частой проверкой является измерение сопротивления изоляции проводов или кабеля. Если у вас имеется навык работы с мегаомметром, то проверить одножильный кабель можно очень быстро, в отличие от многожильного кабеля. Чем больше число жил, тем дольше будет производиться проверка, так как нужно проверять каждую жилу отдельно.
Читать также: Газовый конвектор с открытой камерой сгорания
Контрольное напряжение следует выбирать в зависимости от напряжения эксплуатации кабеля. Если он работает под напряжением 380 или 220 вольт, то тестовое напряжение выставляется величиной 1000 вольт.
При тестировании изоляции 1-жильного кабеля, один щуп подсоединяем к жиле, а другой на экранирующую оболочку, и подаем напряжение. Если экрана нет, то второй щуп нужно подсоединить к «земле», и подаем напряжение. Если результат замеров не менее 500 кОм, то изоляция исправна, если сопротивление меньше, то такой проводник использовать нельзя, так как изоляция имеет повреждение.
При проверке кабеля с несколькими жилами, тестирование осуществляется отдельно для каждой жилы. В это время остальные жилы соединяются в один жгут. Если необходима проверка пробоя на «землю», то в этот жгут добавляется провод заземления. Если имеется броня или экранирующая оболочка, то они также присоединяются к этому жгуту. В этом общем жгуте важно обеспечить качество контакта проводников.
Аналогично выполняется измерение изоляции розеток. Перед проверкой из них отключают все устройства, а также питание в распределительном щите. Один щуп подключают на заземление, а другой на одну фазу. Контрольное напряжение на приборе выставляем на 1000 вольт, и производим проверку. Если сопротивление более 500 кОм, то изоляция исправна. Также проверяем все остальные жилы.
Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6 , «ом» – соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.
Проверка изоляции кабеля с помощью мегаомметра
Сопротивление изоляции — это наиболее важный параметр работоспособности кабеля, и как только сопротивление падает ниже определенного уровня, то кабель признается негодным и подлежит незамедлительной замене. В этой статье я расскажу о причинах, приводящих к ухудшению изоляции, и как правильно проверить ее уровень с помощью мегаомметра.
Оглавление
Почему изоляция ухудшается.
Техника безопасности при работе с мегаомметром.
Проверка работоспособности мегаомметра.
Как понять, что изоляция стала негодной.
Почему изоляция ухудшается
Существует целый ряд факторов, влияющих на величину сопротивления изоляции, а именно:
1. Атмосферные условия. Если кабель будет постоянно окружен влагой, то даже микротрещина в изоляционном материале приведет к тому, что сопротивление изоляции резко ухудшится. Именно поэтому в дождливую погоду электроприборы, подключенные через кабель, с плохой изоляцией могут просто напросто не работать.
2. Неправильная укладка кабеля. Если при укладке кабеля допустить повреждение изоляционного материала, то даже новый кабель (при образовании сырости) может показать низкий показатель сопротивления изоляции.
3. Устаревание изоляции. Как ни крути даже самый качественный провод со сверх надежной изоляцией с течением времени придет в негодность из-за постоянного воздействия окружающей среды.
Чтобы вовремя выявить проблемный кабель и не допустить аварийной ситуации, как раз и применяется для периодической проверки состояния такой прибор как мегаомметр.
Существуют как механические, так и электронные измерительные приборы. Далее я расскажу о процессе проверки кабеля механическим Мегаомметром ЭС0202/2-Г.
Техника безопасности при работе с мегаомметром
Для осуществления безопасной проверки в Правилах по охране труда при эксплуатации электроустановок (в редакции Приказа Минтруда России от 12.02.2016 № 74н) звучат следующие требования:
Проверка работоспособности мегомметра
Перед непосредственными измерениями изоляции необходимо проверить работоспособность самого измерительного прибора. Для этого выполните следующие действия:
— Достаньте прибор из чехла и внимательно осмотрите его щупы. На них вы не должны обнаружить повреждения изоляционного материала;
— Затем вставляем щупы, выставляем регуляторы как показано на картинке и прокручиваем ручку несколько раз и убеждаемся, что стрелка стремится к показу бесконечного сопротивления;
— Следующим шагом замыкаем щупы между собой (с помощью крокодилов) и так же делаем несколько оборотов и убеждаемся, что стрелка показывает нулевое значение;
Итак, убедившись в полной исправности измерительного аппарата, можно приступать к дальнейшим действиям.
Проверка изоляции кабеля
1. Перед проверкой кабель отключаем от электроустановки с двух сторон и заземляем его.
2. Затем подсоединяем мегаомметр к измеряемой жиле и заземляющему контуру (или к двум соседним жилам, если проверяем сопротивление изоляции между жилами), при этом сам прибор должен быть установлен на горизонтальной поверхности.
Примечание. В зависимости от положения переключателя Мегаомметр ЭС0202/2-Г способен измерять сопротивление до 50 и до 10 000 МОм.
3. Далее снимаем заземление с измеряемых жил.
4. Начинаем крутить ручку и следим за показателями прибора. Причем если мы производим измерение высоковольтного кабеля, то устанавливаем регулятор напряжения на 2 500 V.
Если на первом пределе показания прибора зашкаливают, то переводим его на второй предел и теперь в показаниях будет учавствовать верхняя шкала.
5. Затем фиксируем показания. А потом специальной перемычкой (сойдет обычный кусок провода) снимаем остаточный заряд с измеряемой жилы (соединяя ее с землей) и устанавливаем заземление обратно.
6. Все, измерения конкретно этой жилы или жил считается оконченным. Измерения других концов кабеля происходит точно так же. Но по условиям работы данного мегаомметра перерыв между каждым измерением должен быть равен двум минутам.
При этом выбор напряжения для испытания регламентируется ПУЭ 7-е издание п. 1.8.7
Как понять, что изоляция стала негодной
Согласно требованиям технической документации нижний предел изоляции после которого замена кабеля неизбежна, равняется 0,5 МОм
Но для лучшего ориентирования в степени качества изоляции кабеля можно воспользоваться следующей таблицей
Этого будет вполне достаточно, чтобы понять степень изношенности изоляции конкретного кабеля.
Это все, что я хотел вам рассказать о проверке изоляции кабеля с применением мегаомметра. Если статья была вам интересна или полезна, то оцените ее лайком.
Принцип действия мегаомметра
Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.
В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами – «крокодилами».
Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.
Устройство мегаомметра
Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.
Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» – земля, «Л» – линия и «Э» – экран.
Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».
Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.
Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.
Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.
Правила безопасности при работе с мегаомметром
Поскольку данные приборы могут генерировать очень высокое напряжение, измерительные операции должны производиться парой работников, хотя бы у одного из них должна быть четвертая группа допуска по электрической безопасности. Без соответствующей подготовки использовать такое оборудование опасно – пользователя может ударить током.
Подключение мегаомметра к тестируемой линии
В гнездовые разъемы, соответствующие линии и заземлению, вставляют щупы с одиночными наконечниками. Бинарный щуп применяют, когда требуется ликвидировать токи утечки: один конец ставят в гнездо линии, а другой, помеченный как «Э», – в экранное.
С линией прибор соединяют с помощью клемм. С целью узнать сопротивление изоляционного материала оба щупа помещают на голые участки проводов.
Измерения
При выполнении измерений мастер не должен прикасаться к незащищенным участкам проводов и других компонентов цепи, а также к выходным клеммам измерительного прибора. Нельзя выполнять работы без предварительной проверки отсутствия напряжения на кабельных жилках (ее можно осуществить специальным тестером).
Важно! Ни в коем случае нельзя выполнять работы без предварительной ликвидации остаточного заряда с оборудования. Делают ее посредством портативного заземления, прикладывая его к токоведущим компонентам
Остаточный заряд нужно убирать также после каждого измерения.
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Читать также: Композитный или металлический газовый баллон
Влияние наведенного напряжения
Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.
Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.
Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.
Порядок проведения измерений
Измерения мегаомметром проводятся в несколько этапов. На рисунке ниже представлена схема подключения устройства в трехфазной цепи.
Сначала необходимо измерить сопротивление изоляции соединительных проводников, полученный результат должен соответствовать верхнему пределу измерительного устройства.
Далее следует установить предел измерений в соответствии со следующими рекомендациями:
- установка наибольшего из возможных значений в случаях неизвестных параметров сопротивления изоляции;
- устанавливать предел измерений следует с учетом того, что наибольшая точность полученных результатов достигается за счет отсчета показаний в пределах рабочей шкалы устройства.
При испытаниях электрики обязательно следует убедиться в отсутствии напряжения на проверяемом участке электрической цепи.
Когда все предварительные работы и проверки выполнены, необходимо закоротить или отключить от цепи все элементы и устройства с пониженными значениями сопротивления изоляции и с пониженным напряжением, к примеру, полупроводники, конденсаторы и другие.
Цепь на время проведения электроизмерительных работ необходимо заземлить.
Теперь можно подключить устройство к исследуемой цепи. Испытания проводятся путем вращения ручки генератора мегаомметра с постоянной скоростью в 120 оборотов в минуту. Измерения длятся в течение 60 секунд, после чего можно записать результаты.
При проведении электроизмерительных работ на приборах и системах с большой ёмкостью, фиксировать показания мегаомметра необходимо после того, как стрелка полностью успокоится.
В целях безопасности, после проведения испытаний, перед отсоединением мегаомметра от электрической цепи, необходимо снять остаточный электрический заряд с устройства путем его кратковременного заземления. На рисунке ниже представлена схема подключения цифрового измерителя для проверки изоляции проводки.
При проведении электроизмерений следует учитывать, что результаты исследования могут быть искажены из-за различных внешних факторов, к примеру, из-за увлажнения изолированных частей электросети или электрической установки, что приводит к возникновению токов утечки. В этом случае на изоляцию необходимо наложить токоотводящий проводник, присоединив его к зажиму «Э» мегаомметра.
Правила соединения мегаомметра с цепью через зажим «Э»:
- при проверке изоляции электрического кабеля, изолированного от земли, зажим соединяют с броней провода через проводник;
- при проверке сопротивления изоляции между обмоток зажим «Э» соединяют с корпусом электрической машины;
- при измерении на обмотках трансформатора, зажим «Э» подключают к устройству под юбкой выходного изолятора.
Важно помнить, что измерение сопротивления изоляции в осветительных и силовых системах должно проводиться при включенных выключателях, отключенных электрических приемниках, отключенных плавких вставок и вывернутых лампах. Ни в коем случае нельзя проводить испытания мегаомметром сетей, отдельные элементы которых располагаются в непосредственной близости от других электрических систем, находящихся под напряжением
Также запрещено проводить измерения на воздушных линиях электропередач при грозе
Ни в коем случае нельзя проводить испытания мегаомметром сетей, отдельные элементы которых располагаются в непосредственной близости от других электрических систем, находящихся под напряжением. Также запрещено проводить измерения на воздушных линиях электропередач при грозе.
Действие остаточного напряжения
При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.
После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление. Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.
Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.
Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.
Измерение изоляции асинхронного двигателя мегаомметром
Перед измерениями отключают питание, снимают остаточное напряжение. Затем надо получить доступ к выводам обмоток. Один щуп прикрепляем к корпусу двигателя. Следите чтобы контакт был с чистым металлом — надо найти участок без краски и ржавчины. При проверке второй щуп подключаем к каждой из обмоток (также надо позаботиться чтобы под «крокодилом» было чисто.
Согласно таблице асинхронные двигатели, подключаемые к сети 220 В или 380 В, испытываются напряжением в 500 В.
Подземная прокладка кабеля: как сделать правильно
Инструкция по использованию мультиметра
Крепеж для кабеля — выбор способа крепления
Маркировка кабелей и проводов и её расшифровка
Безопасная эксплуатация мегаомметра
Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.
С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.
Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.
Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.
Виды и особенности мегаомметров
Сегодня на рынке представлены мегаомметры различных марок и типов, предназначенные для измерения изоляции с напряжением до 100, 500, 1000 и 2500 В, установленная величина напряжения генерируется самим измерительным устройством. На рисунке ниже представлена принципиальная схема мегаомметра ЭС0202.
Мегаомметры различаются между собой не только генерируемым напряжением, но также классом точности. К примеру, пользующийся большой популярностью у профессиональных специалистов прибор марки М4100, работает с погрешностью не более 1%. Для устройств Ф4101 нормальная погрешность составляет не более 2,5%. Чем выше значение исследуемой электросети или установки, тем более точным должен быть используемый для измерения мегаомметр. Питание измерительных средств может осуществляться от встроенных аккумуляторов или от сетей переменного тока напряжением 127-220 В.
Выбирать средство для испытаний электрической системы необходимо с учетом номинального сопротивления в сети, напряжения и других индивидуальных особенностей.
Чаще всего проводят испытания в сетях и устройствах с номинальным напряжением до 1000 В (электрические двигатели, цепи вторичной коммутации и другие). Для измерений в таких условиях необходимо использовать мегаомметры, рассчитанные на работу в цепях от 100 В до 1000 В. Если номинальные параметры сети выше 1000 В, необходимо использовать измерительные средства, работающие с напряжением до 2500 В.
Сопротивление изоляции: как правильно измерить
Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.
Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.
Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.
На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.
Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.
При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.
Оценка результатов испытаний и их периодичность
Значение контролируемых параметров определяется особенностью исследуемого объекта и его функциональным назначением. Согласно требованиям ПУЭ, сопротивление изоляции для низковольтных (до 0,4 кВ) кабельных линий и проводки электродвигателей не должно быть менее 0,5 МОм.
Тот же параметр для высоковольтного оборудования (более 1000 Вольт) составляет 1 Мом, а для воздушных кабельных линий он не может быть менее 10-ти Мом. Для сравнительной оценки состояния изоляции обычных кабельных трасс можно воспользоваться приводимой ниже таблицей.
Оценка состояния изоляции
Указанные величины нормируемых показателей справедливы для любых погодных условий. Периодичность проведения испытательных процедур определяется действующими нормативами и зависит от характеристик и состояния обследуемого объекта. Все вопросы, касающиеся самих испытаний (предельные напряжения, порядок и сроки проведения измерений), а также оценки их конечных результатов подробно рассмотрены в ПТЭЭП.
Согласно этим нормативам, качество изоляции кабелей осветительного, кранового и лифтового оборудования должно проверяться не реже одного раза в год. Те же процедуры для переносных сварочных агрегатов и электродвигателей полагается организовывать каждые полгода.
Любые нарушения определённой нормативами периодичности проверки могут привести к нарушению нормального режима работы кабельных или проводных линий, и, как следствие, вызвать повреждение подключённого к ним оборудования.
Что такое мегомметр?
`;
Пол Скотт
Мегаомметр, или, как его чаще называют, мегомметр, представляет собой электрический испытательный прибор, предназначенный для измерения чрезвычайно высоких сопротивлений путем создания напряжения постоянного тока в диапазоне от 300 до 15 000 вольт. Мегаомметр производит заряд постоянного тока высоким напряжением и малым током, что позволяет измерять сопротивление, обычно встречающееся при испытаниях обмотки электродвигателя или изоляции кабеля. Мегаомметры производят это высокое напряжение с помощью внутренней схемы с питанием от батареи или генератора с ручным управлением.
Проверка электрического оборудования, механизмов или установок на сопротивление обмотки, заземления или изоляции с помощью обычного омметра может быть неточной из-за чрезвычайно высоких сопротивлений, характерных для этих приложений. Сопротивления в этих случаях могут варьироваться от нескольких мегаом до нескольких миллионов мегаом и требуют испытательного напряжения, намного более высокого, чем то, которое используется в меньших омметрах. Мегаомметр использует постоянное напряжение в диапазоне от 300 до 15 000 вольт для точного измерения этих очень высоких значений сопротивления. Эти напряжения подаются при очень низких номинальных токах и, как правило, не опасны для пользователя мегаомметра.
Существует два основных типа мегомметров: вариант с питанием от батареи и тип, в котором используется ручная рукоятка или генератор с приводом от двигателя. Оба варианта мегомметра способны проводить точные измерения сопротивления изоляции установок и оборудования с сопротивлением в несколько тераом (1 000 000 МОм). Мегаомметры с батарейным питанием используют специальную внутреннюю схему для преобразования низкого напряжения батареи в более высокое тестовое напряжение. Эти инструменты, как правило, меньше и легче, чем версии с генератором, и предлагают преимущества одной кнопки, управления одной рукой и выбора нескольких рабочих напряжений. Недостатком мегаомметров с батарейным питанием является короткий срок службы батареи и то, что они обычно производят не более 5000 вольт.
полагаются на небольшой внутренний генератор для получения требуемых высоких испытательных напряжений. Эти генераторы обычно управляются вручную с помощью внешней рукоятки, но могут быть оснащены внутренним приводом двигателя. Эти приборы могут производить напряжения в диапазоне от 300 до 15 000 вольт и не требуют замены батареи. Одной из вредных характеристик использования этого типа инструмента является то, что для операции требуются две руки, что требует использования проводов с зажимом или помощи второго человека. Кроме того, они, как правило, более громоздкие и обеспечивают одно испытательное напряжение.
При тестировании электрического оборудования всегда следует помнить о высоком напряжении, создаваемом этими приборами. Испытательные напряжения мегаомметра не должны превышать рабочее напряжение испытуемого оборудования со слишком большим запасом, так как это может привести к необратимым повреждениям. Хотя испытательные напряжения подаются при очень малых токах, следует всегда соблюдать осторожность, чтобы не допустить поражения электрическим током при работе с мегомметром.
Как использовать мегомметр для проверки проводов [Пояснение]
Провода важны, но не менее важна их изоляция. Вот почему тест мегомметра важен для отслеживания изоляции провода.
Как использовать мегомметр для проверки провода?
Отключите все виды электрических подключений к проводу, который вы хотите проверить. Найдите непокрытые жилы провода. Подсоедините один из наконечников мегомметра к одному концу провода. Прикрепите другой на другом конце и нажмите кнопку тестирования. Это даст вам чтение, которое вы ищете.
Запутались? Не волнуйся! У нас есть целое руководство по этому поводу.
Итак, приступим!
Как меггер используется для проверки проводов?
Поскольку проверка изоляции кабеля по существу является проверкой целостности, соединение должно быть отключено. Если вы проверяете проводку в аппаратном обеспечении, выключите его. Если вы не можете отключить его, отключите его.
Ищите обнаруженные проводники, найдя точку соединения провода. Подсоедините один из наконечников мегомметра к проводу с помощью зажима типа «крокодил». Затем подключите второй зажим к другому выявленному проводнику. Затем нажмите кнопку тестирования.
Это заставит устройство создать ток между датчиками. А счетчик измерит сопротивление куртки электрическому току. Для достижения точных измерений держите его подключенным не менее 30–60 секунд.
Идеально подходит измерение сопротивления от 35 до 100 МОм. Для электрических проводов приемлемы уровни сопротивления изоляции 1 МОм на 1000 вольт электричества.
Вы можете использовать мегомметр для сбора периодических измерений и построения на их основе графика. Это может быть полезно для отслеживания общей эффективности изоляции. Нисходящая линия или кривая показывает, что изоляция ухудшается.
Вы также можете проверить мегомметром при обновлении электрической розетки. Так что можно действовать осторожно.
Наклон линии или кривой показывает, как долго сохраняется изоляция. Этот метод построения графика неуклонного снижения является более жизнеспособным инструментом, чем выборочное тестирование.
Хорошо следить за своими проводами, вы должны принять некоторые меры предосторожности. Есть некоторые меры предосторожности, которые вы должны принять во время тестирования.
Меры предосторожности при тесте мегомметра
Во время теста мегомметра вы можете повредить свое оборудование или даже получить серьезные травмы. Так что прежде всего позаботьтесь о своей безопасности:
- Используйте мегомметр только для измерения высокого сопротивления. Например, изоляция или проверка двух независимых проводников на кабеле.
- При вращении уровня следите за тем, чтобы не касаться проводов.
- Перед началом проверки или подключением мегомметра выключите оборудование. Полностью разрядите провод или оборудование, иначе вас может ударить током.
- В идеале вы должны полностью отключить тестируемое оборудование от вилки.
Если вы ищете защитное снаряжение, вот несколько рекомендуемых:
Продукт 1 | |
Продукт 2 |
Теперь давайте проверим некоторые вещи, которые вы должны помнить при выполнении теста.
Что следует помнить
Несмотря на то, что мегомметр важен, большинству домохозяйств он не нужен. Потому что изоляция электрических проводов в бытовых условиях очень медленно портится. Таким образом, в течение срока службы дома провода не потребуют проверки.
Но для умелых техников или даже обычных людей можно использовать мегомметр. Он прост в использовании и может быть полезен при поиске неисправностей в бытовой технике.
Зачем нужно тестирование мегомметра?
Меггер используется для проверки качества сопротивления изоляции провода. В первую очередь из соображений безопасности. Сопротивление изоляции может ухудшаться день ото дня из-за различных факторов. Например, если вилку трудно подключить, со временем она может выйти из строя.
Такие факторы, как влажность, пыль, температура, влага и т. д., со временем влияют на качество сопротивления изоляции. Это также значительно коррелирует с наличием механических и электрических нагрузок.
Таким образом, регулярная проверка сопротивления изоляции оборудования стала очень важной. Необходимо избегать любых мер смертельного поражения или поражения электрическим током.
Это также очень важно после выполнения любых электромонтажных работ. Вы можете понять, повредили ли вы какую-либо проводку или допустили какую-либо ошибку, используя мегомметр.
Проверка мегомметром также безопасна и не повреждает проводку. Таким образом, вы можете постоянно проверять свою электрическую систему.
Но кухонные провода также очень часто повреждаются теплом печи. Поэтому идеально, если вы держитесь на некотором расстоянии от электрической розетки до газовой линии.
Часто задаваемые вопросы
Вопрос: Каковы преимущества тестирования мегомметром?
Ответ: Он имеет много преимуществ. Вы можете быть в курсе состояния вашего оборудования, анализируя показания. Кроме того, это снижает риск отказа электрической системы.
Вопрос: Существуют ли различные типы мегомметров?
Ответ: Да. Существует два типа мегомметра. Электронный тип и ручной тип — это два разных типа мегомметра. И у обоих есть свой набор преимуществ и недостатков.
Вопрос: Должен ли я использовать какое-либо защитное оборудование?
Ответ: При тестировании лучше использовать средства защиты, но это не обязательно. Тестирование мегомметром вполне безопасно из-за низкого напряжения. Но использование защитного снаряжения никогда не будет плохой идеей.
Заключение
На этом статья подходит к концу. Мы надеемся, что теперь вы знаете , как использовать мегомметр для проверки провода. Но помните, что обращаться с электричеством рискованно.
Так что, если вы не уверены в своих технических возможностях, обратитесь к профессионалу.
До встречи в следующей статье!
Основы измерения сопротивления изоляции
Опубликовано пользователем p1ws
Существует два распространенных метода проверки изоляции кабелей, проводки и электрооборудования. Один использует мегомметр для измерения сопротивления изоляции. Другой использует тестер Hipot для проверки на пробой изоляции. Оба подают высокое напряжение переменного или постоянного тока на тестируемое устройство (ИУ) и измеряют результирующий ток.
Мегаомметры
Современный мегомметр (или мегомметр) подает постоянное напряжение на ИУ и измеряет постоянный ток (наноампер или микроампер). Применяя закон Ома, соответствующее значение сопротивления отображается на аналоговом или цифровом дисплее измерителя. Этот инструмент часто называют мегомметром, что является торговой маркой Megger Group в 1907 году.

Из-за емкостных и диэлектрических эффектов в тестируемом устройстве требуется время, чтобы показания стабилизировались после подачи напряжения. Первоначально в показаниях преобладает зарядка емкости. Токи поглощения могут быть значительными в течение 20 секунд и более. Обычно ИК-показания снимаются через 60 секунд, чтобы эти эффекты прекратились.
Методы
Два метода могут помочь в оценке состояния изоляции. Во-первых, подавать напряжение поэтапно. Поврежденная изоляция будет показывать снижение значения IR по мере увеличения испытательного напряжения. Для получения точных результатов следует контролировать время выдержки на каждом шаге. Для упрощения проверки некоторые мегомметры имеют функцию автоматического повышения напряжения через запрограммированные интервалы времени.
Другой метод оценки заключается в сравнении показаний ИК с результатами предыдущих испытаний. Поскольку мегомметр использует очень низкий испытательный ток, он не повреждает изоляцию. Периодические ИК-тесты выявляют ухудшение изоляции с течением времени и необходимость профилактического обслуживания. Точное сравнение требует измерений при одном и том же напряжении и времени выдержки. Влага влияет на показания ИК, поэтому следует соблюдать осторожность при проведении испытаний при одинаковых условиях температуры и влажности.
Параметры
Два параметра, полученные из измерений сопротивления изоляции, — это коэффициент диэлектрической абсорбции (DAR) и индекс поляризации (PI). Современные цифровые мегаомметры имеют специальные функции для измерения и отображения этих параметров. DAR представляет собой IR на 60-й секунде, деленное на IR на 30-й секунде. Значение меньше 1 показывает, что сопротивление уменьшается со временем, что указывает на неисправность тестируемого устройства. Индекс поляризации используется в двигателях и генераторах для оценки количества примесей в обмотках и их чистоты. PI представляет собой IR через 10 минут, деленное на IR через 1 минуту. В некоторых стандартах на оборудование указаны минимальные значения PI. Соотношение больше 1,5 обычно является адекватным.
Портативные мегомметры на напряжение до 1000 В доступны от нескольких производителей. Мобильные устройства могут подавать напряжение до 15 кВ. Универсальные приборы сочетают ИК-измерения с другими функциями тестирования, такими как мультиметр. На этой фотографии показаны типичный ручной мегомметр, портативный мегомметр, мегомметр/цифровой мультиметр и тестер Hipot.
Тестер Hipot
Тест Hipot (сокращение от высокого потенциала) определяет способность электрической изоляции выдерживать обычно возникающие переходные процессы перенапряжения. Тестер Hipot подает высокое напряжение на изоляционный барьер тестируемого устройства и проверяет отсутствие пробоя. Это простое испытание на соответствие/несоответствие, проводимое как типовое испытание на репрезентативной пробной единице или как стандартное производственное испытание.

Как правило, тест Hipot проводится на силовой проводке электрооборудования. Один провод тестера подключен к защитному заземлению (земле). Другой провод подключается к линии и нейтральному проводу питания. Часто тестер Hipot имеет встроенную розетку переменного тока для выполнения этих подключений (как показано на фотографии).
Если в тестируемой цепи есть сетевой фильтр, тестер переменного тока может показать неисправность из-за протекания тока на землю через Y-конденсаторы. Стандарт безопасности обычно позволяет пользователю отключать эти конденсаторы перед испытанием или увеличивать верхний предел тока, чтобы компенсировать дополнительную утечку. В качестве альтернативы можно использовать испытательное напряжение постоянного тока. Большинство тестеров Hipot также включают нижний предел, чтобы гарантировать, что тест не пройден, если тестируемое устройство не подключено или тест прерван. В отличие от мегомметров, которые обычно питаются от батарей, почти всем тестерам Hipot требуется питание от сети переменного тока.
Таким образом, сопротивление изоляции обычно является полевым измерением для оценки качества изоляции. Тестирование Hipot обычно представляет собой проверку безопасности, проводимую на заводе для проверки конструкции продукта и производственного процесса. C]nX_Z`DA@PPX>g+BL»EWST4XMf[‘5m6Zf1
0U[&+[0]=qbmVYMcN55Z!f$k)VoX)a##.pPUEg0df&:EBm_=C*h4A\q’2mXA%MJ.,
Q.ROiRD)0BVtD\HMSc7/,(\8Z352KhpA9)R’RV-,RnsSFkEo
\RNJrFO.WboXE2u[tTj&-brj=&X&j
TRIPLETT MG420A Analog Megohmmeter Insulation Tester User Manual
TRIPLETT MG420A Analog Megohmmeter Insulation Tester
Introduction
Congratulations on your purchase аналогового мегомметра/тестер изоляции Triplett MG420. MG420 имеет три диапазона проверки изоляции с индикатором цепи под напряжением, а также измерения низкого сопротивления и напряжения переменного тока. Функция Power Lock On позволяет работать без помощи рук.
Безопасность
Международные символы безопасности
ПРЕДУПРЕЖДЕНИЕ
- Этот символ рядом с другим символом или клеммой указывает, что пользователь должен обратиться к руководству для получения дополнительной информации.
- Этот символ рядом с клеммой указывает на то, что при нормальном использовании могут присутствовать опасные напряжения.
- Двойная изоляция
Примечания по безопасности Установите переключатель функций в положение OFF, когда измеритель не используется. Предупреждения Меры предосторожности 6 ВАЖНОЕ ПРИМЕЧАНИЕ Светодиодный индикатор цепи под напряжением Подключение измерительных проводов Проверка аккумулятора Проверка щупов Измерения в мегаомах Измерения сопротивления . Если при запуске теста загорается светодиод состояния цепи под напряжением, немедленно прервите проверку и убедитесь, что на тестируемую цепь не подается питание. Измерение напряжения переменного тока Вы, как конечный пользователь, обязаны по закону (постановление о батареях) вернуть все использованные батареи и аккумуляторы; выбрасывание вместе с бытовым мусором запрещено!Вы можете сдать использованные батареи/аккумуляторы в пункты сбора в вашем районе или везде, где продаются батареи/аккумуляторы!Утилизация: Соблюдайте действующие юридические положения в отношении утилизации устройства в конце его жизненный цикл. Общие спецификации ДИАПАЗОНЫ 0026 Точность Voltage Current Напряжение переменного тока Диапазон Рез. Accuracy Input impedance 600VAC 20V ±5 % Ом 1000 Вэфф Megohmmeter Specifications Range Accuracy voltage 4 200M 500VDC 0. % 500V + 10% ~ -0% 10MM % 400M 1000VDC % 1000V + 10% ~ -0% 20M Ω % Range Тестовый ток / нагрузка . 1 м A Прибл. 1,3 мА
Во время проверки нельзя прикасаться к соединениям цепи. Будьте предельно осторожны при работе вблизи оголенных проводников и шин. Случайный контакт с проводником может привести к поражению электрическим током. Прочтите и усвойте данное руководство пользователя перед эксплуатацией счетчика.
Описание
описание дисплея ниже
Вид сверху
Описание дисплея
Работа
4 НЕ продолжайте проверку при наличии напряжения. Если тестирование выполняется при наличии напряжения, это может привести к поражению пользователя электрическим током и повреждению измерителя или тестируемого устройства. Приступайте к тестированию только после снятия напряжения с тестируемого устройства.
Поверните ключ по часовой стрелке, чтобы заблокировать тест.
Диапазон Множитель показаний 250 В 0,5 500 В 1 1000V 2 Замена батареи
Технические характеристики
МИН. Open Circuit MIN Circuit 3Ω 0.05Ω +3% 4.1V 200mA 500Ω 1Ω 4,1 В
Overload Protect 1,2M Terminal ±5 0,2 МОм-5 МОм % 7 0073 250V + 100 Ω 250VDC ±10 10% ~ -0% 5M to 100 M Ω % 5M Ω-10M Ω
±5 ±10 1 M Ω-20M Ω Ω ±5 ±10 Короткая замыкание Текущий
00100 0000 900VD 9003 00.00100 9003 100.00100 9003 100. 100. 100. 100.10019.0074 250K 200M 500VDC 500K 400M 1000VDC 1M Warranter. Компания Triplett гарантирует первоначальному покупателю, что продаваемые ею продукты не будут иметь дефектов изготовления и материалов в течение (1) одного года с даты покупки. Настоящая гарантия не распространяется на наши продукты, которые были каким-либо образом отремонтированы или изменены неуполномоченными лицами или приобретены у неавторизованных дистрибьюторов, что, по нашему собственному мнению, может нанести ущерб их стабильности или надежности, или которые использовались не по назначению, злоупотребления, неправильного применения, небрежности, несчастного случая или серийные номера которых были изменены, стерты или удалены.
Данная гарантия не распространяется на аксессуары, включая батареи
Copyright © 2021 Triplett
Test Equipment Depot — 800.517.8431 — 5 Commonwealth Ave, Woburn, MA 01801 TestequipmentDepot.com
Документы / Ресурсы
Triplettttmmmmmmmemplert. MG420A Аналоговая мегахметер Изоляционная тестер, MG420A, Аналоговая изоляция мегохметра |
по Полезные советы
Mell
Как пользоваться тестером Megger?
Если вы проверяете сопротивление изоляции относительно земли, поместите положительный щуп на провод заземления или заземленную металлическую распределительную коробку, а отрицательный щуп на проводник или клемму. Включите мегомметр на 1 минуту. Прочтите значение сопротивления в конце минутного теста и запишите его в свою таблицу.
Для чего нужен Megger Metre?
Тест Меггера — это метод тестирования с использованием измерителя сопротивления изоляции, который помогает проверить состояние электрической изоляции. Качество сопротивления изоляции электрической системы ухудшается со временем, условиями окружающей среды, т. е. температурой, влажностью, влагой и частицами пыли.
Как работает меггер?
Работа мегомметра Магнитное поле, создаваемое между двумя полюсами постоянного магнита, используется для вращения ротора генератора постоянного тока с помощью рукоятки. Всякий раз, когда мы вращаем этот ротор постоянного тока, генерируются некоторое напряжение и ток. Этот ток протекает через катушки А и катушки В против часовой стрелки.
Как узнать, работает ли мой Меггер?
Нажмите кнопку проверки на мегомметре, мегомметр будет генерировать ток. Этот ток протекает по кабелю, на шкале отмечается сопротивление, которое колеблется от 35 до 100 МОм. Обратите внимание, чтобы поддерживать этот контакт в течение 30-60 секунд. Допустимое значение IR для электрического кабеля = 1 МОм для 1000 В.
Что такое хорошее показание мегомметра?
Включите и прочтите показания счетчика. Любое значение от 2 МОм до 1000 МОм обычно считается хорошим значением, если не были отмечены другие проблемы. Все, что меньше 2 МОм, указывает на проблемы с изоляцией.
Какой тестер Megger лучше?
Шесть лучших мегомметров для проверки сопротивления изоляции
- Мегаомметр Fluke 1507 Измеритель сопротивления изоляции.
- Тестер изоляции Fluke 1587 (2 гигаом)
- Extech 380260 Тестер изоляции.
- AEMC Мегаомметр Тестер сопротивления изоляции.
- Тестер изоляции Megger MIT230 (1000 МОм)
- Тестер сопротивления изоляции Amprobe (1000 МОм)
Как вам меггер провода?
Закрепите зажим типа «крокодил» на одном из щупов мегомметра на проводе или кабеле, прикоснитесь другим щупом к оголенному проводнику и нажмите кнопку проверки. Меггер будет генерировать ток между щупами, а счетчик будет записывать сопротивление оболочки протеканию тока.
Почему мы проводим мегомметр?
Проверка мегомметром измеряет сопротивление между фазными обмотками тестируемого двигателя и землей. Если происходит пробой изоляции, это оказывает отрицательное влияние на сопротивление и происходит отклонение между фазами или между одним измерением и предыдущим, и выполняется определение исправности двигателя.
Является ли мегомметр переменного или постоянного тока?
RE: Разница между мегомметром переменного и постоянного тока Все мегомметры выдают только постоянный ток. Руководство означает, что это мегомметр с питанием от сети переменного тока (может быть с приводом от двигателя переменного тока или электронным), а не с ручным приводом.
Каким должно быть значение Меггера?
1. Значения IR для электрических аппаратов и систем
Номинальное максимальное напряжение оборудования | Размер мегомметра | Мин.![]() |
---|---|---|
600 вольт | 1000 вольт | 100 МОм |
5 кВ | 2500 Вольт | 1000 МОм |
8 кВ | 2500 Вольт | 2000 МОм |
15 кВ | 2500 Вольт | 5000 МОм |
Что такое плохие показания теста Меггера?
Если мегомметр показывает сопротивление менее 1 (1000 Ом) на вашем измерителе после начального 60-секундного интервала, кабель неисправен, и его следует удалить. Если мегомметр показывает сопротивление в пределах 1-1,25 на вашем измерителе, то кабель проходит. Любое значение выше 1,25 считается отличным.
Как мегомметр используется в омметре?
В мегомметре есть генератор постоянного тока и омметр. Обычный омметр не может использоваться для измерения высоких значений сопротивления, поэтому в этом случае мы можем использовать мегомметр или мегомметр. С помощью мегомметра мы можем измерить электрическую утечку провода, и это делается путем пропускания электрического тока через провод в течение определенного периода времени.