Как правильно проверить фоторезистор мультиметром. Какие основные характеристики фоторезистора нужно измерить. Как определить исправность фоторезистора без специальных приборов. Какие виды фотодатчиков существуют и где они применяются.
Что такое фоторезистор и как он работает
Фоторезистор — это полупроводниковый резистор, электрическое сопротивление которого изменяется под воздействием света. Принцип работы фоторезистора основан на явлении фотопроводимости полупроводников.
При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. В результате:
- Увеличивается количество свободных электронно-дырочных пар
- Сопротивление фоторезистора уменьшается
- Через него начинает протекать больший электрический ток
Таким образом, сопротивление фоторезистора обратно пропорционально интенсивности падающего на него светового потока.
Основные характеристики фоторезисторов
Для оценки работоспособности и правильного применения фоторезисторов необходимо знать их основные характеристики:

- Темновое сопротивление — сопротивление фоторезистора в полной темноте
- Световое сопротивление — сопротивление при определенном уровне освещенности
- Кратность изменения сопротивления — отношение темнового сопротивления к световому
- Спектральная характеристика — зависимость чувствительности от длины волны падающего излучения
- Люкс-амперная характеристика — зависимость фототока от освещенности
- Вольт-амперная характеристика
- Частотная характеристика — зависимость чувствительности от частоты модуляции светового потока
Методы проверки исправности фоторезистора
Проверка фоторезистора мультиметром
Самый простой способ проверить работоспособность фоторезистора с помощью мультиметра:
- Переключите мультиметр в режим измерения сопротивления
- Подключите щупы к выводам фоторезистора
- Измерьте сопротивление в темноте (закройте фоторезистор от света)
- Измерьте сопротивление при освещении (направьте на фоторезистор источник света)
- Сравните полученные значения — при исправном фоторезисторе сопротивление на свету должно уменьшиться в десятки или сотни раз
Визуальный осмотр
При внешнем осмотре фоторезистора обратите внимание на:

- Целостность выводов и корпуса
- Отсутствие трещин, сколов, следов перегрева
- Чистоту светочувствительной поверхности
Любые механические повреждения или загрязнения могут нарушить работу фоторезистора.
Снятие основных характеристик фоторезистора
Для получения полной информации о параметрах фоторезистора рекомендуется снять следующие характеристики:
Люкс-амперная характеристика
Показывает зависимость фототока от освещенности. Для ее построения:
- Подключите фоторезистор последовательно с миллиамперметром и источником питания
- Изменяйте освещенность фоторезистора от 0 до максимальной
- Записывайте значения тока при разных уровнях освещенности
- Постройте график зависимости тока от освещенности
Спектральная характеристика
Определяет чувствительность фоторезистора к излучению разных длин волн. Для ее получения:
- Используйте источники монохроматического излучения разных длин волн
- Измеряйте фототок при постоянной мощности излучения
- Постройте график зависимости чувствительности от длины волны
Применение фотодатчиков в различных устройствах
Фотодатчики, в том числе фоторезисторы, широко применяются в разнообразных электронных устройствах и системах автоматики:

- Датчики освещенности в системах «умный дом»
- Автоматические выключатели уличного освещения
- Экспонометры фотоаппаратов
- Оптические энкодеры в компьютерных мышах
- Датчики присутствия в охранных системах
- Системы позиционирования в принтерах и сканерах
- Датчики частоты вращения в промышленном оборудовании
Виды фотодатчиков и их особенности
Помимо фоторезисторов существуют и другие типы фотодатчиков:
Фотодиоды
Полупроводниковые диоды, обратный ток которых зависит от освещенности. Отличаются высоким быстродействием.
Фототранзисторы
Транзисторы, управляемые световым потоком вместо тока базы. Обладают встроенным усилением фототока.
Фотоумножители
Электровакуумные приборы с высокой чувствительностью, способные регистрировать отдельные фотоны.
Фотоэлементы
Преобразуют энергию света непосредственно в электрическую. Применяются в солнечных батареях.
Рекомендации по выбору и применению фоторезисторов
При выборе фоторезистора для конкретного применения следует учитывать:
- Диапазон рабочих освещенностей
- Требуемую спектральную чувствительность
- Быстродействие (для работы с модулированным светом)
- Температурный диапазон эксплуатации
- Допустимую мощность рассеяния
Для повышения надежности работы фоторезисторов рекомендуется:

- Защищать светочувствительную поверхность от загрязнений
- Не превышать максимально допустимое напряжение
- Учитывать температурную зависимость параметров
- При необходимости применять температурную компенсацию
Заключение
Фоторезисторы являются простыми и надежными фотодатчиками, широко применяемыми в электронике и автоматике. Правильная проверка и измерение характеристик позволяют оценить их работоспособность и выбрать оптимальный фоторезистор для конкретной задачи. При грамотном применении фоторезисторы обеспечивают надежное преобразование световых сигналов в электрические.
Как проверить фоторезистор мультиметром — Мастерок
Содержание
- Для получения более точных и исчерпывающих сведений о фоторезисторе снимают следующие характеристики:
- Алгоритм поиска неисправности
- Визуальный осмотр
- Проверка резистора на обрыв
- Проверка короткого замыкания
- Определяем номинал резистора
- Как проверить переменный резистор и потенциометр
Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света.
Рис. 2.2. Монокристаллический фоторезистор
Рис. 2.3. Пленочный фоторезистор
Рис. 2.4. Включение фоторезистора в цепь постоянного тока
Конструкция монокристаллического и пленочного фоторезисторов показана на рис. 2.2, 2.3. Основным элементом фоторезистора является в первом случае монокристалл, а во втором — тонкая пленка полупроводникового материала.
Если фоторезистор включен последовательно с источником напряжения (рис. 2.4) и не освещен, то в его цепи будет протекать темновой ток:
где Е — ЭДС источника питания;
RT — величина электрического сопротивления фоторезистора в темноте, называемая темновым сопротивлением;
RH — сопротивление нагрузки.
При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает, и через него течет световой ток, обусловленный формулой:
Разность между световым и темновым током дает значение тока 1ф, получившего название первичного фототока проводимости
Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости. Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости. В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.
Основные характеристики фоторезисторов
Фоторезистор (от фото- и резистор), представляет собой полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности. В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два-три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернисто-свинцовые, сернисто-кадмиевые, сернисто-висмутовые и поликристаллические селено-кадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, они экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы.
Основные характеристики фотосопротивлений:
• Темновое сопротивление (сопротивление в полной темноте), варьируется в обычных приборах от 1000 до 100000000 Ом.
где Ai — фототок, равный разности токов в темноте и на свету; Ф — световой поток; U — приложенное напряжение.
• Предельное рабочее напряжение (как правило от 1 до 1000 В).
• Среднее относительное изменение сопротивления в процентах (обычно лежит в пределах 10…99,9%):
где RT и Rc — сопротивление в темноте и в освещенном состоянии соответственно.
• Средняя кратность изменения сопротивления (как правило от 1 до 1000). Определяется соотношением: RT/RC.
Схема включения фоторезисторов показана на рис. 2.5.
При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого-либо
Рис. 2.5. Электрическая схема включения фоторезистора
Рис. 2.6. ВАХ фоторезистора
устройства (схематично показано в виде некоторого сопротивления нагрузки). Полезный сигнал для дальнейшего усиления или управления другими устройствами снимают параллельно RHarp.
Основными характеристиками фоторезисторов являются:
• Вольт-амперная (ВАХ), характеризующая зависимость фототока (при постоянном световом потоке Ф) или темнового тока от приложенного напряжения. Для фоторезисторов эта зависимость практически линейна (рис. 2.6). Закон Ома нарушается только при высоких напряжениях, приложенных к фоторезистору.
Световая (люкс-амперная), характеризующая зависимость фототока от падающего светового потока постоянного спектрального состава. Полупроводниковые фоторезисторы имеют нелинейную люкс-амперную характеристику (рис. 2.7). Наибольшая чувствительность получается при малых освещенностях. Это позволяет использовать фоторезисторы для измерения очень малых интенсивностей излучения. При увеличении освещенности световой ток растет примерно пропорционально корню квадратному из освещенности. Наклон люкс-амперной характеристики зависит от приложенного к фоторезистору напряжения.
Рис, 2.7. Зависимость тока от светового потока, падающего на рабочую поверхность фоторезистора
Рис. 2.8. Зависимость спектральной характеристики от материала фоторезистора
Рис. 2.9. Зависимость фототока фоторезистора от частотной модуляции светового потока
• Спектральная, характеризующая чувствительность фоторезистора при действии на него потока излучения постоянной мощности определенной длины волны. Спектральная характеристика определяется материалом, используемым для изготовления светочувствительного элемента. Сернисто-кад- миевые фоторезисторы имеют высокую чувствительность в видимой области спектра, селенисто-кадмиевые — в красной, а сернисто-свинцовые — в инфракрасной. Это хорошо демонстрирует рис. 2.8.
Частотная, характеризующая чувствительность фоторезистора при действии на него светового потока, изменяющегося с определенной частотой. Наличие инерционности у фоторезисторов приводит к тому, что величина их фототока зависит от частоты модуляции падающего на них светового потока — с увеличением частоты светового потока фототок уменьшается (см. рис. 2.9). Инерционность ограничивает возможности применения фоторезисторов при работе с переменными световыми потоками высокой частоты.
Рабочее напряжение Up — постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.
Максимально допустимое напряжение фоторезистора Umax — максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.
Темновое сопротивление RT — сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.
Световое сопротивление Rc — сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.
Кратность изменения сопротивления KR — отношение тем- нового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).
Допустимая мощность рассеяния — мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.
Общий ток фоторезистора — ток, состоящий из темнового тока и фототока.
Фототок — ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.
Удельная чувствительность — отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА/(лм-В):
где 1ф — фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА;
Ф — падающий световой поток, лм; U — напряжение, приложенное к фоторезистору, В.
Интегральная чувствительность — произведение удельной чувствительности на предельное рабочее напряжение:
Постоянная времени тф — время, в течение которого фото- ток изменяется на 63%, т.е. в е раз. Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.
Рис. 2.10. Иллюстрация нарастания и спада фототока в зависимости от освещенности фоторезистора
При включении и выключении света фототок возрастает до максимума (рис. 2.10) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени т, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок будет нарастать и спадать во времени по закону:
где 1ф — стационарное значение фототока при освещении.
По кривым спада фототока во времени можно определить время жизни т неравновесных носителей.
В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AlMBv. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего спектра ультрафиолета — CdS.
Сегодня фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в опто- электронике. В радиолюбительских конструкциях фоторезисторы применяются как световые датчики в устройствах слежения и автоматики, автоматических и фотореле в быту, в охранных системах.
Регистрация оптического излучения
Для регистрации оптического излучения его световую энергию преобразуют в электрический сигнал, который затем измеряют обычным способом. При этом преобразовании обычно используют следующие физические явления:
• генерацию подвижных носителей в твердотельных фотопрово- дящих детекторах;
• изменение температуры термопар при поглощении излучения, приводящее к изменению термо-ЭДС;
• эмиссию свободных электронов в результате фотоэлектрического эффекта с фоточувствительных пленок.
Наиболее важными типами оптических детекторов являются:
Схема включения полупроводникового фотодетектора приведена на рис. 2.11.
Рис. 2.11. Схема подключения полупроводникового фотоэлемента
Полупроводниковый кристалл последовательно соединен с резистором R и источником постоянного напряжения U. Оптическая волна, которую нужно зарегистрировать, падает на кристалл и поглощается им, возбуждая при этом электроны в зону проводимости (или в полупроводниках р-типа — дырки в валентную зону). Такое возбуждение приводит к уменьшению сопротивления Rd полупроводникового кристалла и, следовательно, к увеличению падения напряжения на сопротивлении R, которое при ARd/Rd « 1 пропорционально плотности падающего потока. В качестве примера рассмотрим энергетические уровни одного из наиболее распространенных полупроводников — германия, легированного атомами ртути. Атомы Нд в германии являются акцепторами с энергией ионизации 0,09 эВ. Следовательно, для того чтобы поднять электрон с верхнего уровня валентной зоны и чтобы атом Нд (акцептор) сумел захватить его, необходим фотон с энергией не менее 0,09 эВ (т.е. фотон с длиной волны короче 14 мкм). Обычно кристалл германия содержит небольшое количество ND донорных атомов, которым при низких температурах энергетически выгодно отдавать свои валентные электроны большому количеству NA акцепторных атомов. При этом возникает равное количество положительно ионизированных донорных и отрицательно ионизированных акцепторных атомов. Так как концентрация акцепторов NA » ND, большинство атомов-акцепторов остается незаряженными.
Главным преимуществом полупроводниковых фотодетекторов по сравнению с фотоумножителями является их способность регистрировать длинноволновое излучение, поскольку создание подвижных носителей в них не связано с преодолением значительного поверхностного потенциального барьера.
Недостатком же их является небольшое усиление по току. Чтобы выходной импульс мог управлять различными электронными системами, его необходимо многократно усилить. Таким усилителем может быть одно-двухкаскадный транзисторный усилитель или операционный усилитель. Чтобы фотовозбуждение носителей не маскировалось тепловым возбуждением, полупроводниковые фотодетекторы не должны эксплуатироваться в средах с высокими температурами, иначе их необходимо охлаждать.
Фоторезистор представляет собой полупроводниковый резистор, сопротивление которого резко уменьшается при воздействии на его светочувствительный элемент электромагнитного излучения.
Чтобы проверить фоторезистор, соединяют последовательно источник э. д. е., миллиамперметр и собственно затемненный фоторезистор.
Ток полного отклонения миллиамперметра должен быть равен 2-З мА.
Зафиксировав значение темнового тока, удаляют светонепроницаемую перегородку и замечают второе показание прибора, то есть, ток, протекающий через фоторезистор при воздействии на него обычного рассеянного света или потока излучения какого-нибудь источника световой энергии.
Если второе показание превосходит первое в десятки или сотни раз, го проверяемый фоторезистор считают исправным.
Для получения более точных и исчерпывающих сведений о фоторезисторе снимают следующие характеристики:
а) люкс-амперную, представляющую собой зависимость тока, протекающего через фоторезистор, от интенсивности падающего на него потока излучения;
б) спектральную, определяющую чувствительность фоторезистора при действии на него излучения определенной длины волны;
в) вольтамперную, позволяющую устанавливать пределы линейности характеристики и сопротивление фоторезистора;
г) частотную, характеризующую инерционность фоторезистора.
Необходимые для оценки и применения фоторезисторов сведения
Чтобы предотвратить необратимые изменения параметров бескорпусных фоторезисторов, которые могут произойти вследствие нагрева их паяльником, рекомендуется соединять выводы бескорпусных фоторезисторов с другими элементами схемы не пайкой, а прижимными контактами.
Алгоритм поиска неисправности
Визуальный осмотр
Любой ремонт начинается с внешнего осмотра платы. Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов. Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.
Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.
Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:
Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:
Проверка резистора на обрыв
Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.
Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв.
Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром. Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.
Проверка короткого замыкания
Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т. к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.
Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:
- Измерить омметром, прозвонкой или другим прибором участок цепи.
- Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
- Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
- Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
- Проверить результаты работы на наличие КЗ.
Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:
Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.
На видео ниже наглядно показывается, как проверить резистор мультиметром:
Определяем номинал резистора
У советских сопротивлений номинал был указан буквенно-цифровым способом. У современных выводных резисторах номинал зашифрован цветовыми полосами. Чтобы заменить сопротивление после проверки на исправность, нужно расшифровать маркировку сгоревшего.
Для определения маркировки по цветным полоскам есть масса бесплатных приложений на андроид. Раньше использовались таблицы и специальные приспособления.
Можно сделать вот такую шпаргалку для проверки:
Вырезаете цветные круги, прокалываете их по центру и соединяете, самый большой назад, маленький – спереди. Совмещая круги, вы определяете сопротивление элемента.
Кстати на современных керамических резисторах тоже используется явная маркировка с указанием сопротивления и мощности элемента.
Если вести речь об SMD элементах – здесь всё достаточно просто. Допустим маркировка «123»:
12 * 10 3 = 12000 Ом = 12 кОм
Встречаются и другие маркировки из 1, 2, 3 и 4 символов.
Если деталь сгорела так, что маркировку вообще не видно, стоит попробовать потереть её пальцем или ластиком, если это не помогло – у нас есть три варианта:
- Искать на схеме электрической принципиальной.
- В некоторых схемах есть несколько одинаковых цепей, в таком случае можно проверить номинал детали на соседнем каскаде. Пример: подтягивающие резисторы на кнопках у микроконтроллеров, ограничительные сопротивления индикаторов.
- Замерить сопротивление уцелевшего участка.
О первых двух способах добавить нечего, давайте узнаем, как проверить сопротивление сгоревшего резистора.
Начнем с того, что нужно очистить покрытие детали. После этого включите на мультиметре режим измерения сопротивления, он обычно подписан «Ohm» или «Ω».
Если вам повезло, и отгорел участок непосредственно возле вывода, просто замерьте сопротивление на концах резистивного слоя.
В примере как на фото можно замерить сопротивление резистивного слоя или определить по цвету маркировочных полос, здесь они не покрыты копотью – удачное стечение обстоятельств.
Ну а если вам не повезло и часть резистивного слоя выгорела – остаётся замерить небольшой участок и умножить результат на количество таких участков по всей длине сопротивления. Т.е. на картинке вы видите, что щупы подключаются к кусочку равному 1/5 от общей длины:
Тогда полное сопротивление равно:
Такая проверка позволяет получить результат близкий к реальному номиналу сгоревшего элемента. Этот метод подробно описан в видео:
Как проверить переменный резистор и потенциометр
Чтобы понять, в чем заключается проверка потенциометра, давайте рассмотрим его структуру. Переменный резистор от потенциометра отличается тем, что первый регулируется отверткой, а второй рукояткой.
Потенциометр – это деталь с тремя ножками. Он состоит из ползунка и резистивного слоя. Ползунок скользит по резистивному слою. Крайние ножки – это концы резистивного слоя, а средняя соединена с ползунком.
Чтобы узнать полное сопротивление потенциометра, нужно замерить сопротивление между крайними ножками. А если проверить сопротивление между одной из крайних ножек и центральной – вы узнаете текущее сопротивление на движке относительно одного из краёв.
Но самая частая неисправность такого резистора — это не отгорание концов, а износ резистивного слоя. Из-за этого сопротивление изменяется неправильно, возможна потеря контакта в определенных участках, тогда сопротивление подскакивает до бесконечности (разрыв цепи). Когда движок занимает то положение, в котором контакт ползунка с покрытием вновь появляется – сопротивление вновь становится «правильным». Эту проблему вы могли замечать, когда регулировали громкость на старых колонках или усилителе. Проявляется проблема в том, что при вращении ручки периодически в колонках раздаются щелчки или громкие стуки.
Вообще проверку плавности хода потенциометра нагляднее проводить аналоговым мультиметром со стрелкой, т.к. на цифровом экране вы просто можете не заметить дефекта.
Потенциометры могут быть сдвоенными, иногда их называют «стерео потенциометры», тогда у них 6 выводов, логика проверки такая же.
На видео ниже наглядно показывается, как проверить потенциометр мультиметром:
Методы проверки резисторов просты, но для получения нормального результата проверки нужен мультиметр или омметр с несколькими пределами измерений. С его помощью вы сможете померить еще и напряжение, ток, емкость, частоту и другие величины в зависимости от модели вашего прибора. Это основной инструмент мастера по ремонту электроники. Сопротивления иногда выходят из строя при внешней целостности, иногда уходят от номинального значения сопротивления. Проверка нужна для определения соответствия деталей номиналам, а также чтобы убедится рабочий или нет элемент. На практике способы проверки могут отличаться от описанных, хотя принцип тот же, всё зависит от ситуации.
Полезное по теме:
Применение фотодатчиков
Фотодатчики – это один из типов устройств, предназначенных для позиционирования объекта. Они распространены повсеместно и используются в нашей каждодневной жизни.
Какие бывают фотодатчики
В различных электронных устройствах, устройствах домашней и промышленной автоматики, различных радиолюбительских конструкциях фотодатчики используются очень широко. Кто хоть раз разбирал старую компьютерную мышь, как ее называли «комовскую», еще с шариком внутри, наверняка видел колесики с прорезями, крутящиеся в щели фотодатчиков.
Подобные фотодатчики называются фотопрерывателями – прерывают поток света. С одной стороны такого датчика находится источник – светодиод, как правило, инфракрасный (ИК), с другой фототранзистор (если быть точнее, то два фототранзистора, в некоторых моделях фотодиода, чтобы определить еще и направление вращения). При вращении колесика с прорезями на выходе фотодатчика получаются электрические импульсы, что является информацией об угловом положении этого самого колесика. Такие устройства называются энкодерами. Причем энкодер может быть просто контактным, вспомните колесико у современной мышки!
Фотопрерыватели используются не только в «мышках» а и в других устройствах, например, датчиках частоты вращения какого-либо механизма. В этом случае применяется одинарный фотодатчик, ведь направление вращения определять не требуется.
Если из каких-то соображений, чаще всего для ремонта, залезть в другие устройства электронной техники, то фотодатчики можно обнаружить в принтерах, сканерах и копирах, в приводах CD дисководов, в DVD плеерах, кассетных видеомагнитофонах, видеокамерах и в другой аппаратуре.
Так какие же бывают фотодатчики, и что они из себя представляют? Просто посмотрим, не вникая в физику полупроводников, не разбираясь в формулах и не произнося непонятных слов (рекомбинация, рассасывание неосновных носителей), что называется «на пальцах», как эти фотодатчики работают.
Рисунок 1. Фотопрерыватель
Фоторезистор
С ним все понятно. Как обычный постоянный резистор имеет омическое сопротивление, направление подключения в схеме роли не играет. Только в отличие от постоянного резистора меняет сопротивление под воздействием света: при освещенности оно уменьшается в несколько раз. Количество этих «раз» зависит от модели фоторезистора, в первую очередь от его темнового сопротивления.
Конструктивно фоторезисторы представляют собой металлический корпус со стеклянным окошком, сквозь которое видна сероватого цвета пластинка с зигзагообразной дорожкой. Более поздние модели выполнялись в пластмассовом корпусе с прозрачным верхом.
Быстродействие фоторезисторов невелико, поэтому работать они могут лишь на очень низких частотах. Поэтому в новых разработках они почти не применяются. Но случается, что в процессе ремонта старой техники с ними встретиться придется.
Чтобы проверить исправность фоторезистора достаточно проверить его сопротивление с помощью мультиметра. При отсутствии освещения сопротивление должно быть большим, к примеру, у фоторезистора СФ3-1 темновое сопротивление по справочным данным 30МОм. Если его осветить, то сопротивление упадет до нескольких КОм. Внешний вид фоторезистора показан на рисунке 2.
Рисунок 2. Фоторезистор СФ3-1
Фотодиоды
Очень похожи на обычный выпрямительный диод, если бы не свойство реагировать на свет. Если его «прозванивать» тестером, лучше несовременным стрелочным, то при отсутствии освещения результаты будут те же, как в случае измерения обычного диода: в прямом направлении прибор покажет маленькое сопротивление, а в обратном стрелка прибора почти не сдвинется с места.
Говорят, что диод включен в обратном направлении (этот момент следует запомнить), поэтому ток через него не идет. Но, если в таком включении фотодиод засветить лампочкой, то стрелка резко устремится к нулевой отметке. Такой режим работы фотодиода называется фотодиодным.
Еще у фотодиода есть фотогальванический режим работы: при попадании на него света он, как солнечная батарея, вырабатывает слабенькое напряжение, которое, если усилить, можно использовать в качестве полезного сигнала. Но, чаще фотодиод используется в фотодиодном режиме.
Фотодиоды старой конструкции по внешнему виду представляют металлический цилиндрик с двумя выводами. С другой стороны находится стеклянная линза. Современные фотодиоды имеют корпус просто из прозрачной пластмассы, в точности такой же как и светодиоды.
Рис. 3. Фотодиоды
Фототранзисторы
По внешнему виду бывают просто неотличимы от светодиодов, тот же корпус из прозрачной пластмассы или цилиндрик со стекляшкой в торце, а из него два вывода — коллектор и эмиттер. Базовый вывод фототранзистору вроде как не нужен, ведь входным сигналом для него является световой поток.
Хотя, некоторые фототранзисторы вывод базы все же имеют, что позволяет кроме света управлять транзистором еще и электрическим способом. Такое можно встретить у некоторых транзисторных оптронов, например АОТ128 и импортных 4N35, — по сути функциональных аналогов. Между базой и эмиттером фототранзистора включают резистор, чтоб несколько прикрыть фототранзистор, как показано на рисунке 4.
Рисунок 4. Фототранзистор
У нашего оптрона обычно «вешают» 10 — 100КОм, а вот у импортного «аналога» около 1МОм. Если поставить даже 100КОм, то он работать не будет, транзистор просто наглухо закрыт.
Как проверить фототранзистор
Фототранзистор достаточно просто проверить тестером, даже если у него нет вывода базы. При подключении омметра в любой полярности сопротивление участка коллектор – эмиттер достаточно большое, поскольку транзистор закрыт. Когда на линзу попадет свет достаточной интенсивности и спектра, то омметр покажет маленькое сопротивление – транзистор открылся, если, конечно, удалось угадать полярность подключения тестера. По сути дела такое поведение напоминает обычный транзистор, только тот открывается электрическим сигналом, а этот световым потоком. Кроме интенсивности светового потока немалую роль играет его спектральный состав.
Спектр света
Обычно фотодатчики настроены на определенную длину волны светового излучения. Если это излучение инфракрасного диапазона, то такой датчик плохо реагирует на синий и зеленый светодиоды, достаточно хорошо на красный, лампу накаливания и само собой на инфракрасный. Также нехорошо воспринимает свет от люминесцентных ламп. Поэтому причиной плохой работы фотодатчика может быть просто неподходящий спектр источника света.
Выше было написано, как прозвонить фотодиод и фототранзистор. Тут следует обратить внимание на такую вроде бы мелочь, как тип измерительного прибора. У современного цифрового мультиметра в режиме прозвонки полупроводников плюс находится там же, где и при измерении постоянного напряжения, т.е. на красном проводе.
Результатом измерения будет падение напряжения в милливольтах на p-n переходе в прямом направлении. Как правило, это цифры в пределах 500 — 600, что зависит не только от типа полупроводникового прибора, но еще и от температуры. При увеличении температуры эта цифра уменьшается на 2 на каждый градус Цельсия, что обусловлено температурным коэффициентом сопротивления ТКС.
При пользовании стрелочным тестером надо помнить, что в режиме измерения сопротивлений плюсовой вывод находится на «минусе» в режиме измерения напряжений. При таких проверках освещать фотодатчики лучше лампой накаливания с близкого расстояния.
Сопряжение фотодатчика с микроконтроллером
В последнее время многие радиолюбители увлеклись конструированием роботов. Чаще всего это что-то такое на вид примитивное, вроде коробки с батарейками на колесиках, но жутко умное: все слышит, видит, препятствия объезжает. Вот видит он все как раз за счет фототранзистров или фотодиодов, а может даже и фоторезисторов.
Тут все происходит очень просто. Если это фоторезистор, достаточно подключить его, как указано на схеме, а в случае с фототранзистором или фотодиодом, чтобы не перепутать полярность предварительно «прозвонить» их, как было рассказано выше. Особенно полезно эту операцию проделать, если детали не новые, убедиться в их пригодности. Подключение разных фотодатчиков к микроконтроллеру показано на рисунке 5.
Рисунок 5. Схемы подключения фотодатчиков к микроконтроллеру
Измерение освещенности
Фотодиоды и фототранзисторы имеют малую чувствительность, высокую нелинейность и весьма узкий спектр. Основное применение этих фотоприборов – работа в ключевом режиме: включено – выключено. Поэтому создание измерителей освещенности на них достаточно проблематично, хотя раньше во всех аналоговых измерителях освещенности применялись именно эти фотодатчики.
Но к счастью нанотехнология на месте не стоит, а идет вперед семимильными шагами. Для измерения освещенности «там у них» создали специализированную микросхему TSL230R, представляющую собой программируемый преобразователь освещенность – частота.
Внешне устройство представляет собой микросхему в корпусе DIP8 из прозрачной пластмассы. Все сигналы входные и выходные по уровню совместимы с TTL — CMOS логикой, что позволяет легко сопрягать преобразователь с любым микроконтроллером.
С помощью внешних сигналов можно изменять чувствительность фотодиода и шкалу выходного сигнала соответственно 1, 10, 100 и 2, 10, и 100 раз. Зависимость частоты выходного сигнала от освещенности линейная, в пределах от долей герца до 1МГц. Настройки шкалы и чувствительности выполняются подачей логических уровней всего на 4 входа.
Микросхема может вводиться в режим микро потребления (5мкА) для чего есть отдельный вывод, хотя и в рабочем режиме не особенно прожорлива. При напряжении питания 2,7…5,5В потребляемый ток не более 2мА. Для работы микросхемы не требуется никакой внешней обвязки, разве что блокировочный конденсатор по питанию.
По сути, достаточно подключить к микросхеме частотомер и получать показания освещенности, ну, видимо, в каких-то УЕ. В случае же применения микроконтроллера ориентируясь на частоту выходного сигнала можно управлять освещенностью в помещении, или просто по принципу «включить – выключить».
TSL230R не единственный измеритель освещенности. Еще более совершенными являются датчики фирмы Maxim MAX44007-MAX44009. Габариты их меньше, чем у TSL230R, энергопотребление таково, как у других датчиков в спящем режиме. Основное назначение таких датчиков освещенности – применение в приборах с батарейным питанием.
Фотодатчики управляют освещением
Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток.
Ранее ЭлектроВести писали, что ГП «Гарантированный покупатель» в первом квартале 2021 года приобрело у производителей э/э из возобновляемых источников 2,281 млн МВт*ч, что на 7%, или на 143 тыс. МВт*ч, больше в сравнении с аналогичным периодом прошлого года.
По материалам: electrik.info.
Как проверить LDR (найти неисправный LDR)
LDR: Фоторезистор (или светочувствительный резистор, LDR или фотопроводящая ячейка) — это управляемый светом переменный резистор. Сопротивление фоторезистора уменьшается с увеличением интенсивности падающего света; другими словами, он проявляет фотопроводимость. Фоторезистор может применяться в схемах светочувствительных детекторов, а также в переключающих схемах, активируемых светом и темнотой.
Метод №1:
Необходимые детали: цифровой мультиметр, LDR
Шаг 1: сначала включите цифровой мультиметр и установите ручку цифрового мультиметра в режим сопротивления.
Шаг 2: , затем подключите все соединения, как показано на рисунке ниже.
Шаг 3: Теперь вы увидите цифровой дисплей мультиметра. это показывает значение сопротивления. значение сопротивления будет меняться от различной интенсивности света.
Шаг 4: Если значение сопротивления изменится от разной интенсивности, LDR будет хорошим состояние или значение сопротивления не изменится, LDR будет повреждением .
Метод № 2:
Необходимые детали: цифровой мультиметр, фоторезистор, резистор 10 кОм, источник питания постоянного тока 5 В Эта схема представляет собой метод подтяжки резистора. Теперь вы отдадите блок питания. при увеличении источника света напряжение уменьшится и источник света уменьшится напряжение увеличится . если условие возможно, LDR хорошее состояние или LDR повреждение .
Метод № 3:
Требуемые детали: Цифровой мультиметр, LDR, 10K Резистор, 5 В. Эта схема представляет собой метод подтягивания резистора. Теперь вы отдадите блок питания. при увеличении источника света напряжение увеличится и источник света уменьшится напряжение уменьшится . если условие возможно, LDR хорошее состояние или LDR повреждение .
Метод № 4:
Необходимые детали: LDR, резистор 10 кОм (3), источник питания 5 В пост. тока, резистор 100 Ом (2), зеленый светодиод, красный светодиод, транзистор PNP, транзистор NPN05 9
- Сначала подключите все соединения, как показано на изображении выше. Теперь вы отдадите блок питания. при увеличении источника света Загорится зеленый светодиод и источник света уменьшится Загорится красный светодиод
Метод № 5:
Необходимые детали: LDR, резистор 10 кОм (3), источник питания 5 В пост. тока, резистор 100 Ом (2), зеленый светодиод, красный светодиод, транзистор PNP, транзистор NPN05 9005
- Сначала подключите все соединения, как показано на изображении выше. Теперь вы отдадите блок питания. при увеличении источника света Красный светодиод загорится и источник света уменьшится Зеленый светодиод загорится . если условие возможно, LDR хорошее состояние или LDR повреждение .
Новое сообщение Старый пост Главная
Подписаться на: Опубликовать комментарии (Atom)
Измерение схемы фоторезистора — Rheingold Heavy
[mathjax][/mathjax] Светозависимый резистор (LDR), фоторезистор, изменяет свое сопротивление в зависимости от количества света, попадающего на его поверхность. Однако мне было любопытно посмотреть, насколько свет или темнота повлияют на этот уровень сопротивления.Схема для проверки LDR очень проста, как простая простая. На самом деле самая трудная часть — выяснить, как внести разумно стандартизированные изменения в свет, чтобы получить представление о нем. Вы также хотите увидеть, каков уровень освещенности визуально, чтобы вы могли иметь систему отсчета при просмотре чисел позже через выход АЦП.
Вот что я придумал.
Схема представляет собой всего лишь +5 В на один вывод LDR, затем резистор серии 1K, а затем GND.
Базовая схема LDR Что я собираюсь сделать, так это поместить всю схему в лайтбокс, который я использую, чтобы фотографировать вещи для веб-сайта, а затем измерить падение напряжения на резисторе серии 1K.
Итак, мы начнем, у нас есть система, настроенная внутри светового короба, и мы готовы начать измерения. Помните, что этот оранжевый мультиметр имеет автоматический выбор диапазона, поэтому вам придется внимательно следить за положением десятичной точки.
[идентификатор мастер-слайдера = 11]
Уровень освещенности | Vmeasure | Разница |
---|---|---|
Окружающая среда | 2,17 В | Н/Д |
Первичный | 1,12 В | +1,95 В |
Блоки: 1 | 2,98 В | -1,14 В |
Блоки: 2 | 2,48 В | -0,50 В |
Блоки: 3 | 2,13 В | -0,35 В |
Блоки: 4 | 1,85 В | -0,28 В |
По мере уменьшения количества доступного света сопротивление фоторезистора увеличивается. Из измерений также видно, что отдача от количества блокирования света, которое вы получаете, когда вы помещаете лист бумаги для заметок между светодиодным фонариком и фоторезистором, уменьшается. Я решил повторить тест с большим количеством блоков, поэтому у меня было более четырех точек данных, и вот как в итоге выглядел график, довольно асимптотический, поскольку он приближается к сопротивлению, вызванному любым окружающим освещением.
Вы также ожидаете, что по мере уменьшения освещенности и увеличения сопротивления ток также будет уменьшаться. К счастью, поскольку мы знаем…
- Входное напряжение схемы в целом, Vout моего Arduino, измеренное на уровне 4,87 В
- Падение напряжения на втором резисторе, график выше
- Значение последовательного резистора, измеренное при сопротивлении 987 Ом
… мы можем определить как потребление тока в цепи, так и сопротивление LDR в омах при добавлении каждого блокатора света, благодаря закону Ома и тому факту, что одинаковое потребление тока происходит в каждом узле делителя напряжения (подробнее об этом в следующем посте)!
Сначала мы находим потребляемый ток в цепи. Формула, которую вы должны использовать, выглядит следующим образом: \(\mathrm{\frac{V_{meas}}{R_{2}}=I_{схема}}\). Если мы воспользуемся измерением окружающего освещения, приведенным выше, в качестве примера, мы получим:
Во-вторых, мы используем исходное напряжение, 4,87 В от Arduino, и потребляемый ток, 2,10 мА, чтобы определить общее сопротивление цепи: \[\large\mathrm{\frac{2,17V}{. 0021A}=2319 Ом}\]
Наконец, мы вычитаем значение последовательного резистора, 987 Ом от общего сопротивления, 2319 Ом, чтобы получить сопротивление LDR в окружающем свете моей лаборатории:
Окончательная таблица, показывающая потребляемый ток и сопротивление фоторезистора на каждом этапе, выглядит следующим образом…
Но на самом деле это грубый метод измерения — изменения в милливольтах, основанные на листах бумаги, набитых перед фонариком в комнате с множеством других световых и теневых загрязнений.