Как прозвонить дроссель мультиметром: Проверка ламп дневного света мультиметром

Содержание

Проверка ламп дневного света мультиметром

В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света (ЛДС).

Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в 5-7 раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.

В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света.

Устройство

Принцип работы ламп дневного света основан на свечении люминофоров в ультрафиолетовом свете.

Сам прибор представляет собой герметичную колбу из тонкого прочного стекла, на поверхность которой внутри нанесен люминофорный состав. Внутри колбы также находится небольшое количество ртути, которая и образует свечение под действием разогретых вольфрамовых спиралей по концам колбы. Перегорание спиралей можно проверить тестером.

В светильниках лампа подключается последовательно с дросселем, представляющим собой катушку индуктивности.

Параллельно лампе подключается стартер. Он представляет собой заключенные в пластмассовый или алюминиевый корпус компактную газоразрядную лампу с биметаллическим контактом и компенсационный конденсатор, который служит для выравнивания тока на лампе стартера.

Принцип работы

Когда электрическая цепь светильника подключается к источнику тока, как правило, это электрическая сеть переменного тока с напряжением 220 В и частотой 50 Гц, величины силы тока не хватает, чтобы разогреть спирали в колбе лампы.

И вот в этот самый момент газоразрядная лампа под действием тока в цепи включается и разогревает биметаллический контакт, который физически замыкает цепь светильника. Ток увеличивается в несколько раз, спирали в колбе разогреваются до температуры испарения ртути. Чем выше температура, тем выше проводимость паров в колбе.

Далее ток проходит через пары ртути, вызывая их ультрафиолетовое свечение, а оно в свою очередь преобразуется в белый свет люминофорным составом, нанесенным на стенки колбы.

Величина тока на участке цепи светильника, на котором установлен стартер, падает вдвое и газоразрядная лампа гаснет. Биметаллический контакт остывает, выключается и с этого момента ток течет только внутри колбы и через дроссель. В исправном светильнике стартер больше не участвует в процессе до того момента, пока не нужно будет еще раз разогревать спирали лампы после ее отключения.

Дроссель обеспечивает регулировку тока в цепи, не допуская перегрева спиралей в колбе и их перегорания.

В подавляющем большинстве случаев в конструкциях светильников используется несколько ламп. Их количество четно и они подключаются последовательно по две. Соответственно, стартеры (а их тоже будет два или более – по количеству ламп), тоже подключаются последовательно. В этом случае стартеры должны быть на напряжение 127 В, иначе они не сработают.

Проверка стартера

Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.

После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.

При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:

  • конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
  • лампа не должна быть сильно почерневшей;
  • далее конденсатор можно проверить с помощью универсального тестера – мультиметра.

Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.

Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.

В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.

Целостность спиралей-электродов

Лампы «перегорают» гораздо реже, хотя проверить их проще, чем стартер. Делают это обычным тестером с контрольной лампой или мультиметром, настроенным на измерение сопротивлений. Довольно легко проверить целостность спиралей.

Для проверки тестер или мультиметр подключается к паре выводов на отдельном конце колбы.

Если спирали целые, то контрольная лампа тестера должна светиться, а мультиметр должен показывать небольшое сопротивление (около 10 Ом). Если тестер «молчит», а сопротивление мультиметра бесконечно, имеет место обрыв спирали. При обрыве даже одной спирали из двух, лампа, очевидно, работать не будет. В этом случае необходима ее замена.

Проверка дросселя

Следующим шагом будет проверка дросселя. Он во всей этой конструкции самый стойкий элемент, и выходит из строя гораздо реже остальных. Тем не менее важно знать, как проверить дроссель лампы дневного света мультиметром.

Неисправность его может заключаться в обрыве или перегорании обмотки, нарушении изоляции между витками провода. В обоих случаях неисправность можно выявить, подключив к выводам дросселя мультиметр, настроенный на измерение сопротивления.

Если сопротивление между выводами дросселя будет бесконечно, значит, имеет место обрыв или перегорание обмотки. Перегорание обычно предвещается неприятным запахом, исходящим от детали, особенно во время работы.

Если сопротивление ничтожно мало, то, скорее всего, нарушена изоляция провода, и произошло межвитковое замыкание в обмотке, или замыкание обмотки на сердечник.

Совершенно очевидно, что все приемы проверки, описанные выше, справедливы только при использовании в светильниках, так называемых электромагнитных пускорегулирующих аппаратов (ЭмПРА).

В настоящее время появляются электронные пускорегулирующие аппараты (ЭПРА), исключающие наличие в схеме стартеров. Устанавливаются такие аппараты и в компактные ртутные лампы дневного света.

Пока они достаточно дороги и ремонту своими силами не подлежат, поэтому использование ЭмПРА еще оправдано.

Как проверить трансформатор при помощи мультиметра

Чтобы узнать, как проверить состояние трансформатора мультиметром, предлагаем изучить материал от экспертов  electroinfo.net. Проверить трансформатор на наличие обрыва или замыкания катушки с помощью обычного тестера довольно просто. Проверить межвитковые замыкания, не имея генератора и осциллографа, трудно или даже вовсе невозможно. Провести подобную проверку можно только осциллографом с выходами калибровки. Для этого подаются сигналы и отслеживаются прибором.

Но существуют также специальные приборы для проведения теста на исправность трансформатора и его отдельных элементов – мультиметры. С их помощью установить, исправен ли прибор, можно даже в домашних условиях. В данной статье будут рассмотрены основные моменты проверки трансформаторов с помощью мультиметра. К статье бонусом добавлен видеоролик с наглядным примером проверки трансформатора и файл с подробной инструкцией о том, как пользоваться мультиметром.

Проверка трансформатора мультиметром.

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка на межвитковое замыкание

Начать нужно с внешнего осмотра, особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки. Дело в том, что межвитковое замыкание приводит к сильному нагреву трансформатора. Далее проверяем сопротивление изоляции между обмотками, оно должно составлять не менее 10 Мом. Если есть аналогичный трансформатор, можно сравнить их значение индуктивности. Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи.

От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке.

Для импульсного блока питания он составляет — 8-40 кГц, для ТДКС — 13-17 кГц. Импульсные трансформаторы обычно содержат малое число витков. Возможен вариант убедиться в работоспособности трансформатора путем контроля   коэффициента трансформации обмоток.

Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах).

Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации. Этот метод вполне реален для тех кто дружит с математикой. По результатам пробных измерений составлена таблица, в которой сопротивлению, указанному в левой колонке, соответствует определенное показание цифрового индикатора.

Замер тока и напряжения мультиметром.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Инструкции для тестирования тороидального трансформатора

Тороидальный трансформатор представляет собой высокоэффективный трансформатор, который легче и меньше, чем альтернативные трансформаторы такой же мощности. Тороидальный трансформатор — это плотно обернутые полоски стали в сердцевине, также он состоит из мотка проволоки, который свернут вокруг сердечника. Этот моток называется первичная катушка, а также есть вторая катушка проволоки, которая тоже свернута вокруг сердечника и называется вторичная обмотка.

Проще говоря, электричество проходит через первичную обмотку тороидального трансформатора, тем самым создавая магнитные поля, которые проходят через вторую катушку для получения выходного напряжения.

Трансформаторы используются для повышения или понижения выходного напряжения, тем самым увеличивая или уменьшая напряжение. Для проведения тестирования состояния трансформатора, существует определенный алгоритм действий:

  1. Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха.
  2. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.
  3. Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.
  4. Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы. Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока.

Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию.

Как проверить тороидальный трансформатор.

Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.

Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.

Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока.

Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами. Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены. Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Порядок проверки трансформатора мультиметром.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Как проверить импульсный трансформатор мультиметром

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования.

Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

  • Методика проверки аналоговым (стрелочным) измерительным прибором:
  • Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  • После в гнёзда тестера вставляются два провода и перемыкаются накоротко.

Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация.

Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Заключение

Более подробно о работе мультиметра и проверке с его помощью трансформаторов можно почитать в файле “Как пользоваться мультиметром”. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

телемастерская.рф
www.texnic.ru
www.norma-stab.ru
www.yato-tools.ru

Предыдущая

ПрактикаКатушка тесла (Трансформатор) самостоятельная сборка собственными силами

Следующая

ПрактикаКак проверить конденсатор при помощи мультиметра

Что такое дроссель в электрике: устройство, назначение, проверка

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Содержание статьи

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала —  металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником  и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

    Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания —  сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Как проверить датчик положення дроссельной заслонки?

Ранее мы писали о симптомах, которые могут проявляться при поломке датчика положения дроссельной заслонки. Но такие признаки нередко вызывают и поломки других датчиков или компонентов двигателя. Поэтому перед покупкой нового ДПДЗ имеющийся датчик необходимо проверить на работоспособность.

ДПДЗ установлен на корпусе дроссельной заслонки. Этот датчик содержит резистор переменного сопротивления (или контактные точки, в зависимости от модели), который передает сигнал в электронный блок управления двигателем. Показания датчика зависят от положения дроссельной заслонки.

Когда водитель нажимает на педаль газа, заслонка вращается, увеличивая приток воздуха во впускной коллектор. При работающем моторе положение заслонки (и данные с других датчиков) сообщает компьютеру, сколько топлива нужно двигателю в определенный момент.

Поэтому, без правильного сигнала, поступающего от ДПДЗ, возникают проблемы с топливно-воздушной смесью. Отметим, что проверить датчик положения дроссельной заслонки не очень сложно. Вам понадобится информация о заводских параметрах работы датчика, после чего его проверяют с помощью цифрового мультиметра.

Купить мультиметр можно во многих магазинах, этот простейший диагностический прибор пригодится вам ещё не раз.

Самая распространенная неисправность датчика дроссельной заслонки – износ, короткое замыкание или обрыв в электрической цепи либо резисторе. С помощью этой статьи вы сможете понять, как проверить ДПДЗ мультиметром лишь за несколько минут. Это поможет понять, нуждается ли элемент в замене или проблема не в нём.

Симптомы неисправности ДПДЗ:

  • бедная или богатая топливная смесь;
  • проблемы с зажиганием;
  • неправильные сигналы для других исполнительных механизмов;
  • неровный холостой ход;
  • провалы при разгоне;
  • подергивание;
  • остановка двигателя.

Методы диагностики ДПДЗ

Самый распространенный тест датчика – измерение сопротивления или напряжения в различных положениях дроссельной заслонки (закрытое, полуоткрытое и полностью открытое). Мы будем выполнять тестирование, используя функцию измерения напряжения.

  1. Откройте капот и снимите узел воздушного фильтра в том месте, где он соединяется с корпусом дроссельной заслонки.
  2. Осмотрите пластину дроссельной заслонки и стенки корпуса дроссельной заслонки, расположенные вокруг неё.

* Если вы видите нагар на стенках или под пластиной заслонки, выполните очистку этого узла с помощью очистителя карбюраторов (карбклинера) и чистой ветоши. Поверхность должна быть полностью чистой. Нагар и грязь могут препятствовать закрытию дроссельной заслонки и её свободному перемещению.

  1. Найдите ДПДЗ, установленный на боковой части корпуса дроссельной заслонки. Датчик выполнен в виде небольшого пластикового блока с трехжильным разъемом.

Подключен ли ваш ДПДЗ к «земле»?

 

  1. Аккуратно отсоедините электрический разъем от датчика положения дроссельной заслонки.
  2. Проверьте разъем и клемму на наличие загрязнений и повреждений.
  3. Установите мультиметр в подходящий режим, к примеру, 20V на шкале постоянного напряжения (DCV).
  4. Поверните ключ зажигания в положение ON, но не запускайте двигатель.
  5. Подключите красный щуп мультиметра к плюсовой клемме аккумулятора, обозначенной символом «+».
  6. Прикоснитесь черным щупом мультиметра к каждому из трех электрических контактов разъема проводки, который подключается к ДПДЗ.

* Один из контактов, при прикосновении к которому на экране мультиметра появляется напряжение около 12 вольт, является контактом заземления. Обратите внимание на цвет этого провода.

* Если ни один из контактов не отображает 12 вольт, это является признаком дефекта проводки, которая идёт к датчику положения дроссельной заслонки. Датчик не имеет заземления, поэтому он не может правильно работать. В такой ситуации нужно решать проблему с проводкой.

  1. Выключите зажигание.

Подключен ли ДПДЗ к источнику опорного напряжения?

  1. Теперь подключите черный щуп мультиметра к контакту заземления на разъеме ДПДЗ, который вы только что идентифицировали.
  2. Поверните ключ зажигания в положение ON, но не запускайте двигатель.
  3. Подключите красный щуп мультиметра к каждому из двух других контактов разъема.
  4. На одном из контактов напряжение должно составлять около 5 вольт. Этот контакт передаёт опорное напряжение на ДПДЗ. Обратите внимание на цвет провода, подключенного к этому контакту. Третий провод является сигнальным.

* Если ни на одном из двух контактов разъема не будет 5 вольт, в проводке есть проблема, которую необходимо исправить. Проверьте электрическую цепь на наличие плохих контактов или поврежденных проводов.

  1. Выключите зажигание.
  2. Вставьте электрический разъем в ДПДЗ.

Выдает ли датчик положения дроссельной заслонки правильный сигнал?

  1. Для выполнения такой проверки необходимо использовать пару штырьков или скрепок.
  2. Подключите красный щуп тестера к сигнальному проводу датчика, а черный – к проводу заземления.
  3. Включите зажигание, но не запускайте двигатель.
  4. Убедитесь в том, что дроссельная заслонка полностью закрыта.
  5. Ваш мультиметр должен отображать значение в диапазоне 0,2-1,5 вольт или около этого, в зависимости от конкретного автомобиля. Если на экране вы видите ноль, убедитесь, что вы выбрали правильный режим прибора – обычно оптимальным является 10 или 20 вольт. Если на экране все ещё виднеется ноль, продолжайте проверку.
  6. Постепенно открывайте дроссельную заслонку, пока она не будет полностью открыта (или же ваш помощник может постепенно нажимать педаль газа до упора).

* При полностью открытой дроссельной заслонке на мультиметре должно отображаться около 5 вольт.

* Убедитесь в том, что напряжение постепенно увеличивается, когда вы медленно открываете дроссельную заслонку.

* Если вы заметили, что в определенных положениях заслонки есть скачки напряжения или оно зависает на одном уровне, ваш ДПДЗ не работает правильным образом, поэтому его необходимо заменить.

* Если датчик положения дроссельной заслонки не достигает напряжения в 5 вольт или около этого (в некоторых автомобилях – 3,5В) при полностью открытой заслонке, его надо менять.

  1. Выключите зажигание и снимите штырьки (скрепки).

Если на вашем автомобиле установлен регулируемый датчик положения дроссельной заслонки (они встречаются на старых моделях), и его показания не соответствуют норме, попробуйте сначала отрегулировать его. Датчик подлежит регулировке, если вы можете ослабить болты его крепления и повернуть элемент влево или вправо.

Регулировка датчика положения дроссельной заслонки

Этот способ подходит для настройки внешнего датчика. Следующие советы дадут  вам общее представление о процедуре регулировки ДПДЗ.

  1. Ослабьте крепежные болты датчика так, чтобы вы могли вращать его, слегка постукивая по нему рукояткой отвертки.
  2. Оттяните датчик для проверки напряжения с помощью мультиметра.
  3. Поверните ключ зажигания в положение ON, но не запускайте двигатель.
  4. Удерживайте дроссельную заслонку в закрытом положении (или в положении, указанном в руководстве по ремонту или обслуживанию вашего автомобиля).
  5. Убедитесь, что напряжение соответствует указанному в руководстве. Если нет, поверните датчик влево или вправо, пока не получите заданное напряжение.
  6. Удерживайте ДПДЗ в этом положении и затяните крепежные винты.

Если датчик не поддаётся регулировке и не достигает требуемого напряжения, замените его.

Информация о том, как проверить датчик дроссельной заслонки, может сэкономить ваше время и поможет избежать ненужной замены компонентов. С помощью простого теста вы сможете быстрее вернуть свой автомобиль в строй. Такая проверка легко выполняется всего за несколько минут.

Мастер Винтик. Всё своими руками!Проверка радиодеталей мультиметром для начинающих радиолюбителей

Статья для начинающих радиолюбителей. В ней  приводятся примеры проверки основных радиодеталей, используемых в радиоэлектронной аппаратуре (резисторы, конденсаторы, трансформаторы, катушки индуктивности, дроссели, диоды и транзисторы) с помощью  мультиметра или обычного стрелочного омметра.   

Резисторы

Постоянный резистор проверяется мультиметром, включенным в режим омметра. Полученный результат надо сравнить с номинальным значением сопротивления, указанным на корпусе резистора и на принципиальной схеме. При проверке подстроечных и переменных резисторов сначала надо проверить величину сопротивления, замерив его между крайними (по схеме) выводами, а затем убедиться в надежности контакта между токопроводящим слоем и ползунком. Для этого надо подключить омметр к среднему выводу и поочередно к каждому из крайних выводов. При вращении оси резистора в крайние положения, изменение сопротивления переменного резистора группы «А» (линейная зависимость от угла поворота оси или положения движка) будет плавным, а резистора группы «Б» или «В» (логарифмическая зависимость) имеет нелинейный характер. Для переменных (подстроечных) резисторов характерны три неисправности: нарушения контакта движка с проводящим слоем; механический износ проводящего слоя с частичным нарушением контакта и изменением величины сопротивления резистора в большую сторону; выгорание проводящего слоя, как правило, у одного из крайних выводов. Некоторые переменные резисторы имеют сдвоенную конструкцию. В этом случае каждый резистор проверяется отдельно. Переменные резисторы, применяемые в регуляторах громкости, иногда имеют отводы от проводящего слоя, предназначенные для подключения цепей тонконпенсации. Для проверки наличия контакта отвода с проводящим слоем омметр подключают к отводу и любому из крайних выводов. Если прибор покажет какую-то часть от общего сопротивления, значит имеется контакт отвода с проводящим слоем.
Фоторезисторы проверяются аналогично обычным резисторам, но для них будет два значения сопротивления. Одно до засветки — темновое сопротивление (указывается в справочниках), второе — при засветке любой лампой (оно будет в 10… 150 раз меньше темнового сопротивления).

Конденсаторы

Простейший способ проверки исправности конденсатора — внешний осмотр, при котором обнаруживаются механические повреждения, например деформация корпуса при перегреве вызванного большим током утечки. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку.
Омметром легко определить один вид неисправности – внутреннее короткое замыкание (пробой). Сложнее дело обстоит с другими видами неисправности конденсаторов: внутренним обрывом, большим током утечки и частичной потерей емкости. Причиной последнего вида неисправности у электролитических конденсаторов бывает высыхание электролита.

Многие цифровые тестеры обеспечивают возможность измерения емкости конденсаторов в диапазоне от 2000 пФ до 2000 мкФ. В большинстве случаев этого достаточно. Надо отметить, что электролитические конденсаторы имеют довольно большой разброс допустимого отклонения от номинальной величины емкости. У конденсаторов некоторых типов он достигает- 20%,+80%, то есть, если номинал конденсатора 10мкФ, то фактическая величина его емкости может быть от 8 до 18мкФ.

При отсутствии измерителя емкости конденсатор можно проверить другими способами.

Конденсаторы большой емкости (1 мкФ и выше) проверяют омметром. При этом от конденсатора отпаивают детали, если он в схеме и разряжают его. Прибор устанавливают для измерения больших сопротивлений. Электролитические конденсаторы подключают к щупам с соблюдением полярности.
Если емкость конденсатора больше 1 мкФ и он исправен, то после присоединения омметра конденсатор заряжается, и стрелка прибора быстро отклоняется в сторону нуля (причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания), потом стрелка медленно возвращается в положение «бесконечность».


При наличии утечки омметр показывает малое сопротивление — сотни и тысячи ом, — величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.
При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.
Конденсаторы средней емкости (от 500 пФ до 1 мкФ) можно проверить с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замыкания цепи в головных телефонах слышен щелчок.
Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость не уменьшится, значит, обрывов выводов нет.

Трансформаторы, катушки индуктивности и дроссели

Проверка начинается с внешнего осмотра, в ходе которого необходимо убедиться в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.
Наиболее частая причина выхода из строя трансформаторов (и дросселей) — их пробой или короткое замыкание витков в обмотке или обрыв выводов. Обрыв цепи катушки или наличие замыканий между изолированными по схеме обмотками можно обнаружить при помощи любого тестера. Но если катушка имеет большую индуктивность (т. е. состоит из большого числа витков), то цифровой мультиметр в режиме омметра вас может обмануть (показать бесконечно большое сопротивление, когда цепь все же есть) — для таких измерений «цифровик» не предназначен. В этом случае надежнее аналоговый стрелочный омметр.
Если проверяемая цепь есть, это еще не значит, что все в норме. Убедиться в том, что внутри обмотки нет коротких замыканий между слоями, приводящих к перегреву трансформатора, можно по значению индуктивности, сравнив ее с аналогичным изделием.
Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи. От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Находим резонансную частоту по максимуму напряжения во вторичной цепи.

Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте.

У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке:

  • сетевые питающие 40…60 Гц;
  • звуковые разделительные 10…20000Гц;
  • для импульсного блока питания и разделительные .. 13… 100 кГц.

Импульсные трансформаторы обычно содержат малое число витков. При самостоятельном изготовлении убедиться в их работоспособности можно путем контроля коэффициента трансформации обмоток. Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах). Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации.

Диоды и фотодиоды

Любой стрелочный (аналоговый) омметр позволяет проверить прохождение тока через диод (или фотодиод) в прямом направлении — когда «+» тестера приложен к аноду диода. Обратное включение исправного диода эквивалентно разрыву цепи.
Цифровым прибором в режиме омметра проверить переход не удастся. Поэтому у большинства современных цифровых мультиметров есть специальный режим проверки p-n-переходов (на переключателе режимов он отмечен знаком диода).

Такие переходы есть не только у диодов, но и фотодиодов, светодиодов, а также транзисторов. В этом режиме «цифровик» работает как источник стабильного тока величиной 1 мА (такой ток проходит через контролируемую цепь) —- что совершенно безопасно. При подключенном контролируемом элементе прибор показывает напряжение на открытом p-n-переходе в милливольтах: для германиевых 200…300 мВ, а для кремниевых 550…700 мВ. Измеренное значение может быть не более 2000 мВ.
Однако, если напряжение на щупах мультиметра ниже отпирания диода, диодного или селенового столба, то прямое сопротивление измерить невозможно.

 Биполярные транзисторы

Некоторые тестеры имеют встроенные измерители коэффициента усиления маломощных транзисторов. Если у вас такого прибора нет, то при помощи обычного тестера в режиме омметра или же цифровым, в режиме проверки диодов, можно проверить исправность транзисторов.

Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами.

Транзистор исправен, если исправны оба перехода.

Для проверки один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно прикасаются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение.

При прозвонке электродов некоторых цифровых или мощных транзисторов следует учитывать, что у них могут внутри быть установлены защитные диоды между эмиттером и коллектором, а также встроенные резисторы в цепи базы или между базой и эмиттером. Не зная этого, элемент по ошибке можно принять за неисправный.

Полевые транзисторы

В отличие от биполярных, полевых транзисторов существует много видов и при проверке надо учитывать, с каким из них вы имеете дело. Так, для проверки транзисторов, имеющих затвор на основе запорного слоя p-n-перехода, можно воспользоваться эквивалентной схемой, приведенной на рисунке

 Для прозвонки подойдет обычный стрелочный омметр, но, цифровым прибором в режиме контроля р-п-переходов делать это более удобно..
Сопротивление между стоком и истоком, в обоих направлениях должно иметь небольшую величину и быть примерно одинаковым. Затем замерим прямое и обратное сопротивление перехода, подключая щупы омметра к затвору и стоку (или истоку). При исправном транзисторе оно должно быть разным и в прямом и обратном направлениях.
При проверке сопротивления между истоком и стоком только не забудьте снять заряд с затвора после предыдущих измерений (кратковременно замкните его с истоком), а то можно получить неповторяющийся результат
Многие маломощные «полевики» (особенно с изолированным затвором) очень чувствительны к статике. Поэтому, перед тем как брать в руки такой транзистор, позаботьтесь о том, чтобы на вашем теле не оказалось зарядов. Чтобы их снять, достаточно коснуться рукой батареи отопления или любых заземленных предметов, так как электростатические заряды между телами при их разделении распределяются пропорционально массе тел. Поэтому для их «обезвреживания» бывает достаточно прикоснуться даже к любой большой незаземленной металлической поверхности.
Несмотря на то, что мощные полевые транзисторы часто имеют защиту от статики, но все равно пренебрегать мерами предосторожности не следует.
Многочисленный класс MOSFET-транзисторов (предназначен для работы в ключевом режиме) не имеет p-n-переходов между электродами (изолированный затвор). Из-за большого сопротивления диэлектрического слоя у затвора, если транзистор явно не пробит (для выявления этого прозвонка все же не помешает), убедиться в его работоспособности не удастся — прибор покажет бесконечно большое сопротивление.

Использованы  материалы сайта: stoom.ru



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Параболическая 3G антенна за 5 минут
  • Простейшая 3G/4G антенна своими руками

    В моём загородном доме есть проблемы с подключением из-за низкого уровня сигнала.

    В статье ниже, я вам расскажу, как я решил проблему с подключением моего 3G модема бесплатно, всего за 5 минут работы.

    Подробнее…

  • Держатель для печатных плат своими руками
  • При ремонте и настройке радиолюбителям удобно будет работать с помощником — держателем печатной палаты на столе.

    Можно купить различные зарубежные приспособления для закрепления печатных плат, обеспечивающие при этом разные степени их свободы, но стоимость их очень высока.

    Подробнее…

  • Самодельные колонки из телевизионных динамиков
  • У кого без дела стоит старый сломанный телевизор, тому может пригодится эта статья. В телевизорах обычно устанавливают широкополосные динамики от 3 до 10 Вт. Вот из них мы сегодня и будем делать небольшие акустические системы — сателлиты. Сателлит (англ. satelitte) — это колонка небольших размеров (до 20 см в высоту), проигрывающая средние и высокие частоты.

    Подробнее…


Популярность: 22 755 просм.

Как прозвонить дроссель мультиметром — booktube.ru

Проверка проволочных и непроволочных резисторов

Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее: произвести внешний осмотр; проверить работу движущего механизма переменного резистора и состояние его частей; по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности; омметром измерить действительную величину сопротивления и определить отклонение от номинала; у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка. Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов всех типов

К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин; изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции. Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.

Простейший способ проверки исправности конденсатора – внешний осмотр, при котором обнаруживаются механические повреждения. Если при внешнем осмотре дефекты не обнаружены, проводят электрическую проверку. Она включает: проверку на короткое замыкание, на пробой, на целость выводов, проверку тока утечки (сопротивление изоляции), измерение емкости. При отсутствии специального прибора емкость можно проверить другими способами, зависящими от емкости конденсаторов.

Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.

Проверка катушек индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки. Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.

Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

Проверка силовых трансформаторов, трансформаторов и дросселей низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.

К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.

Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.

1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления

Часть 2 — Как проверить датчик положения дроссельной заслонки (Nissan 3.3L)

НАЧНИТЕ ЗДЕСЬ: Устранение неисправностей датчика TP

Ключ к диагностике датчика положения дроссельной заслонки (TPS) Nissan Pathfinder (Frontier, Xterra или QX4), оснащенного 3,3 литровым двигателем, — это помнить следующее:

  1. Сигнал напряжения датчика TP увеличивается при открытии дроссельной заслонки
  2. Напряжение датчика положения дроссельной заслонки уменьшается при закрытии дроссельной заслонки.

Итак, лучший способ узнать, не сработал ли TPS на вашем Nissan, — это вручную проверить датчик TP с помощью мультиметра (пока он все еще находится на корпусе дроссельной заслонки и подключен к электрическому разъему).

Вот краткое изложение 3 тестов в этом руководстве:

  1. Проверить сигнал напряжения датчика положения дроссельной заслонки с помощью мультиметра.
    1. Вы подключите мультиметр к среднему проводу разъема датчика положения дроссельной заслонки, а затем вручную открываете и закрываете дроссельную заслонку, чтобы проверить, выдает ли датчик положения дроссельной заслонки сигнал переменного напряжения постоянного тока.
    2. TPS TEST 1: Проверка сигнала напряжения TPS.
  2. Убедитесь, что датчик положения дроссельной заслонки получает питание (если ТЕСТ 1 не прошел).
    1. Это тоже простой тест мультиметра.
    2. TPS TEST 2: Проверка наличия питания TPS.
  3. Убедитесь, что датчик положения дроссельной заслонки получает заземление (если ТЕСТ 1 не прошел).
    1. Это тоже простой тест мультиметра.
    2. TPS TEST 3: Проверка заземления TPS.

ТЕСТ 1 TPS: Проверка сигнала напряжения TPS

Самое первое, что мы собираемся сделать, это подключить мультиметр к проводу, который подключается к контакту TPS, обозначенному номером 2 (это средний провод коричневого разъема).

После подключения мультиметра мы вручную повернем дроссельную заслонку, чтобы увидеть, создает ли датчик положения дроссельной заслонки сигнал угла поворота дроссельной заслонки.

Пока мы проверяем напряжение угла поворота дроссельной заслонки, мы осторожно постучим по датчику положения дроссельной заслонки ручкой отвертки, чтобы посмотреть, не влияет ли он на выходное напряжение.

Я объясню все шаг за шагом в следующих инструкциях.

ПРИМЕЧАНИЕ: Для обеспечения точности теста лучше всего проверять датчик положения дроссельной заслонки (TPS) при прогретом двигателе.

ОК, приступим:

Часть 1

  1. 1

    Переведите мультиметр в режим «Вольт постоянного тока» и с помощью красного тестового провода мультиметра проверьте провод, который подключается к контакту датчика TP, обозначенному на изображении номером 2 (в программе просмотра изображений выше). Это схема, которая передает сигнал TP на PCM.

    Если у вас нет мультиметра или вам нужно обновить его, ознакомьтесь с моей рекомендацией: Покупка цифрового мультиметра для диагностического тестирования автомобилей (находится по адресу: easyautodiagnostics.com ).

    ПРИМЕЧАНИЕ: Датчик положения дроссельной заслонки должен оставаться подключенным к своему разъему, чтобы этот тест работал (здесь пригодится зонд для прокалывания провода, чтобы получить сигнал внутри провода. Чтобы увидеть, как он выглядит, щелкните здесь: Инструмент для прокалывания проволоки.)

  2. 2

    Заземлите черный измерительный провод мультиметра на отрицательной клемме аккумулятора. Попросите помощника включить ключ, но не запускайте двигатель (это включит датчик положения дроссельной заслонки).

  3. 3

    Ваш мультиметр должен показывать от 0,4 до 0,9 В постоянного тока. Если ваш мультиметр не работает, пока не беспокойтесь об этом, перейдите к другим шагам.

Часть 2

  1. 4

    Теперь медленно откройте дроссельную заслонку (вручную и из моторного отсека), наблюдая за изменением значений напряжения на мультиметре.

    Чтобы результат теста был точным, вам нужно открывать дроссельную заслонку вручную, а не изнутри автомобиля.

  2. 5

    Когда дроссельная заслонка открывается, значения напряжения будут увеличиваться. Это повышение напряжения должно быть плавным, без пропусков и скачков. Когда дроссельная заслонка полностью открыта, мультиметр должен показывать где-то от 3,5 до 4,9 вольт постоянного тока.

  3. 6

    Теперь медленно закройте дроссельную заслонку. Когда дроссельная заслонка закрывается, вы должны увидеть, как напряжение снижается плавно, без каких-либо пропусков или пропусков, до того же напряжения, которое вы заметили на шаге 4.

Часть 3

  1. 7

    Хорошо, теперь вам понадобится кто-то, кто поможет вам слегка постучать по датчику положения дроссельной заслонки ручкой отвертки (или чем-то подобным, и я хочу выделить слова «слегка постучать»), поскольку вы медленно открываете и закрываете дроссельную заслонку и наблюдаете за мультиметром.

    Если TPS плохой, то при отводе цифры напряжения пропадут или станут пустыми. Если TPS в порядке, отвод не повлияет на значения напряжения.

  2. 8

    Повторите шаг 7 несколько раз, чтобы убедиться в результатах тестирования мультиметра.

Давайте посмотрим на результаты ваших тестов:

ВАРИАНТ 1: Мультиметр зарегистрировал плавное повышение или понижение напряжения без разрывов . Этот результат теста говорит вам, что датчик положения дроссельной заслонки на вашем 3,3-литровом Nissan Pathfinder (Xterra, Frontier, QX4) работает правильно и что в данный момент он исправен.

Этот результат теста также позволяет узнать, что проблема, вызывающая код неисправности P) 120, носит прерывистый характер и в данный момент отсутствует.

СЛУЧАЙ 2: Мультиметр НЕ регистрировал плавное увеличение или уменьшение напряжения , и вы видели, что показания напряжения пропадают или пропадают при нажатии на TPS, это означает, что датчик положения дроссельной заслонки (TPS) неисправен. Заменить датчик положения дроссельной заслонки.

перейдите по ссылке: Где купить датчик TP и сэкономить.

ПРИМЕЧАНИЕ: После замены TPS вам необходимо отрегулировать его. Инструкции по регулировке TPS см. В разделе «Как отрегулировать узел датчика положения дроссельной заслонки».

СЛУЧАЙ 3: Мультиметр НЕ ЗАПИСЫВАЕТ напряжение . Этот результат теста пока не осуждает TPS. Почему? Потому что,

, в TPS может отсутствовать питание или заземление. Итак, следующий шаг — проверить, получает ли питание TPS, перейдите к: ТЕСТ 2 TPS: проверка наличия питания у TPS.

Часть 2 — Как проверить датчик положения дроссельной заслонки GM 3.8L (TPS)

TPS ТЕСТ 2: Тестирование 5 Вольт опорного сигнала

Датчик положения дроссельной заслонки (TPS) на вашем 3.8L V6 Buick (или Chevy, Olds, Pontiac) нуждается в энергии для работы. Эта мощность поступает в виде 5 В постоянного тока от компьютера впрыска топлива.

Этот тест поможет вам подтвердить, присутствуют ли эти 5 Вольт или нет. Вот что вам нужно сделать:

  1. 1

    Возьмите мультиметр и выберите на нем режим «Вольт постоянного тока». Вы собираетесь протестировать Серый провод , это тот, который обеспечивает питание TPS. Это провод, который подключается к клемме, обозначенной буквой C (на рисунке выше).

  2. 2

    Проверьте Серый провод с помощью красного измерительного провода мультиметра и подходящего инструмента (например, пробойника для прокалывания проволоки). Разъем датчика положения дроссельной заслонки может быть подключен к датчику или нет, когда вы проверяете эту цепь.

    Важно, чтобы вы не щупали переднюю часть разъема, иначе вы рискуете повредить клемму.

  3. 3

    Подключите черный измерительный провод мультиметра к хорошей и чистой точке заземления на двигателе или непосредственно к отрицательной клемме аккумуляторной батареи.

  4. 4

    Когда все настроено, попросите помощника повернуть ключ в положение ON, но не запускать двигатель.

  5. 5

    Мультиметр должен отображать на экране от 4,5 до 5 вольт. Хорошо, теперь давайте интерпретируем результаты вашего теста ниже:

Давайте посмотрим, что означают ваши результаты теста:

ВАРИАНТ 1: Если мультиметр зарегистрировал от 4,5 до 5 Вольт , это подтверждает, что ЭБУ системы впрыска топлива и цепь подают питание на TPS.

Следующим шагом является проверка цепи заземления датчика положения дроссельной заслонки, перейдите к: ТЕСТ 3: Проверка цепи заземления.

ВАРИАНТ 2: Если мультиметр НЕ ЗАПИСИЛ от 4,5 до 5 Вольт . Тогда компьютер или схема НЕ обеспечивают напряжение, необходимое для работы TPS. Две наиболее вероятные причины этого: 1) проблема с обрывом цепи или 2) PCM может перегореть. Хотя проверка этих двух условий выходит за рамки данной статьи, вы удалили датчик положения дроссельной заслонки (TPS) на вашем 3.8L V6 Buick (или Chevy, Olds, Pontiac) как причина проблемы и / или диагностический код неисправности (DTC) TPS загорается контрольной лампой двигателя (CEL).

TPS TEST 3: Проверка цепи заземления

Пока вы проверили, что TPS не создает сигнал положения дроссельной заслонки (TPS TEST 1) и что TPS получает питание (TPS TEST 2).

Второй шаг, прежде чем осуждать датчик положения дроссельной заслонки, — убедиться, что он также имеет хорошее заземление.

PCM — это тот, который обеспечивает эту землю внутри, поэтому будьте осторожны и не подавайте случайно или намеренно питание (12 В) на эту цепь, иначе вы поджарите PCM.

Хорошо, вот шаги теста:

  1. 1

    Когда мультиметр все еще находится в режиме постоянного напряжения из TEST 2 TPS

  2. 2

    Проверьте Черный провод с помощью черного измерительного провода мультиметра. Разъем TPS может быть подключен к датчику или нет. Это провод, который подключается к клемме, обозначенной буквой A (на рисунке выше).

    Важно, чтобы вы не щупали переднюю часть разъема, иначе вы рискуете повредить клемму.

  3. 3

    Теперь с помощью красного щупа мультиметра проверьте положительный полюс аккумуляторной батареи.

  4. 4

    Еще раз, когда все будет готово, попросите помощника повернуть ключ в положение ON, но не запускать двигатель.

  5. 5

    Если эта цепь в порядке и PCM обеспечивает хороший путь к земле, ваш мультиметр покажет от 11 до 12 вольт.

Давайте посмотрим на результаты ваших тестов:

ВАРИАНТ 1: Если мультиметр показал от 11 до 12 Вольт .Тогда PCM и провод / цепь (которая питает эту землю) в порядке.

Этот результат теста мультиметра также подтверждает, что датчик TPS неисправен и его необходимо заменить, поскольку вы убедились, что датчик TPS не выдает сигнал и имеет питание и заземление.

ВАРИАНТ 2: Если мультиметр НЕ показывал напряжение от 11 до 12 вольт . Тогда это указывает на проблему либо с PCM (внутренняя неисправность / проблема), либо на обрыв провода между TPS и самим PCM. Хотя тестирование этих двух условий выходит за рамки данной статьи, вы устранили датчик положения дроссельной заслонки (TPS) на вашем 3.8L V6 Buick (или Chevy, Olds, Pontiac) как причина проблемы и / или диагностический код неисправности (DTC) TPS загорается контрольной лампой двигателя (CEL).

Код TPS никуда не денется

Итак, вы проверили датчик положения дроссельной заслонки (TPS) и, согласно результатам тестирования, TPS в порядке. Но индикатор проверки двигателя продолжает гореть даже после того, как вы стерли диагностический код неисправности (DTC) из памяти компьютера (PCM). Что ж, вот пара предложений, которые могут вдохновить вас на следующий шаг в диагностике:

  1. Заводская регулировка винта ограничителя холостого хода дроссельной заслонки была изменена таким образом, чтобы двигатель мог работать на холостом ходу и маскировать пропуски / пропуски зажигания и / или грубый холостой ход.Это увеличивает сигнал датчика TP к PCM. PCM это не нравится, и он загорается контрольной лампой двигателя (CEL).
  2. Трос дроссельной заслонки заедает, из-за чего дроссельная заслонка не закрывается полностью.
    1. Это можно проверить, просто попросив кого-нибудь внутри автомобиля подтолкнуть трос акселератора к полу и отпустить его при выключенном двигателе, при этом вы визуально убедитесь, что дроссельная заслонка и трос не застревают где-нибудь в пути.
  3. TPS периодически выходит из строя.Это означает, что большую часть времени он работает нормально, но время от времени это не так:
    1. Я обнаружил, что лучший способ проверить эти прерывания — это испытать автомобиль в дороге с мультиметром, подключенным к сигнальному проводу TP с помощью длинного провода, чтобы я мог комфортно наблюдать, как сигнал идет вверх и вниз, когда я или кто-то остальное диски.
  4. Разъем датчика положения дроссельной заслонки неисправен, обычно фиксирующий язычок сломан, а разъем вышел из строя, что вызывает периодическое ложное соединение.

Как откалибровать 1988-1992 TPS

Автомобили, оборудованные датчиками положения дроссельной заслонки для моделей 1988–1992 годов, имеют регулируемый датчик, который необходимо откалибровать (в случае замены на новый).

Этот тип TPS расположен под корпусом дроссельной заслонки, и корпус дроссельной заслонки обычно необходимо снимать, чтобы получить к нему доступ, поэтому перед повторной установкой корпуса дроссельной заслонки необходимо выполнить регулировку TPS:

Это то, что вам нужно сделать:

  1. 1

    Установите новый датчик положения дроссельной заслонки и подключите его к электрическому разъему, но не затягивайте два винта.

    Переведите мультиметр в режим постоянного напряжения и включите ключ (если вы отсоединили отрицательную клемму аккумулятора, чтобы снять корпус дроссельной заслонки и датчик, вам нужно будет снова подключить аккумулятор).

  2. 2

    С помощью красного измерительного провода мультиметра проверьте сигнальный провод TPS (это средний провод в разъеме). Подключите черный мультиметр к земле.

  3. 3

    При закрытой дроссельной заслонке отрегулируйте датчик TP, пока мультиметр не покажет между 0.38 и 0,42 В постоянного тока.

    После этого затяните два винта датчика TP. Теперь датчик откалиброван.

  4. 4

    Установите на место корпус дроссельной заслонки.

    Используйте новую прокладку на корпусе дроссельной заслонки. Кроме того, не используйте какой-либо герметик для прокладок или герметик (силикон RTV) на прокладке, так как это впоследствии приведет к утечке вакуума.

  5. 5

    Перед запуском автомобиля отключите аккумулятор как минимум на одну полную минуту.

    Это сбросит значение закрытой дроссельной заслонки внутри PCM обратно на 0.

И готово!

Если эта информация действительно спасла положение, купи мне пива!

5 способов исправить дросселирование процессора

Последнее обновление: 27 ноября 2020 г., 15:38

Дросселирование ЦП или динамическое масштабирование частоты напряжения — это когда производительность и мощность ЦП снижаются из-за высоких температур.

Это также происходит, когда ваш процессор простаивает или не выполняет сложных задач. За счет уменьшения мощности процессора. Батарея расходуется медленнее. Поскольку работа с максимальной производительностью приводит к быстрому истощению заряда аккумулятора, сокращается срок его службы.

Дросселирование также используется в качестве механизма безопасности, когда ноутбук рискует перегреться или его система охлаждения недостаточно хороша для достаточно быстрого отвода тепла.

Неправильно выполненный разгон также может привести к дросселированию процессора или снижению его использования.Из-за высоких температур.

Вот все, что вам нужно знать о том, как исправить троттлинг процессора.

Что вызывает дросселирование процессора или перегрева?

Когда ноутбук интенсивно используется или играет в очень требовательные игры, система нагревается.

Слишком сильный нагрев может повредить внутренние компоненты игрового ноутбука и его защитный механизм. Производительность ЦП падает или выключается, чтобы предотвратить разрушение системы из-за высокой температуры.

Thermal Throttling

Вы заметите, что ноутбук становится медленнее или частота кадров падает во время игр. Регулирование температуры может происходить как с процессором, так и с графическим процессором.

Как мне остановить мой ЦП от троттлинга?

Так как тепло является основной причиной теплового дросселирования. Есть несколько способов предотвратить это.

Идеальная температура процессора 60 градусов. Температура выше 85 градусов может привести к перегреву игрового ноутбука.

Максимально допустимая температура процессора составляет 85 градусов.

  1. Убедитесь, что на игровом ноутбуке нет пыли в вентиляционных отверстиях или внутри. Они могут блокировать поток воздуха и забивать впускные отверстия, вызывая перегрев процессора.
  2. Уменьшите настройки и разрешения во время игры. Это предотвратит работу ноутбука с максимальной производительностью, что приведет к его перегреву.
  3. Купите охлаждающий вентилятор.
  4. Пониженное или пониженное напряжение вашего процессора также может снизить температуру.
  5. Нанесение термопасты для лучшего контроля высоких температур.

Другие способы предотвращения троттлинга процессора

Регулирование температуры подпадает под регулирование процессора, но происходит только тогда, когда система работает при высоких температурах.

Как исправить удушение ЦП

Дросселирование ЦП может произойти даже при отсутствии перегрева.

Например, использование игрового ноутбука в режиме энергосбережения может легко вызвать дросселирование ЦП для экономии заряда аккумулятора.Вот несколько способов предотвратить дросселирование вашего процессора.

Поддерживайте наилучшую производительность в режиме питания

Измените настройки питания

Режим питания должен поддерживать максимальную производительность, это предотвратит дросселирование ЦП, даже если он не подключен.

Отключить регулирование мощности через реестр.

Как проверить реле с помощью мультиметра

Как проверить реле с помощью мультиметра

В этом посте я научу вас проверять реле с помощью мультиметра.

Цель тестирования реле — определить, хорошо оно или плохо. И один из лучших способов сделать это — использовать мультиметр с настройкой омметра, а затем измерить значения сопротивления.

Первый шаг — проверить катушку реле

См. Техническое описание, чтобы узнать сопротивление катушки. В таблице данных вы также получите значение допуска катушки. Например, если сопротивление составляет 320 Ом, а значение допуска составляет ± 10%, тогда мы должны получить значения сопротивления где-то между 288 Ом и 352 Ом.

Принесите мультиметр и установите его в положение омметра. После этого подключите выводы щупа мультиметра к обоим выводам омметра. Не беспокойтесь о том, какой датчик должен быть подключен к какому терминалу. Мы пытаемся найти сопротивление, поэтому нам не нужно беспокоиться о полярности.

Теперь прочтите сопротивление. Если сопротивление попадает в диапазон, указанный в таблице данных. Тогда катушка в порядке. Однако если вы получаете очень высокие или очень низкие показания, значит, проблема с катушкой.Единственное, что теперь можно сделать, это заменить реле.

Второй шаг — проверить клеммы реле

Теперь, когда мы проверили катушку, пришло время проверить различные клеммы реле. Опять же, лучший способ — измерить сопротивление между ними. Мы будем тестировать:

  • Нормально закрытый терминал (NO)
  • Нормально открытый терминал (NC)
  • Общий терминал (COM)
Проверка нормально замкнутой (NC) клеммы реле

Если через NC нет напряжения, то сопротивление NC-COM должно быть около 0 Ом.Если это показание составляет около 0 Ом, то клемма NC работает нормально.

Ниже я предоставляю пошаговое руководство по тестированию терминала NC.

  • Поставить мультиметр в положение омметра
  • Поместите один из щупов мультиметра на клемму NC, а другой — на клемму COM.
  • Считайте сопротивление
  • Если значение сопротивления составляет около 0 Ом, клемма NC исправна.
Проверка нормально разомкнутой (NO) клеммы реле

Пошаговое руководство по тестированию клеммы NO приведено ниже.

  • Поставить мультиметр в положение омметра
  • Поместите один из щупов мультиметра на клемму NO, а другой — на клемму COM.
  • Считайте сопротивление
  • Если значение сопротивления составляет несколько МОм, клемма NO работает нормально.

Если вы получаете очень высокое сопротивление, порядка нескольких МОм, то клемма NO также работает нормально. Это потому, что, когда NO и COM не подключены, импеданс очень высок.

Sasmita

Привет! Я Сасмита. В ElectronicsPost.com я продолжаю свою любовь к преподаванию. Я магистр электроники и телекоммуникаций. И, если вы действительно хотите узнать обо мне больше, посетите мою страницу «О нас». Узнать больше

Что такое тепловое дросселирование и как его предотвратить

Тепло — неизбежный побочный продукт работы.Он возникает, когда вы запускаете двигатель автомобиля, совершаете быструю прогулку или что-то еще, что вызывает трение. Тепло также преобладает в электронике, где с ней труднее справиться и которая может отрицательно сказаться на ее непрерывной работе. Что касается видеокарт, существует множество способов управления теплом, от пассивного охлаждения до вентиляторов и даже воды. Но когда эти решения не работают, у вашего графического процессора есть еще один способ справиться с перегревом: регулирование температуры.

Что такое тепловое дросселирование?

Когда ваш графический процессор принимает на себя тяжелую рабочую нагрузку, например, в играх, он нагревается.Когда ваше охлаждающее решение больше не может рассеивать тепло достаточно быстро, чтобы поддерживать температуру в безопасном диапазоне, ваша видеокарта начинает сбрасывать производительность, чтобы отводить тепло. Частоты ядра и памяти начинают падать вместе с частотой кадров, пока температура не упадет до безопасного рабочего диапазона. Все современные графические процессоры имеют эту функцию для защиты электронных компонентов от повреждений. Неуправляемое термическое регулирование может иметь большое влияние на производительность. И хотя тепловое дросселирование само по себе не вызывает никаких повреждений, основная причина дросселирования — нагревание — может вызвать повреждение и сократить срок службы вашей видеокарты.

Как предотвратить дросселирование

Чтобы поддерживать производительность, вам необходимо контролировать нагрев, но не все видеокарты испытывают троттлинг в одинаковой степени или даже вообще. Существует множество сценариев, которые определяют влияние терморегулирования на вашу систему. Выбор корпуса, решение для охлаждения и воздушный поток — это три основных фактора, которые необходимо учитывать.

Небольшой корпус без открытого пространства улавливает тепло и препятствует воздушному потоку, что затрудняет охлаждение графического процессора.Если вы выберете более крупный и хорошо продуманный корпус, вы получите больше креплений для вентиляторов и дополнительные возможности для оптимизации воздушного потока. Возможность установки дополнительных вентиляторов в ваш корпус особенно полезна, если производитель вашего графического процессора использовал индивидуальное решение для охлаждения, которое отводит тепло в ваш корпус, а не удаляет его напрямую, как в эталонных конструкциях.

Добавление дополнительных вентиляторов в верхнюю часть корпуса гарантирует, что тепло, выделяемое вашим графическим процессором, эффективно отводится от корпуса. Он также снижает температуру воздуха внутри вашего корпуса, сохраняя при этом охлаждение других компонентов, таких как процессор и память.

Марка видеокарты, которую вы выбираете, может зависеть от личных предпочтений, но решение для охлаждения, которое она использует, является важным решением. В эталонных конструкциях — вентиляторах нагнетательного типа — обычно используется один вентилятор для охлаждения карты. Холодный воздух проходит через заднюю часть видеокарты и выводится через разъемы. Такая конструкция эффективна, но один вентилятор снижает производительность.

При выборе видеокарты часто бывает идеальным выбрать карту с системой охлаждения с несколькими вентиляторами.Дополнительные вентиляторы — иногда целых три — обеспечивают достаточный воздушный поток, чтобы значительно уменьшить или даже устранить дросселирование. Следует отметить, что ваш корпус должен обеспечивать достаточный поток воздуха для обработки горячего воздуха, выкачиваемого этими типами видеокарт, поскольку их кулеры не отводят тепло напрямую от корпуса.

Типовые карты эталонного дизайна: стильные, но с одним вентилятором

Здесь еще тонна охлаждения …
(что может снизить температуру и снизить уровень шума)

Если замена или добавление оборудования невозможна, вы все равно можете снизить температуру с помощью свободно доступных инструментов.

С помощью таких утилит, как MSI Afterburner или EVGA PrecisionX, можно настроить индивидуальную кривую вентилятора. Установив кривую вентилятора вручную, вы можете установить более агрессивную скорость вращения вентилятора для данной температуры. На заводе скорость вращения вентилятора оптимизирована для достижения баланса между шумом и производительностью. В эталонных картах этот баланс часто больше склоняется к подавлению шума и может привести к тепловому дросселированию.

Уровень шума увеличится, возможно, значительно, но ваш графический процессор сможет намного быстрее рассеивать тепло и поддерживать производительность.

По умолчанию слева, настраиваемый справа

Если дополнительный шум вентилятора слишком велик, есть еще одно решение ваших проблем с тепловым дросселированием: пониженное напряжение.

Иногда величина напряжения, используемого вашей картой, устанавливается выше, чем необходимо для правильной работы вашей карты. При более высоком напряжении выделяется больше тепла, даже если частота и частота памяти остаются прежними. Пониженное напряжение вашей видеокарты даже на небольшую величину может снизить температуру достаточно, чтобы уменьшить или даже устранить тепловое дросселирование.Однако это не гарантированное решение и может вызвать проблемы со стабильностью. Для большинства пользователей мы рекомендуем комбинацию лучшего охлаждения в сочетании с регулировкой кривой вентилятора.

Большинство инструментов мониторинга способны не только управлять вентиляторами графического процессора и изменять напряжение. Они также отслеживают температуру, частоту ядра и памяти, а также использование графического процессора. Большинство из них также предлагают хотя бы базовые возможности разгона. Это важно, потому что вы не можете предотвратить то, чего не видите.

Мониторинг температуры графического процессора, а также частоты ядра и памяти позволяет определить, когда вы испытываете троттлинг. Важно отметить, что есть несколько вещей, на которые нужно обратить внимание, прежде чем вам понадобится разобрать утилиты. Если вы испытываете заикание или замечаете видимое падение частоты кадров, вероятно, ваша видеокарта замедлилась из-за выделения тепла. Если вы не изменили кривую вентилятора своей видеокарты, и вентилятор начинает звучать как реактивный двигатель, есть большая вероятность, что вы достигли точки дросселирования.Затем вы можете подтвердить это с помощью инструмента по вашему выбору.

Если ваша температура превышает точку дросселирования вашей видеокарты и ваши частоты начинают падать, вы знаете, что пора взглянуть на ваше охлаждение. В идеале вы хотите, чтобы температура была как можно ниже, все, что ниже 80 градусов, является нормальным и следует контролировать дросселирование. Например, у Nvidia GTX 1080 Ti точка дросселирования составляет 84 градуса. Если вы поддерживаете температуру ниже 80 градусов, у вас остается немного передышки, поэтому вы можете сосредоточиться на развлечениях, а не на мониторинге частот графического процессора.

Важно помнить, что у каждой видеокарты своя точка дросселирования. GTX 980 и 970 предыдущего поколения, например, дросселируются до 80 градусов, в то время как карты AMD серии Vega могут достигать максимальной температуры 85 градусов, прежде чем они дросселируются. Вам нужно будет узнать точку дросселирования для вашей конкретной карты, чтобы установить эффективную кривую вентилятора и напряжение.

Решая, какую утилиту использовать, важно учитывать объем того, что вы собираетесь отслеживать.Если вы собираетесь сосредоточиться на своей видеокарте, я рекомендую MSI Afterburner или Asus Tweak. Любой из этих инструментов предоставит все параметры мониторинга и конфигурации, которые могут вам понадобиться, включая разгон.

Если вы хотите контролировать всю вашу систему, вам нужно посмотреть что-нибудь еще, например, программное обеспечение NZXT Cam. Хотя Cam контролирует всю вашу систему, он не предлагает столько возможностей для настройки вашей видеокарты. Не помешает установить более одной утилиты, чтобы получить более широкий спектр функций мониторинга.

Дополнительная литература

5 Признаков неисправного датчика положения дроссельной заслонки (и стоимость замены)

Последнее обновление 10 сентября 2019 г.

Хотя ваша машина работала нормально в последний раз, когда вы ее водили, она внезапно начинает вести себя очень странно. На холостом ходу может наблюдаться помпаж, автомобиль дергается во время движения или даже может заглохнуть на светофоре. Ваш индикатор проверки двигателя, вероятно, тоже горит.

Ищете хорошее онлайн-руководство по ремонту? Щелкните здесь, чтобы увидеть 5 лучших вариантов.

Без подключения считывателя кода, вероятно, у вас какая-то проблема с датчиком положения дроссельной заслонки. Здесь мы рассмотрим, как работает датчик положения дроссельной заслонки (TPS), рассмотрим наиболее распространенные симптомы неисправности датчика положения дроссельной заслонки и дадим некоторые оценки стоимости его замены.

Как работает датчик положения дроссельной заслонки

В каждом автомобиле с двигателем внутреннего сгорания есть что-то, называемое корпусом дроссельной заслонки, также называемое дроссельной заслонкой.Этот клапан расположен посередине впускного коллектора и воздушного фильтра.

Задача дроссельной заслонки — управлять потоком воздуха, поступающим в двигатель. Когда водитель нажимает на педаль газа для ускорения автомобиля, в камере внутреннего сгорания двигателя требуется больше воздуха.

По мере того, как в двигатель поступает больше воздуха, в него также впрыскивается больше топлива. Воспламенение этой смеси — это то, как создается мощность двигателя.

Положение дроссельной заслонки определяет, сколько воздуха поступает в двигатель.В системе управления подачей топлива есть компонент, называемый датчиком положения дроссельной заслонки, который определяет это положение.

Когда вы хотите разогнать автомобиль, датчик передает информацию о положении дроссельной заслонки блоку управления двигателем. Оттуда блок управления двигателем будет управлять дроссельной заслонкой и позволять ей всасывать любое количество воздуха, необходимого для двигателя.

Чем сильнее вы нажимаете на педаль газа, тем шире открывается дроссельная заслонка, позволяя большему потоку воздуха поступать в двигатель.В то же время больше топлива будет впрыскиваться в цилиндры двигателя, чтобы создать сбалансированную смесь для сгорания.

Общие симптомы неисправного датчика положения дроссельной заслонки

Если у вас неисправный датчик положения дроссельной заслонки, то блок управления двигателем (ЭБУ) не будет знать положение дроссельной заслонки. В результате блок управления двигателем не сможет должным образом регулировать количество воздуха, поступающего в двигатель, чтобы обеспечить успешное сгорание. В конечном итоге это повлияет на ваши навыки вождения до такой степени, что оставаться на дороге будет небезопасно.

Если у вас есть поврежденный или изношенный датчик положения дроссельной заслонки, вы сразу заметите симптомы этой проблемы. Возможно, вы не знаете, что это неисправность датчика, но симптомы должны достаточно мотивировать вас, чтобы отвезти машину к механику и узнать, что они думают.

Скорее всего, они скажут вам, что это датчик положения дроссельной заслонки, если вы испытаете два или более из следующих симптомов.

# 1 — Контрольная лампа проверки двигателя

Датчик положения дроссельной заслонки является ключевым компонентом общего процесса внутреннего сгорания.Если этот датчик выйдет из строя, ваш двигатель в конечном итоге перестанет вырабатывать мощность, достаточную для удовлетворения ваших потребностей в ускорении.

Блок управления двигателем обнаружит эту проблему, когда она существует, и затем включит контрольную лампу Check Engine на приборной панели. Таким образом, вы будете знать, что у вашего движка есть какая-то проблема, которую необходимо решить.

Общие диагностические коды неисправностей, относящиеся к TPS, включают: P0121, P0122, P0123, P0124 и P2135.

# 2 — Слабое ускорение

Неисправный датчик положения дроссельной заслонки означает, что блок управления двигателем не может правильно управлять положением дроссельной заслонки.Из-за этого двигатель не сможет получать необходимое количество воздуха. Каждый раз, когда вы собираетесь разогнать автомобиль в этих условиях, ускорение будет очень слабым.

Вам повезет, если вы сможете двигаться со скоростью более 30 миль в час. Это приведет к потреблению большого количества бензина и, в конечном итоге, к снижению топливной экономичности вашего автомобиля.

# 3 — Двигатель не работает на холостом ходу

Когда вы останавливаете или паркуете свой автомобиль где-нибудь, его частота вращения на холостом ходу должна быть где-то в пределах от 600 до 900 об / мин.Если вы замечаете, что обороты двигателя ниже или выше этого диапазона, когда ваш автомобиль остановлен или припаркован, значит, у вашего двигателя грубая или неустойчивая проблема с холостым ходом.

Это может быть связано с неисправным датчиком положения дроссельной заслонки, если вы испытали другие симптомы из этого списка.

# 4 — Превышение расхода топлива

Поскольку датчик положения дроссельной заслонки оказывает большое влияние на правильность горения топливно-воздушной смеси, неточные показания могут привести к впрыску слишком большого количества топлива в камеру сгорания.Это приведет к богатому соотношению воздух / топливо, что приведет к плохой экономии топлива.

Кроме того, другие датчики зависят от точных показаний TPS. Когда этого не происходит, эти датчики часто компенсируют слишком малый или слишком большой поток воздуха. Конечным результатом обычно является необходимость заправляться бензином чаще, чем обычно.

# 5 — Изменения ускорения

Одна очень странная проблема ускорения, которая может возникнуть, — это повышенное ускорение без нажатия на педаль газа.Вы можете ехать по дороге, и ваша машина внезапно разгонится сама по себе. Очевидно, это может быть очень опасно.

Из всех проблем с ускорением, которые могут возникнуть, именно эта является явным индикатором того, что виноват датчик положения дроссельной заслонки.

Стоимость замены

Двигатель нуждается в правильном количестве воздуха так же, как ему требуется правильное количество топлива. Если двигатель не получает должного количества воздуха, то его процесс внутреннего сгорания нарушается.Это означает недостаточную выработку электроэнергии и целый ряд других проблем.

Вы не сможете откладывать эту ситуацию слишком долго.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *