Как работает сетевой фильтр. Сетевой фильтр: принцип работы, устройство и виды защиты

Как работает сетевой фильтр. Из каких компонентов состоит сетевой фильтр. Какие виды защиты обеспечивает сетевой фильтр. Чем отличается сетевой фильтр от обычного удлинителя. Как правильно выбрать сетевой фильтр для защиты техники.

Содержание

Что такое сетевой фильтр и для чего он нужен

Сетевой фильтр — это устройство, предназначенное для защиты подключенной к нему электротехники от скачков напряжения, импульсных помех и других проблем в электросети. Основные функции сетевого фильтра:

  • Защита от перенапряжения в сети
  • Подавление высокочастотных помех
  • Защита от импульсных помех
  • Ограничение максимального тока нагрузки

Сетевой фильтр позволяет продлить срок службы дорогостоящей бытовой и компьютерной техники, предотвращая выход из строя из-за проблем с электропитанием.

Устройство и принцип работы сетевого фильтра

Типичный сетевой фильтр состоит из следующих основных компонентов:

  • Варистор — защищает от кратковременных скачков напряжения
  • Конденсаторы — подавляют высокочастотные помехи
  • Катушки индуктивности — подавляют низкочастотные помехи
  • Предохранитель — защищает от перегрузки по току
  • Выключатель — позволяет отключить все устройства

Принцип работы заключается в следующем:


  1. Варистор ограничивает скачки напряжения до безопасного уровня
  2. LC-фильтр из конденсаторов и катушек подавляет помехи
  3. Предохранитель отключает питание при превышении максимального тока

Таким образом, сетевой фильтр обеспечивает комплексную защиту подключенных устройств.

Виды защиты в сетевых фильтрах

Современные сетевые фильтры могут обеспечивать несколько видов защиты:

1. Защита от перенапряжения

Варисторы и газовые разрядники ограничивают кратковременные скачки напряжения до безопасного уровня. Это защищает технику от выхода из строя при резких скачках напряжения в сети.

2. Подавление помех

LC-фильтры эффективно подавляют высокочастотные и низкочастотные помехи, обеспечивая «чистое» электропитание для чувствительной электроники.

3. Защита от перегрузки

Предохранитель или автоматический выключатель отключает питание при превышении максимально допустимого тока нагрузки.

4. Защита от короткого замыкания

Быстродействующие предохранители защищают от короткого замыкания в подключенных устройствах.


5. Защита от импульсных помех

Специальные схемы подавляют кратковременные импульсные помехи в сети, возникающие при работе мощных электроприборов.

Чем сетевой фильтр отличается от обычного удлинителя

Основные отличия сетевого фильтра от простого удлинителя:

ПараметрСетевой фильтрУдлинитель
Защита от перенапряженияЕстьНет
Подавление помехЕстьНет
Защита от перегрузкиЕстьИногда есть
СтоимостьВышеНиже

Таким образом, сетевой фильтр обеспечивает гораздо более надежную защиту подключенной техники по сравнению с обычным удлинителем.

Как выбрать сетевой фильтр

При выборе сетевого фильтра стоит обратить внимание на следующие параметры:

  • Максимальная мощность — должна соответствовать суммарной мощности подключаемых устройств
  • Уровень подавления помех — чем выше, тем лучше
  • Максимальное импульсное напряжение — определяет уровень защиты от перенапряжений
  • Количество розеток — зависит от числа подключаемых устройств
  • Наличие индикации — позволяет контролировать работу фильтра
  • Длина кабеля — должна соответствовать планируемому размещению

Для защиты дорогостоящей техники рекомендуется выбирать качественные сетевые фильтры от известных производителей.


Типичные ошибки при использовании сетевых фильтров

При эксплуатации сетевых фильтров следует избегать следующих распространенных ошибок:

  1. Перегрузка фильтра — подключение устройств, суммарная мощность которых превышает допустимую
  2. Использование фильтра без заземления в сети с заземлением
  3. Подключение мощных электроприборов (чайник, обогреватель) через сетевой фильтр
  4. Размещение фильтра в местах с повышенной влажностью
  5. Использование поврежденного фильтра с нарушенной изоляцией

Соблюдение этих простых правил позволит обеспечить надежную защиту подключенной техники и безопасную эксплуатацию сетевого фильтра.

Заключение: нужен ли сетевой фильтр в современном доме

Использование качественного сетевого фильтра позволяет:

  • Защитить дорогостоящую технику от скачков напряжения
  • Продлить срок службы электронных устройств
  • Обеспечить стабильную работу чувствительной электроники
  • Повысить электробезопасность в доме

Учитывая невысокую стоимость сетевых фильтров по сравнению со стоимостью защищаемой техники, их использование является оправданным в большинстве современных домов и офисов. Особенно актуально применение сетевых фильтров для защиты компьютеров, телевизоров, аудио-видео техники и другой чувствительной электроники.



Сетевой фильтр: устройство, принцип работы, назначение

Если говорить совсем простым языком, то сетевой фильтр – это такой тройник с выключателем, очень часто применяется для подключения компьютера к электросети. Данное устройство можно встретить на прилавках магазинов электротоваров, а также уже подключенным к розетке в квартирах и домах. Но для чего нужен сетевой фильтр и что в нем особенного? Об этом мы и поговорим далее.

Предназначение сетевого фильтра

Известно, что у вас в розетке имеется сеть переменного тока напряжением в 220 Вольт. «Переменное напряжение (ток)» значит, что его величина и/или знак непостоянны, а меняются с течением времени по определенному закону.

Природа генерирующих электрических машин (генераторов) такова, что на выходных клеммах генерируется ЭДС синусоидальной формы. Однако всё было бы хорошо, если бы все устройства имели резистивный характер, отсутствовали пусковые токи, и не имели в своем составе импульсных преобразователей. К сожалению, так не бывает, т.к. большинство устройств имеют индуктивный, емкостной характер, щёточные двигателя, импульсные источники вторичного питания. Весь этот замысловатый набор слов – это главные виновники электромагнитных помех.

Мы начали статью с речи об электромагнитных помехах не просто так. Эти помехи «портят» ровную форму синусоиды. Образуются так называемые гармоники. Если разложить реальный сигнал из розетки в виде ряда Фурье мы увидим, что синусоида дополнилась различными функциями, различной частоты и амплитуды. Форма напряжения в настоящей розетке стала далека от идеальной.

Ну и что в итоге? Плохое электропитание – проблема для радиопередающих устройств. Попросту ваш телевизор или радиоприемник будет работать с помехами. Кроме помех от потребителей в сети присутствуют помехи случайного происхождения, которые мы не можем предугадать. Это всплески, перепады напряжения от перебоев электроснабжения, включения мощной нагрузки и т.д.

Сетевой фильтр нужен для того, чтобы:

  1. Отфильтровать помехи для чистого питания устройств.
  2. Снизить помехи, исходящие от питающих приборов.

Как работает сетевой фильтр

Фильтрация ненужных составляющих сигнала осуществляется, как это ни странно, специальными фильтрами, их собирают из индуктивностей (L) и конденсаторов (С). Ограничение всплесков высокого напряжения – варисторами. Это работает благодаря таким электротехническим понятиям – постоянная времени и законы коммутации, реактивное сопротивление.

Постоянная времени – это время, за которое заряжается конденсатор или накапливает энергию индуктивность. Зависит от элементов фильтра (R, L и C). Реактивное сопротивление – это сопротивление элементов, которое зависит от частоты сигнала, а также от их номинала. Присутствует у индуктивностей и конденсаторов. Обусловлено только передачей энергии переменного тока электрическому или магнитному полю.

Простыми словами – с помощью реактивного сопротивления можно снизить, ограничить высокочастотные гармоники нашей синусоиды. Известно, что в розетке частота питания 50 Гц. Значит нужно рассчитывать фильтр на частоты на порядок выше и более. У индуктивности сопротивление растет с ростом частоты, у конденсатора – падает. То есть принцип работы сетевого фильтра заключается в подавлении высокочастотных составляющих сетевой синусоиды, при этом оказывая минимальное влияние на основную 50 Гц составляющую.

Смотрим что внутри

Мы разобрались, где применяется сетевой фильтр, поэтому теперь давайте разберемся, из чего состоит реальный сетевой фильтр, абстрагируемся от теории.

  1. Фильтр помех.
  2. Кнопка или тумблер.
  3. Варистор.
  4. Розеточная группа.
  5. Сетевой шнур.

Внутренности дорогого и качественного фильтра, обратите внимание на батарею конденсаторов справа и размеры дросселя по центру:

Пойдем по порядку – фильтр. Конструкция такого элемента представляет собой LC-фильтр. Нулевой и фазные провода из розетки подключатся к катушке индуктивности (каждый к своей), а между ними 1 и больше конденсаторов. Типовые номиналы деталей:

  • индуктивность каждой катушки – 50-200 мкГн;
  • конденсаторы 0,22-1 мкФ.

Варистор – это полупроводниковый элемент с нелинейной ВАХ. При достижении определенного напряжения, приложенного к нему, защищает нагрузку кратковременным замыканием входных цепей питания, принимая «удар» на себя. Нужен для того, чтобы сберечь вашу технику от «плохого питания». Чаще всего применяется варистор на 470 Вольт. Принцип действия такой защиты очевиден – при скачках напряжения цепи питания защищаемой нагрузки шунтируются варистором.

Содержимое дешевого фильтра, здесь вообще нет дросселя – его эффективность минимальна, но всё еще есть варистор (голубой в центре кадра), и он спасет от скачков напряжения:

Для чего нужен тумблер, если всё может работать и без него? Просто чтобы вы не дергали каждый раз вилку из розетки, ведь, чаще всего через сетевой фильтр подключается стационарное оборудование. Это снизит износ контактных пластин розетки.

Принципиальная схема сетевого фильтра:

Где применяется фильтр и что делать, если его нет

Дело в том, что в качественных блоках питания он должен быть установлен, прям на плате и тем более на БП высокой мощности, например компьютерных. Но, к сожалению, ваши зарядные устройства для смартфона, БП от ноутбука, ЭПРА люминесцентных и светодиодных ламп чаще всего не имеют их в своем составе. Это связано с тем, что китайские производители упрощают схемы своих устройств для снижения их себестоимости. Часто бывает, что на плате есть места для деталей, назначение которых фильтровать помехи, но они просто не распаяны и вместо них стоят перемычки. Компьютерные блоки – это отдельная тема, схема практически у всех одна, но исполнение разное, и в самых дешевых моделях фильтр отсутствует.

Вы можете снизить помехи вашего телевизора или другого устройства которое хотите защитить и улучшить свойства его электропитания дополнив обычный удлинитель таким фильтром. Его можно собрать самому или извлечь из хорошего, но ненужного или неисправного БП.

Напоследок рекомендуем просмотреть полезное видео по теме:

Сетевой фильтр – это простое, но полезное устройство, которое улучшит качество электропитания ваших приборов и снизит вред, наносимый его частоте работой импульсных БП, а область применения достаточно широка – используйте его для любой современной аппаратуры. Его устройство позволяет повторить схему даже начинающему радиолюбителю, а ремонт не составит труда. Использование сетевого фильтра крайне желательно для потребителей любого рода.

принцип работы, виды защиты, характеристики

Умные телевизоры, холодильники, компьютеры, ноутбуки, газовые котлы — все это стоит дорого. К сожалению, в огромном количестве домов и квартир электросеть не обеспечивает надлежащего уровня напряжения. Возникают перегрузки из-за сварочных работ поблизости. Иногда отгорает контакт ноля на подъездной распределительной коробке, и по квартирам проходит 380В междуфазного напряжения. Сетевой фильтр достаточно успешно защищает дорогостоящую бытовую технику, однако выбирать такое устройство нужно внимательно.

Обманы маркетологов

Всем известны удлинители с несколькими розетками, предлагаемые множеством производителей. Их цена привлекательна. Маркетологи называют этот крайне недорогой прибор сетевой фильтр и заявляют, что  приспособление защитит оборудование от всех возможных неприятностей.

Легко купить многорозеточный удлинитель с защитой для стиральной машины, для холодильника, для компьютера. Есть приборы разных уровней: базового, стандартного, продвинутого. Но в любом случае характеристики такого приспособления никак не позволяют предположить, что оно может эффективно защищать подключенную технику. На практике все обстоит следующим образом.

  1. В моделях базового класса есть только одноконтактный выключатель, а также неонка и многоразовый предохранитель.
  2. Устройства стандартного класса — с предохранителем многоразового типа, неонкой и двухконтактным выключателем в хороших моделях. Последний прерывает оба проводника, фазу и ноль, для гарантированного прекращения питания подключенного прибора.
  3. Продвинутые модели имеют в схеме помехоподавляющий конденсатор, предохранитель и выключатель.

Все без исключения эти так называемые удлинители с УЗО не могут гарантированно защитить технику в аварийных ситуациях. Например, многоразовый предохранитель ограничивает максимальный ток, но срабатывает достаточно медленно для того, чтобы подключенное устройство не вышло из строя. Конденсатор же справляется только с определенными видами бросков напряжения. Назначение подобных приспособлений только одно: ограничивать потребление мощности группой подключенных устройств.

Важно! Поэтому для компьютера и для бытовой техники высокого класса нужно покупать специальный электрический фильтр, схемы которого выполнены не только с защитой от скачков напряжения, но и способны демпфировать практически все типы гармонических помех.

Как работает защита

Устройство сетевого фильтра обязательно включает несколько ключевых блоков.

  1. Контуры с катушками индуктивности и конденсаторами.
  2. Варистор, один или несколько. Они могут замыкаться по цепи фаза-ноль или работать с отводом заземления.
  3. Контур многоразового предохранителя с отдельной лампой, свидетельствующей о его срабатывании (или выполненный как кнопка на сетевом фильтре).
  4. Надежный двухконтактный выключатель, прерывающий оба проводника, фазу и ноль питающей сети.
  5. Хорошие модели оснащаются термическим предохранителем, защищающим устройство от перегрева.

Сегодня можно купить электрический фильтр для аудиотехники или телевизора с выключателями на каждую розетку. Это очень удобно, позволяет вывести отдельного потребителя из сети без броска напряжения и других нежелательных электрических явлений.

Принцип работы защиты следующий.

  1. Гармонические помехи, меняющие кривую синусоиды напряжения, демпфирует электрический фильтр, построенный на катушках индуктивности и конденсаторах.
  2. Броски напряжения свыше верхней планки рабочего диапазона гасятся варистором. Этот элемент резко меняет сопротивление на очень маленькое при превышении нормированного показателя. Грубо говоря, варистор создает короткое замыкание, преобразуя возникающие токи в тепло. На корпусе прибора указывается значение энергии в Джоулях, которое он способен рассеивать.
  3. При превышении максимального уровня рабочего тока срабатывает многоразовый предохранитель. Он скрыт за небольшой круглой кнопкой на корпусе. В сетевых фильтрах используются быстродействующие предохранители, поэтому подключенная техника выживает при аварийных ситуациях с большой вероятностью.

Важно! Именно наличием отдельных контуров с защитой от перенапряжения и нейтрализацией помех сетевой фильтр отличается от удлинителя. У них есть только одна сходная деталь — это многоразовый предохранитель. Однако в большинстве случаев удлинитель с сетевым фильтром имеет более простое УЗО.

Типы устройств защиты

Виды сетевых фильтров различают как по количеству обслуживаемых фаз, так и по наличию заземления и контуру включения варистора. Типы защиты устройств бывают следующими.

  1. Защита трех фаз. Такой сетевой фильтр работает с несколькими отдельными наборами варисторов и контуров демпфирования помех.
  2. Фаза — ноль. Это самый удобный тип устройства для бытового применения.
  3. Фаза — земля, ноль — земля защита. Данные типы приборов используются, если подключенное оборудование выдвигает особые требования к коммутации источника питания для согласования. Или в случае, когда проводка в здании имеет отвод заземления.

Выбор сетевого фильтра обязательно делается в соответствии с характеристиками электропитания в квартире или доме. Так, большинство современных зданий имеют контакт заземления в розетке. Поэтому лучший вариант прибора защиты также должен быть оснащен соответствующей точкой подключения.

С заземлением или без

Ответ на вопрос, покупать сетевой фильтр с заземлением или без, зависит от типа подключаемого оборудования. Например, для стиральной машинки или другого мощного устройства существует опасность пробоя напряжения на корпус. Такой технике понадобится сетевой фильтр с заземлением. Для холодильника, для ИБП, для бытовой техники можно выбрать более простое устройство. Однако стоит учитывать режим его эксплуатации. Если не предусматривается защита от пробоя, перенапряжения, можно купить любое устройство.

Важно! LC контур (конденсаторно-индуктивный) не нуждается для своей работы в заземлении. Он фильтрует помехи во всех случаях. Поэтому для устройств, в инструкции к которым не указано требование к обязательному заземлению, можно выбрать сетевой фильтр без такой опции.

Однако в случае покупки устройства для защиты от аварийных ситуаций (перенапряжение, пробой грозовым разрядом и так далее) неверный выбор способен нести опасность. В качестве примера можно рассмотреть модель Pilot BIT. Его модификация в черном корпусе, фильтр с заземлением, в домах с розетками без заземления может вызвать аварийную ситуацию. Схема замыкания варисторов инициирует попадание напряжения на корпус, возникновение опасности электротравмы. Модификация S в белом корпусе рассчитана на розетки без заземления. В случае возникновения аварийной ситуации при грозовом пробое фильтр не сможет защитить подключенные устройства. В сети с заземлением такая модификация имеет ключевой недостаток в виде отсутствии развязки между сети дома с заземлением и соответствующего контура электронных приборов.

Как проверить сетевой фильтр

К сожалению, проверить сетевой фильтр непосредственно перед покупкой нельзя. Его можно только правильно выбрать по ключевому параметру напряжения. В частности, большинство фильтров имеют рабочий диапазон в пределах от 184 до 250 В. Некоторые дорогие модели, хоть и обеспечивают меньшую мощность, действуют в диапазоне от 150 до 290 Вольт.

Совет! Чтобы рассчитать, какое именно напряжение требуется обеспечить сетевым фильтром, можно воспользоваться прибором под названием Барьер.

Его более новые поколения оснащены цифровым индикатором. Наблюдая за показаниями Барьера во время перепадов напряжения в сети (мигания лампочек или выключения бытовых приборов) можно определить минимальную и максимальную границу изменения параметра. Именно по этому диапазону потребуется выбрать сетевой фильтр.

Стабилизатор или фильтр

Чтобы понять, что лучше, сетевой фильтр или стабилизатор, стоит рассмотреть принцип работы последнего. Ключевые черты, интересные для защиты оборудования, выглядят так:

  • стабилизатор повышает и понижает коэффициент трансформации при плавных бросках напряжения сети, обеспечивая постоянное значение на выходе;
  • гармонические помехи демпфируются достаточно хорошо, благодаря особенностям работы электронных компонентов преобразователя напряжения;
  • при превышении максимального порога напряжения на входе стабилизатор плавно и безопасно снижает выходное значение и выключает подключенные приборы.

Как видно из описания принципа работы, стабилизатор подойдет для телевизора, для холодильника, для аудиоцентра и другого не требовательного оборудования. Однако у такого решения есть несколько недостатков.

  1. Первый – стоимость. Стабилизатор заметно дороже сетевого фильтра. При этом в сетях, где не наблюдается резких падений или скачков напряжения, его главный функционал не будет использован. Здесь сетевой фильтр выигрывает.
  2. Второй недостаток стабилизатора – изменение кривой напряжения на выходе. Множество моделей формируют так называемую ступенчатую кривую, а не синусоиду. Поэтому они не могут использоваться для питания чувствительного оборудования, например, газовых отопительных котлов. В это же время сетевой фильтр никак не влияет на форму кривой выходного напряжения.
  3. Третий недостаток стабилизатора — скорость срабатывания. Компьютерное оборудование может выйти из строя по причине запаздывания регулировки напряжения. Поэтому рекомендуется выбирать для приборов, которым критично важна скорость срабатывания защиты, дорогие специализированные стабилизаторы или ИБП.

Сказать, что именно лучше, стабилизатор или сетевой фильтр, достаточно сложно. Выбор того или иного оборудования зависит от требований к его функциональности. На практике достоинства двух устройств защиты объединяет в себе ИБП, источник бесперебойного питания. Он имеет встроенный сетевой фильтр, специально разрабатывается для быстрой реакции (малого запаздывания регулирования), стабилизирует напряжение. Единственная сфера применения, где нужно внимательно выбирать ИБП – питание газовых котлов и другого оборудования, требующего идеальной кривой синусоиды.

Как выбрать сетевой фильтр

Чтобы удобно использовать фильтр, достаточно при покупке обратить внимание на некоторые особенности устройства.

  1. Мощность. Перед походом в магазин стоит подумать, какие именно приборы будут подключаться к фильтру, посчитать их суммарное потребление, добавить к значению запас 20%.
  2. Энергия рассеивания или компенсирующий импульс. Данный параметр описывает, сколько тепла может выделить варистор в номинальном режиме работы. Чем хуже питание в точке подключения, тем с большим значением компенсирующего импульса нужно покупать сетевой фильтр.
  3. Диапазон рабочих напряжений. Актуально для сетей, страдающих резкими бросками.
  4. Наличие термического предохранителя. Полезная, но не обязательная опция. Терморазрыватель цепи защитит фильтр от перегрева.
  5. Количество розеток и выключателей. Выбирается по числу подключаемых приборов. Если планируется их часто отсоединять, рекомендуется покупать фильтр с выключателями на каждой розетке.
  6. Длина кабеля. Выбирается по месту размещения фильтра.

Последнее, что стоит оценить при выборе защитного устройства для бытовой техники – дополнительные опции. Они могут быть крайне полезны как для увеличения удобства пользования фильтром, так и для эксплуатации подключенного оборудования. Из полезных для компьютерной техники опций стоит отметить защиту линий локальной сети и телефона. Это важно в домах, где существует опасность наводок в линиях передач, вызванных грозовыми разрядами. USB порт на сетевом фильтре поможет быстро подключить телефон для зарядки или устройство, требующее соответствующего питания, например, компактную колонку.

Надежные сетевые фильтры 2019 года

Сетевой фильтр APC by Schneider Electric PM5-RS, 1.8 м на Яндекс Маркете

Сетевой фильтр APC by Schneider Electric PM5B-RS, 1.8 м на Яндекс Маркете

Сетевой фильтр APC by Schneider Electric PM6-RS, 2 м на Яндекс Маркете

Сетевой фильтр Pilot L, белый, 1.8 м на Яндекс Маркете

Сетевой фильтр ЭРА USF-5es-USB-W (Б0019037), 1.5 м на Яндекс Маркете

Как устроены и работают сетевые фильтры в бытовых приборах и нужны ли они?

Как устроены и работают сетевые фильтры?
В бытовой домашней электросети, которая приходит в наши квартиры, имеется большое количество всплесков (бросков) напряжений, которые возникают на очень короткое время и имеют порой достаточно большую амплитуду, возникающие в следствии переходных процессов, наведенные молнией, грозовыми разрядами и др.
Всплески от переходных процессов, порожденные оборудованием, причиной которых разряды запасенной энергии индуктивными и емкостными элементами. Электродвигатели используемые в лифтах, системе отопления, кондиционирования, охлаждения и другие индуктивные нагрузки создают непрерывный поток всплесков разной амплитудой до 1000В. Приводы постоянного тока, с переменной скоростью вращения, импульсные источники питания, переносной электроинструмент и т.п. являются так же источниками переходных процессов и следовательно, дополнительных всплесков напряжений.
Пример схемы подавления импульсного перенапряжения состоит из варистора (VDR)и газового разрядника (GDT), соединенных последовательно. Схема предназначена для защиты чувствительных электронных устройств от перенапряжения, переходных процессов, и короткого замыкания.
   Схема защиты включается в разрыв между источником напряжения, в данном случае это розетка, и нагрузка. В обычном нормальном режиме ток не протекает через GDT и VDR1, но когда напряжение становится больше, чем сумма напряжения срабатывания GDT и VDR1 (GDT UZ470B и VDR S20K250 общее напряжение 250v), то ток начинает протекать через элементы. Чем больше превышение напряжение, тем больше протекает ток через GDT и VDR1.
   При уменьшении напряжения до нормального значения, схема переводится в исходное состояние. Из-за физических свойств разрядника и варистора, протекающий ток через защитные элементы не увеличивается больше определенного значения в течение короткого периода времени. Когда напряжение возвращается к нормальному значению, ток через элементы G1 и VDR1 прекращается, схема возвращается к обычному режиму.
Если протекающий ток значительно увеличиться, то срабатывает защитный предохранитель, нагрузка обесточивается. Две неоновые контрольные лампы, примененные в схеме, показывают наличие напряжения на входе и на нагрузке.
* VDR варистор — полупроводниковый резистор, представляет собой электронный компонент имеющий нелинейную вольт амперную характеристику (ВАХ). Название происходит от английского слова — переменный резистор.
Подобные схемы часто используются для защиты цепей от чрезмерных переходных напряжений путем включения их в схему таким образом, что при их срабатывании, они будут шунтировать возникающий чрезмерный ток, создаваемый высоким напряжением для чувствительных компонентов. Задача VDR еще в том, чтобы защитить от увеличения тока через устройства, когда напряжение становиться чрезмерным.
Преимущества
1) Нормальное рабочее напряжение 230V AC / DC
2) Максимальная номинальный ток 16A
3) Максимальный ток 16A
4) Напряжения отключения => 300В RMS
5) Защита от перегрузок.
6) Защита от короткого замыкания.
Применение
1) Защита чувствительных компонентов.
2) Защита двигателя.
3) Защита телефонных линий.

Самому собрать фильтр

Схема высококачественного сетевого фильтра.
Высококачественный сетевой фильтр позволяет отфильтровать помехи и кратковременные импульсные скачки напряжения. Особенно актуальна схема для проживающих в поселках, где электричество подводится по воздушным линиям и когда во время грозы, при разрядах молний наводится высокое напряжение. Детали применяются от ненужных компьютерных блоков питания, которые могут заваляться дома или выбрасываются на работе — дайте им вторую жизнь! Необходимо намотать симметрирующие дроссели-трансформаторы, варисторы и конденсаторы выпаять из блоков питания, лучше всего подойдут класса Y2 и X2.
Номиналы элементов для фильтра могут иметь значения:
  1. Конденсаторы С2-4 серии Y2 номиналом по 0,047 мкФ (стандартные конденсаторы из БП например, Kh572N)
  2. Конденсаторы С1, С5 серия класса Х2, номинал 0,47МкФ.
  3. GAS — разрядник типа BHS 2500V.
  4. Варисторы MV, диаметр корпуса 20мм (можно 25 и более), напряжение пробоя 470В.
  5. Трансформаторы TR1-TR2 имеют две обмотки 2*10 витков, намоточный проводом сечением 2кв.мм. В качестве сердечника использованы кольца от симметрирующего трансформатора 350 Ватного компьютерного блока питания.
  6. L1, L2 — ферритовые стержни проницаемостью М2000, намотано 10 витков проводом, желательно пропитать эпоксидным лаком.
Розетки можно дополнительно зашунтировать разрядными резисторами номиналом 470 КОм, мощностью 0,5 Вт (для того чтобы не щелкало, правильнее составить из двух резисторов общим номиналом)
Для исключения резких бросков тока добавьте последовательно с каждым варистором резистор 1Вт по 10Ом.
Для исключения возгорания и разлета осколков керамики, наденьте сверху на варисторы термоусадочную трубку.
Бытовые фильтры-удлинители и схемы фильтров применяемые в них. Задумывались Вы, что Вам необходимо:просто удлинитель или удлинитель с фильтром?
Если Вы подключаете электрический чайник, лампу освещения, то конечно, фильтр здесь абсолютно не нужен, зачем тратить деньги впустую. Здесь важно качество розеток в удлинителе, толщина провода и его длина, но в тоже время излишняя длина не нужна, иначе придется сматывать в клубок.
Если несколько бытовых приборов расположенных рядом друг с другом, для подключения можно использовать тройник. А что делать, если дорогая бытовая техника: телевизор, компьютер, аудиоцентр, то в этом случае ответ однозначен — надо защищать приборы как минимум сетевым фильтром.

Удлинитель типа Пилот

  • Бытовая техника, такие как микроволновые печи, холодильники, электрочайники, стиральная машины не должны подключаться через удлинитель. Они должны подключаются непосредственно в электрические стационарные розетки в квартире.
  • Запрещается перегружать розетки, удлинители по потребляемой мощности (току)!
  • В случае срабатывания автоматических выключателей — это является предупреждением что линия перегружена, не следует ни в коем случае игнорировать!
  • Если Вы не знаете какое количество оборудование может быть подключено к одной розетке или удлинителю, уточните у профессионалов, в крайнем случае спросите в жэке…
  • Не пользуйтесь вилками, не имеющие контакт для заземления (металлический лепесток).
  • При использовании электрооборудованием расположенного возле источника влаги, оно в обязательном порядке должно подключено к защитному заземлению.
  • Не пользуйтесь удлинителями имеющие признаки повреждений, или при работе шнур удлинителя нагревается!

 

Сетевые фильтры — как они работают, примеры схем

Что такое сетевой фильтр? — это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра — пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20…40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) — вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” — “ноль” (“нейтраль”) — “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, C3, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль» — “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай — подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это — идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный — выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Основные параметры сетевых фильтров

Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.

На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства — на номинальный ток 16 А.

Рис. 6. Типичный сетевой фильтр-розетка.

Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4…6 штук (рис.7).

Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 — “евро”, рис.8).

Рис. 7. Набор розеток.

Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.

Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).

Фильтры

Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).

Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.

Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.

Рис. 8. Пример фильтра с евро-розетками.

Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.

Самодельные сетевые фильтры

Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).

Рис. 9. Фильтр-удлинитель.

Рис. 10. Что внутри фильтра-удлиннителя.

На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.

На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 — варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).

Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.

В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.

Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6…10 мм).

Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).

Дроссели L1 и L2 — промышленные высокочастотные, типа ДМ-1 индуктивностью 50…100 мкГн. Конденсаторы — пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ — не критично (от 510 кОм до 1,5 МОм).

Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках — рис.13).

Рис. 12Сборка фильтра.

Рис. 13. Ферритовая шайба.

Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.

Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.

Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).

Рис. 14. Схема помехоподавляющего сетевого фильтра.

Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).

Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.

Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12×14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки — около 20 мГн.

Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 — 120 мкГн.

Конденсаторы первого звена фильтра — слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.

Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.

Подключенные параллельно конденсаторам резисторы R1…R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 — типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.

Материал подготовил В. Новиков. РМ-07-12, 08-12.

Источники информации:

  1. electroclub.info
  2. corumtrage.ru
  3. potrebitel.ru

Вам действительно нужен сетевой фильтр?

Обновлено Джеймсом Фрю 22.06.2017

В те времена, когда я не знал ничего лучшего, я думал, что «сетевой фильтр» является синонимом «удлинителя», и я думал, что «удлинитель» — это просто модный удлинитель с несколькими вилками. Учитесь на моих ошибках: это не одно и то же! Сетевой фильтр — это больше, чем просто устройство для превращения одной розетки в шесть, он играет важную роль в обслуживании электронного устройства, например, в защите вашего ноутбука.

Почему устройства защиты от перенапряжений так важны и как узнать, нужен ли он вам? Существует множество вариантов, поэтому важно знать, что делает сетевой фильтр и как он работает.

Как работают сетевые фильтры

Прежде чем мы сможем определить, как работает сетевой фильтр, мы должны определить электрический скачок. Думайте о потоке электричества как о потоке воды, проходящей через трубу. Вода движется от одного конца трубы к другому концу из-за давления воды — вода перемещается из высокого давления в низкое давление. Электричество работает аналогичным образом, перемещаясь из областей с высокой электрической потенциальной энергией в области с низкой электрической потенциальной энергией. В этом случае это от одного конца провода к другому концу.

Напряжение является мерой этой электрической потенциальной энергии — более конкретно, разницы в электрической потенциальной энергии. Когда напряжение увеличивается выше нормы в течение как минимум 3 наносекунд, это называется скачком напряжения. Если напряжение провода слишком велико — то есть разница в электрической потенциальной энергии от одного конца к другому слишком велика — тогда электричество прорвется. Это нагревает провод, и, если оно достаточно горячее, оно может сгореть, что делает его бесполезным.

сетевой фильтр имеет одно задание: обнаруживать избыточное напряжение и отводить дополнительное электричество в заземляющий провод. Вот почему все устройства защиты от перенапряжений будут иметь заземляющий контакт (третий штырек на вилке), и все устройства защиты от перенапряжений должны быть подключены к правильно заземленной розетке, чтобы они могли работать по назначению.

Что такое электрический всплеск?

Так что вызывает электрический всплеск? Большинство людей считают, что основным виновником электрического удара является молния, но это совсем не так. Да, молния может и действительно вызывает электрические помехи, но напряжение молнии настолько велико, что большинство устройств защиты от перенапряжений не смогут выдержать свою мощность. Во время грозы единственный способ быть абсолютно уверенным в том, что ваши устройства не будут перегружены, — это отключить их от сети.

Главный виновник электрических скачков? Электрические устройства, которые требуют много энергии для работы

, В зависимости от проводки вашего дома вы можете иногда замечать, что ваши огни мерцают при включении и выключении мощных устройств, например ваш кондиционер. Если эти устройства включены, они требуют много электричества

, что создает большую нагрузку на сетку и может вызвать скачки напряжения.

Когда использовать сетевой фильтр

Когда следует использовать сетевой фильтр? Все время. На самом деле вопрос в том, какие устройства следует подключать к сетевому фильтру. Вам не нужен сетевой фильтр для настольной лампы или стоящего вентилятора, но вам нужен сетевой фильтр для дорогих устройств со сложными микропроцессорами, таких как компьютеры, телевизоры, стереосистемы и медиацентры.

Подумайте об этом так: если бы произошел электрический удар, который разрушил все устройства, подключенные к вашим розеткам, какие потерянные устройства причинят вам боль больше всего? Подключите их к сетевому фильтру. Лучше быть в безопасности, чем потом сожалеть. На заметку, сетевые фильтры могут быть полезны для уменьшения помех в кабеле и улучшения организации

с вашей электроникой. Все кабели в конечном итоге будут направлены в одно и то же место, что значительно облегчит вам аккуратную обработку.

Выбор правильного сетевого фильтра

Может быть трудно найти подходящий сетевой фильтр для ваших нужд по хорошей цене, в основном потому, что люди не часто говорят об этом. Что делает сетевой фильтр хорошим? И почему некоторые сетевые фильтры намного дороже других? Есть ли какие-либо функции, которые вы должны искать?

Индикатор света

Сетевые фильтры имеют ограниченный срок службы в зависимости от того, как часто они работают. Даже если устройство защиты от перенапряжений правильно отклоняет скачок напряжения, чтобы ваша электроника не была повреждена, сам защитный механизм может быть поврежден в процессе работы. Одна из самых важных функций — это индикатор. Световой индикатор сообщит вам, что ваш сетевой фильтр работает нормально. Индикатор не работает? Время покупать новый сетевой фильтр.

UL Рейтинг

Что касается мощности защиты, хорошие устройства защиты от перенапряжений будут поставляться с рейтингом UL, рейтингом, выставленным независимыми Лабораториями страховщиков, которые проверяют безопасность электронных устройств. Не беспокойтесь о сетевом фильтре, который не имеет рейтинга UL. Также убедитесь, что продукт является «подавителем скачков напряжения при переходных процессах», так как многие удлинители с номиналом UL по-прежнему могут не обеспечивать защиту от скачков напряжения.

Зажимное напряжение

Напряжение зажима — это измерение, которое побуждает устройство защиты от перенапряжений начать перенаправление избыточного электричества с подключенных устройств. Другими словами, сетевой фильтр с более низким зажимным напряжением сработает раньше, что обеспечит лучшую защиту ваших устройств. Любой сетевой фильтр с зажимное напряжение ниже 400 вольт должно быть достаточно для домашнего использования.

Джоул Рейтинг

Это максимальное количество энергии, которое может поглотить сетевой фильтр. Если скачок напряжения превысит этот максимум, сетевой фильтр станет бесполезным. Чем выше значение джоуля, тем больше энергии может быть поглощено устройством защиты от перенапряжений, поэтому более высокое значение джоуля часто указывает на более длительный срок службы продукта. Для лучшей защиты дома вам понадобится сетевой фильтр с Джоуль рейтинг не менее 600.

Время отклика

Время отклика — это время, которое требуется сетевому фильтру для обнаружения скачка напряжения. Более низкое значение означает более быстрый ответ. Это сокращает время, в течение которого ваши подключенные устройства подвергаются воздействию перенапряжения, что обеспечивает их лучшую защиту. В идеале вам понадобится сетевой фильтр с время отклика 1 наносекунда или быстрее.

Рекомендуемые сетевые фильтры

Если вам нужна помощь в поиске хорошего сетевого фильтра, вот некоторые из них, которые мы рекомендуем. Все они имеют рейтинг UL 1449, который вы должны искать.

Belkin BE112230-08

12-ти линейный сетевой фильтр Belkin оснащен индикаторной лампой, напряжением зажима 500 В, номинальным напряжением 3940 Дж и временем отклика ниже 1 наносекунды. Это даже идет со встроенным кабельным управлением и выходами Blockspace для негабаритных адаптеров.

Tripp Lite TLP606



Сетевой фильтр Tripp Lite 6 с удлинителем, 6-футовый шнур, 790 джоулей LED СТРАХОВАНИЕ (TLP606)


Сетевой фильтр Tripp Lite 6 с удлинителем, 6-футовый шнур, 790 джоулей LED СТРАХОВАНИЕ (TLP606)
Купить сейчас на Amazon $ 8,74
Еще один мощный сетевой фильтр с 6-ю выходами, индикаторной лампой, напряжением зажима 150 В, номинальным напряжением 790 Дж и временем отклика ниже 1 наносекунды.

Tripp Lite SPIKECUBE



Переносной сетевой фильтр Tripp Lite с 1 розеткой, с прямым подключением, $ 5000 INSURANCE (SPIKECUBE)


Переносной сетевой фильтр Tripp Lite с 1 розеткой, с прямым подключением, $ 5000 INSURANCE (SPIKECUBE)
Купить сейчас на Amazon $ 6,17
Вот интересный сетевой фильтр только с 1 выходом. Он имеет два световых индикатора — один для заземления, другой для защиты. Он имеет напряжение зажима 150 В, номинал джоуля 600 и время отклика ниже 1 наносекунды.

Защита от всплеска

Вынос? Все электрические сети испытывают электрические скачки, некоторые больше, чем другие. Эти скачки напряжения могут повредить электронику и устройства защиты от перенапряжений, чтобы максимально контролировать эти скачки. Вы захотите использовать устройства защиты от перенапряжений для сложной и ценной электроники, такой как компьютеры, приборы и медиацентры. Имейте в виду, что недостаточно иметь сетевой фильтр; вам нужен тот, который правильно оценен для ваших нужд.

Вы используете сетевые фильтры? Если нет, то почему нет? Есть какие-нибудь интересные истории электрических волн? Пожалуйста, поделитесь своими мыслями с нами в комментариях!

Что фильтрует сетевой фильтр: ammo1 — LiveJournal

Сетевой фильтр — одно из устройств, про которое существует множество мифов и домыслов.

Некоторые уверены, что сетевые фильтры чуть ли не стабилизируют напряжение и делают его полезным, тёплым и ламповым. Другие уверены, что сетевой фильтр — это обычный удлинитель.

Сегодня я расскажу, что же на самом деле представляет из себя сетевой фильтр и чем он полезен.


Итак, внешне любой сетевой фильтр — это колодка с несколькими розетками (от одной до восьми), выключателем, предохранителем и сетевым проводом (от 0.5 до 5 метров).

Электронный компонент у сетевого фильтра обычно один — это варистор (обычно на 470 вольт).

Пока напряжение на варисторе ниже порогового значения, он имеет очень большое сопротивление (единицы ГОм), когда напряжение превышает порог, сопротивление варистора резко снижается до десятков Ом.

Фактически, варистор, включенный с розетками параллельно, при превышении порогового напряжения, создаёт короткое замыкание в цепи. Если импульс высокого напряжения очень короткий, варистор просто сгладит его, «замкнувшись» на время импульса.

К сожалению варистор в сетевом фильтре не поможет при превышении сетевого напряжения (например из-за перекоса фаз при отгорании ноля (http://ammo1.livejournal.com/224208.html), так как его номинал слишком большой — 470 вольт, а напряжение при перекосе фаз может составлять 250-380 вольт.

Если бы варистор был бы на меньшее напряжение (380-400 вольт), он мог бы спасать нагрузку при перекосе фаз, создавая короткое замыкание и отключая предохранитель (при этом сам варистор скорее всего взорвался бы).

В сетевом фильтре Buro я обнаружил сложную конструкцию. Варистор защищён многоразовым предохранителем и отдельная неоновая лампа показывает, сработал ли предохранитель.

Второй компонент сетевого фильтра — автоматический предохранитель. Он отключает розетки при коротком замыкании или превышении допустимого тока. Предохранитель многоразовый. Если он «вылетел» нужно подождать несколько минут и нажать его кнопку.

Выключатели у сетевых фильтров бывают однополюсные (узкие) и двухполюсные (широкие). Лучше покупать сетевые фильтры с широкими выключателями — они отключают оба сетевых провода и не может возникнуть ситуация, когда выключатель отключил ноль, а фаза осталась на всех устройствах, подключённых к фильтру.

У большинства сетевых фильтров на корпусе есть отверстия для крепления на стену, но у самых дешёвых (например, Гарнизон), таких отверстий нет.

Большинство сетевых фильтров имеют провод сечением 0.75 мм². Он обеспечивает максимальный ток нагрузки до 10 А (мощность до 2200 Вт), однако лучше не превышать ток 6 А (1320 Вт) и не подключать через фильтр мощные электроприборы (чайники, нагреватели). С большой вероятностью предохранитель фильтра будет «вылетать» при закипании чайника, включённого в фильтр.

Главная польза от сетевого фильтра — выключатель и предохранитель. Что касается защиты от импульсных помех с помощью варистора, нужно понимать, что в блоках питания устройств, которым требуется такая защита, варисторы уже есть, а устройствам с традиционным трансформаторным блоком питания такая защита не нужна.


Прежде всего мой блог о технике: я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё делаю репортажи из интересных мест, публикую заметки о музыке, кино и интересных событиях.
Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

СЕТЕВОЙ ФИЛЬТР

СЕТЕВОЙ ФИЛЬТР

   Сетевой фильтр необходим для устройств, постоянно включенных в электрическую сеть, которые чувствительны к перенапряжениям в сети и помехам. Осветительные лампы, нагревательные приборы и пылесосы менее требовательны к качеству электропитания, и для них сетевой фильтр можно использовать лишь в качестве удлинителя-разветвителя электропитания. Импульсы, возникающие в результате подключения и отключения большого количества потребителей, работа промышленного оборудования и городского электротранспорта, аварии на подстанциях, выбросы тока – это техногенные помехи. Природные помехи: грозовые разряды и удары молнии вблизи кабелей наружной электросети и линий электропередач. Постоянное воздействие электромагнитных импульсов может привести как к полному выходу аппаратуры из строя, так и к потере накопленной информации. Первым уровнем защиты и являются сетевые фильтры. Причиной помех телевидению во многих случаях является недостаточная высокочастотная развязка выходящих из передатчика проводов и особенно провода сетевого питания. Высокочастотная энергия передатчика, попадая в питающую сеть, подводится через провода этой сети к телевизорам и радиоприемникам, включенным в нее, а также излучается в пространство. Для высокочастотной развязки проводов, выходящих наружу от передатчика, применяют дроссели, резисторы и конденсаторы, образующие цепи, шунтирующие на землю высокочастотные сигналы в проводах или образующие заградительные фильтры для высоких частот. В зависимости от номиналов применяемых деталей и частоты сигнала уровень ослабления меняется. Существенно улучшает развязку на высоких частотах применение проходных конденсаторов вместо обычных или конденсаторов опорного типа, поскольку у проходных конденсаторов паразитная индуктивность сведена к минимуму. При выборе типа проходного конденсатора необходимо учитывать допустимый ток, пропускаемый внутренним проводом конденсатора.

   Хорошую блокировку проводов по высокой частоте можно обеспечить, если поместить их в заземленный экран. Экран создает распределенную емкость вдоль провода и таким образом шунтирует провод на высокой частоте по всей длине, Увеличить сопротивление провода на высокой частоте можно путем увеличения его погонной индуктивности. Для этого на провод одевают ферритовые кольца соответствующего типоразмера с магнитной проницаемостью порядка нескольких сот. Если требуется локально увеличить индуктивность провода, его несколько раз продевают сквозь ферритовое кольцо, образуя таким образом тороидальную катушку с необходимой индуктивностью. Осуществляя развязку сетевого провода передатчика, следует помнить, что ток в нем может быть значительной величины, что накладывает дополнительные требования к катушкам фильтра, индуктивность которых не должна существенно изменяться под действием тока. В противном случае характеристики фильтра будут меняться в зависимости от нагрузки. Это относится к катушкам с сердечниками из магнитных материалов. Для исключения влияния тока подмагничивания катушку наматывают в два провода, в результате чего магнитное поле тока компенсируется. Но все эти меры защиты являются недостаточными и для того чтобы получить хорошее напряжение питания необходимо использовать специальное устройство — сетевой фильтр. Как известно, сетевой фильтр предназначен для защиты цепей электропитания компьютеров и другой электронной аппаратуры от импульсных перенапряжений и выбросов тока, возникающих в результате коммутации и работы промышленного оборудования; высокочастотных помех, распространяющихся по сетям электропитания и импульсных перенапряжений, возникающих в результате грозовых разрядов. Без специального фильтра, помехи и выбросы, попадающие в прибор от сети, могут беспрепятственно проходить через межвитковые емкости силового трансформатора. Помехи от близлежащих радио и телевизионных станций, другой передающей аппаратуры могут серьезно нарушать работу при наладке и эксплуатации устройств.

   Обычно используют для их подавления простые покупные сетевые фильтры с несколькими розетками, которые и фильтрами то назвать сложно. Такие устройства полноценными сетевым фильтром не являются. Там внутри находится только лишь варистор, ограничивающий высоковольтные импульсы, которые иногда появляются в сети. Конечно в самом простейшем случае можно использовать готовый сетевой фильтр отечественного или зарубежного производства, но качественный сетевой фильтр с подавителем помех лучше изготовить самостоятельно.

   Типовая схема фильтра изображена на рисунке ниже. 

   Для примера указана схема трёхсекционного фильтра, однако на практике достаточно и двух. Сетевой фильтр, состоит из секций, каждая из которых с некоторым перекрытием работает в определенной области частот — Др3 — 3′ в области ВЧ, Др2 — 2′ в области СЧ, Др1 и Др1′ в области НЧ. Дросселя вместе с конденсаторами и образуют LC фильтры. Сопротивление катушек на высоких частотах большое, а на низких — маленькое, что препятствует проникновению помех дальше. В фильтре синфазных помех обмотки катушки индуктивности находятся в фазе, но переменный ток, который протекает через эти обмотки – в противофазе. В итоге, для тех сигналов, которые совпадают или противоположны по фазе на двух линиях электропитания, синфазный поток внутри сердечника уравновешивается. Проблема проектирования фильтра синфазных помех заключается в том, что при высоких частотах идеальные характеристики компонентов искажаются через паразитарные элементы. Основным паразитарным элементом является межвитковая емкость самого дросселя. Это небольшая емкость, которая существует между всеми обмотками, где разница напряжений между витками ведет себя подобно конденсатору. Этот конденсатор при высокой частоте действует как шунт вокруг обмотки и позволяет ВЧ переменному току протекать в обход обмоток. Частота, при которой это явление является проблемой, выше частоты авторезонанса обмотки. Между индуктивностью самой обмотки и этой распределенной межвитковою емкостью формируется колебательный контур. Выше точки авто резонанса влияние емкости становится большим от влияния индуктивности, что снижает уровень затухания при высоких частотах.

   В устройстве на фото выполнена только подавление ВЧ и НЧ. Как видно, керамические и бумажные проходные конденсаторы включены попарно-параллельно.

   Проходные конденсаторы имеют ёмкость по 0,015 мкФ, а конденсаторы НЧ секции — 1 мкФ. Напряжение от 250 В и выше. На фото показан сетевой фильтр, используемый в старой военной радиолокационной аппаратуре.

   К числу защищаемых устройств относят разнообразную аппаратуру: компьютеры, телевизоры, радиоприемники. Сетевой фильтр включают между сетью и устройством потребления. Конструктивно фильтр собран в трех экранированных секциях, которые помещаются в толстый металлический корпус. Дроссели, находящиеся в соседних секциях, соединяются через проходные конденсаторы, установленные на вертикальных перегородках. Ввод и вывод напряжения желательно реализовать кабелем, с нулевой точкой, которую необходимо заземлить. 

   Форум по сетевым фильтрам

Как работают устройства защиты от перенапряжения?

Как работают устройства защиты от перенапряжения?

19 марта 2020 г.

Сетевой фильтр — это больше, чем просто удлинитель, который дает вам дополнительные полезные розетки; это доступный способ защитить вашу электронику от случайных скачков напряжения, которые могут вызвать необратимые электрические повреждения. Вот как устройства защиты от перенапряжения или ограничители перенапряжения работают для защиты ваших приборов и как их безопасно использовать для предотвращения пожаров.

Что такое скачок напряжения?

Чтобы понять, как работают устройства защиты от перенапряжения, необходимо понимать, что такое скачки напряжения на самом деле.Скачок напряжения — это просто увеличение количества напряжения, протекающего через электрические устройства, которое превышает стандартный уровень напряжения 120 вольт. Скачки могут быть вызваны многими причинами, такими как мощные устройства, плохая проводка, неправильное освещение или проблемы с оборудованием вашей коммунальной компании.

Вы, вероятно, не заметите скачка напряжения до тех пор, пока устройство внезапно не перестанет работать. Каждый год в вашем доме могут происходить сотни скачков напряжения, иногда без каких-либо повреждений.

Скачки напряжения могут нагревать провода и компоненты в вашей электронике, как нить накаливания лампочки, и вызывать их перегорание. Даже когда скачки напряжения не ломают электронику, они могут вызвать чрезмерную нагрузку на внутренние компоненты и привести к их выходу из строя раньше, чем ожидалось.

Как работает сетевой фильтр?

Сетевой фильтр защищает от повреждений, которые могут вызвать внезапные скачки напряжения. Он работает, вытягивая ток из одной розетки и передавая его через устройства, которые вы подключили к сетевому фильтру.Устройство защиты от перенапряжения содержит металлооксидный варистор, или MOV, который отводит любое дополнительное напряжение, чтобы устройства получали постоянный уровень мощности.

MOV работает как чувствительный к давлению клапан. Когда MOV обнаруживает высокие уровни напряжения, он снижает сопротивление. Если уровни напряжения слишком низкие, это увеличивает сопротивление. Он автоматически сработает, чтобы перенаправить избыточное напряжение.

MOV состоит из трех компонентов, включая оксид металла, который соединен с линией питания и заземлением двумя полупроводниками.Полупроводники имеют переменное сопротивление, которое заставляет электроны двигаться таким образом, что сопротивление изменяется, когда напряжение становится слишком высоким или слишком низким.

Разветвители питания и сетевые фильтры: в чем разница?

Разветвители питания и сетевые фильтры могут выглядеть одинаково, но они очень разные. Оба имеют несколько розеток, но только сетевой фильтр защищает от скачков напряжения.

Сетевой удлинитель — это обычно недорогой удлинитель с несколькими розетками, который расширяет вашу настенную розетку.У него может быть автоматический выключатель с переключателем включения / выключения, но он не остановит и не уменьшит электрические проблемы.

Устройства защиты от перенапряжения и номиналы в джоулях

Вы заметите, что устройства защиты от перенапряжения имеют уровень защиты, измеряемый в джоулях. Этот рейтинг в джоулях показывает, сколько энергии может поглотить сетевой фильтр до выхода из строя. Чем выше рейтинг в джоулях, тем большую защиту может обеспечить устройство защиты от перенапряжения при обработке одного большого скачка напряжения или множества более мелких скачков напряжения.

Что следует подключать к сетевому фильтру?

Как правило, вы должны отдавать предпочтение сетевому фильтру для электроники, ремонт или замену которой дорого обходится. Новые приборы более чувствительны к скачкам напряжения, чем старая электроника, благодаря более тонким и компактным компонентам. Микропроцессоры, которые используются в компьютерах и многих устройствах, наиболее чувствительны к высокому напряжению и работают только тогда, когда они получают стабильный ток в правильном диапазоне напряжений.

Примеры предметов, которые могут быть защищены сетевым фильтром, включают:

  • Компьютеры
  • Телевизоры
  • Микроволны
  • Модемы / маршрутизаторы
  • Системы видеоигр (например, PlayStation 4 или Xbox One)
  • High- end audio equipment

Сетевые фильтры не всегда работают

К сожалению, ошибочно полагать, что ваши устройства на 100% защищены от скачков напряжения с помощью сетевого фильтра. Есть много причин, по которым устройства защиты от перенапряжения могут выйти из строя.Например, сетевые фильтры просто не предназначены для вечного использования. Выберите один со световым индикатором, который позволяет узнать, когда MOV износился. Многие будут продолжать работать, но без защиты от перенапряжения.

Кроме того, внутри вашего дома нет сетевого фильтра, который защищает от молнии. Хорошая новость в том, что молния — редкая причина скачков напряжения. Плохие новости? Полосы защиты от перенапряжения не выдерживают удара молнии поблизости. Если вы чувствуете, что вам нужна защита от молнии или других серьезных скачков напряжения, вы можете приобрести ограничитель перенапряжения на весь дом, установленный перед вашей главной электрической панелью.

В Brennan Electric мы можем помочь вам защитить весь ваш дом от скачков напряжения с помощью доступной защиты от перенапряжения для всего дома в районе Сиэтла. Этот тип защиты может использоваться вместе с сетевыми устройствами защиты от перенапряжения в доме для максимальной защиты от электрических повреждений, включая скачки напряжения от молнии.

Имейте в виду, что защита от перенапряжения хороша ровно настолько, насколько хорошо ваше заземление. Вы не получите особой пользы от сетевого фильтра, если у вас есть старый дом с незаземленными розетками или у вас нет надлежащего заземления и проводки.Это связано с тем, что для избыточного напряжения не будет выхода.

Безопасное использование устройства защиты от перенапряжения

Возможно, вы слышали предупреждение о том, что обогреватели нельзя включать в удлинитель из соображений безопасности. Это абсолютно верно. Высоковольтные приборы, такие как обогреватели, могут легко перегреть удлинитель и вызвать электрический пожар.

Сетевые фильтры работают иначе, чем удлинители. В сетевом фильтре с переключателем включения / выключения и световым индикатором есть предохранитель, который плавится при перегреве.Это приводит к тому, что обогреватель теряет связь и питание. Однако не все устройства защиты от перенапряжения имеют этот встроенный прерыватель, и обогреватели могут легко выйти из строя.

На всякий случай избегайте подключения мощных приборов, таких как кондиционеры и обогреватели, к сетевому фильтру. Вместо этого подключите эти устройства непосредственно к стене.

Советы по выбору ограничителя перенапряжения

Теперь, когда вы знаете, что такое сетевой фильтр и как он работает, убедитесь, что вы знаете, на что обращать внимание при покупке ограничителя перенапряжения для своей электроники.

Вот самые важные вещи, которые следует учитывать:

  • Подумайте о том, что вы хотите защитить.
  • Найдите нужное количество портов или розеток.
  • Убедитесь, что он имеет уплотнение UL и является устройством защиты от импульсных перенапряжений.
  • Проверьте напряжение зажима и рейтинг поглощения энергии.
  • Ищите гарантию.
  • Убедитесь, что у него есть световой индикатор.

Любое устройство защиты от перенапряжения, которое вы покупаете, должно быть сертифицировано лабораторией Underwriter’s (UL) и соответствовать как минимум 1449 стандартам.Это необходимо для маркировки устройства защиты от перенапряжения как «устройство защиты от импульсных перенапряжений».

Вы также захотите проверить номинальное потребление энергии и напряжение ограничения. Первый относится к тому, сколько энергии может поглотить сетевой фильтр до выхода из строя, и должен составлять минимум 600-700 джоулей. Напряжение ограничения — это величина напряжения, которая запускает MOV. В идеале это должно быть 400 вольт или меньше.

Обратитесь к экспертам

Хотите максимальную защиту от опасных скачков напряжения? Позвоните в Brennan Electric сегодня, чтобы узнать о защите от перенапряжения для всего дома в Сиэтле и запросить бесплатную оценку.Мы также можем помочь вам с ремонтом, установкой и обслуживанием электрооборудования, а также с установкой генератора.

Категории: Защита от перенапряжения

Что такое сетевой фильтр и действительно ли он мне нужен?

Вы когда-нибудь беспокоились о том, что ваша бытовая техника и электроника вылетят из-за скачка напряжения? Вся бытовая техника и электроника в вашем доме уязвимы для скачков напряжения. Если он достаточно большой, скачок напряжения может привести к необратимому повреждению вашей личной электроники из-за поджаривания цепей или расплавления пластика.

Что такое сетевой фильтр?

Сетевой фильтр — это небольшой прибор или устройство, которое выполняет две основные функции. Первый — обеспечить возможность подключения нескольких компонентов к одной розетке. Вторая и наиболее важная функция — это защита ваших электронных устройств, таких как телевизионная система или компьютер, от скачков напряжения. Скачок или скачок напряжения — это повышение напряжения выше заданного уровня в потоке электричества.

Как работает сетевой фильтр?

Типичный сетевой фильтр пропускает электрический ток по розетке к нескольким устройствам, подключенным к удлинителю. Если напряжение поднимется выше допустимого уровня, устройство защиты отведет лишнее электричество в заземляющий провод розеток. Заземляющие провода проходят параллельно горячему и нейтральному проводу. Они обеспечивают путь для прохождения электрического тока в случае выхода из строя системы горячих и нейтральных проводов, по которым обычно протекает ток.

В чем разница между скачком и скачком?

Когда повышение напряжения длится три наносекунды или более, это называется скачком напряжения. Когда повышение напряжения длится всего одну или две наносекунды, это называется всплеском. Вот и вся разница. Однако эти наносекунды, составляющие всего миллиардные доли секунды, могут нанести серьезный ущерб машине, если выброс достаточно велик.

Что обычно вызывает скачок или скачок напряжения?

Одной из наиболее известных причин является молния, хотя она встречается очень редко.Более частые причины включают работу мощных устройств, таких как кондиционеры, лифты и холодильники. Компрессоры и двигатели внутри них требуют много энергии для включения и выключения.
При переключении он создает внезапные кратковременные потребности в мощности, нарушая, таким образом, текущий постоянный поток напряжения. Повреждение обычно возникает в электрической системе здания и может быть немедленным, если не защищено, или повреждение может происходить постепенно с течением времени.

Неисправная проводка, проблемы с оборудованием коммунальной компании и вышедшие из строя линии электропередач являются одними из наиболее распространенных источников скачков напряжения.В сложной системе трансформаторов и линий, которые подводят электричество к вашим домам, есть множество возможных точек, где ошибка может вызвать неравномерный поток мощности, что в конечном итоге приведет к скачку напряжения.

Есть ли разница между удлинителем и сетевым фильтром?

Важно отметить, что не все удлинители являются устройствами защиты от перенапряжения. Хотя они выглядят очень похоже, единственная цель удлинителя — добавить дополнительное пространство для розетки. Иногда бывает сложно отличить разницу, если она не проявляется прямо и прямо об этом.Вы можете посмотреть на упаковку, когда будете выяснять, что именно вы покупаете. На упаковке устройства защиты от перенапряжения должно быть указано значение в джоулях.

Джоули — это единица измерения энергии. Они измеряют, как долго ваша техника будет защищена. Числа или джоули работают как резервуар. Всякий раз, когда протектор выполняет свою работу, он получает удар, и со временем джоули будут уменьшаться. Иногда может потребоваться всего один мощный всплеск, чтобы превысить его пределы, а иногда требуется несколько небольших всплесков.

Каков срок службы устройств защиты от перенапряжения? Как узнать, когда их заменить?

Отслеживание скачков и скачков напряжения может помочь понять, когда покупать новую защиту. Как уже упоминалось, после большого удара количество джоулей может уменьшиться и больше не сможет защитить ваши устройства. Также важно знать, когда был приобретен сетевой фильтр. Хороший сетевой фильтр иногда может прослужить от трех до пяти лет (в зависимости от количества / силы скачков напряжения). Однако общее правило — менять их каждые два года.Это связано с тем, что большинство из них будут продолжать «работать» без обеспечения защиты и без вашего ведома о том, что ваши устройства находятся в опасности. Если вам повезет, ваш защитник подаст вам какое-то предупреждение или отключится, когда его защита упадет ниже безопасного уровня.

Могу ли я подключить сетевой фильтр к удлинителю?

Технически вы можете, если шнур может обрабатывать такое же количество энергии, что и сетевой фильтр, или, что еще лучше, больше. Однако вы не должны этого делать, потому что это пожароопасно.Следует отметить, что это противоречит правилам Управления по охране труда (OSHA), а также Национальному электротехническому кодексу (NEC).

А как насчет другого устройства защиты от перенапряжения?

Еще раз, подключение одного сетевого фильтра к другому противоречит нормам OSHA и NEC. Это также противоречит цели. Возможности защиты от перенапряжения могут быть нарушены, если к нему подключен другой, возможно, до такой степени, что ни один из них не сможет выполнять свою работу должным образом.Большинство гарантий также будет аннулировано, если выяснится, что причиной неисправности стало их подключение друг к другу.

Хотя вам не нужно беспокоиться о подключении каждого источника света к сетевому фильтру, рекомендуется использовать их для защиты ваших больших важных устройств от перегрева во время скачка напряжения. Для получения дополнительной информации о скачках напряжения или устройствах защиты от перенапряжения, пожалуйста, позвоните нам по телефону (301) 605-9112.

Как работают сетевые фильтры | HowStuffWorks

Когда вы собираете компьютерную систему, вы, вероятно, купите одну часть стандартного оборудования — это сетевой фильтр .Большинство разработок выполняют одну очевидную функцию — они позволяют подключать несколько компонентов к одной розетке. Со всеми различными компонентами, из которых состоит компьютерная система, это определенно полезное устройство.

Но другая функция удлинителя с защитой от перенапряжения — защита электроники в вашем компьютере от скачков напряжения — гораздо важнее. В этой статье мы рассмотрим устройства защиты от перенапряжения, также называемые ограничителями перенапряжения, чтобы узнать, что они делают, когда они вам нужны и насколько хорошо они работают.Мы также узнаем, какие уровни защиты доступны, и выясним, почему у вас может не быть всей необходимой защиты, даже если вы используете качественный сетевой фильтр.

Основная задача системы защиты от перенапряжения — защита электронных устройств от «скачков напряжения». Итак, если вам интересно, что делает сетевой фильтр, первый вопрос: «Что такое скачки напряжения?». А потом: «Почему от них нужно защищать электронику?»

Скачок напряжения или переходное напряжение — это повышение напряжения значительно выше заданного уровня в потоке электричества.В обычной бытовой и офисной электропроводке в США стандартное напряжение 120 вольт . Если напряжение поднимается выше 120 вольт, проблема возникает, и сетевой фильтр помогает предотвратить повреждение компьютера этой проблемой.

Чтобы разобраться в проблеме, полезно кое-что узнать о напряжении. Напряжение является мерой разности электрической потенциальной энергии . Электрический ток проходит от точки к точке, потому что на одном конце провода имеется большая электрическая потенциальная энергия, чем на другом.По такому же принципу вода под давлением вытекает из шланга — более высокое давление на одном конце шланга подталкивает воду к области с более низким давлением. Вы можете представить себе напряжение как меру электрического давления .

Как мы увидим позже, различные факторы могут вызвать кратковременное повышение напряжения.

  • Когда увеличение длится три наносекунды (миллиардные доли секунды) или более, это называется всплеском .
  • Когда он длится всего одну или две наносекунды, он называется всплеском .

Если выброс или выброс достаточно высок, они могут нанести серьезный ущерб машине. Эффект очень похож на приложение слишком большого давления воды к шлангу. Если напор воды будет слишком большим, шланг лопнет. Примерно то же самое происходит, когда через провод проходит слишком большое электрическое давление — провод «лопается». На самом деле он нагревается, как нить накаливания в лампочке, и горит, но идея та же. Даже если повышенное напряжение не сразу сломает вашу машину, это может вызвать дополнительную нагрузку на компоненты, изнашивая их со временем.В следующем разделе мы рассмотрим, что делают сетевые фильтры, чтобы этого не происходило.

Действительно ли работают сетевые фильтры?

Итак, вы могли спросить себя, действительно ли работает сетевой фильтр Monster за 100 долларов, который вы купили в Best Buy для вашего нового HDTV и электроники? К счастью, большинство из нас никогда не столкнется с скачком напряжения, чтобы проверить, выживет ли наше оборудование, и это хорошо.

Однако, если вы владеете большим количеством дорогостоящих технологий, не чувствуйте себя защищенным от скачков напряжения только потому, что с вами этого еще не случилось.Недавно у меня поджарили NAS во время грозы, и это была крутая $ 1000.

У меня никогда не было проблем с этим раньше, и мой NAS был подключен к удлинителю с защитой от перенапряжения. Как вы понимаете, я был очень расстроен, что мой NAS все еще перегорел из-за скачка напряжения.

Кроме того, так называемая «страховая гарантия» была полной BS. Сначала мне пришлось заполнить форму на 30 страниц, чтобы подать претензию производителю удлинителя. Я отправил им сетевой фильтр, и они сказали, что проверили его и сказали, что нет никаких признаков того, что он вышел из строя.Вау, спасибо большое. Теперь я действительно был в восторге!

Однако, в конце концов, после долгих исследований я узнал, что это была моя собственная ошибка. Не все устройства защиты от перенапряжения созданы равными, и ни один сетевой фильтр в мире не может справиться с молнией.

В этой статье я хочу немного рассказать о том, что я узнал о том, как работают устройства защиты от перенапряжения и что вам действительно нужно делать, чтобы защитить свое дорогостоящее оборудование.

Работают ли сетевые фильтры против освещения?

Короткий ответ — НЕТ.По крайней мере, никакого сетевого фильтра, который вы можете купить для дома. Даже ИБП (источник бесперебойного питания) с защитой от перенапряжения не сможет справиться с расположенным поблизости ударом молнии.

Значит ли это, что вам даже не стоит беспокоиться о сетевых устройствах защиты от перенапряжения? Нет, значит, вам нужно больше! Вот что я узнал и сделал.

Во-первых, ничего нельзя жарить, если он не подключен к какому-либо источнику питания. Если вам действительно не нужно делать что-то важное, вам следует отключить любое устройство, которое вы хотите сохранить во время грозы.Лучшей защиты просто нет.

Во-вторых, есть штука для защиты от перенапряжения / ограничитель перенапряжения для всего дома . Что это за фигня? Судя по всему, это аппаратное обеспечение, которое устанавливается в точке обслуживания вашего дома.

Это означает, что он устанавливается между основной платой и местом разделения вашего дома. По сути, где бы ни была электрическая панель в вашем доме, эта штука уйдет раньше. Хотел бы я знать это раньше! Эти устройства стоят от 150 до 300 долларов, но они того стоят.

Вы даже можете купить их в Home Depot! Конечно, я не пробовал устанавливать его сам, потому что не хотел, чтобы меня обжарили, так что вам придется потратить немного дополнительных денег, чтобы установить его профессионально.

Так в чем реальное преимущество? Что ж, прежде чем вы углубитесь в это, давайте поговорим о том, что такое перенапряжение на самом деле и как работают устройства защиты от перенапряжения.

Что такое скачок?

По сути, скачок напряжения — это когда что-то вызывает увеличение электрического заряда в линии электропередачи, что затем увеличивает ток, идущий в вашу розетку.Что может вызвать всплеск? Много всего. Вы всегда слышите о молнии, хотя это не очень частая причина скачков напряжения.

Другая причина, и самая распространенная, — электрические устройства, требующие большой мощности. Например, холодильник, кондиционер и т. Д. Когда они включаются и выключаются, они поглощают много энергии и нарушают постоянный поток напряжения в системе.

Вы никогда не замечали, как иногда свет в вашем доме тускнеет на секунду или две, когда включается кондиционер? В моем доме есть огромный принтер, и всякий раз, когда он включается, чтобы начать печать, он на самом деле полностью вырубает одну из электрических розеток в той же комнате!

Как работают устройства защиты от перенапряжения

Так как же работают сетевые фильтры? В основном электрический ток течет от стены к сетевому фильтру, а затем к вашим электрическим устройствам.При скачке напряжения дополнительное напряжение отводится на заземляющий провод внутри устройства защиты от перенапряжения. Обычно внутри устройства защиты от перенапряжения есть какое-то устройство, которое обрабатывает этот процесс переключения на землю, когда напряжение слишком высокое.

Звучит просто, но именно в этом вся разница, когда дело касается цены на эти устройства. В основном, есть три фактора, которые различают уровень защиты от перенапряжения и стоимость:

1. Напряжение зажима — Чем ниже значение, тем лучше.Это в основном то, при каком напряжении сработает переадресация. 330 В — хорошее низкое значение, тогда как 500 В — слишком высокое, потому что к тому времени ваше электронное оборудование может сгореть.

2. Энергия — это рейтинг, который показывает, сколько энергии может поглотить сетевой фильтр, прежде чем он сгорит. Он выражается в джоулях и варьируется от 200 джоулей для базовой защиты до тысяч джоулей.

3. Время — Некоторые устройства защиты от перенапряжения срабатывают с небольшой задержкой, тем самым подвергая ваше оборудование воздействию перенапряжения на более длительное время.Вам нужен сетевой фильтр с очень низким временем отклика.

Еще одна хорошая вещь, на которую стоит обратить внимание, — это световой индикатор на устройствах защиты от перенапряжения. Если он перегреется и больше не сможет защитить ваши устройства, вы действительно не захотите продолжать его использовать. Если нет световой индикации, возможно, вы никогда не узнаете, что ваш сетевой фильтр уже мертв.

Как действительно защитить себя с помощью защиты от перенапряжения

Если вы действительно хотите спасти оборудование, даже от молнии или скачков напряжения в линиях электропередач, вам нужно сделать несколько вещей.Обратите внимание, что для этого потребуется позвонить вашему поставщику электроэнергии / энергоснабжающей компании и попросить их о помощи.

1. Правильное заземление — В точке, где электропитание идет от линий электропередачи до коробки за пределами вашего дома, должно быть надлежащее заземление. Если коробка не имеет надлежащего заземления, любой скачок напряжения от линий электропередач попадет прямо в ваш дом и все поджарит.

Вы можете позвонить в свою энергетическую компанию, и они обычно бесплатно проводят тест.Я этого не знала, но это правда! Вы также можете получить улучшенное заземление, если ваша энергокомпания предлагает такую ​​услугу.

2. Предотвращение прямого удара — Лучшая ситуация, когда в ваш дом никогда не ударит молния. Вы можете сделать это с помощью громоотвода. Вы можете купить этих плохих парней в Интернете и прикрепить их к крыше вашего дома или в других местах вместе с заземлением.

Вместо удара по дому будет удар по стержню, который проведет все вниз по земле.Опять же, что-то, что вам, вероятно, придется установить профессионально, но это единственный реальный способ по-настоящему защититься от удара молнии без необходимости отключать все в вашем доме.

3. Охрана всего дома — Это то, о чем я упоминал выше. Это может быть третья защита от защиты от перенапряжения или первая защита, если вы не можете или не хотите тратить деньги на №1 и №2.

4. Сетевые фильтры для защиты от перенапряжения — Это ваша последняя линия защиты.Вы можете купить сетевые фильтры Ethernet, коаксиальные сетевые фильтры и многое другое.

Помните, что устройство защиты всего дома не сможет защитить от скачков напряжения в доме, если оно не достигнет главного электрического щита. Вот почему вам необходимо установить защиту от перенапряжения во всех точках вашего дома, чтобы действительно защитить ваше оборудование.

Что вы думаете о защите от перенапряжения? Каким образом ваш дом и оборудование настроены для защиты от скачков напряжения? Дайте нам знать об этом в комментариях.Наслаждаться!

Как работают устройства защиты от перенапряжения (SPD)?

Устройство защиты от импульсных перенапряжений (SPD) предназначено для защиты электрических систем и оборудования от импульсных перенапряжений путем ограничения переходных напряжений и отклонения импульсных токов.

Скачки могут возникать извне, наиболее интенсивно из-за молнии, или изнутри в результате переключения электрических нагрузок. Источники этих внутренних скачков напряжения, на которые приходится 65% всех переходных процессов, могут включать включение и выключение нагрузок, работу реле и / или прерывателей, системы отопления, двигатели и офисное оборудование.

Без соответствующего SPD переходные процессы могут повредить электронное оборудование и вызвать дорогостоящие простои. Важность этих устройств для электрической защиты неоспорима, но как эти устройства на самом деле работают? И какие компоненты и факторы имеют решающее значение для их работы?

Как работает SPD?

В самом общем смысле, когда в защищаемой цепи возникает переходное напряжение, SPD ограничивает переходное напряжение и отводит ток обратно к его источнику или земле.

Для работы должен быть хотя бы один нелинейный компонент УЗИП, который при различных условиях переходит из состояния с высоким и низким импедансом.

При нормальном рабочем напряжении УЗИП находятся в состоянии высокого импеданса и не влияют на систему. Когда в цепи возникает переходное напряжение, SPD переходит в состояние проводимости (или с низким импедансом) и отводит импульсный ток обратно к своему источнику или земле. Это ограничивает или ограничивает напряжение до более безопасного уровня.После отклонения переходного процесса SPD автоматически возвращается в свое высокоимпедансное состояние.

Категории или типы SPD

Двумя основными типами SPD являются , ограничивающие напряжение, и , переключающие напряжение, компоненты. Компоненты, ограничивающие напряжение, изменяют импеданс при повышении напряжения, что приводит к ограничению переходного напряжения. Компоненты переключения напряжения «включаются» при превышении порогового напряжения и сразу же падают до низкого импеданса. Большинство систем сегодня объединяют оба типа компонентов вместе, чтобы объединить сильные стороны и ограничить слабые стороны каждой отдельной части.

Примерами компонентов для ограничения напряжения являются металлооксидные варисторы (MOV) и диоды для подавления переходных напряжений (TVS). Компоненты переключения напряжения включают газоразрядные трубки (ГДТ) и искровые разрядники.

Как сравнить категории SPD

Компоненты

Surge можно сравнить по своим характеристикам в соответствии со следующими факторами.

Время отклика

Время отклика данного компонента просто означает, как быстро компонент реагирует при превышении порога помпажа.Компоненты ограничения напряжения, в частности TVS-диоды, имеют более быстрое время отклика, чем компоненты переключения напряжения (например, искровые разрядники и GDT).

Последующий ток

Этот случай ограничен устройствами переключения напряжения. Последующий ток возникает, когда устройство защиты от перенапряжения не может «выключиться» (т.е. вернуться в состояние с высоким импедансом) после переходного процесса из-за низкого падения напряжения на компоненте. Это позволяет току продолжать проходить через устройство во время нормальной работы.

Это явление вызывает меньшую озабоченность в системах переменного тока, поскольку переход через нуль позволяет компоненту отключиться и вернуться в состояние с высоким импедансом. Однако система постоянного тока, использующая устройства переключения напряжения, требует дальнейшего рассмотрения.

Сквозное напряжение

В случае скачка напряжения пропускаемое напряжение — это величина напряжения, которое компонент позволяет достичь подключенного оборудования. Для пропускаемого напряжения диоды максимально ограничивают напряжение и поддерживают его на самом низком уровне, но это преимущество ограничено, поскольку диоды не так эффективны при выдерживании больших импульсных токов.

Одним из компонентов, не упомянутых выше как одного из лучших или худших в любой из этих трех областей, является MOV, потому что MOV обычно считаются пригодными к эксплуатации в каждой категории, работая как мастер на все руки, но не как лучший из . в одном.

Обратите внимание, что большинство продуктов SPD, представленных сегодня на рынке, представляют собой гибридные конструкции, которые представляют собой комбинацию нескольких компонентов защиты от перенапряжения. В этих продуктах сбалансированы плюсы и минусы каждого отдельного компонента, чтобы обеспечить оборудование сбалансированной защитой от различных типов скачков напряжения.

Характеристики устройства защиты от перенапряжения

, о которых необходимо знать

Знание отдельных компонентов защиты от перенапряжения полезно для понимания, но что определяет стандарты для SPD, так это аспекты производительности или особенности каждого устройства.

После определения системы распределения питания, к которой должен быть подключен SPD, необходимо сравнить различные доступные устройства по следующему:

1. Максимальное длительное рабочее напряжение (MCOV). MCOV — это максимальное напряжение, которое устройство может выдерживать и продолжать правильно работать.Как правило, MCOV должен быть как минимум на 25% выше номинального напряжения питания, но регулируется соответствующими стандартами. Например, устройства SPD nVent ERICO, разработанные для устройств с номинальным напряжением 120 вольт, имеют MCOV 170, а для систем с номинальным напряжением 240 вольт MCOV устройства SPD составляет 275.

2. Рейтинг защиты по напряжению (VPR) или уровень защиты по напряжению (Up). Уровень защиты по напряжению и уровень защиты по напряжению — это рейтинги, определенные UL и IEC, соответственно, которые относятся к сквозному напряжению устройства.UL 1449 включает в себя испытание, при котором к устройству применяется комбинированная форма волны 6 кВ / 3 кА, и измеряется пропускаемое напряжение, определяя номинал защиты по напряжению (VPR). IEC 61643-11 имеет аналогичный тест и называет его уровнем защиты по напряжению (Up).

3. Номинальный ток разряда (In). Определяется как пиковое значение тока, который может проходить через SPD с формой волны 8/20 мкс, когда SPD все еще функционирует после 15 приложенных скачков. Согласно UL 1449 производители должны выбрать номинальный ток разряда из предварительно определенного списка (3 кА, 5 кА, 10 кА или 20 кА) для этого теста.

4. Состояние индикации. Индикатор состояния — который может быть механическим индикатором, светодиодом или дистанционной сигнализацией — представляет собой простой индикатор работы / непрохождения.

Рейтинг перенапряжения — это то, что многие считают ключевым фактором для спецификации SPD. Однако:

5. Максимальный импульсный ток или максимальный импульсный ток. Производители часто указывают эти рейтинги как показатель либо срока службы устройства, либо единовременного максимального импульсного тока, с которым устройство может справиться.Хотя эти рейтинги появляются на многих веб-сайтах производителей и в таблицах данных, UL или IEEE не определяют эти рейтинги. Это позволяет каждому производителю создавать свои собственные требования к испытаниям (если таковые имеются), что в конечном итоге делает их менее надежными показателями производительности.

Примечание. Существует дополнительный тест на максимальный разряд, определенный в IEC 61643-11.

Классы или типы SPD

УЗИП

классифицируются в соответствии со стандартами по типу (UL) или классу испытаний (IEC). Условия испытаний для каждого типа и класса испытаний указаны для оценки и обеспечения надлежащей работы в различных местах и ​​на разных установках.Рекомендуемый класс испытаний или тип УЗИП зависит от местоположения и учитывает уязвимость установки к значительным импульсным токам и важность ограничения сквозного напряжения для защищаемой нагрузки.

На следующем рисунке представлены классификации и категории SPD в соответствии с ANSI / IEEE C62.41, IEC 61643-11 и VDE Classification.

nVent ERICO рекомендует скоординированный подход с каскадированием устройств защиты SPD по всему объекту.Это позволяет выбрать SPD, расположенный на главном служебном входе, для обработки максимальных импульсных токов, в то же время позволяя выбрать точку использования SPD для минимизации сквозного напряжения. Два SPD, работающие вместе, обеспечивают наилучшую защиту нагрузки.

В заключение, SPD состоят из различных компонентов, каждый из которых имеет свои сильные и слабые стороны. Отраслевые стандарты обеспечивают уровни производительности, которым должно соответствовать данное SPD, а класс или тип определяют приложение, для которого подходит SPD.

Подробнее об устройствах защиты от перенапряжения

Защита от перенапряжения — важный аспект скоординированной электрической защиты любого объекта. Чтобы узнать, как обеспечить безопасность чувствительного оборудования и ограничить время простоя (помимо других преимуществ), загрузите наше Руководство по решениям для защиты от перенапряжения.

Что такое сетевой фильтр и как он помогает при скачках напряжения?

Современный дом для нашего удобства оборудован новейшей электроникой. Но с появлением на рынке новых электронных устройств растет и озабоченность по поводу электробезопасности.Скачок напряжения — один из них! Это происходит, когда в электрическом соединении вашего дома происходит внезапный и резкий скачок напряжения. Это опасно для вашей бытовой техники.

Причина скачка напряжения?

Скачок напряжения иногда случается, когда вы включаете мощные электронные устройства, такие как кондиционер и холодильник. Для включения им требуется больше энергии. Чтобы получить этот источник питания, они иногда вызывают всплеск электрического тока.

Скачок напряжения также может быть результатом сбоя в электросети в вашем доме.Ваша электрическая компания также может случайно вызвать всплеск во время технического обслуживания и ремонта. Редкой причиной скачка напряжения также является удар молнии. Хотя это случается редко, но является наиболее смертельным.

Опасности скачков напряжения

Как правило, ваша электронная бытовая техника рассчитана на питание от сети переменного тока 120 вольт. Причина в том, что обычные электрические розетки поставляют такое количество энергии. Но при скачке напряжения напряжение колеблется в пределах 0–169 вольт. Электронные устройства могут быть повреждены, если они получают такое большое количество тока.

Если этот шип не удержать, он может образовать опасную дугу. Эта дуга высокого напряжения может вызвать нагрев, плавление и эрозию других приборов и проводки. Они могут загореться в худшем случае.

Сетевой фильтр на помощь

Вы, должно быть, заметили устройство защиты от перенапряжения в структурах связи, системах управления, промышленности и распределительных щитах.

Что такое сетевой фильтр?

A Устройство защиты от перенапряжения — это устройство, которое защищает ваше дорогое мощное электрическое оборудование от скачков напряжения и скачков тока.

Когда напряжение превышает 120, он переключает соединение на напряжение земли или блокирует избыточный ток. Таким образом, ваша бытовая техника не чувствует никакого эффекта скачка напряжения.

Детали и характеристики устройства защиты от перенапряжения

Устройство защиты от перенапряжения содержит трансформатор с железным сердечником. Он преобразует переменный ток. Он также включает в себя MOV (металлооксидный варистор), который значительно ограничивает напряжение. Иногда в этом процессе он самоуничтожается.Сетевой фильтр также подает питание на батареи источника бесперебойного питания (ИБП).

Он также защищает от колебаний мощности из-за отказа автоматического выключателя . Его стабилитрон справляется с выбросом в автоматическом выключателе .

Функционирование устройства защиты от перенапряжения

MOV в вилке устройства защиты от перенапряжения служит для оповещения о высоком давлении. Он быстро снижает сопротивление при обнаружении высокого уровня напряжения и увеличивает сопротивление при понижении напряжения.Оксид металла в MOV подключен как к линии электропередачи, так и к линии заземления. Полупроводник, соединяющий MOV, имеет переменное сопротивление. Они могут заставить электроны менять свой курс при повышении или понижении напряжения.

Необходимость устройства защиты от перенапряжения

Скачки напряжения могут возникнуть в любой момент. Возможно, это произошло у вас дома, но ничего не повредило, поэтому вы не заметили. Таким образом, важно постоянно держать ваши электронные устройства подключенными к сетевому фильтру, в первую очередь для защиты дорогих устройств от повреждений, вызванных колебаниями мощности.

Выход!

Сетевой фильтр может не работать против удара молнии, потому что его сила в тысячах вольт, а иногда и больше. Вилка для защиты от перенапряжения может справиться со всеми другими сценариями колебаний. Приобретите качественный сетевой фильтр прямо сейчас, чтобы сэкономить электрооборудование и предотвратить электрический пожар в вашем доме.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет.Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. Он хранит обширный инвентарь электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д. Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования.Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Как работает сетевой фильтр?

Сетевые фильтры специально разработаны для защиты электроники от скачков напряжения. Вероятно, у вас уже есть один в вашем доме или офисе, защищающий несколько ваших любимых электронных устройств. Но действительно ли вы знаете, как работает сетевой фильтр?

Эксперты Plumbline Services расскажут, что такое сетевые фильтры, как они работают и почему у вас дома должно быть несколько устройств.

Зачем вам нужен сетевой фильтр?

Очевидно, что если у вас есть дорогие электронные устройства, вы хотите защитить их любой ценой. Хорошая новость заключается в том, что сетевые фильтры специально разработаны для защиты электроники и приборов от скачков напряжения.

Скачок напряжения, также известный как переходное напряжение, происходит, когда напряжение (единица измерения электричества) в потоке электроэнергии в вашем доме превышает рекомендуемый уровень. Например, стандартное напряжение в американских домах и офисах составляет 120 вольт.В тот момент, когда число вольт превышает 120, срабатывают устройства защиты от перенапряжения.

Скачки напряжения обычно вызываются молнией, когда моторы крупных бытовых приборов включаются и выключаются, а также когда электроэнергетические компании выполняют переключение электросети. Если через электрическую проводку ваших устройств проходит слишком большое напряжение, это может привести к их взрыву, что по существу сделает их бесполезными. Иногда провода не лопаются сразу после скачка напряжения, но все равно серьезно повреждаются. После этого их поломка — лишь вопрос времени.

Как работает сетевой фильтр?

При возникновении скачков напряжения устройство защиты от перенапряжения обнаруживает дополнительное напряжение и безопасно перенаправляет его на заземляющий провод розетки. Компонент, называемый металлооксидным варистором, или MOV, отвечает за подключение горячей линии электропередачи к линии заземления. Газоразрядный разрядник или газовая трубка — еще одно широко используемое устройство для защиты от перенапряжения.

Эти элементы внутри устройств защиты от перенапряжения обеспечивают работу ваших устройств во время скачков напряжения, а также перенаправляют избыточную и опасную энергию от проводов и оборудования.Узнайте больше об электрических компонентах устройства защиты от перенапряжения здесь.

Какой тип сетевого фильтра рекомендуется для вашего дома?

Три типа устройств защиты от перенапряжения необходимы для защиты вашего дома или офиса. Это может показаться излишним, но, к сожалению, одно устройство защиты от перенапряжения не может спасти ваш дом от всех скачков напряжения, которые он может испытать. Использование всех трех типов защитит вашу технику от любых скачков напряжения, независимо от того, какого они типа.

  1. Ваш первый сетевой фильтр должен быть размещен между линиями электропередач на улице и вашим счетчиком.Он защитит всю проводку в вашем доме от ударов молнии и от энергокомпаний, выполняющих переключение электросети. Установкой этого протектора будет управлять ваша энергетическая компания.
  2. Второй будет находиться между вашим измерителем и блоком выключателя. Они защищают ваше оборудование от скачков напряжения, возникающих при переключении энергосистемы энергокомпаниями или при ударе молнии в эти части оборудования.
  3. Наконец, третий вид устройств защиты от перенапряжения — это те, которые устанавливаются в каждой розетке, к которой вы подключаете электроприборы.Это гарантирует, что ни молния, ни включение и выключение двигателей не вызовут скачков напряжения, которые повредят любую часть вашей драгоценной технологии.

Следуя этой трехступенчатой ​​системе, вы и ваш дом или офис будете полностью защищены.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *