Как работают выпрямители тока. Какие бывают схемы выпрямителей. Чем отличаются однополупериодные и двухполупериодные выпрямители. Как устроены мостовые схемы выпрямления.
Принцип работы выпрямителя тока
Выпрямитель тока — это устройство, предназначенное для преобразования переменного тока в постоянный. Основной принцип работы выпрямителя заключается в использовании полупроводниковых диодов, которые пропускают ток только в одном направлении.
Простейшая схема однополупериодного выпрямителя состоит из следующих основных элементов:
- Трансформатор для понижения сетевого напряжения
- Выпрямительный диод
- Сглаживающий конденсатор
- Нагрузка
Как работает такой выпрямитель?
- Переменное напряжение подается на первичную обмотку трансформатора
- На вторичной обмотке формируется пониженное переменное напряжение
- Диод пропускает только положительные полуволны напряжения
- Конденсатор заряжается в момент пика напряжения и разряжается на нагрузку
- В результате на выходе формируется пульсирующее, но однонаправленное напряжение
Однополупериодная схема выпрямления
Однополупериодный выпрямитель — самая простая схема. Ее основные особенности:
- Используется только один диод
- Пропускается только одна полуволна переменного напряжения
- Большие пульсации выходного напряжения
- Низкий КПД из-за использования только половины периода
- Простота и дешевизна конструкции
Применяется в маломощных источниках питания, где не требуется высокое качество выпрямления.
Двухполупериодные схемы выпрямления
Двухполупериодные выпрямители позволяют использовать обе полуволны переменного напряжения, что повышает эффективность. Существует два основных типа таких схем:
Схема с выводом средней точки трансформатора
Особенности:
- Используются два диода
- Трансформатор имеет вывод средней точки вторичной обмотки
- Каждый диод работает на своей полуволне
- Меньше пульсаций, чем в однополупериодной схеме
- Требуется более сложный трансформатор
Мостовая схема (схема Греца)
Особенности мостового выпрямителя:
- Используются четыре диода, соединенные в мост
- Не требуется вывод средней точки трансформатора
- Каждая пара диодов работает на своей полуволне
- Хорошее использование трансформатора
- Меньше пульсаций выходного напряжения
Мостовая схема является наиболее распространенной в современных выпрямителях благодаря своей эффективности и универсальности.
Сглаживание пульсаций выпрямленного напряжения
Для уменьшения пульсаций выходного напряжения в выпрямителях применяются следующие методы:
- Использование конденсаторов большой емкости на выходе
- Применение LC-фильтров
- Использование электронных стабилизаторов напряжения
Чем выше требования к стабильности выходного напряжения, тем более сложные схемы фильтрации необходимо применять.
Области применения выпрямителей
Выпрямители тока находят широкое применение в различных областях:
- Источники питания электронных устройств
- Зарядные устройства для аккумуляторов
- Сварочные аппараты
- Системы электропитания постоянным током
- Электропривод на постоянном токе
В зависимости от конкретного применения выбирается оптимальная схема выпрямления и фильтрации, обеспечивающая необходимые параметры выходного напряжения.
Преимущества современных полупроводниковых выпрямителей
По сравнению с ламповыми выпрямителями, применявшимися ранее, современные полупроводниковые выпрямители имеют ряд существенных преимуществ:
- Высокий КПД (до 95-98%)
- Малые габариты и вес
- Длительный срок службы
- Отсутствие необходимости прогрева
- Высокая надежность
- Низкая стоимость
Это обусловило практически полное вытеснение ламповых выпрямителей полупроводниковыми во всех областях применения.
Расчет и выбор элементов выпрямителя
При проектировании выпрямителя необходимо правильно рассчитать и выбрать его основные элементы:
- Трансформатор — исходя из требуемой выходной мощности
- Диоды — с учетом максимального обратного напряжения и прямого тока
- Конденсаторы фильтра — для обеспечения допустимого уровня пульсаций
- Элементы защиты — предохранители, варисторы и т.д.
Правильный расчет элементов обеспечивает надежную работу выпрямителя в заданных условиях эксплуатации.
Перспективы развития выпрямительной техники
Основные направления совершенствования выпрямителей:
- Повышение КПД и снижение потерь
- Уменьшение габаритов и веса
- Улучшение качества выходного напряжения
- Повышение удельной мощности
- Интеграция с системами управления
Развитие силовой электроники позволяет создавать все более совершенные и эффективные выпрямительные устройства для различных применений.

Типы выпрямителей переменного тока.
Какие бывают выпрямители?
Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.
Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.
Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.
Однополупериодный выпрямитель.
Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.
Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.
Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.
Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.
Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.
К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.
Двухполупериодные выпрямители.
Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.
Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.
Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.
Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.
Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.
Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.
Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.
О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop — VF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.
Большой интерес вызывает выпрямитель с удвоением напряжения.
Выпрямитель с удвоением напряжения.
Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)
Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.
Развитием схемы стало создание умножителя на полупроводниковых диодах.
Умножитель напряжения.
Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.
На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.
Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.
Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.
Трёхфазные выпрямители.
Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.
Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.
Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.
В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.
Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.
Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Как работает однополупериодный выпрямитель | Volt-info
Однополупериодный выпрямитель, это примитивная схема, имеющая всего один ключевой элемент – выпрямительный диод, предназначенная для выделения из переменного тока постоянной составляющей одного направления.
Зная, как работает выпрямительный диод, разбираться в работе выпрямителя уже не придётся, поскольку вся схема и есть этот самый диод. Но если Вы новичок – добро пожаловать в тему!
| Рисунок 1. Схема включения выпрямительного диода в цепь. |
Обратим внимание на рисунок 1. Генератор G1 вырабатывает прямоугольные импульсы различной полярности. Между импульсами сформированы промежутки, когда напряжение генератора равно нулю. Импульсы с напряжением выше нуля Вольт условно назовём положительными и на диаграммах будем выделять красным цветом, ниже нуля – отрицательными и покажем их синим цветом.
В период действия «положительного» импульса верхний вывод генератора по схеме имеет положительную полярность (плюс), нижний – отрицательную. В период действия «отрицательного» импульса на верхнем вводе генератора по схеме возникает «плюс», на нижнем – «минус».
| Рисунок 2. Схема измерения напряжений элементов схемы. |
Для лучшего понимания поясняющих диаграмм обратимся к рисунку 2. Здесь мы выделили отдельные узлы, имеющие логические обозначения: Ф и Н соответственно фаза и нейтраль генератора G1, а Ср – средняя точка, или точка соединения диода с лампой. Эти узлы отделяют все три элемента схемы, благодаря чему мы можем измерить напряжение в процессе работы схемы на каждом элементе в отдельности, подключая вольтметры к этим узлам.
Чтобы ещё лучше понять схему, рассматривайте цепочку диод-лампа VD1-HL1 как резистивный делитель напряжения, один из резисторов которого (диод) имеет несимметричную нелинейную вольтамперную характеристику, или упрощённо – при прямом напряжении сопротивление минимально, а при обратном напряжении – бесконечно велико.
| Рисунок 3. Диаграмма, поясняю-щая работу однополупериодного выпрямителя. |
Представим, что у нас есть три вольтметра с двусторонней симметричной шкалой, по которой мы можем определить и величину напряжения, и полярность по направлению отклонения стрелки. Те, кто уже знаком с осциллографом, представьте, что вместо вольтметров подключены осциллографы, а рассматриваемые далее диаграммы ни что иное, как осциллограммы напряжений на элементах схемы.
Вольтметр (осциллограф) UG1 показывает напряжение на выводах генератора G1. UVD1 измеряет падение напряжения на диоде VD1, а UHL1 напряжение на лампе HL1.
Начнём. Процесс работы цепи отображает диаграмма на рисунке 3. В первоначальный момент времени на выводах генератора нет напряжения, т.е. ноль, который мы наблюдаем до первого импульса. Первый импульс напряжения генератора UG1 положительный и имеет величину 10 В (значения даны для примера). При его появлении диод оказывается под прямым напряжением, его сопротивление становится очень малым, он открывается, проводя ток, который будет зависеть от суммы сопротивлений диода и лампы. Поскольку прямое напряжение диода почти не зависит от тока, на нём будет наблюдаться падение напряжение UVD1, приблизительно равное 0,6 В (справочная величина для каждого диода), а на лампе возникнет разность напряжений UHL1=UG1-UVD1=10-0,6=9,4 В.
| Рисунок 4. Диаграмма, поясня-ющая работу однополупериод-ного выпрямителя. |
По завершению импульса напряжение ан генераторе снова упадёт до нуля. Эта пауза продлится до следующего импульса, имеющего отрицательную полярность. При импульсе напряжения на генераторе отрицательной полярности диод оказывается под обратным напряжением, при котором его сопротивление становится бесконечно большим. В результате на диоде возникает падение напряжения, практически равное по величине напряжению генератора, а на лампе – ноль (в идеальном случае, реально на лампе будут микровольты, обусловленные токами утечки диода, которыми в данном случае пренебрегаем).
| Рисунок 5. Анимация. |
Так, рассматривая диаграмму напряжения на нагрузке HL1, мы можем отметить, что нагрузка всегда оказывается включенной на напряжение положительной полярности генератора, и отключена при появлении напряжения отрицательной полярности. Т.е. через лампу будет протекать ток только одного направления (оного полупериода), имея такой же импульсный характер, как и напряжение на лампе.
Собственно, так и работает однополупериодный выпрямитель, роль которого в нашем случае выполняет диод VD1.
Что касается рассмотрения работы выпрямителя при синусоидальной форме кривой переменного напряжения генератора, то принцип по сути тот же самый, только форма кривой напряжения на элементах будет пропорционально повторять форму синусоидальной кривой напряжения генератора (рисунок 4).
На рисунке 5 представлена анимация процесса работы однополупериодного выпрямителя.
Как устроен и работает сварочный выпрямитель?
Сварочный выпрямитель – аппарат, служащий для преобразования переменного тока, присутствующего в сети, в постоянный с использованием кремниевых или селеновых полупроводниковых диодов. Наиболее популярны селеновые диоды. В конструкцию преобразователя входят: устройства защиты и измерения, трансформатор, управляющий прибор. Все элементы расположены в одном блоке. Аппараты могут работать при повышенных и пониженных температурах, нестабильных характеристиках входного напряжения однофазной или трехфазной питающей сети.
Устройство и принцип работы сварочного выпрямителя
В конструкцию агрегата входят:
- трансформатор, преобразующий входное переменное напряжение в низковольтное переменное;
- диодный мост, трансформирующий переменное напряжение в постоянное пульсирующее;
- конденсаторный фильтр, обладающий большой мощностью, служит для преобразования пульсирующего тока в линейный постоянный;
- блок, регулирующий силу тока;
- дроссели, предназначенные для предотвращения запредельного роста сварочного тока.
Эта упрощенная схема может несколько видоизменяться или дополняться другими элементами, улучшающими технические характеристики сварочного выпрямителя.
Выпрямление тока может осуществляться по одной из схем:
- однофазное, применяется в аппаратах бытового применения;
- трехфазное, пульсации сглаживаются в обмотках – первичной и вторичной;
- шестифазное, позволяет организовать многопостовой пункт сварки.
Выходные характеристики регулируются следующими способами:
- трансформаторное регулирование с помощью изменения схемы подключения обмоток;
- с использованием дросселя и реостата;
тиристорное или транзисторное регулирование.
Виды сварочных выпрямителей
Выпускаемые виды выпрямителей:
- Однопостовой. Предназначается для ручной дуговой сварки плавящимися покрытыми электродами. Могут применяться штучные электроды с рутиловым, целлюлозным, основным покрытием. Присутствие клинового шунта позволяет быстро менять режим работы. Агрегаты могут использоваться для сварки ответственных изделий и создания конструкций, запланированных для работы под высокими нагрузками.
- Универсальный многопостовой. Питается от трехфазной сети переменного тока. Каждый вывод оснащен собственным блоком управления, в который входят реостат и дроссель. Выдерживает знакопеременные нагрузки, формирует надежную устойчивую дугу, способен работать без перерыва в течение длительного времени. Многопостовые сварочные выпрямители используются для осуществления масштабных интенсивных работ по ручной или полуавтоматической сварке. Устанавливаются в производственных цехах и на строительных площадках.
Особенности применения сварочных выпрямителей
Эти агрегаты применяются для проведения дуговой сварки низкоуглеродистых нелегированных сталей, коррозионностойких марок, цветных металлов и сплавов на их основе. Используются также при необходимости сварки обратной полярности. Обеспечивают глубокий провар и снижение разбрызгивания металла. К минусам агрегатов относятся – восприимчивость к длительным коротким замыканиям и скачкам сетевого напряжения.
Преимущества сварочных выпрямителей:
- экономичность;
- высокий КПД;
- надежность;
- простота управления.
Для продления срока службы аппаратов необходимы – проведение плановых осмотров, своевременная чистка и замена изношенных деталей, использование в условиях нормальной влажности.
Выпрямители тока.Схемы выпрямителей. | Elektrolife
Нагрузка вызывает разряд конденсатора, который происходит в промежутке между циклами (или половинами циклов для двухполупериодного выпрямления) выходного сигнала. Если предположить, что ток через нагрузку остается постоянным (это справедливо для небольших пульсаций), то
ΔU = (I /C) Δt (напомним, что I = C (dU /dt). Подставим значение 1/f (или 1/2f для двухполупериодного выпрямления) вместо Δt (такая замена допустима, так как конденсатор начинает снова заряжаться меньше, чем через половину цикла). ПолучимΔU = Iнагр /fC(однополупериодное выпрямление),
ΔU = Iнагр /2fC(двухполупериодное выпрямление).
Если воспользоваться экспоненциальной функцией, определяющей изменение напряжения на конденсаторе при его разряде, то результат получим неправильным по следующим причинам:
Разряд конденсатора описывается экспоненциальной зависимостью только в том случае, если нагрузка резистивна; в большинстве случаев это не так. Часто на выходе выпрямителя устанавливают стабилизатор напряжения, который обеспечивает постоянство выпрямленного напряжения – он выступает в роли нагрузки, через которую протекает постоянный ток.
Для источников питания используют, как правило, конденсаторы с точностью 20 % и более. При разработке схем следует учитывать разброс параметров компонентов и для страховки производить расчет для наиболее неблагоприятного сочетания их значений. В таком случае, если считать, что в начальный момент разряд конденсаторов происходит по линейному закону, приближение будет весьма точным, особенно если пульсации невелики. Неточности приближения приводят лишь к некоторой перестраховке – они проявляются в завышении расчетного напряжения пульсаций по сравнению с его истинным значением.
Принцип работы выпрямителя
Маломощные выпрямители
Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт) и выпрямители большой мощности (киловатты и больше).
Принцип работы выпрямителя
Структурная схема выпрямителя:
Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя).
Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.
Собственно выпрямителем является та его часть, которая обведена на рисунке пунктиром и состоит из трансформатора и выпрямительного устройства.
Нулевая схема выпрямления
Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на нулевой схеме.
Нулевая схема выглядит так:
Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.
Как возникает пульсирующее напряжение на нагрузке? Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток.
Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.
Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.
Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:
И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id , будет повторять кривую напряжения.
Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны.
Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.
Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:
Выпрямительный мост или схема Гретца
Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):
В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:
Мостовая схема имеет менее сложный, более легкий и дешевый трансформатор.
Эта схема появилась исторически раньше нулевой, однако распространения не получила, потому что имела четыре диода вместо двух. А при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение.
Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую.
Основные соотношения для выпрямителя
Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.
Среднее значение выпрямленного напряжения
Запомним это выражение на дальнейшее. В нашем случае m=2 и
. Поскольку Ud считаем заданным, то
Амплитудное значение вторичного напряжения
Из предыдущего выражения имеем:
Коэффициент трансформации трансформатора
Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:
Действующее значение тока вторичной обмотки
Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть
Действующее значение тока первичной обмотки
Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :
Мощность трансформатора
Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:
Пульсация выпрямленного напряжения
Пульсирующее напряжение состоит из среднего значения Ud и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:
Где: l – полупериод π/m;
Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:
Заменив
получим:
Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:
Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.
Средний ток диодов
Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток Iв = Id/2
Наибольшее обратное напряжение на диоде
В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:
Что такое однофазный выпрямитель, принцип работы, типы и схемы
Выпрямитель преобразует колеблющийся синусоидальный источник переменного напряжения в источник постоянного напряжения постоянного тока с помощью диодов, тиристоров, транзисторов или преобразователей. Этот процесс выпрямления может принимать различные формы с полуволновыми, двухполупериодными, неконтролируемыми и полностью управляемыми выпрямителями, преобразующими однофазный или трехфазный источник питания в постоянный уровень постоянного тока.
Описание
Выпрямители являются одним из основных строительных блоков преобразования мощности переменного тока с полуволновым или двухволновым выпрямлением, обычно выполняемым полупроводниковыми диодами. Диоды позволяют переменным токам течь через них в прямом направлении, в то же время блокируя протекание тока в обратном направлении, создавая постоянный уровень напряжения постоянного тока, что делает их идеальными для выпрямления.
Однако постоянный ток, который выпрямляется диодами, не такой чистый, как ток, получаемый, скажем, от источника батареи, но имеет изменения напряжения в виде пульсаций, наложенных на него в результате переменного питания.
Но для однофазного выпрямления нам нужна синусоидальная форма переменного тока с фиксированным напряжением и частотой, как показано на рисунке.
Сигналы переменного тока обычно имеют два числа, связанных с ними. Первое число выражает степень вращения осциллограммы вдоль оси x, на которую генератор вращался от 0 до 360 o .
Это значение известно как период (T), который определяется как интервал, взятый для завершения одного полного цикла сигнала. Периоды измеряются в градусах, времени или радианах. Соотношение между периодами синусоидальных волн и частотой определяется как: T = 1 / ƒ .
Второе число указывает амплитуду значения, тока или напряжения, вдоль оси y. Это число дает мгновенное значение от нуля до некоторого пикового или максимального значения (A MAX , V MAX или I MAX ), указывающее наибольшую амплитуду синусоидальных волн, прежде чем снова вернуться к нулю. Для синусоидальной формы волны есть два максимальных или пиковых значения, одно для положительных и одно для отрицательных полупериодов.
Но помимо этих двух ценностей есть еще две, которые представляют интерес для нас в целях исправления. Один — это Среднее значение сигналов, а другой — его среднеквадратичное значение. Среднее значение формы сигнала получается путем добавления мгновенных значений напряжения (или тока) в течение одного полупериода и обнаруживаются как: 0,6365 * V P . Обратите внимание, что среднее значение за один полный цикл симметричной синусоидальной волны равно нулю.
Среднеквадратическое значение или эффективное значение синусоиды (синусоида — это другое название синусоидальной волны) обеспечивает такое же количество энергии для сопротивления, что и источник постоянного тока того же значения. Среднеквадратическое значение (RMS) синусоидального напряжения (или тока) определяется следующим образом: 0,7071 * V P.
Принцип работы
Все однофазные выпрямители используют полупроводниковые устройства в качестве основного устройства преобразования переменного тока в постоянный. Однофазные неконтролируемые полуволновые выпрямители являются наиболее простой и, возможно, наиболее широко используемой схемой выпрямления для малых уровней мощности, поскольку на их выход сильно влияет реактивное сопротивление подключенной нагрузки.
Для неконтролируемых выпрямительных цепей полупроводниковые диоды являются наиболее часто используемым устройством и расположены таким образом, чтобы создавать либо полуволновую, либо двухполупериодную схему выпрямителя. Преимущество использования диодов в качестве устройства выпрямления состоит в том, что по своей конструкции они являются однонаправленными устройствами, имеющими встроенный однонаправленный pn-переход.
Этот pn-переход преобразует двунаправленный переменный источник питания в однонаправленный ток, устраняя половину источника питания. В зависимости от подключения диода, он может, например, пропустить положительную половину сигнала переменного тока при прямом смещении, исключая при этом отрицательный полупериод, когда диод становится обратным смещением.
Обратное также верно, устраняя положительную половину или форму волны и передавая отрицательную половину. В любом случае, выход из одного диодного выпрямителя состоит только из одной половины формы сигнала 360 o, как показано на рисунке.
Полуволновое выпрямление
Приведенная выше конфигурация однофазного полуволнового выпрямителя пропускает положительную половину формы сигнала переменного тока, причем отрицательная половина исключается. Меняя направление диода, мы можем пропустить отрицательные половины и устранить положительные половины формы сигнала переменного тока. Поэтому на выходе будет серия положительных или отрицательных импульсов.
Таким образом, на подключенную нагрузку не подается напряжение или ток, R L в течение половины каждого цикла. Другими словами, напряжение на сопротивлении нагрузки R L состоит только из половины сигналов, либо положительных, либо отрицательных, поскольку оно работает только в течение половины входного цикла, отсюда и название полуволнового выпрямителя.
Надеемся, что мы видим, что диод позволяет току течь в одном направлении, создавая только выход, который состоит из полупериодов. Эта пульсирующая форма выходного сигнала не только изменяется ВКЛ и ВЫКЛ каждый цикл, но присутствует только в 50% случаев, и при чисто резистивной нагрузке это содержание пульсации высокого напряжения и тока является максимальным.
Этот пульсирующий постоянный ток означает, что эквивалентное значение постоянного тока падает на нагрузочном резисторе, поэтому R L составляет только половину среднего значения синусоидальных сигналов. Поскольку максимальное значение синусоидальной формы сигнала равно 1 (sin (90 o )), среднее значение постоянного тока, полученное для половины синусоиды, определяется как: 0,637 x максимальное значение амплитуды.
Таким образом, во время положительного полупериода A AVE составляет 0,637 * A MAX . Однако, поскольку отрицательные полупериоды удалены из-за выпрямления диодом, среднее значение в течение этого периода будет нулевым.
Среднее значение синусоиды
Таким образом, для полуволнового выпрямителя в 50% случаев среднее значение составляет 0,637 * A MAX, а в 50% случаев — ноль. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:
Таким образом, соответствующие выражения для среднего значения напряжения или тока для полуволнового выпрямителя задаются как:
V AVE = 0,318 * V MAX
I AVE = 0,318 * I MAX
Обратите внимание, что максимальное значение A MAX — это значение входного сигнала, но мы также могли бы использовать его среднеквадратичное значение или среднеквадратичное значение, чтобы найти эквивалентное выходное значение постоянного тока однофазного полуволнового выпрямителя. Чтобы определить среднее напряжение для полуволнового выпрямителя, мы умножаем среднеквадратичное значение на 0,9 (форм-фактор) и делим произведение на 2, то есть умножаем его на 0,45, получая:
V AVE = 0,45 * V RMS
I AVE = 0,45 * I RMS
Затем мы можем видеть, что схема полуволнового выпрямителя преобразует либо положительные, либо отрицательные половины формы сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,318 * A MAX или 0,45 * A RMS, как показано.
Полноволновое выпрямление
Двухполупериодный выпрямитель использует обе половины входной синусоидальной формы волны для обеспечения однонаправленного выход, т.к. он состоит из двух полуволновых выпрямителей, соединенных вместе для питания нагрузки.
Однофазный двухполупериодный выпрямитель делает это с помощью четырех диодов, расположенных в виде моста, пропускающих положительную половину формы волны, как и раньше, но инвертирующих отрицательную половину синусоидальной волны для создания пульсирующего выхода постоянного тока.
Несмотря на то, что напряжение и ток на выходе выпрямителя пульсируют, оно не меняет направление, используя полные 100% формы входного сигнала и, таким образом, обеспечивает двухполупериодное выпрямление.
Однофазный двухполупериодный мостовой выпрямитель
Эта мостовая конфигурация диодов обеспечивает двухполупериодное выпрямление, потому что в любое время два из четырех диодов смещены в прямом направлении, а два других — в обратном. Таким образом, в проводящем тракте два диода вместо одного для полуволнового выпрямителя. Следовательно, будет разница в амплитуде напряжения между V IN и V OUT из-за двух прямых падений напряжения на последовательно соединенных диодах. Здесь, как и прежде, для простоты математики мы примем идеальные диоды.
Так как же работает однофазный двухполупериодный выпрямитель? Во время положительного полупериода V IN диоды D 1 и D 4 смещены в прямом направлении, а диоды D 2 и D 3 — в обратном. Затем для положительного полупериода входного сигнала ток течет по пути: D 1 — A — R L — B — D 4 и возвращается к источнику питания.
Во время отрицательного полупериода V IN диоды D 3 и D 2 смещены в прямом направлении, а диоды D 4 и D 1 — в обратном. Затем для отрицательного полупериода входного сигнала ток течет по пути: D 3 — A — R L — B — D 2 и возвращается к источнику питания.
В обоих случаях положительные и отрицательные полупериоды входного сигнала создают положительные выходные пики независимо от полярности входного сигнала и, как таковой, ток нагрузки I всегда течет в том же направлении через нагрузку, R L между точками или узлами A и B. Таким образом, отрицательный полупериод источника становится положительным полупериодом при нагрузке.
Таким образом, в зависимости от того множества проводящих диодов, узел А всегда более положительный, чем узел B. Поэтому ток и напряжение нагрузки являются однонаправленными или постоянными, что дает нам следующую форму выходного сигнала.
Форма волны на выходе выпрямителя
Хотя этот пульсирующий выходной сигнал использует 100% входного сигнала, его среднее напряжение постоянного тока не совпадает с этим значением.
Однако двухполупериодные выпрямители имеют два положительных полупериода на входной сигнал, что дает нам другое среднее значение.
Среднее значение двухполупериодного выпрямителя
Для двухполупериодного выпрямителя для каждого положительного пика имеется среднее значение 0,637 * A MAX, и, поскольку на входной сигнал имеется два пика, это означает, что есть две серии средних значений, суммируемых вместе. Таким образом, выходное напряжение постоянного тока двухполупериодного выпрямителя в два раза выше, чем у предыдущего полуволнового выпрямителя. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:
Таким образом, соответствующие выражения для среднего значения напряжения или тока для двухполупериодного выпрямителя задаются как:
V AVE = 0,637 * V MAX
I AVE = 0,637 * I MAX
Чтобы определить среднее напряжение для двухполупериодного выпрямителя, мы умножаем среднеквадратичное значение на 0,9:
V AVE = 0,9 * V RMS
I AVE = 0,9 * I RMS
Двухполупериодная схема выпрямителя преобразует ОБЕ положительную или отрицательную половинки сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,637 * A MAX или 0,9 * A RMS.
Полноволновой полууправляемый мостовой выпрямитель
Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.
Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.
Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.
В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.
Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.
Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.
Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.
Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:
Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя.
Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя .
Полностью управляемый мостовой выпрямитель
Однофазные мостовые выпрямители с полным управлением известны чаще как преобразователи переменного тока в постоянный. Полностью управляемые мостовые преобразователи широко используются в управлении скоростью машин постоянного тока и легко достигаются путем замены всех четырех диодов мостового выпрямителя тиристорами, как показано на рисунке.
В конфигурации с полностью управляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров на полупериод. Тиристоры SCR 1 и SCR 4 запускаются вместе как пара во время положительного полупериода, в то время как тиристоры SCR 3 и SCR 4 также запускаются вместе как пара во время отрицательного полупериода. Это 180 oпосле SCR 1 и SCR 4 .
Затем в режиме работы с непрерывной проводимостью четыре тиристора постоянно переключаются в виде чередующихся пар для поддержания среднего или эквивалентного выходного напряжения постоянного тока. Как и в случае полууправляемого выпрямителя, выходное напряжение можно полностью контролировать, изменяя угол задержки включения тиристоров ( α ).
Таким образом, выражение для среднего напряжения постоянного тока однофазного полностью управляемого выпрямителя в режиме непрерывной проводимости дается как:
со средним выходным напряжением, изменяющимся от V MAX / π до -V MAX / π путем изменения угла зажигания, α от π до 0 соответственно. Поэтому, когда α <90 o,среднее напряжение постоянного тока является положительным, а когда α> 90 oсреднее напряжение постоянного тока является отрицательным. То есть мощность течет от нагрузки постоянного тока к источнику переменного тока.
Резюме однофазного выпрямления
Однофазные выпрямители могут принимать различные формы для преобразования переменного напряжения в постоянное напряжение из неконтролируемых однофазных выпрямителей на полуволнах в полностью управляемые двухполупериодные мостовые выпрямители с использованием четырех тиристоров.
Преимуществами полуволнового выпрямителя являются его простота и низкая стоимость, так как для него требуется только один диод. Однако это не очень эффективно, так как используется только половина входного сигнала, дающего низкое среднее выходное напряжение.
Двухполупериодный выпрямитель более эффективен, чем полуволновой выпрямитель, поскольку он использует оба полупериода входной синусоидальной волны, создавая более высокое среднее или эквивалентное выходное напряжение постоянного тока. Недостатком двухполупериодной мостовой схемы является то, что она требует четырех диодов.
Фазоуправляемое выпрямление использует комбинации диодов и тиристоров (SCR) для преобразования входного напряжения переменного тока в контролируемое выходное напряжение постоянного тока. Полностью контролируемые выпрямители используют четыре тиристора в своей конфигурации, тогда как наполовину управляемые выпрямители используют комбинацию как тиристоров, так и диодов.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.
Выпрямитель напряжения: виды, как это работает?
В современном многообразии электрических приборов как бытового назначения, так и для иных задач большинство содержит выпрямитель. Это связано с их непрерывным усложнением в связи с увеличением функциональности. А для многофункциональности необходима электроника, потребляющая постоянный ток. Его обеспечивает источник питания. В нем всегда расположен выпрямитель. Далее расскажем об этом устройстве более подробно.
Какими были первые выпрямители
Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.
Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.
А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.
Механическое выпрямление напряжения
Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.
Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени.
Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя. При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя.
Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения. Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.
Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует. Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время.
МВ-81 со снятой крышкой Контакт МВ-81Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.
Электролитический выпрямитель
Это устройство работает без коммутации. Однако оно было изобретено только после появления достаточно чистого алюминия. Известно, что этот металл образует тонкую пленку прочного окисла на своей поверхности. Окись алюминия — это почти изолятор. Если погрузить алюминиевую пластину в определенный раствор и подать на нее отрицательный потенциал, пленка разрушится. При этом ток в растворе должен исходить из погруженной рядом железной пластины — анода.
Пленка окиси алюминия моментально растворится в растворе, например, фосфорнокислого натрия. Поэтому поверхность катода получится из чистого алюминия. А ток будет беспрепятственно течь между погруженными электродами. Но как только полярность электродов сменится на противоположную, поверхность алюминиевой пластины моментально окислится. Пленка с большим сопротивлением не будет пропускать электрический ток.
Энергетические характеристики электролитического выпрямителя зависят от объема сосуда, а также от размеров и числа пластин. Пластина из чистого алюминия работоспособна длительное время. Вывести из строя такой выпрямитель можно только механическим разрушением. От увеличения тока он «застрахован» свойствами электролита. Слишком высокое напряжение просто не будет выпрямляться. Но при его возвращении к номинальной величине этот выпрямитель продолжит работу. Он просто не убиваем.
Электролитический выпрямительЛамповые варианты
Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.
А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа — ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.
Ртутный выпрямительЭто позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались — «селеновые выпрямители».
Структура селеновой выпрямительной пластины Конструктивное исполнение селеновых выпрямителейОднако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.
Полупроводниковые схемы
Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.
Влияние переменной составляющей оценивается коэффициентом пульсации.
Его можно уменьшить двумя способами:
- улучшая эффективность электрического фильтра;
- улучшая параметры выпрямляемого переменного напряжения.
Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.
Использовать обе полуволны переменного напряжения можно двумя способами:
- по схеме моста;
- по схеме со средней точкой обмотки (схема Миткевича).
Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.
Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока. Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.
При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».
Полупроводниковые диоды вместе с конденсаторами позволяют создавать схемы, в которых конденсаторы за полпериода заряжаются и за полпериода разряжаются в нагрузку. При этом напряжения, которые на них накапливаются, суммируются. Таким путем можно создавать схемы для умножения напряжения. Наиболее простая и эффективная схема выпрямителя, который удвоит напряжение, содержит два диода и два конденсатора. Ее называют схемой Латура-Делона. Ее аналогом является схема Гренашера.
Создавая необходимое число ячеек, содержащих конденсаторы и диоды, можно получить любое напряжение, кратное их числу. Схема, соответствующая этому решению, показана далее. В ней каждая из ячеек содержит конденсатор и диод.
Она также именуется как «генератор Кокрофта-Уолтона». Для двух- и трехфазных напряжений существуют соответствующие выпрямители. Это такие же схемы, как и для однофазного напряжения, но соединяемые в соответствии с достигаемой целью. Примеры таких схем показаны далее.
Многофазные источники переменного напряжения — это наиболее эффективный способ получения минимальной величины коэффициента пульсации. Классификация как многофазных, так и прочих выпрямителей в целом довольно-таки обширна. Они характеризуются:
В статье были подробно рассмотрены лишь некоторые виды выпрямителей, имеющие наиболее широкое использование.
Делая выбор того или иного устройства, необходимо руководствоваться параметрами напряжения нагрузки. Только таким путем получается эффективное выпрямление напряжения.
Похожие статьи:Работа выпрямителя на нагрузку | Полупроводниковые выпрямители
Страница 9 из 14
5. РАБОТА ВЫПРЯМИТЕЛЯ НА НАГРУЗКУ РАЗЛИЧНОГО ХАРАКТЕРА
Выше была рассмотрена работа различных схем выпрямления с неуправляемыми и управляемыми вентилями на нагрузку с чисто активным сопротивлением. Однако в практике наряду с чисто активной нагрузкой для силовых выпрямителей часто встречается смешанная активно-индуктивная нагрузка и нагрузка на встречную ЭДС. Примерами таких нагрузок являются обмотки возбуждения электрических машин и втягивающие катушки электроаппаратов, а также любые другие электроприемники, питаемые от выпрямителя через фильтр, входным элементом которого служит индуктивная катушка. Случаям нагрузки на встречную ЭДС соответствует работа выпрямителя на якорь двигателя постоянного тока, а также при зарядке от выпрямителя аккумуляторных батарей или питании электролизных ванн.
В большинстве случаев в цепь нагрузки выпрямителей средней и большой мощности входят встречная ЭДС и активное сопротивление (якорь двигателя, сопротивление обмоток силового трансформатора и др.), которые сочетаются с последовательным включением индуктивности, присущей самой нагрузке или дополнительно включаемой для лучшего сглаживания потребляемого тока.
Работа выпрямителя на активно-индуктивную нагрузку. Работа выпрямителя на активно-индуктивную нагрузку (рис. 26,а) отличается от работы на чисто активную нагрузку тем, что ток в цепи выпрямления, возникнув в момент открывания вентиля, нарастает медленнее, чем происходит увеличение напряжения Это связано с наличием индуктивности Ld в цепи нагрузки, которая является в электрической цепи инерционным элементом, препятствующим резкому изменению тока id. Когда напряжение вторичной обмотки трансформатора начнет снижаться, ток в нагрузке будет некоторое время продолжать расти и далее постепенно спадать за счет энергии, запасенной в индуктивности (рис. 26,6).
Протекание тока через вентиль будет происходить и в течение некоторой части отрицательного полупериода вторичного напряжения за счет положительной ЭДС самоиндукции, возникающей в индуктивности Ld при уменьшении тока нагрузки, которая компенсирует отрицательное напряжение t/2 и падение напряжения Див в цепи выпрямления.
Рис. 26. Однопопупериодное выпрямление при активно-индуктивной нагрузке:
а — схема включения; б и в — кривые напряжений и токов на элементах
Общая продолжительность X протекания тока через вентиль VD зависит от значения индуктивности L,j. с увеличением которой возрастает длительность протекания тока id. Среднее значение выпрямленного напряжения на активно-индуктивной нагрузке Ud однополупериодного выпрямителя будет меньше, чем напряжение UdR при активной нагрузке, так как при o>f > it напряжение ud отрицательно (рис. 26,в).
Пульсации тока id в нагрузке не уменьшаются даже при значительном увеличении индуктивности Ld, так как ток /„ всегда меняется от нуля до 1агпах. Вследствие этого в однополупериодных выпрямителях индуктивность не применяется в качестве фильтра (см. § 6).
При двухпопупериодном выпрямлении (рис. 27,а) в отличие от чисто активной нагрузки ток id в цепи Ld, R становится более сглаженным (рис. 27,6). Действительно, ток /В1 в вентиле VI к концу положительного полупериода под воздействием индуктивности не спадет до нуля, а в момент cot = v ток нагрузки переходит к вентилю V2, так как потенциал анода V2 становится выше потенциала анода VI (см. рис. 16,6).
Рис. 27. Двухпопупериодное выпрямление при активно-индуктивной нагрузке:
а — схема включения; б и в — кривые напряжений и токов в элементах
Указанный переход тока происходит мгновенно, так как в анодных цепях вентилей V1 и V2 нет индуктивностей. В следующий попупериод, когда и2а будет опять положительно, ток id снова переходит к вентилю VI (рис. 27,в).
Выпрямленное напряжение ud на выходе выпрямителя, т.е. напряжение на зажимах всей цепи RL нагрузки, и обратное напряжение на вентиле будут иметь такую же форму, как при работе схемы на активную нагрузку. Это объясняется тем, что переход тока с одного вентиля на другой происходит в та же моменты, что и в случае работы схемы без индуктивности Ld.
Влияние индуктивности в цепи нагрузки сказывается на действующих значениях токов, протекающих в вентилях и обмотках (/в, /2 и /,), а также на типовой мощности трансформатора ST. Количественные соотношения между токами и напряжениями в элементах выпрямителя, а также типовая мощность трансформатора для различных схем выпрямления с неуправляемыми вентилями при Ld — 00 приведены в табл. 1.
Процессы в схеме управляемого выпрямителя при работе его на активно-индуктивную нагрузку отличаются от процессов при работе схемы на активную нагрузку. Пусть однофазная мостовая схема (рис. 28,з) работает с идеально сглаженным током id(Ld — = 00), тогда тиристоры VC1 и VC3, вступив в работу в момент времени 11 (рис. 28,6). не закроются в момент прохождения фазного напряжения и2 через нуль (момент t2 ), как это было при чисто активной нагрузке, а будут проводить ток при отрицательном напряжении вторичной обмотки до тех пор, пока не будут поданы управляющие импульсы на тиристоры VC2, VC4 (момент Г3). Тогда эта пара тиристоров вступит в работу, а тиристоры VC1, VC3 выключаются. Вентили VC3, VC4 будут проводить ток, пока снова не будут поданы управляющие импульсы на вентили VC1, VC3 (момент ts), и т.д.
Длительность протекания тока через каждую пару тиристоров остается равной 180°. При wLd = 00 ток id в цепи нагрузки идеально сглажен, а токи вентилей имеют форму прямоугольных импульсов с амплитудой, равной ld.
В кривой выпрямленного напряжения ud в интервалах времени О — f,, f2 — и т.д. появляются участки отрицательного напряжения, когда ток через тиристор и нагрузку проходит под действием ЭДС самоиндукции, возникающей в индуктивности Ld.
Рис. 28. Работа управляемого однофазного мостового выпрямителя на активно-индуктивную нагрузку
Это вызывает снижение среднего значения выпрямленного напряжения Ud. Очевидно, что с ростом угла а площадь отрицательных участков увеличивается, а значение Ud будет уменьшаться. Среднее значение выпрямленного напряжения в этом случае может быть определено для всего диапазона изменения угла а по следующей формуле:
(42)
Выражение (42) справедливо для всех управляемых схем при работе выпрямителя со сглаженным (непрерывным) током. Предельным углом регулирования, при котором в выпрямленном напряжении иу положительные и отрицательные участки равны между собой и постоянная составляющая отсутствует, т.е. Ud = 0, является угол а = я/2.
Регулировочные характеристики однофазных выпрямителей для активно-индуктивной нагрузки зависит от соотношения сoLdlRfj и показаны на рис. 25.
Если отношение < 5, то энергии, запасенной в индуктивности Lfj на интервале, когда ud > 0, оказывается недостаточно для обеспечения протекания тока id в течение половины периода, и вентиль, проводящий этот ток, выключится раньше, чем будет подан отпирающий импульс на следующий по порядку работы вентиль, т.е. раньше момента, определяемого углом а. Такой режим работы схемы при активно-индуктивной нагрузке называется режимом с прерывистым выпрямленным током (рис. 2В,г).
Среднее значение выпрямленного напряжения в режиме с прерывистым током будет больше, чем в режиме с непрерывным током при одинаковых значениях угла а, благодаря уменьшению отрицательных участков в кривой ud. но меньше, чем при работе управляемого выпрямителя на активную нагрузку, когда отрицательных участков нет. Поэтому в режимах с прерывистым током регулировочные характеристики двухполупериодного выпрямителя будут находиться между кривыми / и 2 в заштрихованной области, указанной на рис. 22.
Очевидно, что чем больше угол а, тем больше должна быть индуктивность Lfj, чтобы обеспечить режим работы схемы с непрерывным током id. При прерывистом токе трансформатор и вентили схемы работают в более тяжелом режиме, так как при одном и том же среднем значении выпрямленного тока, определяемом нагрузкой, действующее значение токов в элементах схемы увеличивается. Поэтому в мощных выпрямителях, работающих с широким диапазоном изменения угла а, индуктивность Ld обычно выбирается из условия обеспечения непрерывности выпрямленного тока при угле регулирования а = атдх.
Работа выпрямителя на нагрузку с противо-ЭДС. Такой вид нагрузки встречается при питании от выпрямителей аккумуляторов, электродвигателей, мощных конденсаторов и др. Особенность работы выпрямителя в этом случае состоит в том, что такого рода потребители имеют собственную ЭДС Еа, которая направлена навстречу напряжению Ufj выпрямителя.
На рис. 29,а представлена схема однофазного двухполупериодного выпрямителя, который нагружен на якорь двигателя постоянного тока с противо-ЭДС Ед. Рассмотрим работу схемы без индуктивности L(ключ К замкнут). Ток через вентили схемы может проходить лишь в те положительные части периодов, когда выпрямленное напряжение ud будет больше Ед. Например, вентиль VI откроется в момент fi и закроется в момент г2 (рис. 29,6), вентиль V2 вступит в работу в следующий полупериод и будет проводить ток в интервале времени Кривая выпрямленного тока id имеет прерывистый (импульсный) характер, а значение его можно выразить следующей формулой, приняв за начало отсчета максимум выпрямленного напряжения:
(43)
где сопротивление Rj в данном случае равно сумме сопротивлений гдв и Ят.
Очевидно, что интервал проводимости вентилей X будет зависеть от соотношения амплитуды напряжения вторичной обмотки трансформатора U2m = \/2U2 и значения Ед.
С ростом Ед пульсации тока /в вырастают, так как уменьшается длительность X работы вентилей в течение каждого полупериода (рис. 29,г). Это приводит к тому, что при равных средних значениях токов /в ср, протекающих через вентиль, отношения lamaxlld и возрастают, что свидетельствует об ухудшении использования вентилей по току и увеличении тепловых потерь в обмотках трансформатора с ростом Ед.
Чтобы выпрямленный ток был непрерывным, необходимо включать в цепь нагрузки индуктивность L (ключ К на рис. 29,э разомкнут), которая соответствует неравенству coLd > 5Rd, и среднее значение выпрямленного напряжения Ufj должно быть больше противо-ЭДС Еа.
При выполнении первого условия мгновенное и среднее значения выпрямленного тока совпадают Ud= td), а переменная составляющая выпрямленного напряжения выделяется в виде падения напряжения на дросселе Ld. Если не выполнить второго условия, то ток id станет прерывистым даже при большой индуктивности дросселя Lfj. так как тиристоры будут проводить ток только при условии и2 > Еа.
Таким образом, при включении в цепь нагрузки индуктивности Ld пульсация выпрямленного тока уменьшается и при > 5Rd становится равной нулю (вся пульсация напряжения Ud оказывается приложенной к индуктивности Ld). В этом случае среднее значение выпрямленного тока определяется соотношением
Рис. 29. Работа неуправляемого однофазного выпрямителя на противо-ЭДС:
а — схема включения; б-г — кривые напряжений и токов на элементах
При известных средних значениях выпрямленного тока и напряжения параметры вентилей /В|Ср. ‘в,д и UDбртах, трансформатора /2, U2, 11 и ST для различных схем выпрямителей, работающих на нагрузку с противо-ЭДС при непрерывном токе, определяются такими же соотношениями, как и в ранее разобранных случаях работы выпрямителей на активно-индуктивную нагрузку (см. табл. 1).
Коммутация тока в силовых схемах выпрямления. При рассмотрении работы маломощных выпрямителей обычно учитывают только активные сопротивления обмоток трансформатора, а индуктивными сопротивлениями, создаваемыми потоками рассеяния в магнитной системе, обычно пренебрегают. Такое допущение давало возможность считать, что выпрямленный ток переходит с одного вентиля на другой мгновенно. Этот процесс переключения вентилей многофазного выпрямителя называется коммутацией тока.
В мощных выпрямителях индуктивности рассеяния обмоток трансформатора оказывают значительное влияние на работу схемы, изменяя значение и форму кривой выпрямленного напряжения, токов вентиля и обмоток трансформатора. Процесс нарастания тока во вступающем в работу и спад тока в выходящем из работы вентилях в этом случае происходит за конечный интервал времени. В то же время влиянием активных сопротивлений обмоток трансформатора и падением напряжения в вентилях нередко можно пренебречь, так как обмотки и их соединения выполняются проводом большого сечения.2ном _ коэффициент трансформации трансформатора.
Рассмотрим процесс коммутации и его влияние на работу выпрямителя на примере трехфазной схемы с нулевым выводом. Нагрузка принимается активно-индуктивная (рис. 30,а). Приведенные индуктивности Lal, i/,2 и Lc3 обмоток трансформатора включены в анодные цепи тиристоров VC1 — VC3, а в цепи нагрузки имеется значительная индуктивность L и выпрямленный ток id можно считать идеально сглаженным.
Рис. 30. Работа трехфазного управляемого выпрямителя с учетом коммутации тока в вентилях:
а — схема включения элементов; б и в — временные диаграммы напряжений и токов
Наличие в фазах вторичной обмотки трансформатора индуктивности La приводит к тому, что переход гока ld от одного вентиля к другому происходит не мгновенно, а в течение некоторого промежутка времени, который называется углом коммутации и обозначается буквой у.
Таким образом, коммутация тока вентилей уменьшает выпрямленное напряжение, увеличивает его пульсацию и время работы вентиля (фазы). Увеличение длительности работы фазы несколько уменьшает действующее значение тока фазы и вентиля, поэтому при расчете токов в элементах выпрямителя (напри мер, /в, /2, li) перекрытие фаз можно не учитывать и пользоваться соотношениями табл. 1.
Инвертирование тока. Инвертированием называется процесс преобразования энергии постоянного тока в энергию переменного тока, т.е. процесс, обратный выпрямлению. При выпрямлении тока электрическая энергия передается из сети переменного тока к потребителю постоянного тока, а при инвертировании поток энергии направлен от источника постоянного тока в сеть переменного тока.
Инвертирование тока применяется для преобразования энергии постоянного тока в энергию переменного тока в линиях электропередачи постоянного тока, рекуперативного торможения двигателей постоянного тока, питаемых от управляемых выпрямителей, преобразования промышленной частоты и в других случаях.
Выходным звеном инвертора, работающего на сеть переменного тока, является трансформатор, параметры которого (число витков и количество обмоток) определяют значение и число фаз получаемого переменного напряжения (тока). Для получения переменного тока в обмотках трансформатора, подключенного к источнику постоянного тока, необходимо обеспечить периодический переход тока из одной обмотки в другую. Это достигается путем прерывания постоянного тока и распределения его по фазам трансформатора с помощью управляемых вентилей.
Изменение направления потока энергии требует изменения знака мощности Pd = Udld, развиваемой выпрямителем, что может быть достигнуто путем изменения направления тока /4 или напряжения Ud. Но выпрямленный ток не может изменить своего направления относительно зажимов выпрямителя вследствие односторонней проводимости тиристоров, поэтому изменение знака мощности можно осуществить только за счет изменения знака среднего значения выпрямленного напряжения, что достигается в управляемом выпрямителе увеличением угла управления а > 90°.
Переход от выпрямительного режима к инверторному рассмотрим на примере управляемого выпрямителя, собранного по двух полупериодной схеме на тиристорах VC1, VC2 (рис.0 cos а, > Еа. Схема работает выпрямителем на батарею, ЭДС Еа которой играет роль противодействующего напряжения, так как направлена против проводимости тиристоров, т.е. имеет отрицательный знак (— Ед) и для удобства графического сравнения с выпрямленным напряжением UdB на рис. 31,6 отложена над осью абсцисс. В этом случае имеет место процесс выпрямления, т.е. передачи мощности от сети переменного тока в аккумуляторную батарею, так как когда и2 > 0 и угол Oj = 60°, напряжение UdB превышает противо-ЭДС Еа.
Рис. 31. Работа однофазного управляемого преобразователя в выпрямительном и инверторном режимах:
а — схема включения элементов; 6—д — временные диаграммы, иллюстрирующие переход от выпрямления тока к инвертированию
коммутации у на угол 5 не меньше, чем это необходимо для полного восстановления закрытого состояния тиристора. Следовательно, для надежной работы тиристорного преобразователя в инверторном режиме требуется соблюдать условие /3тт > >1+8.
Рис. 32. Трехфазный реверсивный преобразователь, работающий на двигатель постоянного тока:
а — схеме включения элементов; б—д — кривые напряжений при выпрямлении и инвертировании тока
Таким образом, для перевода схемы из режима выпрямления в режим инвертирования необходимо: 1) подключить источник постоянного тока с полярностью, обратной режиму выпрямления; 2) обеспечить протекание тока через тиристоры преимущественно при отрицательной полярности вторичных напряжений и2, проводя их открывание с углом опережения —0.
Что такое выпрямитель? Типы выпрямителей в электронике
Что такое выпрямитель?
Выпрямитель — это устройство, которое преобразует колеблющийся двунаправленный переменный ток (AC) в однонаправленный постоянный ток (DC). Выпрямители могут принимать самые разные физические формы, от ламповых диодов и кристаллических радиоприемников до современных кремниевых конструкций.
Простейшие выпрямители, называемые однополупериодными выпрямителями, работают, устраняя одну сторону переменного тока, тем самым пропуская только одно направление тока. Поскольку половина входной мощности переменного тока не используется, однополупериодные выпрямители производят очень неэффективное преобразование. Более эффективной альтернативой преобразования является двухполупериодный выпрямитель, который использует обе стороны формы волны переменного тока. Информацию о том, как работают однополупериодные и двухполупериодные выпрямители, смотрите здесь.
Использование выпрямителя
Выпрямители имеют решающее значение для работы множества различных устройств.Поскольку стандартная электрическая распределительная сеть использует питание переменного тока, любому устройству, работающему от постоянного тока, для правильной работы требуется выпрямитель. Практически вся современная электроника нуждается в стабильной постоянной мощности постоянного тока для правильной работы.
Дополнительно мы используем выпрямители для изменения напряжения в системах постоянного тока. Поскольку в некоторых сценариях относительно сложно преобразовать напряжение постоянного тока напрямую, самым простым решением может быть следующий процесс:
1. Преобразование постоянного тока в переменный
2.Изменить напряжение с помощью трансформатора
3. Преобразуйте переменный ток обратно в постоянный с помощью выпрямителя
В некоторых случаях выпрямитель выполняет прямую функцию помимо преобразования переменного тока в постоянный. Возьмем, к примеру, одну из самых ранних конструкций радиоприемников: радиоприемник на кристалле. В этом устройстве использовался тонкий провод, прижатый к кристаллу (мы теперь будем называть этот компонент диодом), который напрямую выпрямляет радиосигнал переменного тока, таким образом извлекая звук и воспроизводя звук в наушниках.Прецизионные выпрямители все еще используются в некоторых типах радиоприемников.
Исправление пламенем — еще один пример непосредственного применения исправления. В этом случае пламя действует как выпрямитель из-за разницы в подвижности электронов и положительных ионов, присутствующих в пламени. Мы используем смягчающее воздействие огня на переменный ток в системах газового отопления, чтобы управлять наличием пламени.
Теги товаров
Как работает выпрямитель?
Обновлено 28 декабря 2020 г.
Автор: S.Hussain Ather
Вы можете задаться вопросом, как линии электропередач посылают электрические токи на большие расстояния для различных целей. И есть разные «виды» электричества. Электроэнергия, питающая электрические железнодорожные системы, может не подходить для бытовых приборов, таких как телефоны и телевизоры. Выпрямители помогают, преобразуя эти разные типы электричества.
Мостовой выпрямитель и выпрямительный диод
Выпрямители позволяют преобразовывать переменный ток (AC) в постоянный (DC).Переменный ток — это ток, который переключается между течением вперед и назад через равные промежутки времени, в то время как постоянный ток течет в одном направлении. Обычно они используют мостовой выпрямитель или выпрямительный диод.
Во всех выпрямителях используются переходы P-N , полупроводниковые устройства, которые пропускают электрический ток только в одном направлении от образования полупроводников p-типа с полупроводниками n-типа. Сторона «p» имеет избыток дырок (места, где нет электронов), поэтому она заряжена положительно.Сторона «n» отрицательно заряжена электронами в их внешних оболочках.
Многие схемы с этой технологией построены с мостовым выпрямителем . Мостовые выпрямители преобразуют переменный ток в постоянный, используя систему диодов, сделанных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление сигнала переменного тока, либо полуволновым методом, который выпрямляет оба направления входного переменного тока.
Полупроводники — это материалы, которые пропускают ток, потому что они сделаны из металлов, таких как галлий, или металлоидов, таких как кремний, которые загрязнены такими материалами, как фосфор, в качестве средства контроля тока.Вы можете использовать мостовой выпрямитель для различных применений в широком диапазоне токов.
Мостовые выпрямители также имеют то преимущество, что они выдают больше напряжения и мощности, чем другие выпрямители. Несмотря на эти преимущества, мостовые выпрямители страдают от необходимости использовать четыре диода с дополнительными диодами по сравнению с другими выпрямителями, что вызывает падение напряжения, которое снижает выходное напряжение.
Кремниевые и германиевые диоды
Ученые и инженеры обычно используют кремний при создании диодов чаще, чем германий.Кремниевые p-n-переходы работают более эффективно при более высоких температурах, чем германиевые. Кремниевые полупроводники облегчают прохождение электрического тока и могут быть созданы с меньшими затратами.
Эти диоды используют p-n-переход для преобразования переменного тока в постоянный как своего рода электрический «переключатель», который позволяет току течь в прямом или обратном направлении в зависимости от направления p-n-перехода. Диоды с прямым смещением позволяют току продолжать течь, в то время как диоды с обратным смещением блокируют его. Это то, что заставляет кремниевые диоды иметь прямое напряжение около 0.7 вольт, так что они пропускают ток, только если он больше вольт. Для германиевых диодов прямое напряжение составляет 0,3 В.
Анодный вывод батареи, электрода или другого источника напряжения, где в цепи происходит окисление, снабжает отверстия катодом диода, формируя p-n переход. Напротив, катод источника напряжения, где происходит восстановление, обеспечивает электроны, которые отправляются на анод диода.
Схема полуволнового выпрямителя
Вы можете изучить, как полуволновые выпрямители соединены в схемах, чтобы понять, как они работают.Полупериодные выпрямители переключаются между прямым и обратным смещением в зависимости от положительного или отрицательного полупериода входной волны переменного тока. Он отправляет этот сигнал на нагрузочный резистор, так что ток, протекающий через резистор, пропорционален напряжению. Это происходит из-за закона Ома, который представляет напряжение В как произведение тока I и сопротивления R в
В = IR
Напряжение на нагрузочном резисторе можно измерить как напряжение питания В, с , что равно выходному постоянному напряжению В, на выходе .Сопротивление, связанное с этим напряжением, также зависит от диода самой схемы. Затем схема выпрямителя переключается на обратное смещение, в котором она принимает отрицательный полупериод входного сигнала переменного тока. В этом случае ток не течет через диод или схему, и выходное напряжение падает до 0. Таким образом, выходной ток является однонаправленным.
Схема двухполупериодного выпрямителя
••• Syed Hussain Ather
Двухполупериодные выпрямители, напротив, используют полный цикл (с положительными и отрицательными полупериодами) входного сигнала переменного тока.Четыре диода в схеме двухполупериодного выпрямителя расположены так, что, когда входной сигнал переменного тока является положительным, ток течет через диод от D 1 к сопротивлению нагрузки и обратно к источнику переменного тока через Д 2 . Когда сигнал переменного тока отрицательный, ток принимает вместо этого путь D 3 -load- D 4 . Сопротивление нагрузки также выводит напряжение постоянного тока от двухполупериодного выпрямителя.
Среднее значение напряжения двухполупериодного выпрямителя в два раза больше, чем у полуволнового выпрямителя, а среднеквадратичное значение напряжения , метод измерения переменного напряжения, двухполупериодного выпрямителя в √2 раза больше, чем у двухполупериодного выпрямителя однополупериодный выпрямитель.
Компоненты и приложения выпрямителя
Большинство электронных устройств в вашем доме используют переменный ток, но некоторые устройства, такие как ноутбуки, перед использованием преобразуют этот ток в постоянный. В большинстве ноутбуков используется источник питания с переключаемым режимом (SMPS), который позволяет выходному напряжению постоянного тока больше мощности для размера, стоимости и веса адаптера.
SMPS работают с использованием выпрямителя, генератора и фильтра, которые управляют широтно-импульсной модуляцией (метод уменьшения мощности электрического сигнала), напряжением и током.Генератор — это источник сигнала переменного тока, по которому вы можете определить амплитуду тока и направление, в котором он течет. Затем адаптер переменного тока ноутбука использует это для подключения к источнику переменного тока и преобразует высокое напряжение переменного тока в низкое напряжение постоянного тока, форму, которую он может использовать для питания самого себя во время зарядки.
В некоторых выпрямительных системах также используется сглаживающая цепь или конденсатор, который позволяет им выдавать постоянное напряжение, а не то, которое изменяется во времени. Электролитический конденсатор сглаживающих конденсаторов может достигать емкости от 10 до тысяч микрофарад (мкФ).Для большего входного напряжения требуется большая емкость.
В других выпрямителях используются трансформаторы, которые изменяют напряжение, используя четырехслойные полупроводники, известные как тиристоры , наряду с диодами. Выпрямитель с кремниевым управлением , другое название тиристора, использует катод и анод, разделенные затвором и его четырьмя слоями, для создания двух p-n-переходов, расположенных один поверх другого.
Использование выпрямительных систем
Типы выпрямительных систем различаются в зависимости от приложений, в которых необходимо изменять напряжение или ток.Помимо уже рассмотренных приложений, выпрямители находят применение в паяльном оборудовании, электросварке, радиосигналах AM, генераторах импульсов, умножителях напряжения и схемах питания.
Паяльники, которые используются для соединения частей электрических цепей вместе, используют полуволновые выпрямители для одного направления входного переменного тока. Методы электросварки, в которых используются мостовые выпрямительные схемы, являются идеальными кандидатами для обеспечения стабильного поляризованного постоянного напряжения.
AM-радио, модулирующее амплитуду, может использовать полуволновые выпрямители для обнаружения изменений входящего электрического сигнала.В схемах генерации импульсов, которые генерируют прямоугольные импульсы для цифровых схем, используются полуволновые выпрямители для изменения входного сигнала.
Выпрямители в цепях питания преобразуют переменный ток в постоянный от различных источников питания. Это полезно, поскольку постоянный ток обычно передается на большие расстояния, прежде чем он будет преобразован в переменный ток для бытовой электроэнергии и электронных устройств. В этих технологиях широко используется мостовой выпрямитель, который может справляться с изменением напряжения.
Что это такое? Как это работает?
Начнем с того, что ваше самое ценное имущество не могло бы функционировать без выпрямителя: нет, это не ваш телефон, а его зарядное устройство.Зарядное устройство вашего телефона и, если на то пошло, большинство ваших домашних электронных устройств работают не от источника переменного тока — переменного тока, вырабатываемого электростанциями, а затем подаваемого в ваш дом через кабели передачи, — а от источника постоянного тока: постоянный ток, который неизменно течет в одном направлении.
Выпрямитель — это схема, встроенная в ваше устройство, которая преобразует беспокойный источник переменного тока, поступающий в ваш дом, в постоянный источник постоянного тока, чтобы ваши устройства могли нормально работать.Однако как выпрямитель достигает этого выпрямления ?
Диод
Диод — одно из первых детей полупроводниковой революции. Устройство представляет собой две пластины из полупроводников, склеенных друг с другом. Однако полупроводники различаются по своим свойствам: один обеднен электронами или имеет избыток положительных зарядов или дырок, а другой — наполнен электронами и, следовательно, демонстрирует избыток отрицательных зарядов. Вместе они составляют то, что называется соединением PN.
Основное назначение диода, в отличие от резистора, состоит в том, чтобы позволить току течь в одном направлении. Ток через диод будет течь только тогда, когда его положительный полупроводник или анод , подключен к положительной клемме батареи, а его отрицательный полупроводник или катод , подключен к отрицательной клемме батареи. При перекрестном соединении клемм ток подавляется.
Диод лежит в основе выпрямителя, где выпрямитель использует свои свойства для выполнения своего предназначения.
Rectification
Прежде всего, резко снижается напряжение переменного тока, так как трехзначное напряжение поджарит ваш тостер или зарядное устройство. Это достигается с помощью трансформатора или регулятора напряжения. Уменьшенный источник переменного тока затем подается на устройство, где его сначала встречает выпрямитель. Выпрямитель преобразует переменный ток в постоянный, а затем передает его в основную схему устройства.
Выпрямитель может генерировать источник постоянного тока либо путем выпрямления только одного цикла (положительного или отрицательного) источника переменного тока, либо выпрямляя их оба.Поэтому первый называется полуволновым выпрямителем, поскольку он выпрямляет только половину формы волны питания, а второй называется двухполупериодным выпрямителем, поскольку он выпрямляет обе половины или всю форму волны.
Полупериодный выпрямитель
Мощность переменного тока уменьшается с помощью трансформатора и подается на эту конкретную конфигурацию диодов. Конфигурация будет исправлять только положительные циклы формы волны:
Положительный полуволновой выпрямитель
Во время положительного цикла положительный заряд получается на верхнем узле, а отрицательный — на нижнем.Теперь, поскольку диод пропускает ток только тогда, когда анод (треугольник) подключен к положительной клемме, а катод (стержень) подключен к отрицательной клемме, оба диода в конфигурации будут проводить во время положительной клеммы. цикл. Таким образом, на нагрузку подается ток: положительный цикл повторяется на его выходной форме волны.
Однако, когда источник переменного тока меняется, полярность на узлах меняется: теперь верхний узел заряжен отрицательно, а нижний узел заряжен положительно.Диоды перекрестно соединены, и ток перестает течь. Когда ток не достигает нагрузки, выходной сигнал для отрицательного цикла представляет собой линию, отслеживающую ось X, отображающую течение времени, но не ток.
Напряжение на нагрузке после выпрямления
Отрицательный цикл может быть исправлен (за счет положительного, конечно) путем некоторой модификации конфигурации диодов:
Отрицательный полуволновой выпрямитель
Конфигурация так что нагрузка будет испытывать ток во время отрицательного цикла, более конкретно, когда отрицательный заряд получен на верхнем узле, а положительный заряд получен на нижнем узле.Конечно, будучи полуволновым выпрямителем, ток гасится, когда ток меняется и полярности меняются. Поскольку этот выпрямитель выпрямляет только отрицательные циклы, его выходной сигнал будет выглядеть следующим образом:
Напряжение на нагрузке после выпрямления
Однако можно наблюдать неровности формы сигнала: две волны производительности, разделенные нежелательной пустотой простоя или непродуктивность. Форму сигнала можно «сгладить» с помощью большого фильтрующего конденсатора. Конденсатор накапливает энергию в течение производственного цикла и высвобождает ее в течение непродуктивного цикла до начала следующего производственного цикла.Затем он снова накапливает энергию, и весь цикл повторяется. Результатом является соединение долины — постоянный однонаправленный источник постоянного тока.
Тем не менее, преобразование крайне неэффективно: почему мы должны тратить половину всей энергии? Почему бы нам не использовать каждую унцию?
Полнопериодный выпрямитель
Один выпрямитель выпрямляет только положительные половины, а другой — только отрицательные. Так как же разработать выпрямитель, который последовательно выпрямляет обе половины? Просто объединив два выпрямителя!
Full Wave Rectifier
Схема выглядит запутанной и поэтому автоматически становится сложной и запутанной.Однако его функция, напротив, удивительно проста. Внимательно изучите схему, и вы увидите, что это буквально комбинация двух полуволновых выпрямителей, описанных выше.
Первый однополупериодный выпрямитель проводит в течение положительного цикла, а второй полуволновой выпрямитель проводит в течение отрицательного цикла. Поскольку ток проходит через нагрузку в течение обоих циклов, в форме выходного сигнала не обнаруживается пустот. Это непрерывный ряд холмов или след энергии.
Статьи по теме
Статьи по теме
Конечно, между холмами есть зазоры, но они намного уже, чем зазоры в форме выходного сигнала полуволнового выпрямителя. Мы можем устранить эти небольшие несоответствия, опять же, с помощью большого фильтрующего конденсатора. Сглаженная форма волны — еще более стабильный, энергоэффективный и высококачественный источник постоянного тока.
Теория полноволнового выпрямителя и мостового выпрямителя
В предыдущем руководстве по силовым диодам мы обсудили способы уменьшения пульсаций или колебаний напряжения постоянного постоянного напряжения путем подключения сглаживающих конденсаторов через сопротивление нагрузки.
Хотя этот метод может подходить для приложений с низким энергопотреблением, он не подходит для приложений, которым требуется «стабильное и плавное» напряжение питания постоянного тока. Один из способов улучшить это — использовать каждый полупериод входного напряжения вместо каждого другого полупериода. Схема, которая позволяет нам это делать, называется полноволновым выпрямителем .
Подобно полуволновой схеме, двухполупериодная схема выпрямителя вырабатывает выходное напряжение или ток, которые являются чисто постоянным током или имеют некоторую заданную составляющую постоянного тока.Двухполупериодные выпрямители имеют некоторые фундаментальные преимущества перед своими полуволновыми выпрямителями. Среднее (постоянное) выходное напряжение выше, чем для полуволны, выход двухполупериодного выпрямителя имеет гораздо меньше пульсаций, чем у полуволнового выпрямителя, что обеспечивает более плавную форму выходного сигнала.
В схеме полноволнового выпрямителя теперь используются два диода, по одному на каждую половину цикла. Используется многообмоточный трансформатор, вторичная обмотка которого разделена поровну на две половины с общим центральным ответвленным соединением (C).Эта конфигурация приводит к тому, что каждый диод проводит по очереди, когда его анодный вывод является положительным по отношению к центральной точке трансформатора C, создавая выходной сигнал в течение обоих полупериодов, в два раза больше, чем для полуволнового выпрямителя, поэтому он имеет 100% эффективность, как показано ниже.
Схема полноволнового выпрямителя
Схема двухполупериодного выпрямителя состоит из двух мощных диодов , подключенных к одному сопротивлению нагрузки (R L ), каждый из которых по очереди подает ток на нагрузку.Когда точка A трансформатора является положительной по отношению к точке C, диод D 1 проводит в прямом направлении, как показано стрелками.
Когда точка B положительна (в отрицательной половине цикла) относительно точки C, диод D 2 проводит в прямом направлении, а ток, протекающий через резистор R, имеет одинаковое направление для обоих полупериодов. Поскольку выходное напряжение на резисторе R представляет собой векторную сумму двух комбинированных сигналов, этот тип схемы двухполупериодного выпрямителя также известен как «двухфазная» схема.
Мы можем ясно увидеть это влияние, если запустим схему в схеме симулятора партисимулятора с удаленным сглаживающим конденсатором.
Форма волны симуляции частичного симулятора
Поскольку промежутки между каждой полуволной, создаваемой каждым диодом, теперь заполняются другим диодом, среднее выходное напряжение постоянного тока на нагрузочном резисторе теперь вдвое больше, чем у схемы однополупериодного выпрямителя, и составляет около 0,637 В макс. пикового напряжения без потерь.
Где: V MAX — максимальное пиковое значение в одной половине вторичной обмотки, а V RMS — действующее значение.
Пиковое напряжение выходного сигнала такое же, как и раньше, для полуволнового выпрямителя при условии, что каждая половина обмоток трансформатора имеет одинаковое среднеквадратичное значение напряжения. Чтобы получить различное выходное напряжение постоянного тока, можно использовать разные коэффициенты трансформатора.
Основным недостатком этого типа двухполупериодной схемы выпрямителя является то, что для данной выходной мощности требуется трансформатор большего размера с двумя отдельными, но идентичными вторичными обмотками, что делает этот тип двухполупериодной схемы выпрямления более дорогостоящей по сравнению со схемой «Полнополупериодный мостовой выпрямитель». эквивалент.
Полноволновой мостовой выпрямитель
Другой тип схемы, которая выдает ту же форму выходного сигнала, что и схема двухполупериодного выпрямителя, описанная выше, — это полноволновой мостовой выпрямитель . В этом типе однофазного выпрямителя используются четыре отдельных выпрямительных диода, соединенных в виде «мостовой» конфигурации с обратной связью, для получения желаемого выхода.
Основным преимуществом этой мостовой схемы является то, что она не требует специального трансформатора с центральным ответвлением, что снижает ее размер и стоимость.Одиночная вторичная обмотка подключена к одной стороне сети диодного моста, а нагрузка — к другой, как показано ниже.
Диодный мостовой выпрямитель
Четыре диода с маркировкой от D 1 до D 4 расположены «последовательными парами», причем ток в каждом полупериоде проходит только через два диода. Во время положительного полупериода питания диоды D1 и D2 проходят последовательно, в то время как диоды D3 и D4 смещены в обратном направлении, и ток течет через нагрузку, как показано ниже.
Положительный полупериод
Во время отрицательного полупериода питания диоды D3 и D4 проходят последовательно, но диоды D1 и D2 выключаются, поскольку теперь они смещены в обратном направлении. Ток, протекающий через нагрузку, имеет то же направление, что и раньше.
Отрицательный полупериод
Поскольку ток, протекающий через нагрузку, является однонаправленным, напряжение, развиваемое на нагрузке, также однонаправлено, как и в двухполупериодном двухполупериодном выпрямителе с двумя предыдущими диодами, поэтому среднее напряжение постоянного тока на нагрузке равно 0.637 В макс .
Типичный мостовой выпрямитель
Однако в действительности в течение каждого полупериода ток протекает через два диода вместо одного, поэтому амплитуда выходного напряжения на два падения напряжения (2 * 0,7 = 1,4 В) меньше амплитуды входного V MAX . Частота пульсаций теперь вдвое превышает частоту источника питания (например, 100 Гц для источника питания 50 Гц или 120 Гц для источника питания 60 Гц).
Хотя мы можем использовать четыре отдельных силовых диода для создания двухполупериодного мостового выпрямителя, готовые компоненты мостового выпрямителя доступны в готовом виде в диапазоне различных значений напряжения и тока, которые могут быть впаяны непосредственно в печатную плату. платы или быть подключенными лопатками разъемов.
На изображении справа показан типичный однофазный мостовой выпрямитель с срезанным одним углом. Этот срезанный угол указывает на то, что ближайшая к углу клемма является положительной или положительной выходной клеммой или выводом, а противоположный (диагональный) вывод является отрицательным или отрицательным выводом. Два других соединительных провода предназначены для ввода переменного напряжения от вторичной обмотки трансформатора.
Сглаживающий конденсатор
В предыдущем разделе мы видели, что однофазный однополупериодный выпрямитель генерирует выходную волну каждые полупериод, и что было непрактично использовать этот тип схемы для создания стабильного источника постоянного тока.Однако двухполупериодный мостовой выпрямитель дает нам большее среднее значение постоянного тока (0,637 В макс.) С меньшими наложенными пульсациями, в то время как форма выходного сигнала вдвое превышает частоту входной частоты источника питания.
Мы можем улучшить средний выход постоянного тока выпрямителя, в то же время уменьшив изменение переменного тока выпрямленного выхода, используя сглаживающие конденсаторы для фильтрации формы выходного сигнала. Сглаживающие или накопительные конденсаторы, подключенные параллельно нагрузке на выходе схемы двухполупериодного мостового выпрямителя, увеличивают средний выходной уровень постоянного тока еще выше, поскольку конденсатор действует как запоминающее устройство, как показано ниже.
Двухполупериодный выпрямитель со сглаживающим конденсатором
Сглаживающий конденсатор преобразует двухполупериодную рябь на выходе выпрямителя в более плавное выходное напряжение постоянного тока. Если мы теперь запустим схему симулятора Partsim с разными значениями установленного сглаживающего конденсатора, мы сможем увидеть, как он влияет на выпрямленную форму выходного сигнала, как показано.
5 мкФ Сглаживающий конденсатор
Синий график на осциллограмме показывает результат использования 5.Сглаживающий конденсатор 0 мкФ на выходе выпрямителя. Раньше напряжение нагрузки соответствовало выпрямленной выходной форме волны до нуля вольт. Здесь конденсатор 5 мкФ заряжается до пикового напряжения выходного импульса постоянного тока, но когда оно падает с пикового напряжения обратно до нуля вольт, конденсатор не может разряжаться так быстро из-за постоянной времени RC цепи.
Это приводит к разрядке конденсатора примерно до 3,6 В, в этом примере напряжение на нагрузочном резисторе поддерживается до тех пор, пока конденсатор не перезарядится еще раз при следующем положительном наклоне импульса постоянного тока.Другими словами, конденсатор успевает разрядиться лишь ненадолго, прежде чем следующий импульс постоянного тока снова зарядит его до пикового значения. Таким образом, напряжение постоянного тока, приложенное к нагрузочному резистору, падает лишь на небольшую величину. Но мы можем улучшить это еще, увеличив емкость сглаживающего конденсатора, как показано.
Сглаживающий конденсатор 50 мкФ
Здесь мы увеличили емкость сглаживающего конденсатора в десять раз с 5 мкФ до 50 мкФ, что уменьшило пульсации, увеличив минимальное напряжение разряда по сравнению с предыдущими 3.От 6 вольт до 7,9 вольт. Однако, используя схему симулятора Partsim, мы выбрали нагрузку 1 кОм, чтобы получить эти значения, но по мере того, как сопротивление нагрузки уменьшается, ток нагрузки увеличивается, что приводит к более быстрой разрядке конденсатора между импульсами зарядки.
Влияние подачи большой нагрузки с помощью одного сглаживающего или накопительного конденсатора можно уменьшить за счет использования конденсатора большего размера, который накапливает больше энергии и меньше разряжается между импульсами зарядки. Обычно для цепей питания постоянного тока сглаживающий конденсатор является алюминиево-электролитическим типом, который имеет значение емкости 100 мкФ или более с повторяющимися импульсами постоянного напряжения от выпрямителя, заряжающего конденсатор до пикового напряжения.
Однако есть два важных параметра, которые следует учитывать при выборе подходящего сглаживающего конденсатора, и это его рабочее напряжение , которое должно быть выше, чем выходное значение холостого хода выпрямителя, и его значение емкости , которое определяет величину пульсации, которая появится поверх напряжения постоянного тока.
Слишком низкое значение емкости, и конденсатор мало влияет на форму выходного сигнала. Но если сглаживающий конденсатор достаточно большой (можно использовать параллельные конденсаторы) и ток нагрузки не слишком велик, выходное напряжение будет почти таким же плавным, как чистый постоянный ток.Как правило, мы стремимся к тому, чтобы пульсации напряжения составляли менее 100 мВ от пика к пику.
Максимальное напряжение пульсаций, присутствующее в цепи полноволнового выпрямителя , определяется не только значением сглаживающего конденсатора, но и частотой и током нагрузки, и рассчитывается как:
Мостовой выпрямитель пульсаций напряжения
Где: I — постоянный ток нагрузки в амперах, ƒ — частота пульсаций или удвоенная входная частота в герцах, а C — емкость в фарадах.
Основное преимущество двухполупериодного мостового выпрямителя заключается в том, что он имеет меньшее значение пульсаций переменного тока для данной нагрузки и меньший резервуар или сглаживающий конденсатор, чем эквивалентный полуволновой выпрямитель. Таким образом, основная частота пульсаций напряжения вдвое больше, чем частота переменного тока (100 Гц), тогда как для полуволнового выпрямителя она точно равна частоте питания (50 Гц).
Величину пульсаций напряжения, которые накладываются диодами поверх напряжения питания постоянного тока, можно практически исключить, добавив значительно улучшенный π-фильтр (пи-фильтр) к выходным клеммам мостового выпрямителя.Этот тип фильтра нижних частот состоит из двух сглаживающих конденсаторов, обычно одинакового номинала, и дросселя или индуктивности между ними, чтобы ввести путь с высоким сопротивлением к переменной составляющей пульсаций
.Другой более практичной и дешевой альтернативой является использование стандартной микросхемы трехконтактного регулятора напряжения, такой как LM78xx (где «xx» означает номинальное выходное напряжение) для положительного выходного напряжения или его обратного эквивалента LM79xx для отрицательное выходное напряжение, которое может уменьшить пульсации более чем на 70 дБ (техническое описание), обеспечивая при этом постоянный выходной ток более 1 А.
Почему бы не проверить свои знания о схемах двухполупериодного выпрямителя с помощью программы Partsim Simulator Tool сегодня. Попробуйте разные значения сглаживающего конденсатора и сопротивления нагрузки в вашей цепи, чтобы увидеть влияние на форму выходного сигнала.
В следующем уроке о диодах мы рассмотрим стабилитрон, который использует свою характеристику напряжения обратного пробоя для создания постоянного и фиксированного выходного напряжения на самом себе.
Цепи выпрямителя| Диоды и выпрямители
Что такое исправление?
Теперь мы подошли к самому популярному применению диода: выпрямительный .Проще говоря, выпрямление — это преобразование переменного тока (AC) в постоянный (DC). Это связано с устройством, которое допускает только односторонний поток электрического заряда. Как мы видели, именно это и делает полупроводниковый диод. Самым простым видом выпрямительной схемы является полуволновой выпрямитель . Он позволяет только половине сигнала переменного тока проходить через нагрузку. (Рисунок ниже)
Схема однополупериодного выпрямителя.
Полуволновое выпрямление
Для большинства силовых приложений однополупериодного выпрямления недостаточно.Гармонический состав выходного сигнала выпрямителя очень велик, и, следовательно, его трудно фильтровать. Кроме того, источник питания переменного тока подает питание на нагрузку только половину за полный цикл, что означает, что половина его мощности не используется. Однако однополупериодное выпрямление — очень простой способ снизить мощность резистивной нагрузки. Некоторые двухпозиционные переключатели яркости лампы подают полную мощность переменного тока на нить накала лампы для «полной» яркости, а затем полуволновое выпрямление для уменьшения светового потока. (рисунок ниже)
Применение однополупериодного выпрямителя: двухуровневый диммер лампы.
В положении переключателя «Dim» лампа накаливания получает примерно половину мощности, которую она обычно получает при работе от двухполупериодного переменного тока. Поскольку полуволновая выпрямленная мощность пульсирует намного быстрее, чем нить накала успевает нагреться и остыть, лампа не мигает. Вместо этого его нить накаливания просто работает при более низкой температуре, чем обычно, обеспечивая меньшую светоотдачу.
Этот принцип быстрой «пульсации» мощности на медленно реагирующее нагрузочное устройство для управления поданной на него электрической мощностью широко распространен в мире промышленной электроники.Поскольку управляющее устройство (в данном случае диод) является либо полностью проводящим, либо полностью непроводящим в любой момент времени, оно рассеивает мало тепловой энергии при управлении мощностью нагрузки, что делает этот метод управления мощностью очень энергоэффективным. Эта схема, возможно, является самым грубым из возможных методов подачи импульсной мощности на нагрузку, но ее достаточно для проверки правильности концепции.
Полноволновые выпрямители
Если нам нужно выпрямить переменный ток, чтобы получить полное использование как полупериодов синусоидальной волны, необходимо использовать другую конфигурацию схемы выпрямителя.Такая схема называется двухполупериодным выпрямителем . Один вид двухполупериодного выпрямителя, называемый конструкцией с центральным отводом, использует трансформатор с вторичной обмоткой с центральным отводом и двумя диодами, как показано на рисунке ниже.
Двухполупериодный выпрямитель, исполнение с центральным отводом.
Положительный полупериод
Работа этой схемы легко понять по одному полупериоду за раз. Рассмотрим первый полупериод, когда полярность напряжения источника положительная (+) вверху и отрицательная (-) внизу.В это время проводит только верхний диод; нижний диод блокирует ток, а нагрузка «видит» первую половину синусоидальной волны, положительную вверху и отрицательную внизу. Только верхняя половина вторичной обмотки трансформатора проводит ток в течение этого полупериода, как показано на рисунке ниже.
Двухполупериодный выпрямитель с центральным ответвлением: верхняя половина вторичной обмотки проводит ток в течение положительного полупериода входного сигнала, обеспечивая положительный полупериод на нагрузку.
Отрицательный полупериод
В течение следующего полупериода полярность переменного тока меняется на противоположную.Теперь другой диод и другая половина вторичной обмотки трансформатора пропускают ток, в то время как части схемы, которые раньше пропускали ток в течение последнего полупериода, остаются в режиме ожидания. Нагрузка по-прежнему «видит» половину синусоидальной волны той же полярности, что и раньше: положительная вверху и отрицательная внизу. (Рисунок ниже)
Двухполупериодный выпрямитель с центральным ответвлением: во время отрицательного полупериода на входе нижняя половина вторичной обмотки проводит ток, передавая положительный полупериод на нагрузку.
Недостатки конструкции двухполупериодного выпрямителя
Одним из недостатков этой конструкции двухполупериодного выпрямителя является необходимость трансформатора с вторичной обмоткой с центральным отводом. Если рассматриваемая схема является схемой большой мощности, размер и стоимость подходящего трансформатора значительны. Следовательно, выпрямитель с центральным отводом встречается только в маломощных приложениях.
Другие конфигурации
Полярность двухполупериодного выпрямителя с центральным отводом на нагрузке может быть изменена путем изменения направления диодов.Кроме того, перевернутые диоды можно подключать параллельно к существующему выпрямителю с положительным выходом. Результатом является двухполюсный двухполупериодный выпрямитель с центральным ответвлением, показанный на рисунке ниже. Обратите внимание, что подключение самих диодов такое же, как у моста.
Двухполюсный двухполупериодный выпрямитель с центральным ответвлением
Полноволновые мостовые выпрямители
Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации четырехдиодного моста.По понятным причинам эта конструкция называется двухполупериодным мостом . (Рисунок ниже)
Двухполупериодный мостовой выпрямитель.
Направления тока для двухполупериодной схемы мостового выпрямителя показаны на рисунке ниже для положительного полупериода и на рисунке ниже для отрицательного полупериода сигнала источника переменного тока. Обратите внимание, что независимо от полярности входа ток течет через нагрузку в одном и том же направлении. То есть отрицательный полупериод источника является положительным полупериодом при нагрузке.
Ток проходит через два последовательно включенных диода для обеих полярностей. Таким образом, в диодах теряются два диодных падения напряжения источника (0,7 · 2 = 1,4 В для Si). Это недостаток по сравнению с двухполупериодной конструкцией с центральным отводом. Этот недостаток является проблемой только для источников питания с очень низким напряжением.
Двухполупериодный мостовой выпрямитель: протекание тока для положительных полупериодов.
Двухполупериодный мостовой выпрямитель: протекание тока для отрицательных полупериодов.
Схема альтернативного двухполупериодного мостового выпрямителяЗапоминание правильного расположения диодов в схеме двухполупериодного мостового выпрямителя часто может расстраивать новичка в области электроники. Я обнаружил, что альтернативное представление этой схемы легче запомнить и понять. Это точно такая же схема, за исключением того, что все диоды нарисованы горизонтально и все «указывают» в одном направлении. (Рисунок ниже)
Альтернативный стиль компоновки двухполупериодного мостового выпрямителя.
Полифазная версия с альтернативной компоновкой
Одним из преимуществ запоминания этой схемы для схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии, показанной на рисунке ниже.
Трехфазная двухполупериодная мостовая схема выпрямителя.
Каждая трехфазная линия подключается между парой диодов: один для подачи питания на положительную (+) сторону нагрузки, а другой для подачи питания на отрицательную (-) сторону нагрузки.
Полифазные системы с более чем тремя фазами легко встраиваются в схему мостового выпрямителя.Возьмем, к примеру, схему шестифазного мостового выпрямителя, показанную на рисунке ниже.
Шестифазная двухполупериодная мостовая схема выпрямителя.
Когда выпрямляется многофазный переменный ток, сдвинутые по фазе импульсы накладываются друг на друга, создавая более «плавный» выход постоянного тока (с меньшим содержанием переменного тока), чем полученный при выпрямлении однофазного переменного тока. Это явное преимущество в схемах выпрямителя большой мощности, где чисто физический размер фильтрующих компонентов был бы недопустимым, но при этом необходимо получать мощность постоянного тока с низким уровнем шума.Схема на рисунке ниже показывает двухполупериодное выпрямление трехфазного переменного тока.
Трехфазный переменный ток и трехфазный двухполупериодный выход выпрямителя.
Напряжение пульсации
В любом случае выпрямления — однофазном или многофазном — величина переменного напряжения, смешанного с выходным сигналом постоянного тока выпрямителя, называется пульсирующим напряжением . В большинстве случаев, поскольку желаемой целью является «чистый» постоянный ток, пульсации напряжения нежелательны. Если уровни мощности не слишком велики, можно использовать сети фильтрации для уменьшения пульсаций выходного напряжения.
Одно-, двух- и 6-импульсные устройства
Иногда метод выпрямления упоминается путем подсчета количества выходных «импульсов» постоянного тока на каждые 360 o электрического «вращения». Таким образом, однофазная полуволновая выпрямительная схема будет называться 1-импульсным выпрямителем , потому что она вырабатывает одиночный импульс в течение одного полного цикла (360 o ) формы волны переменного тока. Однофазный двухполупериодный выпрямитель (независимо от конструкции, центральный отвод или мост) будет называться двухпульсным выпрямителем , потому что он выдает два импульса постоянного тока в течение одного цикла переменного тока.Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным блоком .
Фазы цепи выпрямителя
Современная электротехническая конвенция дополнительно описывает функцию схемы выпрямителя, используя трехполевую нотацию: фаз , путей и количество импульсов . Однофазная однополупериодная схема выпрямителя получила несколько загадочное обозначение 1Ph2W1P (1 фаза, 1 способ, 1 импульс), что означает, что напряжение питания переменного тока является однофазным, и этот ток на каждой фазе линий питания переменного тока. движется только в одном направлении (пути), и что на каждые 360 o электрического вращения создается один импульс постоянного тока.
Однофазная двухполупериодная схема выпрямителя с центральным отводом будет обозначена в этой системе обозначений как 1Ph2W2P: 1 фаза, 1 путь или направление тока в каждой половине обмотки и 2 импульса или выходного напряжения за цикл.
Однофазный двухполупериодный мостовой выпрямитель будет обозначен как 1Ph3W2P: то же, что и для конструкции с центральным ответвлением, за исключением тока, может проходить обоими способами через линии переменного тока, а не только одним путем.
Схема трехфазного мостового выпрямителя, показанная ранее, будет называться выпрямителем 3Ph3W6P.
Можно ли получить больше импульсов, чем в два раза больше числа фаз в цепи выпрямителя?
Ответ на этот вопрос: да, особенно в многофазных цепях. Благодаря творческому использованию трансформаторов, наборы двухполупериодных выпрямителей могут быть объединены таким образом, чтобы генерировать более шести импульсов постоянного тока для трех фаз переменного тока. Фазовый сдвиг 30 o вводится от первичной к вторичной трехфазного трансформатора, когда конфигурации обмоток не одного типа.
Другими словами, трансформатор, подключенный по схеме Y-Δ или Δ-Y, будет демонстрировать этот фазовый сдвиг 30 o , в то время как трансформатор, подключенный по схеме Y-Y или Δ-Δ, не будет. Это явление можно использовать, подключив один трансформатор по схеме Y-Y к мостовому выпрямителю, а другой трансформатор по схеме Y-Δ питает второй мостовой выпрямитель, а затем параллельно выходам постоянного тока обоих выпрямителей. (Рисунок ниже)
Поскольку формы пульсаций напряжения на выходах двух выпрямителей сдвинуты по фазе на 30 o друг от друга, их наложение приводит к меньшей пульсации, чем любой выход выпрямителя, рассматриваемый отдельно: 12 импульсов на 360 o вместо шести:
Схема многофазного выпрямителя: 3-фазный, 2-канальный, 12-пульсный (3Ph3W12P)
ОБЗОР:
- Выпрямление — это преобразование переменного тока (AC) в постоянный (DC).
- Полупериодный выпрямитель — это схема, которая позволяет приложить к нагрузке только один полупериод формы волны переменного напряжения, что приводит к одной не меняющейся полярности на ней. Результирующий постоянный ток, подаваемый на нагрузку, значительно «пульсирует».
- Двухполупериодный выпрямитель — это схема, которая преобразует оба полупериода формы волны переменного напряжения в непрерывную серию импульсов напряжения одинаковой полярности. Результирующий постоянный ток, подаваемый на нагрузку, не так сильно «пульсирует».
- Полифазный переменный ток после выпрямления дает гораздо более «гладкую» форму волны постоянного тока (меньше пульсаций напряжения ), чем выпрямленный однофазный переменный ток.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Основы эксплуатации, мониторинга и обслуживания выпрямителя
Устойчивость, кажется, является последней модной фразой, а катодная защита (КЗ) является важным компонентом устойчивости многих металлических конструкций.Что может быть лучше для сохранения и обслуживания инфраструктуры, чем уменьшение коррозии? Некоторые системы CP состоят из расходуемых анодов, которые естественным образом подвержены коррозии для защиты менее активных металлов, таких как сталь. Другим нужны источники питания, чтобы направлять защитный ток в нужном направлении. Наиболее распространенными источниками напряжения подаваемого тока являются выпрямители, которые могут выйти из строя. Выпрямители в хорошем состоянии могут обеспечить бесперебойную работу системы CP, что снижает затраты на ремонт и рабочее время / время технического специалиста. В этой статье обсуждаются основы эксплуатации и обслуживания выпрямителя вместе с основными рекомендациями.
Устойчивость — это способность терпеть. Основная цель любой системы катодной защиты (CP) — смягчение коррозии. Сохранение трубы или другой металлической конструкции за счет предотвращения коррозионного повреждения позволяет ей выдерживать нагрузку. Следовательно, уменьшение коррозии ведет к устойчивости.
CP чаще всего достигается с помощью гальванической (протекторной) системы или системы подаваемого тока. Гальваническая система CP состоит из расходуемых анодов, обычно сделанных из активных металлов (алюминия, магния или цинка), которые подвержены коррозии, чтобы обеспечить защитные токи для менее активного металла, такого как трубопроводная сталь.Система CP наложенного тока (ICCP) использует внешнее питание в виде выпрямителя или другого источника напряжения, который приводит в действие аноды с подаваемым током (например, чугун, графит и смешанный оксид металлов) для коррозии, чтобы распределить защитный ток по конструкции. (катод).
Выпрямитель — это электрическое устройство, преобразующее переменный ток (AC), который периодически меняет направление, в постоянный ток (DC), который течет только в одном направлении. Обязательно, чтобы выпрямитель оставался в состоянии постоянной работы.Поскольку выпрямитель — это электрическое устройство, он уязвим для скачков напряжения. Удар молнии поблизости может вызвать срабатывание автоматического выключателя или короткое замыкание диода. Поэтому регулярные осмотры и мониторинг необходимы для поддержания исправного функционирования выпрямителя с длительным сроком службы.
Безопасность — самый важный аспект всех проверок. Целью любой задачи, связанной с работой выпрямителя, является безопасное выполнение работы, в том числе использование надлежащих средств защиты.
Эксплуатация
Выпрямитель состоит из трех основных компонентов: трансформатора, блока и шкафа.Назначение трансформатора — безопасно отделить входящее переменное напряжение (первичная сторона) от вторичной стороны, которое регулируется для управления выходным напряжением выпрямителя. Как правило, эти регулировки выполняются с ответвителями, подключенными к вторичной обмотке с интервалами, которые предлагают несколько вариантов настройки. Пакет является фактическим выпрямителем и состоит из набора кремниевых диодов или селеновых пластин, которые функционируют как однонаправленные токовые клапаны. Диоды или пластины сконфигурированы так, что переменный ток периодически течет в одном направлении и блокируется в другом, в результате чего оба направления волны переменного тока текут в одном и том же направлении.В шкафу с испытательной панелью надежно размещены эти компоненты, что позволяет осуществлять мониторинг и другие расширенные операции.
Дополнительные элементы, которые можно найти в типичном выпрямителе, включают автоматический выключатель, измерители выходного напряжения и тока, грозовые разрядники, ограничители перенапряжения, ответвительные шины трансформатора и предохранители.
В таблице 1 перечислены общие правила, которые можно и нельзя делать с выпрямителями. 1 Эта информация помогает обеспечить безопасность персонала и надежную, длительную работу выпрямителя.
Мониторинг
Регулярный контроль рекомендуется для всех выпрямительных установок. Основная цель контроля — убедиться, что выпрямитель все еще работает, и что скачок напряжения не сработал в выключателе. Некоторые объекты требуют определенных проверок через определенные промежутки времени. Например, операторы трубопроводов природного газа и нефтепродуктов должны проверять свои выпрямители шесть раз в год с интервалами, не превышающими 21 месяц. Кроме того, политика компании может предписывать еще более строгие интервалы проверки.
Мониторинг обычно включает визуальный осмотр и электрические испытания. Визуальный осмотр может включать поиск физических повреждений установки / шкафа / компонентов, признаков перегрева и признаков гнезд насекомых / грызунов, наряду с записью особенностей выпрямительного блока и показаний счетчика / настроек крана. Тестирование часто включает ручные измерения выходного напряжения и тока выпрямителя для проверки точности счетчика и потенциалов структуры к электролиту.Также имеется оборудование для удаленного мониторинга труднодоступных выпрямителей; однако эти устройства лучше всего использовать в качестве дополнения к мониторингу на месте, а не вместо него.
Перед проведением визуального осмотра и тестирования важно надеть соответствующие средства индивидуальной защиты (СИЗ). Следует использовать как минимум защитные очки, кожаную рабочую обувь (при необходимости с водонепроницаемым покрытием) и кожаные или резиновые перчатки. В политике компании могут быть указаны дополнительные требования к СИЗ.
При первом приближении к выпрямителю помните о его окружении, например о неровностях почвы, ядовитых растениях или стоячей воде. Используйте все органы чувств для обнаружения признаков неисправности, включая визуальные (например, обжигание) и звуковые (например, треск). Проверьте шкаф на наличие переменного тока с помощью утвержденного детектора переменного тока. Старомодный способ определить, наэлектризован ли шкаф (или горячий), заключался в том, чтобы почистить его тыльной стороной руки. С появлением детектора переменного тока в этом больше нет необходимости и необходимости.Постучите по шкафу, чтобы уведомить всех жителей (ос, мышей, пауков и даже змей) о том, что вы входите. Обязательно имейте под рукой спрей от насекомых.
Техническое обслуживание
Основными причинами выхода из строя выпрямителя являются небрежное обращение, возраст и молнии. Перед выполнением любых действий по устранению неисправностей неработающего выпрямителя обязательно выключите его как автоматическим выключателем, так и отключением панели. Наиболее распространенные проблемы выпрямителя включают неисправные счетчики, ослабленные клеммы, перегоревшие предохранители, открытую конструкцию / заземляющие провода и повреждение молнией (даже при наличии молниеотводов).Целью поиска и устранения неисправностей является систематическая изоляция компонентов выпрямителя до тех пор, пока не будет обнаружена неисправная деталь, и рекомендуется следовать рекомендациям производителя выпрямителя по обслуживанию и устранению неисправностей.
Протестируйте выключатель, трансформатор, блок выпрямителя, счетчики, предохранители, дроссель, конденсаторы и грозовые разрядники по отдельности. Следите за ненадежными соединениями, признаками искрения и странным запахом. Могут потребоваться дополнительные испытания для проверки целостности конструкции и заземляющих выводных проводов.
Таблица 2 содержит схему поиска и устранения неисправностей 2 , предназначенную для быстрой диагностики проблем выпрямителя.
Общие сценарии и уловки торговли
Часто встречается выпрямитель с выходом по напряжению и без токового выхода. Поскольку выходное напряжение говорит о том, что цепи выпрямления не повреждены, один или оба выходных кабеля могут быть повреждены или заземление анода может быть полностью истощено. Чтобы начать поиск и устранение неисправностей, определите подходящее временное электрически изолированное заземление, такое как водопропускная труба, забор, анкер с растяжкой опоры электропередачи или уличный знак.Выключите выпрямитель, затем отсоедините подводящий провод конструкции и подключите временное заземление к отрицательному выводу. Установите ответвительные планки на одно из самых низких значений и включите выпрямитель. Если выпрямитель теперь выдает и вольт, и ампер, значит, проволочный вывод структуры поврежден. Если по-прежнему нет усилителей, выключите выпрямитель, верните провод структурного вывода к отрицательному выводу, отсоедините провод анодного вывода и подключите временное заземление к положительному выводу. Включите выпрямитель.Если выпрямитель теперь выдает и вольт, и ампер, значит, провод анода оборван или существующее заземление истощено. Если по-прежнему нет усилителей, то требуется дополнительное тестирование для оценки эффективности конструкции и анодных выводных проводов, чтобы определить, связана ли проблема с обоими проводами.
Другой распространенный случай — найти выпрямитель с перегоревшим предохранителем. Это может быть результатом скачка напряжения и просто требует установки нового предохранителя. Однако предохранители выпрямителя могут быть довольно дорогими.Временная установка автоматического выключателя через зажимы предохранителей позволяет проверить работу выпрямителя без использования нескольких предохранителей. Для этого испытания можно использовать типичный домашний автоматический выключатель подходящего размера для данной области применения. Просто прикрепите провода измерительных выводов к каждому концу автоматического выключателя и прикрепите провода к каждому из имеющихся монтажных зажимов предохранителя. Убедитесь, что автоматический выключатель и подводящие провода не соприкасаются с шкафом выпрямителя или любым другим металлическим предметом.Включите выпрямитель. Если прерыватель не срабатывает, просто замените предохранитель. Если автоматический выключатель срабатывает, значит, существуют другие проблемы, и необходимо выполнить дополнительное устранение неисправностей.
Иногда выпрямитель можно встретить с сработавшим автоматическим выключателем. Это может быть результатом скачка напряжения и просто требует сброса автоматического выключателя. Однако скачки напряжения нежелательны, поскольку выпрямитель может оставаться выключенным в течение длительного времени. Обязательно проверьте эффективность электрического заземления выпрямителя и следуйте рекомендациям Национального электротехнического кодекса (NEC).При необходимости установите дополнительное заземление. Кроме того, существуют ограничители перенапряжения, которые могут быть установлены для уменьшения скачков напряжения. Обязательно следуйте рекомендациям производителя по размеру.
Уход за выпрямителем также очень важен для предотвращения постройки гнезд насекомыми, грызунами и другими животными. Гнезда насекомых и грызунов могут быть опасны внутри шкафа выпрямителя. Укусы насекомых или даже змеи определенно нежелательны. Однако сами гнезда тоже могут вызвать проблемы.Помимо возможной опасности возгорания, гнездо может препятствовать прохождению воздушного потока через шкаф выпрямителя и приводить к перегреву (и, в конечном итоге, выходу из строя) компонентов. Следите за тем, чтобы насекомые и грызуны не попадали в выпрямитель. Некоторые из способов удержать вредителей — это закрыть все проникновения внутрь шкафа, кроме тех, которые предназначены для вентиляции, или использовать химические пестициды, чтобы уменьшить их интерес к проникновению внутрь. Для герметизации проходов и каналов используйте уплотнение канала или вязкую эластичный аморфный аполярный полиолефин (например,g., VISCOTAQ † ) можно использовать для закрытия любых проемов шкафа. Простой и эффективный химический пестицид, который идеально подходит для использования в выпрямителе, представляет собой небольшую открытую чашку с нафталиновыми шариками. Их легко приобрести, и они очень хорошо работают.
Сводка
Ключом к устойчивости конструкций является эффективное средство защиты от коррозии как средство контроля / уменьшения коррозии. Выпрямители — отличные инструменты, которые помогают обеспечить эффективный ICCP. Они требуют планового контроля и, порой, мелкого ремонта.Мониторинг и обслуживание выпрямителя необходимы, но их можно выполнять безопасно, что помогает обеспечить надежную и долгосрочную работу выпрямителя.
Благодарности
Автор благодарит за поддержку Integrated Rectifier Technologies, Inc., 15360–116 Ave., Эдмонтон, AB, Канада, T5M 3Z6; Universal Rectifiers, Inc., 1631 Cottonwood School Rd., Rosenberg, TX 77471; ERICO International, 34600 Solon Rd., Solon, OH 44139; Amcorr Products & Services, 8000 IH 10 W. # 600, Сан-Антонио, Техас 78230; Тим Дженкинс; и Дон Олсон.
Ссылки1 «Общие правила использования выпрямителей», Integrated Rectifier Technologies, Inc., http://irtrectifier.com/technical-info/rectifier-safety/ (15 июля 2013 г.).
2 «Устранение неисправностей выпрямителя», Universal Rectifiers, Inc., http://www.universalrectifiers.com/PDF%20Files/Troubleshooting.pdf (15 июля 2013 г.).
Эта статья основана на документе CORROSION 2015 No. 5667, представленный в Далласе, штат Техас.
† Торговое наименование.
Типы выпрямителей: рабочие и их сравнение
В большом количестве электрических и электронных схем для их работы требуется постоянное напряжение. Мы можем просто преобразовать переменное напряжение в постоянное, используя устройство, называемое диодом с PN переходом. Одним из наиболее важных применений диодов с PN переходом является выпрямление переменного тока в постоянный. Диод с PN-переходом пропускает электрический ток только в одном направлении, то есть в состоянии прямого смещения, и блокирует электрический ток в состоянии обратного смещения.Это единственное свойство диода позволяет ему работать как выпрямитель. В этой статье обсуждаются разные типы выпрямителей, рабочие и их сравнение.
Что такое выпрямители?
Выпрямитель — это электрическое устройство, состоящее из одного или нескольких диодов, которые пропускают ток только в одном направлении. Он в основном преобразует переменный ток в постоянный. Выпрямители могут быть отлиты в несколько форм в зависимости от необходимости, например, полупроводниковые диоды, SCR (кремниевые выпрямители), ламповые диоды, ртутно-дуговые клапаны и т.В наших предыдущих статьях мы подробно рассказывали о диодах, их типах. Но здесь мы собираемся подробно рассказать о выпрямителях, типах выпрямителей и их применениях и т. Д.
Различные типы выпрямителейДля обнаружения сигналов и выпрямления мощности схемы диодных выпрямителей широко используются при проектировании электронных схем, которые используются в различные устройства, такие как радиосигналы или детекторы, источники питания постоянного тока, бытовая техника, такая как игровые системы, ноутбуки, телевизоры и т. д.
Различные типы выпрямителей
Выпрямители подразделяются на различные конструкции в зависимости от факторов, а именно типа источника питания, конфигурации моста, используемых компонентов, характера управления и т. Д. В основном они подразделяются на два типа: однофазные и трехфазный выпрямитель. Другие выпрямители подразделяются на три типа: неуправляемые, полууправляемые и полностью управляемые выпрямители. Давайте вкратце рассмотрим некоторые из этих типов выпрямителей. Выпрямители подразделяются на два типа: неуправляемые выпрямители и управляемые выпрямители.
Типы выпрямителейНеуправляемые выпрямители
Выходное напряжение выпрямителя, которым нельзя управлять, называется неуправляемым выпрямителем. Выпрямитель работает с переключателями, и они доступны в различных типах, как управляемые, так и неуправляемые. Компонент с двумя выводами, такой как диод, является однонаправленным устройством, и его основная функция состоит в том, чтобы позволить току протекать просто в одном направлении. Этим устройством нельзя управлять, потому что оно будет работать только в том случае, если оно подключено в прямом смещении.
Когда диод соединен с выпрямителем в любой конфигурации, выпрямитель не может полностью управляться оператором, что известно как неуправляемые выпрямители. Он не позволяет изменять мощность в зависимости от требований нагрузки. Таким образом, этот тип выпрямителя обычно используется в фиксированных или стабильных источниках питания. Этот тип выпрямителя просто использует диоды и обеспечивает стабильное выходное напряжение, основанное только на входном переменном токе.
Кроме того, неуправляемые выпрямители подразделяются на два типа: полуволновые и двухполупериодные выпрямители.
Полупериодный выпрямитель
В этом типе выпрямителя, когда на входе подается переменный ток, только положительный полупериод становится видимым на нагрузке, тогда как отрицательный полупериод скрывается. В однофазном питании ему нужен один диод, а в трехфазном — три диода.
Это невозможно, потому что только половина сигналов i / p достигает выхода. Чтобы уменьшить пульсации частоты переменного тока от o / p, в схеме полуволнового выпрямителя требуется дополнительная фильтрация.Пожалуйста, обратитесь к ссылке, чтобы узнать больше о принципе работы и характеристиках схемы однополупериодного выпрямителя
Полупериодный выпрямительПоложительный полуволновой выпрямитель
Выпрямитель, который просто изменяет положительный полупериод и блокирует отрицательный полупериод, известен как. Выпрямитель положительной полуволны
Выпрямитель отрицательной полуволны
Выпрямитель, который просто изменяет отрицательный полупериод переменного тока на постоянный, известен как выпрямитель отрицательной полуволны. По сравнению со всеми видами выпрямителей, однополупериодный выпрямитель является более простым типом, поскольку он разработан только с одним диодом.
Диод просто пропускает ток в одном направлении, которое называется прямым смещением. Этот диод последовательно подключен к нагрузочному резистору «RL».
Положительный полупериод
Клемма анода диода на протяжении всего положительного полупериода будет превращаться в положительную, а клемма катода — на отрицательную, это называется прямым смещением. Это позволит прохождению положительного цикла.
Отрицательный полупериод
Вывод анода диода станет отрицательным в течение всего отрицательного полупериода, тогда как вывод катода станет положительным, что называется обратным смещением.Таким образом, отрицательный цикл будет заблокирован диодом.
Итак, как только источник переменного тока подключен к однополупериодному выпрямителю, полупериод будет проходить через него. Выход выпрямителя можно подключить через резистор RL или нагрузочный резистор. Таким образом, выходной сигнал будет пульсирующим + ve полупериодом входного сигнала.
Выход полуволнового выпрямителя имеет несколько пульсаций и не используется в качестве источника постоянного тока. Чтобы выровнять этот выходной сигнал, к резистору подключен конденсатор, который будет заряжаться в течение положительного цикла и разряжаться в течение отрицательного цикла, чтобы обеспечить выходной сигнал уровня.
Полнопериодный выпрямитель
В этом типе выпрямителя во время обоих полупериодов, когда питание переменного тока подается на i / p, ток через нагрузку течет в одном направлении. Эта схема обеспечивает более высокое стандартное выходное напряжение за счет изменения обеих полярностей формы волны i / p на пульсирующий постоянный ток. Такого рода выпрямление может быть достигнуто за счет использования хотя бы двух кристаллических диодов, проводящих ток по-разному.
Во время как положительного, так и отрицательного полупериода входного переменного тока используются следующие две схемы, а именно двухполупериодный выпрямитель с центральным ответвлением и двухполупериодный мостовой выпрямитель, чтобы обеспечить одинаковое направление тока в нагрузочном резисторе. .Пожалуйста, обратитесь к ссылке, чтобы узнать больше о схеме двухполупериодного выпрямителя с рабочей теорией
Полнополупериодный выпрямительСхема двухполупериодного выпрямителя разработана с одним диодом, превышающим один. Эти выпрямители подразделяются на два типа: мостовой выпрямитель и выпрямитель с центральным отводом.
Мостовой выпрямитель
Мостовой выпрямитель может быть построен с четырьмя диодами, которые используются для изменения полупериода входного переменного тока на выход постоянного тока. Итак, в этом виде выпрямителя четыре диода в основном соединены в точном виде.
В положительном полупериоде мостового выпрямителя два диода, такие как D1 и D2, будут иметь прямое смещение, тогда как диоды D3 и D4 станут обратным смещением. В замкнутом контуре диоды D1 и D2 будут обеспечивать выходное напряжение + Ve на RL (нагрузочный резистор).
В отрицательном полупериоде мостового выпрямителя диоды, такие как D3 и D4, будут иметь прямое смещение, тогда как диоды D1 и D2 станут обратным смещением. Тем не менее, полярность RL остается неизменной и дает положительный сигнал o / p на нагрузке.
По сравнению с однополупериодным выпрямителем на выходе двухполупериодного выпрямителя меньше пульсаций, хотя он не является ровным и стабильным. Для создания уровня напряжения o / p на выходе схемы используется конденсатор. Заряд и разряд этого конденсатора будут производить переходы уровней между полупериодами.
Двухполупериодный выпрямитель с центральным ответвлением
В схеме выпрямителя этого типа используется трансформатор с вторичной обмоткой, отводимой в центральной точке. В схему включены два диода, так что каждый из них использует половину цикла входного переменного напряжения.Для выпрямления один диод использует переменное напряжение, показывающее верхнюю половину вторичной обмотки, а другой диод использует нижнюю половину вторичной обмотки. КПД и КПД этой схемы высоки, потому что источник переменного тока обеспечивает питание обеих половин.
Двухполупериодный выпрямитель с центральным ответвлениемЭтот трансформатор имеет двойное напряжение, а также два входа, такие как I1 и I2 7, 3 выходных клеммы, такие как T1, T2 и T3. Клемма, такая как T2, подключена к середине выходной катушки, которая работает как опорное заземление.Клемма, такая как T1, генерирует напряжение + Ve, а клемма «T3» генерирует отрицательное напряжение на клемме «T2».
В течение положительного полупериода такие клеммы, как T1 и t2, будут генерировать положительное и отрицательное напряжение. Таким образом, диод D1 превратится в прямое смещение, а диод D2 превратится в обратное смещение. От клемм T1 до T2 он закроет путь с помощью нагрузочного резистора.
В течение отрицательного полупериода клемма «T1» будет производить отрицательный цикл, а клемма «T2» будет производить положительный цикл.Это подключит диод D1 к обратному смещению, а диод D2 подключится к прямому смещению.
Однако полярность на RL аналогична потоку тока, проходящему по дорожке от клемм T3 к T1. Выход постоянного тока этого выпрямителя также включает пульсации, но не уровень, а постоянный постоянный ток. На выходе схемы конденсатор устраняет пульсации, чтобы обеспечить стабильный выход постоянного тока.
Полнополупериодный мостовой выпрямитель
Мостовой выпрямитель — это одна из возможных форм двухполупериодного выпрямителя, в которой используются четыре диода в мостовой топологии.Вместо трансформатора с центральным ответвлением используется обычный трансформатор. Электропитание переменного тока, которое необходимо выпрямить, подается на противоположные по диагонали концы моста, а нагрузочный резистор подключается к остальным двум разным по диагонали концам моста.
Полнополупериодный мостовой выпрямительУправляемые выпрямители
Когда выходное напряжение выпрямителя изменяется или изменяется, это называется управляемым выпрямителем. Необходимость управляемого выпрямителя становится очевидной, если мы рассмотрим неисправности неуправляемого мостового выпрямителя.Текущие управляемые устройства, такие как SCR, IGBT, MOSFET, используются для изменения выпрямителя с неуправляемого на управляемый.
После того, как тиристоры будут включены / выключены в зависимости от применяемых стробирующих сигналов, мы получим полный контроль. Как правило, они предпочтительнее, чем их аналоги, которые не контролируются. Кремниевый выпрямитель (SCR) также называют тиристором. Это трехконтактный диод, у которого выводы анод, катод и затвор.
Подобно обычному диоду, он будет работать при прямом смещении, тогда как при обратном смещении он блокирует ток, однако он запускается только при прямой проводимости, когда есть сигнал на входе клеммы затвора.Таким образом, этот выход затвора играет ключевую роль в управлении выходным напряжением.
Типы управляемого выпрямителя
Управляемые выпрямители бывают двух типов, например, выпрямитель с полуволновым управлением и выпрямитель с полуволновым управлением.
Полупериодный управляемый выпрямитель
Полупериодный выпрямитель с контроллером может быть спроектирован с одним кремниевым управляемым выпрямителем (SCR). Подобно конструкции неуправляемого полуволнового выпрямителя, полуволновой управляемый выпрямитель такой же, за исключением того, что мы изменяем диод через тиристор.
При обратном смещении кремниевый выпрямитель не работает, поэтому он блокирует отрицательный полупериод. В течение положительного полупериода SCR будет проводить ток только при одном условии, когда на вход клеммы затвора подается импульс, как периодический импульсный сигнал. Основная функция этого сигнала — включать тиристор на каждом положительном полупериоде.
В этом методе можно управлять выходным напряжением выпрямителя. Выходом кремниевого выпрямителя является пульсирующий постоянный ток или напряжение.Эти импульсы отделяются с помощью конденсатора, подключенного параллельно RL.
Полнопериодный управляемый выпрямитель
Выпрямитель, который изменяет оба полупериода переменного тока на постоянный, например, положительный и отрицательный, и регулирует амплитуду выпрямления / напряжения, называется двухполупериодным управляемым выпрямителем. Подобно неуправляемому выпрямителю, управляемый двухполупериодный выпрямитель можно разделить на два типа, например, управляемый мост и управляемый центральный выпрямитель.
Управляемый мостовой выпрямитель
В управляемом мостовом выпрямителе диодный мост может быть заменен на мостик с тиристором, используя конфигурацию, аналогичную мостовому выпрямителю.
В течение положительного цикла выводы SCR, такие как T1 и T2, будут работать после подачи стробирующего сигнала, а выводы, такие как T3 и T4, будут подключены с обратным смещением, потому что они будут блокировать поток тока. Таким образом, на RL будет создаваться напряжение o / p.
В течение положительного цикла выводы тиристора, такие как T3 и T4, будут переключаться в прямое смещение с учетом входного импульса затвора, а клеммы, такие как T1 и T2, превратятся в обратное смещение.Итак, через RL результат будет виден. На выходе можно подключить конденсатор для устранения пульсаций, чтобы выходной сигнал был плавным и стабильным.
Управляемый выпрямитель с центральным отводом
Подобно неуправляемому выпрямителю с центральным отводом, в конструкции выпрямителя с контролируемым центральным отводом в основном используются два тиристора. вместо двух диодов. Переключение этих тиристоров будет по-разному синхронизировано в зависимости от частоты переменного тока i / p. Его работа такая же, как у неуправляемого выпрямителя.
Однофазные и трехфазные типы выпрямителей
Классификация выпрямителя может быть сделана в зависимости от работы типа входа. Если вход выпрямителя однофазный, он называется однофазным выпрямителем. Точно так же, когда вход выпрямителя трехфазный, он известен как трехфазный выпрямитель.
Проектирование однофазного мостового выпрямителя может быть выполнено с использованием четырех диодов, в то время как трехфазный выпрямитель может быть выполнен с шестью диодами, которые расположены по определенной схеме для получения требуемого выхода.
Эти выпрямители представляют собой управляемые / неуправляемые выпрямители на основе переключающих компонентов, используемых в выпрямителях всех типов, таких как тиристоры, диоды и т.д. ниже.
| Свойства | Двухполупериодный выпрямитель | Двухполупериодный выпрямитель с центральным ответвлением | Двухполупериодный мостовой выпрямитель | |
| Количество диодов 42 2 | 90 4 | |||
| D.C Ток | Im / π | 2 Im / π | 2 Im / π | |
| Необходим трансформатор | Нет | Да | Нет | |
| Макс.значение тока / (rf + RL) | Vm / (rf + RL) | Vm / (2rf + RL) | ||
| Коэффициент пульсации | 1,21 | 0,482 | 0,482 | 30 |
| ребро | 2 ребра | 2 ребра | ||
| Макс.эффективность | 40.5% как и выход, но когда мы используем мостовой выпрямитель, выход будет включать некоторую составляющую переменного тока с составляющей постоянного тока. Таким образом, чтобы уменьшить переменную составляющую, на выходной поверхности выпрямителя используются различные типы фильтров. Фильтры, которые используются в выпрямителях, в основном включают конденсаторы и катушки индуктивности. В схеме фильтра подключение конденсатора может быть выполнено параллельно, потому что он допускает переменный ток и блокирует постоянный ток. На выходе любой компонент переменного тока будет проходить мимо конденсатора в направлении земли, и мы получаем небольшое количество переменного тока на выходе. В схеме фильтра подключение индуктора может быть выполнено последовательно, поскольку индуктор включает в себя индуктивное реактивное сопротивление. Это реактивное сопротивление является противодействием любым изменениям и обеспечивает высокий импеданс по отношению к переменному току и низкий импеданс по отношению к постоянному току, поскольку постоянный ток является стабильным сигналом, тогда как переменный ток будет меняться со временем. В зависимости от расположения конденсатора и катушки индуктивности мы можем использовать L-образный фильтр. Этот тип фильтра включает в себя одну последовательно подключенную катушку индуктивности и параллельно подключенный конденсатор. Пи-секционный фильтр в основном включает два конденсатора, включенных параллельно через катушку индуктивности, которая подключена последовательно. Итак, это все об обзоре фильтров. Это несколько типов выпрямителей, которые обычно используются для множества приложений, включая все электронные и электрические проекты. |
