Как рассчитать емкость конденсатора для запуска электродвигателя. Расчет емкости конденсатора для запуска электродвигателя: особенности, формулы и рекомендации

Как правильно рассчитать емкость конденсатора для запуска электродвигателя. Какие факторы нужно учитывать при расчете. Какие формулы используются для вычисления емкости пускового и рабочего конденсаторов. Как подобрать оптимальный конденсатор для конкретного двигателя.

Содержание

Зачем нужен конденсатор для запуска электродвигателя

Конденсатор играет важную роль при запуске и работе однофазных и трехфазных электродвигателей, подключаемых к однофазной сети. Основные функции конденсатора:

  • Создание пускового момента для начала вращения ротора
  • Смещение фаз токов в обмотках для создания вращающегося магнитного поля
  • Повышение коэффициента мощности двигателя
  • Увеличение крутящего момента при запуске

Без правильно подобранного конденсатора однофазный двигатель либо не запустится вообще, либо будет работать с низким КПД и перегревом обмоток. Поэтому расчет емкости конденсатора — важный этап при подключении электродвигателя.


Типы конденсаторов для электродвигателей

Для запуска и работы электродвигателей используются два основных типа конденсаторов:

Пусковой конденсатор

Применяется только в момент запуска двигателя для создания большого пускового момента. Имеет большую емкость, но рассчитан на кратковременную работу 1-3 секунды. После запуска отключается.

Рабочий конденсатор

Остается подключенным постоянно и обеспечивает нормальную работу двигателя. Имеет меньшую емкость, чем пусковой, но рассчитан на длительную непрерывную работу.

В некоторых схемах используется только рабочий конденсатор, в других — комбинация пускового и рабочего.

Формулы для расчета емкости конденсатора

Существует несколько формул для расчета емкости конденсатора в зависимости от типа двигателя и схемы подключения:

Для однофазного конденсаторного двигателя:

C = k * P, где:

  • C — емкость конденсатора в мкФ
  • k — коэффициент (обычно 50-80)
  • P — мощность двигателя в кВт

Для трехфазного двигателя при подключении к однофазной сети:

C = k * I / U, где:


  • C — емкость конденсатора в мкФ
  • k — коэффициент (2800 для схемы «треугольник», 4800 для «звезды»)
  • I — номинальный ток двигателя в А
  • U — напряжение сети в В

Факторы, влияющие на выбор емкости конденсатора

При расчете оптимальной емкости конденсатора нужно учитывать следующие факторы:

  • Мощность и тип электродвигателя
  • Схема подключения обмоток (звезда/треугольник)
  • Напряжение питающей сети
  • Номинальный ток двигателя
  • Коэффициент мощности (cos φ)
  • Момент инерции нагрузки
  • Требуемый пусковой момент

Чем точнее будут учтены все эти параметры, тем корректнее будет подобрана емкость конденсатора для конкретного двигателя и условий его работы.

Пошаговая инструкция по расчету емкости конденсатора

Рассмотрим алгоритм расчета емкости конденсатора на примере подключения трехфазного двигателя к однофазной сети:

  1. Определите схему соединения обмоток двигателя (звезда или треугольник)
  2. Узнайте номинальный ток двигателя из паспорта или рассчитайте по мощности
  3. Определите напряжение питающей сети
  4. Выберите коэффициент k (2800 для треугольника, 4800 для звезды)
  5. Подставьте значения в формулу C = k * I / U
  6. Выполните расчет и округлите результат до ближайшего стандартного значения

Для пускового конденсатора полученное значение нужно увеличить в 2-3 раза.


Особенности выбора конденсатора по расчетной емкости

После расчета теоретической емкости конденсатора нужно правильно подобрать реальный конденсатор:

  • Выбирайте конденсатор с ближайшим меньшим стандартным номиналом
  • Рабочее напряжение должно быть в 1,5-2 раза выше напряжения сети
  • Для рабочих конденсаторов выбирайте модели для длительного режима работы
  • Пусковые конденсаторы должны выдерживать большие пусковые токи
  • Используйте специальные моторные конденсаторы, а не обычные электролитические

При отсутствии конденсатора нужной емкости можно использовать параллельное соединение нескольких конденсаторов меньшей емкости.

Проверка правильности расчета конденсатора

После установки рассчитанного конденсатора нужно проверить работу двигателя:

  • Двигатель должен запускаться быстро, без рывков и вибраций
  • Рабочий ток не должен превышать номинальный более чем на 5-10%
  • Температура обмоток и конденсатора не должна быть высокой
  • Двигатель должен развивать номинальную мощность

Если есть отклонения, нужно скорректировать емкость конденсатора. Окончательный подбор часто производится экспериментально.


Типичные ошибки при расчете конденсаторов для двигателей

При расчете и выборе конденсаторов нередко допускаются следующие ошибки:

  • Использование формул без учета схемы соединения обмоток
  • Неправильное определение номинального тока двигателя
  • Выбор конденсатора с емкостью больше расчетной
  • Применение бытовых конденсаторов вместо специальных моторных
  • Использование конденсаторов с низким рабочим напряжением
  • Отсутствие проверки двигателя после установки конденсатора

Внимательный подход к расчету и правильный выбор конденсатора позволит обеспечить надежную и эффективную работу электродвигателя.


Расчет емкости конденсатора для трехфазного двигателя — онлайн калькулятор

Частый вопрос многих людей – какова должна быть емкость ходового и пускового конденсатора.

Содержание

Расчет емкости конденсатора для трехфазного двигателя

При подключении трехфазного асинхронного двигателя 380 В к однофазной сети 220 В необходимо рассчитать емкость конденсатора опережения фаз, а точнее двух конденсаторов – ходового и пускового. Онлайн-калькулятор для расчета емкости конденсатора для трехфазного двигателя можно найти в конце этой статьи.

Вы можете найти следующую запись в техническом паспорте выше:

Онлайн-расчет емкости конденсатора для электродвигателя

Здесь вы можете рассчитать емкость конденсатора, необходимую для подключения трехфазного двигателя к однофазной установке.

Конденсатор для электродвигателя необходимо рассчитывать только в зависимости от токапоскольку этот метод является наиболее точным и исключает возможность неправильного выбора емкости конденсатора, а также минимизирует потери мощности трехфазного двигателя при подключении к однофазной сети.

Номинальный ток электродвигателя берется из номинальная мощность двигателя взята из технического паспортаа если нет, то это может быть Если такой информации нет, ее можно определить путем расчетов.

О том, как подключить трехфазный двигатель к однофазной системе с помощью конденсатора, см. здесь. см. здесь.

Инструкции по использованию калькулятора:

Чтобы рассчитать емкость конденсатора для двигателя с помощью этого калькулятора, просто выполните 3 простых шага:

  1. Выберите схему подключения обмотки. Как правило, двигатель с напряжением 380 В на 220 В должен иметь соединение обмоток треугольником. Пожалуйста, обратитесь к паспорт двигателя на заводской табличке двигателя.

Пример технического паспорта двигателя показан ниже:

В приведенной выше таблице данных вы можете увидеть следующую запись:

“Δ/ Y 220/380 V 2.8/1.8 A” – это означает, что при схеме соединения “треугольное соединениесоединение “треугольник”, двигатель питается напряжением 220 вольт и потребляет от сети 2,8 ампера; “звездасоединение “звездаY”, двигатель питается напряжением 380 В и потребляет 1,8 А.

Подробнее о схемах подключения обмоток трехфазного двигателя вы можете прочитать на сайте здесь.

2. укажите номинальный ток в амперах, который также берется из технического паспорта двигателя в зависимости от способа подключения обмотки. Например, согласно приведенному выше примеру, введите 2,8 для соединения “треугольник” и 1,8 для соединения “звезда”.

3. выберите напряжение, к которому будет подключен двигатель: 220 вольт для треугольника или 380 вольт для звезды, как показано в примере.

Вот и все. Нажмите кнопку “Рассчитать”, и вы получите ответ

Показался ли вам полезным этот онлайн-калькулятор? А может быть, у вас все еще есть вопросы? Свяжитесь с нами в комментариях!

Вы не нашли статью по интересующей вас теме электрические темы, которые вас интересуют? Расскажите нам об этом. Мы ответим на ваши вопросы.

Выбранные пусковые конденсаторы должны соответствовать подаваемому напряжению. Их мощность не должна допускать перегрева двигателя во время работы и должна быть достаточной для запуска двигателя после включения. Особых трудностей при выборе компонентов не возникает.

Электрическая схема “Delta

Само подключение относительно простое, провод под напряжением подключается к пусковому конденсатору и к клеммам двигателя (или мотора). Проще говоря, двигатель имеет три токоведущие клеммы. 1 – нейтраль, 2 – рабочий, 3 – фаза.

Силовой провод предварительно терминирован и имеет два основных провода в синей и коричневой обмотках, коричневый провод подключается к клемме 1, туда же подключается один из проводов конденсатора, другой провод конденсатора подключается к другой рабочей клемме, а синий силовой провод подключается к фазе.

Если мощность двигателя небольшая, до 1,5 кВт, то в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большой мощностью обязательно использование двух конденсаторов, они соединены последовательно, но между ними находится пусковой механизм, в народе называемый “тепловым”, который отключает конденсатор при достижении необходимого объема.

Небольшое напоминание о том, что конденсатор с меньшей емкостью, пусковой конденсатор, будет включен на короткое время для увеличения пускового момента. Кстати, модно использовать механический выключатель, который пользователь сам включает на определенное время.

Следует понимать, что сама обмотка двигателя уже представляет собой соединение звездой, но электрики с помощью проводов превращают ее в треугольное соединение. Самое важное здесь – распределение проводов, идущих к распределительной коробке.

Схема соединения треугольника и звезды

Конденсаторы для трехфазного двигателя должны иметь достаточно большую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не подходят для этой цели, поскольку требуют однополярного подключения. Это означает, что выпрямитель с диодами и резисторами должен быть изготовлен специально для этих устройств.

Типы пусковых конденсаторов

Небольшие двигатели мощностью не более 200-400 Вт могут работать без стартера. Для них достаточно одного рабочего конденсатора. Однако, если при запуске возникают значительные нагрузки, требуются дополнительные пусковые конденсаторы. Он подключен параллельно рабочему конденсатору и удерживается во включенном положении во время ускорения специальной кнопкой или реле.

Чтобы рассчитать емкость пускового элемента, умножьте емкость рабочего конденсатора на коэффициент 2 или 2,5. При разгоне двигателю требуется все меньшая и меньшая емкость. По этой причине не рекомендуется держать пусковой конденсатор постоянно включенным. Высокая емкость на высоких скоростях приводит к перегреву и поломке машины.

Стандартная конструкция конденсатора состоит из двух пластин, обращенных друг к другу и разделенных диэлектрическим слоем. При выборе конкретного компонента необходимо учитывать его эксплуатационные и технические характеристики.

Существует три основных типа конденсаторов:

  • Полярный. Он не должен работать с электродвигателями, подключенными к переменному току. Деградирующий диэлектрический слой может вызвать нагрев устройства и, как следствие, короткое замыкание.
  • Неполяризованные. Наиболее часто используемые. Они могут работать в любом режиме включения-выключения за счет одинакового взаимодействия вставок с диэлектриком и источником тока.
  • Электролитический. В этом случае электроды представляют собой тонкий оксидный слой. Они могут достигать максимально возможной емкости до 100 000 мкФ и идеально подходят для низкочастотных двигателей.

Результаты расчета используются для выбора правильного номинала конденсатора. Маловероятно, что можно найти точно такой же рейтинг, поэтому правила отбора следующие:

Калькулятор для расчета емкости конденсаторов и пусковых конденсаторов

Схема подключения обычно обозначена на конденсаторе и может быть обозначена звездой или треугольником. Обычно это две разные формы, емкость которых рассчитывается по-разному:

Результаты расчета используются для выбора правильного номинала конденсатора. Маловероятно, что вы сможете найти точно такой же рейтинг, поэтому правила отбора следующие:

  • если рассчитанное значение точно совпадает с существующим рейтингом, то вам повезло – вы берете именно это значение.
  • Если совпадения нет, рекомендуется выбрать емкость с ближайшим меньшим номиналом. Не выбирайте большие значения (особенно для операционных конденсаторов), так как существует вероятность значительного увеличения рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы должны быть не менее чем в 1,5 раза выше напряжения сети, так как сам конденсатор при запуске всегда перенапряжен. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков – даже не менее 400 В.

Ниже приведена таблица номиналов конденсаторов серий CBV60 и CBV65. Эти конденсаторы чаще всего используются для подключения асинхронных двигателей. Серия CBV65 отличается от серии CBV60 металлическим корпусом. Электролитические конденсаторы серии CD60 часто используются в качестве пусковых конденсаторов. Однако опытные специалисты не рекомендуют использовать их в качестве рабочего конденсатора, так как длительное время работы быстро приведет к их разрушению.

Полипропиленовые пленочные конденсаторы серий CBV60 и CBV65Неполярные электролитические конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В400; 450; 630220-275; 300; 450
Номинальный диапазон, мкФ1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 1505; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда экономически выгоднее использовать два или более конденсаторов для достижения необходимой емкости. Они могут быть подключены последовательно или параллельно. При параллельном соединении результирующая емкость суммируется; при последовательном соединении она будет меньше, чем емкость любого из конденсаторов. Для расчета этого соединения мы подготовили для вас специальный калькулятор.

Соединение треугольника и звезды.

Подключение трехфазного двигателя к однофазной системе

Автор: admin, 31 марта 2013 г.

В этой статье мы рассмотрим подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчет емкости пускового и рабочего конденсаторов, подключение трехфазного двигателя “звездой” и “треугольником”.

Самый простой способ запустить трехфазный двигатель в однофазной цепи – использовать фазосдвигающий конденсатор в третьей обмотке. КПД двигателя в этом случае составит около 60% (по сравнению с трехфазным подключением).

При запуске небольшого асинхронного двигателя (до 500 Вт) или при запуске двигателя без нагрузки на валу можно использовать только так называемый выбегающий конденсатор.

Для более мощных двигателей необходимо дополнительно использовать пусковой конденсатор, который необходим для разгона двигателя.

Схема подключения однофазных двигателей

Подключение трехфазного двигателя

Схема подключения обозначена:

  • FU1, FU2 – предохранители.
  • S1 – это двухполюсный выключатель.
  • S2 – переключатель направления вращения вала двигателя (реверсивный).
  • S3 – кнопка подключения пускового конденсатора (запуск двигателя).
  • Sp – пусковой конденсатор.
  • Cp – рабочий конденсатор.
  • R1 – разрядный резистор.
  • M – двигатель.

После включения выключателя S1 нажмите одновременно кнопку S3, после запуска двигателя (2-3 секунды) отпустите кнопку.

Расчет элементов схемы коммутации двигателя

Емкость рабочего конденсатора для данной схемы (соединение обмоток двигателя треугольником) рассчитывается по следующей формуле:

Cp = 4800*I/U, где

Старший – емкость рабочего конденсатора в мкФ;
I – ток электродвигателя, А;
U – напряжение питания (220 В).

Если обмотки двигателя соединены, то емкость рабочего конденсатора определяется по формуле:

Cp = 2800*I/U символы одинаковые.

Если ток электродвигателя неизвестен, но известна мощность, то ток можно рассчитать по формуле:

I = P/(√3*U*ɳ*cosφ) где

P – мощность электродвигателя, Вт;
ɳ – КПД электродвигателя;
cosφ коэффициент мощности.

О сайте ɳ=0,6, cosφ = 0.8. Тогда формула упрощается до:

I = P/(0.83*U).

Емкость пускового конденсатора должна быть в 2-3 раза больше емкости рабочего конденсатора.

Необходимую емкость конденсатора можно собрать из нескольких имеющихся конденсаторов, как это сделать, описано здесь. Лучше всего использовать бумажно-металлические или пленочные конденсаторы. Рабочее напряжение конденсаторов должно быть не менее 300 В.

В некоторых статьях предлагается использовать электролитические конденсаторы, соединив пару конденсаторов минусом и зашунтировав их диодами.

Я не рекомендую этого делать, потому что если диод выйдет из строя (если он разрушится электрически), переменный ток будет протекать через электролитический конденсатор, и он может взорваться из-за нагрева.

Разрядный резистор R1 используется для разрядки пускового конденсатора при выключении. Вы можете обойтись без него, но помните, что опасное напряжение может оставаться в устройстве даже после его выключения. Можно использовать резистор сопротивлением 0,5 – 1 мОм, с рассеиваемой мощностью не менее 0,5 Вт.

Все автоматические выключатели и предохранители должны выдерживать рабочий ток электродвигателя.

Советы: Лучше всего использовать соединение треугольником, так как соединение звездой приводит к значительным потерям мощности двигателя.

На заводской табличке двигателя указано, как подключены обмотки, можно ли их менять, а также рабочее напряжение обмоток. Например: ∆/Ү 220/380 Это означает, что обмотка двигателя может быть соединена в треугольник с напряжением 220 В или в звезду с напряжением 380 В.

Назначение Ү 380 – указывает, что обмотки соединены звездой и настроены на 380 В и что в клеммной коробке двигателя имеется только три провода. В этом случае необходимо использовать соединение “звезда”, что приводит к потере мощности.

Конечно, можно добраться до двигателя и соединить недостающие клеммы в распределителе, но это задача для специалиста.

Рабочая емкость конденсатора (в мкФ) может быть приблизительно рассчитана путем умножения мощности двигателя (в кВт) на 100. Емкость пускового конденсатора может быть уменьшена путем его экспериментального подбора.

Если эта статья помогла вам, вы можете поделиться ею со своими друзьями, нажав на кнопки социальных сетей ниже.

Читайте далее:

  • Как найти начало и конец обмотки электродвигателя – ООО «СЗЭМО Электродвигатель».
  • Звезда или треугольник – Советы электрикам – Electro Genius.
  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
  • Пуск электродвигателя по схеме «звезда-треугольник.
  • Схема подключения, выбор и расчет пускового конденсатора.
  • Как запустить однофазный двигатель в обратном направлении – несколько примеров.

Расчёт ёмкости конденсатора для однофазного электродвигателя

Содержание

  • 1 Что такое однофазный асинхронный электродвигатель?
    • 1.1 Понятие асинхронного двигателя
    • 1.2 Как устроен однофазный электродвигатель
    • 1.3 Вспомогательная или пусковая обмотка в однофазном моторе
    • 1.4 По какому принципу работает двигатель
    • 1.5 Процесс пуска электропривода
    • 1.6 Типы подключений машины
  • 2 Рассчитываем емкость конденсатора
    • 2.1 Выбор конденсатора для однофазного двигателя
    • 2.2 Подбираем конденсатор для однофазного электромотора
  • 3 Проверяем работоспособность машины
  • 4 Где применяют однофазные электродвигатели переменного тока на 220В
  • 5 Преимущества и недостатки однофазных двигателей

Конденсатор – это прибор, созданный для накопления, хранения и передачи некоторой энергии. Без него двигатель либо не будет работать, либо и вовсе сгорит. А его емкость позволяет определить время его работы.

Рабочие конденсаторы

Чтобы говорить о расчете емкости конденсатора для однофазного двигателя, нужно понимать, о какой машине идет речь. Поэтому, в первом раздел поговорим об устройстве и принципе работы упомянутого агрегата.

Понятие асинхронного двигателя

Для асинхронного двигателя, рассчитанного на 220 В требуется питание от переменного электротока. Подключать такой двигатель нужно к однофазной сети. Однофазный асинхронный двигатель на 220 В будет исправно работать, если напряжение в сети составляет также 220 В, а частота 50 Гц.

Такие значения можно встретить в любых бытовых условиях по всей территории бывшего Советского Союза. А вот в Соединенных штатах, например, величина напряжения бытовой сети – 110 В.

Что касается производств, в странах, ранее входивших в состав СССР, можно встретить и однофазное и трехфазное и еще несколько видов электросетей.

Как устроен однофазный электродвигатель

Устройство однофазного двигателя

На самом деле, несмотря на название, в однофазных двигателях на 220 В присутствует две фазы. Однако, из-за того, что непосредственно работает только одна фаза, их прозвали однофазными. Строение привода, в целом, не сильно отличается от любых других двигателей. Состав его таков:

  1. Статичный элемента под названием статор.
  2. Вращающийся элемент, под названием ротор.

Описать однофазный электродвигатель можно следующим образом: это асинхронный электрический привод, на статическом элементе которого расположена рабочая (основная) обмотка. Ее и подключают к однофазной сети с переменным электрическим током.

Вспомогательная или пусковая обмотка в однофазном моторе

Для самостоятельного запуска и начала вращения на однофазном электродвигателе специально установлена еще одна катушка. Только благодаря ей ротор и вал приходят в движение и начинают вращаться.

Такую катушку (пусковую) устанавливают на статоре, но смещают относительно рабочей на 90 градусов. То есть вспомогательная и основная обмотки перпендикулярны друг другу. А чтобы были сдвинуты не только катушки, но и токи, к цепи подключают элемент, который называют фазосдвигающим. 

Сдвигать фазы можно с помощью следующих устройств:

  • активного резистора;
  • конденсатора;
  • индуктивной катушки.

Нужно отметить, что двигатель с конденсатором, подключенным в качестве фазосдвигающего элемента, будет выдавать лучшие показатели при работе и запуске. 

Основные детали двигателя – статор и ротор, сделаны из металла. Для их производства доходит лишь определенный вид металла. Это электротехническая сталь марки 2212.

По какому принципу работает двигатель

С помощью влияния переменного электрического тока в статоре возникает магнитное поле. Его можно рассматривать как два отдельных поля, амплитуда и частота которых одинакова, а вот направления разные.

Два магнитных поля, которые возникли в статоре двигателя, воздействует на ротор так, что тот начинает вращаться и приводит двигатель в работу. Вращение начинается благодаря тому, что поля статора имеют разные направления. Если пусковой механизм отсутствует, то есть нет вспомогательной обмотки, ротор никогда не начнет движение.

Если ротор начал работу, вращаясь в одну из сторон, направление он может поменять только в случае вмешательства извне.

Процесс пуска электропривода

Магнитное поле способствует пуску электродвигателя. Оно буквально заставляет ротор начать вращение.

Само магнитное поле возникает благодаря работе главной и дополнительной обмотки. Дополнительная, в свою очередь, меньше, что видно даже невооруженным глазом. Она подключена к рабочей с помощью конденсатора, катушки индуктивности или активного резистора. 

В случае, когда двигатель маломощный, пусковая фаза является замкнутой. Для пуска такого электромотора подключение электричества к пусковой обмотке допустимо только на некоторое время. Максимум – три секунды. За это отвечает специальная кнопка, расположенная на корпусе агрегата. Она называется пусковой и вставлена в устройство пуска.

Тепловое реле защиты двигателя

При нажатии на кнопку запуска электричество начинает подаваться на обе катушки в одно и то же время. Электродвигатель при этом запускается в роли двухфазной машины. Но уже через 2-3 секунды мотор полностью набирает свою нормальную скорость. Кнопку теперь нужно отпустить. Электроэнергия больше не подается на вспомогательную обмотку, соответственно, она перестает работать. А вот рабочая продолжает питаться. Агрегат переходит в режим однофазной работы. Это – основной принцип работы всех однофазных электромашин.

ВАЖНО! Если передержать кнопку запуска однофазного электродвигателя, обмотка перегреется и мотор потеряет работоспособность. Пуская катушка рассчитана лишь на работу в течение трех секунд.

Для избежания перегрева и опасных аварийных ситуаций, которые могут за ним последовать, в корпус однофазной машины обязательно устанавливают тепловое реле и центробежный выключатель. Последний работает полностью автоматизировано: когда нужная скорость вращения набрана, устройство само отключает подачу тока на пусковую обмотку.

Центробежный выключатель

Отметим также тот факт, что во тока пуска однофазной машины выше, чем рабочий. Когда стадия запуска завершается, снижается и величина тока (становится рабочей).

Типы подключений машины

Однофазную асинхронную машину можно подключить к сети двумя способами:

  • с помощью пусковой обмотки;
  • с помощью рабочего конденсатора.

В цепях маломощных однофазных приводов на 220 В, которые включаются с помощью дополнительной обмотки, есть конденсаторы, которые включаются при запуске мотора. Когда разгон ротора завершен, Пусковая катушка, как описано в предыдущем разделе, отключается. 

В том случае, когда к двигателю подключен рабочий конденсатор, вспомогательная катушка продолжает работу на протяжении всего времени работы привода. Ее происходит благодаря работе такой катушки через конденсатор.

Один и тот же электропривод можно использовать в разных устройствах. Можно снять двигатель с одного прибора и поставить в другой. Подключить его можно с помощью трех разным схем:

  1. Временная подача электроэнергии на вспомогательную катушку через конденсатор.
  2. Временная подача электроэнергии на вспомогательную катушку через резистор (конденсатор отсутствует).
  3. Постоянная подача электричества на вспомогательную и основную катушки одновременно. Подача происходит через конденсатор. 

Если использовать в пусковой цепи резистор, величина активного сопротивления обмотки будет больше. Сдвиг фаз произойдет и его вполне хватит для того, чтобы заставить ротор вращаться. 

Возможно также использование вспомогательной обмотки с более высоким сопротивлением и меньшей индуктивностью. Для полного соответствия обмотка должна обладать меньшим количеством витков и более тонким проводом. 

Понятие конденсаторного пуска подразумевает, что конденсатор подключен к вспомогательной катушке, а подача электричества временная.

Чтобы значение пускового момента было максимальным, круговое магнитное поле статора начать вращение. Это требует перпендикулярного (относительно друг друга) положения обмоток. Резистор не даст такого сдвига.

В этой ситуации поможет конденсатор с правильно подобранной емкостью. Если все подходит, то катушки будут сдвинуты на угол в 90 градусов относительно друг друга.

Основная задача стабилизатора заключается в выполнении роли емкостного наполнителя энергии, нужной выпрямителям фильтров этого стабилизатора. С их помощью также происходит передача сигнала между усилителями. Чтобы запустить асинхронную однофазную машину переменного тока и обеспечить ее продолжительную работу тоже используют конденсаторы. Определив емкость определенного конденсатора можно предсказать, какое время будет продолжаться работа двигателя. 

Основной и главный параметр такого устройства – его емкость. Между этим параметром и площадью активного подключения, изолированного диэлектриком, существует некая зависимость. Диэлектрик почти невозможно увидеть невооруженным глазом, так как слой подобной изоляции состоит их из небольшого количества атомов, которые формируют пленку. 

По сути, главное назначение конденсатора – накопление, хранение и передача определенного количество энергии. А зачем так заморачиваться, спросите вы? Можно ведь просто подключить однофазную машину к источнику питания. Не тут то было. Подключая электропривод в сеть без посредника в виде конденсатора, вы рискуете работоспособностью агрегата. Он может просто сгореть.

Да и чтобы успешно включить трехфазную машину в однофазную не обойтись без устройства, которое поможет смещению фазы на 90 градусов на третьем выводе. 

Помимо всего вышесказанного, конденсатор может выполнять функцию индуктивной катушки. Скачки переменного тока, протекающего через него, успешно нивелируются благодаря тому, что перед началом работы, на пластинах конденсатора равномерно копятся заряды и только потом передаются устройству, которое является принимающим.  

Конденсатор может быть одним из трех видов:

  • электролитическим;
  • неполярным;
  • полярным.

Выбор конденсатора для однофазного двигателя

Расчет емкости конденсатора для трехфазного асинхронного двигателя выполняется с использованием величины номинального тока (I), который, как правило, указан на шильдике электродвигателя, фазного напряжения (U), а также коэффициента (k). Он будет равен значению 4800 для обмоток подключенных по схеме звезды, и 2800 для обмоток, подключенных по схеме треугольника. Расчёт ёмкости происходит по следующей формуле:

 С = k*I / U

Хотя, если нужно рассчитать ёмкость конденсатора быстрее, можно использовать онлайн калькулятор. Полученную величину емкости в дальнейшем и используют для подбора конденсатора к трехфазному двигателю. А что же с ёмкостью конденсатора для однофазного мотора?

Мы все знаем, что двигатели, которые предназначены для работы в однофазной сети, как правило, подключают на 220 В. Только вот, если включение трехфазного мотора задается расположением катушек и смещением фаз сети, то однофазный требует создания вращательного момента, чтобы заставить ротор прийти в движение. Для этого и нужна дополнительная пусковая обмотка. А фазы тока смещаются благодаря конденсатору. 

Подбираем конденсатор для однофазного электромотора

Пусковой конденсатор

Зачастую общая емкость, заметьте, не отдельного устройства, С рабочего + С пускового равна одному мкФ на каждые 100 Вт. Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Приводы подобного вида могут работать в нескольких режимах, перечисленных ниже:

  1. Пусковой конденсатор и пусковая катушка (отключается после набора нормальной скорости вращения). Емкость такого конденсатора подбирают из расчета 70 мкФ на 1 кВт мощности привода.
  2. Рабочий конденсатор и пусковая катушка, которая работает на протяжении всего времени работы двигателя. Емкость такого устройства должна быть в диапазоне от 23 мкФ до 35 мкФ.
  3. Рабочий и пусковой конденсаторы вместе. Их емкость, как сказано выше, подпирают из расчета 1 мкФ на 100 Вт.

Подбирая конденсатор для однофазного асинхронного двигателя, всегда придерживайтесь указанных выше пропорций. Но и не забывайте следить за состоянием привода во время его запуска и работы. Если вы заметили, что двигатель значительно перегрелся, емкость конденсатора лучше уменьшить. Общая рекомендация для подбора фазосдвигающего устройства: его рабочее напряжение должно быть не ниже 450 В.

Подбор подходящего конденсатора для электропривода – кропотливый процесс. Для обеспечения максимально эффективных результатов работы мотора подходить к расчету параметра емкости нужно очень аккуратно и внимательно. Всегда исходите, в первую очередь, их условий конкретного двигателя.

Очень важно провести тщательный осмотр двигателя на предмет повреждений:

  1. В случае, если у мотора сломалась опора, он может начать работать неудовлетворительно
  2. Проверьте, нет ли в корпусе посторонних предметов. Этот фактор тоже может быть причиной плохой работы и перегрева.
  3. Если вы видите признаки потемнения примерно в середине корпуса, значит двигатель однозначно перегревается.
  4. Грязные или изношенные подшипники также способствую замедлению работы и перегреву.
  5. Если к вспомогательной катушке подключили конденсатор, емкость которого слишком высока для данного двигателя, это тоже будет причиной перегрева. Если вы подозреваете в причине плохой работоспособности привода именно его, отключите устройство от обмотки пуска, подключите привод к сети, покрутите вал руками. Он запустится и ротор начнет свое вращение. Позвольте электродвигателю поработать 10-15 минут. После этого проверьте его на предмет перегрева. Если все в порядке и мотор не нагрелся, то причина всех бед – конденсатор. Если нагрелся, ищите другую поломку.

Существует бесчисленное количество моделей однофазных электродвигателей. Перед его покупкой вы должны четко понимать, для чего он вам нужен и какие характеристики должен выдавать.

Конденсаторные двигатели сегодня, в основном, выпускаю на основе двухфазных (с рабочей и пусковой обмотками). Хотя трехфазные тоже достаточно просто модифицировать для включения в однофазную сеть. Производят и трехфазные двигатели, которые изначально оптимизированы под для однофазной сети.

Однофазные и трехфазные двигатели, модифицированные под однофазную сеть установлены в большинстве приборов, которые мы используем каждый день. В их число входят посудомоечные машины, холодильники, пылесосы и вентиляторы.

Подобные моторы нашли и применение и в промышленности: они установлены во всех циркулярных насосах, воздуходувках и дымососах.

Приводы такого типа выпускаются с разными значениями мощности и количества оборотов. Тем не менее однофазные двигатели применяют там, где требуется применение маломощных агрегатов. С этим связаны основные преимущества трехфазных моторов перед однофазными:

  1. Большее значение коэффициента полезного действия.
  2. Большее значение пускового момента.
  3. Относительно большая мощность.
  4. Устойчивость к большим нагрузкам.

Основные плюсы применения электромоторов заключаются в следующих его характеристиках:

  • несложное строение;
  • дешевизна;
  • долгий срок службы;
  • затраты на амортизацию и ремонт практически отсутствуют;
  • мотор может работать от бытовой сети без использования преобразователей.

Минусы использования машин такого типа следующие:

  • нет пускового или начального момента;
  • низкая мощность;
  • слишком большая величина пускового тока;
  • управление вызывает затруднения;
  • скорость работы привода ограничивает частота сети, от которой он запитан.

Электромоторы, о которых шла речь в статье, получили широчайшее распространение и применение в каждом аспекте нашей жизни, так как их преимущества намного весомее всех минусов. Благодаря им человечество добилось и продолжает добиваться удобств и комфорта все больше.

переключателей — Как рассчитать необходимую емкость пускового конденсатора для двигателя постоянного тока 12 В 10 А?

спросил

Изменено 2 года, 5 месяцев назад

Просмотрено 1к раз

\$\начало группы\$

Я хочу использовать импульсный источник питания 12 В 15 А для двигателя постоянного тока 12 В 10 А, который имеет около 9Пусковой ток и ток без нагрузки 6 А, я также хочу добавить кнопочный переключатель для включения и выключения функции, чтобы использовать его, и поэтому каждый раз, когда двигатель останавливается, он будет потреблять огромный ток от источника питания, и я собираюсь добавить несколько колпачков. на цепь; Итак, мои вопросы:

  1. не повредит ли это большое количество пускового тока импульсному источнику питания при постоянном включении и выключении?
  2. с многочисленными включениями и выключениями, будет ли двигатель поврежден в течение длительного времени или будет нагреваться быстрее, чем при обычном использовании?
  3. , если мы используем колпачок для обеспечения пускового тока, какой размер и напряжение?
  4. куда добавить переключатель? ближе к питанию или мотору? (в случае использования конденсатора/ов)

спасибо

  • переключатели
  • импульсный источник питания
  • двигатель постоянного тока
  • сильноточный
  • электролитический конденсатор

\$\конечная группа\$

3

\$\начало группы\$

В двигателях постоянного тока не используются пусковые конденсаторы. Вам нужен резервуар, чтобы предотвратить провисание подачи.

Используйте dQ = C * dV или C = dQ/dV.

Если вам нужно 10 А в течение 2 секунд, dQ = 20 кулонов.

Если вы можете допустить падение напряжения питания на 2 В, dV = 2 В.

Тогда C = 10 Фарад.

Дважды проверьте свои характеристики: если ток без нагрузки равен 6 А, а номинальный ток равен 10 А, вы, вероятно, имеете в виду 90 А для пускового тока. Что означало бы 90 фарад выше.

И помните, вы не можете просто включить питание конденсатора на 10 Фарад…

\$\конечная группа\$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Зачем нужен конденсатор для однофазного двигателя?

Однофазному асинхронному двигателю требуется конденсатор в цепи во время пуска для создания пускового момента. Без конденсатора однофазный конденсаторный пусковой асинхронный двигатель не может работать. Другие однофазные асинхронные двигатели, например, с экранированными полюсами и реактивного типа, не требуют конденсатора для запуска. В этой статье мы обсудим, как конденсатор помогает в создании пускового момента в однофазном двигателе с пусковым конденсатором.

Однофазный двигатель не является самозапускающимся. Двигатель может вращаться, если он создает вращающий момент. Генерация вращающего момента происходит, когда двигатель создает вращающееся магнитное поле. В принципе, трехфазный асинхронный двигатель способен генерировать вращающееся магнитное поле. В отличие от этого, однофазный двигатель не способен генерировать вращающееся магнитное поле и не может запустить свое собственное. Однофазный двигатель создает вращающееся поле и не может создавать вращающий момент.

Вал однофазного двигателя, если его однажды провернуть вручную после включения питания, может создать крутящий момент, и двигатель начнет непрерывно вращаться. Однако при каждом пуске двигателя ручной удар по валу является обязательным для вращения двигателя.

Метод разделения фаз разделяет питание фаз. Таким образом, такое разделение фаз создает фазовый сдвиг между двумя фазами, равный 90 электрическим градусам. в космосе. Чтобы добиться смещения фаз на 90 градусов, две обмотки расположены по 90 градусов в космосе физически.

Конденсатор, используемый последовательно с другой вспомогательной обмоткой, в основном обеспечивает сдвиг фаз на 90 градусов. Вспомогательная обмотка также называется пусковой обмоткой, потому что она помогает запустить двигатель, когда мы подключаем ее последовательно с конденсатором. На следующей схеме показаны пусковая и рабочая обмотки однофазного двигателя.

Напряжение пусковой и рабочей обмотки имеет сдвиг фаз на 90 градусов. На следующей диаграмме показано смещение фаз между этими двумя обмотками.

Значение емкости однофазного асинхронного двигателя пропорционально номинальной мощности двигателя. Формула для расчета размера конденсатора выглядит следующим образом.

Пример

Рассчитайте значение емкости однофазного асинхронного двигателя. Данные асинхронного двигателя: мощность 125 Вт, напряжение питания 230 В, 50 Гц, КПД 90%.

Обратите внимание, что номинальное напряжение конденсатора должно составлять 440 вольт для источника питания 230 вольт однофазного асинхронного двигателя.

В следующей таблице показано значение емкости для однофазных (230 В) двигателей различной мощности.

Номинальная мощность двигателя (Ватт) (V)
90 2.5 440
125 4.5 440
185 6.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *