Как правильно рассчитать сопротивление электрического провода. Какие формулы и методы используются для вычисления сопротивления проводников. От чего зависит сопротивление провода и как его определить на практике.
Что такое электрическое сопротивление провода
Электрическое сопротивление — это свойство проводника препятствовать прохождению электрического тока. Оно измеряется в омах (Ом) и обозначается буквой R.
Сопротивление провода зависит от следующих факторов:
- Материала проводника (медь, алюминий и т.д.)
- Длины провода
- Площади поперечного сечения
- Температуры
Чем длиннее провод и меньше его сечение, тем выше будет сопротивление. Повышение температуры также увеличивает сопротивление металлических проводников.
Основные формулы для расчета сопротивления провода
Для расчета сопротивления провода используются следующие основные формулы:
1. Формула зависимости сопротивления от длины и сечения
R = ρ * (l / S)
где:
- R — сопротивление, Ом
- ρ (ро) — удельное сопротивление материала, Ом*мм²/м
- l — длина провода, м
- S — площадь поперечного сечения, мм²
2. Формула закона Ома
R = U / I

где:
- R — сопротивление, Ом
- U — напряжение, В
- I — сила тока, А
3. Формула мощности
R = U² / P
где:
- R — сопротивление, Ом
- U — напряжение, В
- P — мощность, Вт
Пошаговый алгоритм расчета сопротивления провода
Чтобы правильно рассчитать сопротивление провода, следуйте этому алгоритму:
- Определите материал провода и его удельное сопротивление ρ
- Измерьте длину провода l
- Узнайте площадь поперечного сечения S
- Подставьте значения в формулу R = ρ * (l / S)
- Выполните расчет и получите значение сопротивления в омах
Пример расчета для медного провода длиной 100 м и сечением 1,5 мм²:
R = 0,0175 * (100 / 1,5) = 1,17 Ом
Удельное сопротивление различных материалов
Удельное сопротивление ρ — это справочная величина для каждого материала. Вот типичные значения для некоторых распространенных проводников:- Медь: 0,0175 Ом*мм²/м
- Алюминий: 0,028 Ом*мм²/м
- Железо: 0,098 Ом*мм²/м
- Нихром: 1,1 Ом*мм²/м
Как видно, медь имеет наименьшее удельное сопротивление среди металлов, поэтому чаще всего используется для изготовления проводов.

Зависимость сопротивления от температуры
Сопротивление металлических проводников увеличивается с ростом температуры. Эта зависимость выражается формулой:
R = R₀(1 + αΔt)
где:
- R — сопротивление при данной температуре
- R₀ — сопротивление при 0°C
- α — температурный коэффициент сопротивления
- Δt — изменение температуры
Для меди α ≈ 0,004 1/°C. То есть при нагреве на 100°C сопротивление медного провода увеличится примерно на 40%.
Практические методы измерения сопротивления
Помимо расчетов, сопротивление провода можно измерить экспериментально:
1. С помощью мультиметра
Самый простой способ — использовать мультиметр в режиме измерения сопротивления. Подключите щупы прибора к концам провода и считайте показания.
2. Метод амперметра-вольтметра
Подайте на провод известное напряжение и измерьте ток. Сопротивление рассчитывается по закону Ома: R = U / I.
3. Мостовой метод
Используется мостовая схема с эталонным сопротивлением для точного измерения неизвестного сопротивления провода.
Таблицы сопротивлений проводов
Для удобства часто используются готовые таблицы сопротивлений проводов разных сечений и материалов. Вот пример такой таблицы для медных проводов:

Сечение, мм² | Сопротивление, Ом/км |
---|---|
0,5 | 36 |
0,75 | 24 |
1,0 | 18 |
1,5 | 12 |
2,5 | 7,2 |
Такие таблицы позволяют быстро оценить сопротивление провода без сложных расчетов.
Особенности расчета сопротивления для разных типов проводов
Одножильные провода
Для одножильных проводов расчет выполняется напрямую по базовым формулам. Площадь сечения S рассчитывается как πd²/4, где d — диаметр жилы.
Многожильные провода
У многожильных проводов учитывается суммарное сечение всех жил. Также вводится поправочный коэффициент из-за скрутки жил (обычно 1,02-1,03).
Провода с покрытием
Для проводов с покрытием (например, луженых) расчет ведется только по сечению токопроводящей жилы, без учета покрытия.
Влияние сопротивления на выбор сечения провода
Сопротивление провода напрямую влияет на его нагрев при прохождении тока. Чем выше сопротивление, тем сильнее нагревается провод. Поэтому при проектировании электропроводки важно правильно подобрать сечение проводов с учетом:

- Величины протекающего тока
- Допустимого падения напряжения
- Температуры окружающей среды
- Способа прокладки
Завышенное сопротивление может привести к перегреву проводки и пожару. А слишком низкое — к неоправданному удорожанию.
Расчет сопротивления для сложных электрических цепей
В реальных электрических схемах провода часто соединяются последовательно или параллельно. В этих случаях применяются следующие формулы:
Последовательное соединение
R = R1 + R2 + R3 + …
Параллельное соединение
1/R = 1/R1 + 1/R2 + 1/R3 + …
Для сложных цепей с комбинированным соединением расчет ведется поэтапно, начиная с простейших участков.
Онлайн-калькуляторы для расчета сопротивления проводов
Для быстрого расчета сопротивления можно воспользоваться специализированными онлайн-калькуляторами. Они позволяют:
- Выбрать материал провода
- Задать длину и сечение
- Учесть температуру
- Рассчитать сопротивление и другие параметры
Такие калькуляторы значительно упрощают расчеты, особенно для сложных случаев.

Заключение
Расчет сопротивления провода — важная задача при проектировании электрических цепей. Правильное определение этого параметра позволяет обеспечить безопасность и эффективность работы электрооборудования. Используя приведенные формулы и методы, можно точно рассчитать сопротивление проводов в различных ситуациях.
Онлайн расчёт сопротивлений проводов. Площадь сечения проводов от мощности.
На первый взгляд может показаться, что эта статья из рублики «Электрику на заметку».
С одной стороны, а почему бы и нет,
с другой — так ведь и нам, пытливым электронщикам, иногда нужно рассчитать сопротивление обмотки катушки индуктивности, или
самодельного нихромового резистора, да и чего уж там греха таить — акустического кабеля для высококачественной звуковоспроизводящей
аппаратуры.
Формула тут совсем простая R = p*l/S, где l и S соответственно длина и площадь сечения проводника, а p — удельное сопротивление материала, поэтому расчёты эти можно провести самостоятельно, вооружившись калькулятором и Ля-минорной мыслью, что все собранные данные надо привести к системе СИ.
Ну а для нормальных пацанов, решивших сберечь своё время и не нервничать по пустякам, нарисуем незамысловатую таблицу.
ТАБЛИЦА ДЛЯ РАСЧЁТА СОПРОТИВЛЕНИЯ ПРОВОДНИКА
Страница получилась сиротливой, поэтому помещу-ка я сюда таблицу для желающих связать своё время с прокладкой электропроводки, подключить мощный источник энергопотребления, либо просто посмотреть в глаза электрику Василию и, «похлёбывая из котелка» задать справедливый вопрос: «А почему, собственно? Может разорить меня решил? Зачем мне тут четыре квадрата из бескислородной меди для двух лампочек и холодильника? Из-за чего, собственно?»
И расчёты эти мы с вами сделаем не от вольного и, даже не в соответствии с народной мудростью, гласящей, что
«необходимая площадь сечения провода равна максимальному току, делённому на 10», а в строгом соответствии нормативными
документами Минэнерго России по правилам устройства электроустановок.
Правила эти игнорируют провода, сечением, меньшим 1,5 мм2. Проигнорирую их и я, а за компанию и алюминиевые,
в силу их вопиющей архаичности.
Итак.
РАСЧЁТ ПЛОЩАДИ СЕЧЕНИЯ ПРОВОДОВ В ЗАВИСИМОСТИ ОТ МОЩНОСТИ НАГРУЗКИ
Потери в проводниках возникают из-за ненулевого значения их сопротивления, зависящего от длины провода.
Значения мощности этих потерь, выделяемых в виде тепла в окружающее пространство, приведены в таблице.
В итоге к потребителю энергии на другом конце провода напряжение доходит в несколько урезанном виде — меньшим, чем
оно было у источника. Из таблицы видно, что к примеру, при напряжении в сети 220 В и 100 метровой длине провода, сечением 1,5мм
Хорошо, это или плохо?
Для каких-то приборов — безразлично, какие-то работать будут, но при пониженной мощности, а какие-то взбрыкнут и пошлют Вас к
едрене фене вместе с вашими длинными проводами и умными таблицами.
Поэтому Минэнерго — минэнергой, а собственная голова не повредит ни при каких обстоятельствах. Если ситуация складывается подобным
примеру образом — прямая дорога к выбору проводов, большего сечения.
Как рассчитать сопротивление провода: подробная инструкция
Доброго времени суток! Собираюсь у себя дома самостоятельно подключить электрическую варочную панель и духовку. По причине того, что слышал, что стандартная проводка может не выдержать такой напруги и станет перегреваться, решил от щитка, через дополнительный автомат прокинуть отдельные провода.
Автомат у меня уже стоит, а вот подобрать сечение провода не знаю как. Подскажите, как рассчитать сопротивление проводов под мои нужды – прокидывать придется метров 20 провода, не меньше.
Именем этого человека и была названа единица сопротивления электричества
Ответ читателю
Приветствуем Вас, к сожалению не представившийся читатель! С расчетами мы вам естественно поможем, но все- таки рекомендуем привлечь к проблеме специалиста, ведь потребуется правильно подобрать не только проводник, но и автомат. Однако если вы точно знаете, что параметры автомата подойдут, то вам осталось всего ничего…
Теория и практика
Итак, если человек хоть немного знаком с основами электротехники, он должен знать, что чем толще провод, тем меньше сопротивление.
- Сравнить это теоретически можно с водопроводной трубой, по которой бежит вода. Если диаметр трубы достаточный, то жидкость протекает по ней, не испытывая никакого гидравлического сопротивления, и наоборот, маленькое отверстие увеличивает давление в трубе, пропускная способность падает, гидравлическое сопротивление растет.
- Также и поток электронов можно представить в виде воды, которая пытает протечь внутри провода. Однако электричество это совсем иная природа, соответственно и физические свойства у него другие.
- К чему может привести слишком высокое сопротивление? Самое банальное – это падение напряжения, в результате чего какая-нибудь лампа накаливания станет гореть тусклее, а какой-нибудь электроприбор не сможет стартовать.
- Прямым следствием прохождения мощного тока через проводник с достаточно высоким сопротивлением, будет его перегрев.
От автора! Однажды мы подключили сварочный аппарат, ну к очень плохому удлинителю, и после нескольких минут работы провод буквально загорелся. Благо короткого замыкания не произошло, но оно было весьма вероятно. Как понятно, в жилом помещении подобные ситуации недопустимы.
Рекомендуем действовать в следующей последовательности:
- Первым делом точно узнайте, какую нагрузку создают оба ваших прибора в условиях работы на максимальной мощности. Нас интересует сила тока, измеряемая в Амперах, или мощность — Ватты.
- Эти параметры вы легко отыщете в паспортах изделий.
- Если оба прибора будут запитаны от одной линии, то суммируйте полученные значения.
- Далее прибегайте к помощи таблицы, которая позволит безошибочно определить сечение провода.
На фото — таблица подбора сечения проводника
- Как видно из приведенной таблицы максимальный ток для медного провода площадью 0,5 не должен превышать 11 Ампер.
Совет! В жилых помещениях сегодня не допускается использование алюминиевых проводов. Применяют только медные.
- В принципе этими данными можно было бы и ограничиться, накинув некоторый запас, однако подобные таблицы не показывают каким должно быть максимальное сопротивление провода, то есть не учтена длина проводника. Поэтому для большей точности без расчета не обойтись.
Рассчитываем сопротивление
Все данные можно получить из таблиц
Итак, мы помним — провод толще, сопротивление меньше. Далее будет приведена инструкция, как рассчитать все точно.
- Для этого нам потребуется узнать удельное сопротивление материала проводника. В обычных сетях вы навряд ли отыщите серебряные провода, поэтому берем за основу стандартную медь. Оно составляет 0,017.
- Само же сопротивление провода рассчитывается по следующей формуле: ; где R – это сопротивление, р – удельное сопротивление проводника, l – длина провода и s – площадь его сечения.
- Предположим, что ваши печки вместе смогут нагрузить сеть на 16 Ампер, это значит, что мы можем взять провод площадью 0,75 мм2. Мы помним, что вам требуется минимум 20 метров. Итак, считаем: 0,017*20/0,75 = 0,45 Ом
- Можно воспользоваться и таблицей, но результат будет не таким точным. Мы видим, что 100 метров медного провода нужного нам сечения имеет 2,38 Ом сопротивления. Делим это значение на пять (до 20-ти метров) и получаем 0,476 Ом – разница на уровне погрешности, но все-таки.
- Из-за того, что электричество идет по двум жилам, умножаем полученное значение на 2 и получаем 0,9 Ом.
- Теперь можно рассчитать потери напряжения по формуле: dU = R*I = 0,9*16 = 14,4 Вольта.
- Переводим полученный вольтаж в процентное соотношение: 14,4В/220В*100 = 6,54%
Согласно существующим нормам допускается 5% потерь напряжения. Как видим, в нашем случае значение получилось больше, а значит, сопротивление проводника слишком большое, поэтому увеличиваем сечение провода и повторяем расчеты.
Итак, сопротивление провода мы нашли, и как видите, своими руками и головой сделать это не так уж и сложно. Дополнительно понять материал поможет прикрепленное видео. Подходите к делу с умом, ведь цена вопроса безопасность вас и вашего дома.
Расчет сопротивления медных проводов и выбор сечения кабеля
При проектировании электросхем важно правильно выбрать материал и сечение проводов. Чаще всего для этих целей применяется медь, обладающая меньшим сопротивлением.
Медные провода
От чего зависит сопротивление металла
Электрический ток – это направленное движение заряженных частиц. В металлах это свободные электроны. Они двигаются между атомами кристаллической решётки. Сопротивление их движению зависит от металла или сплава, а также его температуры – при её повышении сопротивление провода электрическому току растёт.
Исключение составляют специальные сплавы, применяемые в измерительных приборах. Из них изготавливаются резисторы, не меняющие своих параметров при изменении температуры. Кроме того, для подключения термопар применяются двухжильные провода, сопротивление одного из которых при повышении температуры растёт, а другого – уменьшается. В результате параметры кабеля не меняется.
Удельное сопротивление различных металлов
Разные металлы обладают различными свойствами и используются для разных целей.
Медь и алюминий
Самыми распространёнными проводами являются медные и алюминиевые. У меди ниже электросопротивление, чем сопротивление алюминиевого провода, кабеля из неё имеют меньшее сечение. Она прочнее, это позволяет сделать кабеля тоньше, а также гибкими и многожильными. Кроме того, медь паяется оловянными припоями.
Но у алюминия есть одно преимущество: он намного дешевле. Поэтому его используют для намотки трансформаторов и прокладки проводки, при эксплуатации которой отсутствуют изгибы, движение или вибрация.
Другие металлы
- Золото. Имеет самое малое электросопротивление, но из-за его цены используется только в отдельных местах в военной и космической технике;
- Серебро. Обладает лучшим соотношением цена/качество, чем золото, но также применяется ограниченно, в основном для изготовления контактов и разъёмов – оно не окисляется;
- Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Обладают высокой температурой плавления. Сопротивление нихрома и нихромовой проволоки достаточно большое для изготовления нагревателей и проволочных сопротивлений;
- Вольфрам. Имеет высокое удельное сопротивление и очень тугоплавкий – 3422 градуса. Из него изготавливаются нити накала в электролампочках;
- Константан. Сплав из меди, никеля и марганца, не меняющий своих свойств при изменениях температуры. Применяется для изготовления резисторов в измерительных приборах;
- Компенсационные. Из этих сплавов изготавливаются кабеля для подключения термопар и других датчиков. При повышении температуры электросопротивление одного проводника увеличивается, а другого – уменьшается. В результате общее значение остаётся неизменным.
Интересно. В 50-е годы проектировались трансформаторы для высоковольтных подстанций с серебряными обмотками. С учётом пониженных потерь это было выгодно. Но из-за повышения цены на серебро на мировом рынке эти проекты не были реализованы.
Выбор сечения кабелей
При расчёте сечения токопроводящей жилы учитываются нагрев и падение напряжения в кабелях большой длины. Выполнить расчет сопротивления провода можно по специальным таблицам или при помощи онлайн-калькуляторов.
Сечение, рассчитанное по потерям, может быть больше или меньше рассчитанного по нагреву. Это зависит от длины кабеля. Для прокладки выбирается большее значение.
Выбор сечения проводника по допустимому нагреву
При протекании электрического тока по кабелю он греется. Этот нагрев может расплавить изоляцию, что приведёт к её разрушению и замыканию рядом расположенных проводов между собой или на заземлённые детали конструкций.
Важно! Разрушение изоляции и К.З. (короткое замыкание) могут привести к пожару.
Расплавленная изоляция
Для того чтобы предотвратить подобную ситуацию, сечение кабеля должно соответствовать току нагрузки, типу изоляции и условиям прокладки. По проводам, проложенным открыто, или с термостойкой изоляцией можно пропускать больший ток, чем по кабелю, проложенному по трубам в виниловой или резиновой оболочке.
Выбор сечения по нагреву
Выбор сечения по потерям напряжения
При протекании электрического тока по кабелю происходит уменьшение напряжения возле нагрузки. Это связано с тем, что, хотя и сопротивление небольшого куска провода, и падение напряжения на нём невелико, на большой длине оно может достичь значительной величины.
Например, удельное сопротивление медного провода – 0,017 Ом•мм²/м. Но в одножильном кабеле длиной 100 м сечением 10 мм² оно составит 0,17Ом. При токе 80А (допустимому по нагреву) падение напряжения в сети 220В составит 27В (100 м фазного провода и 100 м нулевого с падением 13В в каждом проводнике). Поэтому при допустимом падении напряжения 2% или 5В сечение кабеля должно быть не меньше, чем 66 мм², или ближайшее большее стандартное значение – 75 мм².
Если расчет сечения по нагреву производится по рабочему току электродвигателя и на участке от вводного автомата до устройства, то расчёт по потерям необходимо производить по пусковому току с учётом всей длины кабелей: от магистрали до электромашины.
Выбор сечения провода по допустимому падению напряжения
Сопротивление медного провода – это величина, влияющая на выбор кабелей и проводов для намотки катушек при проектировании электросхем, а также электродвигателей и трансформаторов. Знание того, как выполняется расчет сопротивления проводника, и необходимых формул поможет правильно спроектировать электропроводку и избежать аварийных ситуаций.
Видео
Оцените статью:Как вычислить сопротивление проводника формула. Расчет сопротивлений проводов
Электричество само по себе невидимо, хотя от этого его опасность ничуть не меньше. Даже наоборот: как раз потому и опаснее. Ведь если бы мы его видели, как видим, например, воду, льющуюся из крана, то наверняка бы избежали множества неприятностей.
Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает. Но мы точно знаем: внутри вода. И если система исправно работает, то вода эта там находится под давлением. 2, 3 атмосферы, или сколько там? Неважно. Но давление там есть, иначе система бы не работала. Где-то гудят насосы, гонят воду в систему, создают это самое давление.
А вот наш провод электрический. Где-то далеко, на другом конце тоже гудят генераторы, вырабатывают электричество. И в проводе от этого тоже давление… Нет-нет, не давление, конечно, тут в этом проводе напряжение . Оно тоже измеряется, но в своих единицах: в вольтах.
Давит в трубах на стенки вода, никуда не двигаясь, ждет, когда найдется выход, чтобы ринуться туда мощным потоком. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение.
И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны. Что это за движение? Это ток . Электроны текут . И это движение, этот ток тоже имеет свою единицу измерения: ампер.
И еще есть сопротивление . Для воды это, образно говоря, размер отверстия в выпускном кране. Чем больше отверстие, тем меньше сопротивление движению воды. В проводах почти также: чем больше сопротивление провода, тем меньше ток.
Вот, как-то так, если образно представлять себе основные характеристики электричества. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R .
I — сила тока. Измеряется в амперах.
U — напряжение. Измеряется в вольтах.
R — сопротивление. Измеряется в омах.
Есть еще одно понятие — мощность, W. С ним тоже просто: W = U*I . Измеряется в ваттах.
Собственно, это вся необходимая и достаточная для нас теория. Из этих четырех единиц измерения в соответствии с вышеприведенными двумя формулами можно вывести некоторое множество других:
№ | Задача | Формула | Пример |
1 | Узнать силу тока, если известны напряжение и сопротивление. | I = U/R | I = 220 в / 500 ом = 0.44 а. |
2 | Узнать мощность, если известны ток и напряжение. | W = U*I | W = 220 в * 0.44 а = 96.8 вт. |
3 | Узнать сопротивление, если известны напряжение и ток. | R = U/I | R = 220 в / 0.44 а = 500 ом. |
4 | Узнать напряжение, если известны ток и сопротивление. | U = I*R | U = 0.44 а * 500 ом = 220 в. |
5 | Узнать мощность, если известны ток и сопротивление. | W = I 2 *R | W = 0.44 а * 0.44 а * 500 ом = 96.8 вт. |
6 | Узнать мощность, если известны напряжение и сопротивление. | W = U 2 /R | W = 220 в * 220 в / 500 ом = 96.8 вт. |
7 | Узнать силу тока, если известны мощность и напряжение. | I = W/U | I = 96.8 вт / 220 в = 0,44 а. |
8 | Узнать напряжение, если известны мощность и ток. | U = W/I | U = 96.8 вт / 0.44 а = 220 в. |
9 | Узнать сопротивление, если известны мощность и напряжение. | R = U 2 /W | R = 220 в * 220 в / 96.8 вт = 500 ом. |
10 | Узнать сопротивление, если известны мощность и ток. | R = W/I 2 | R = 96.8 вт / (0,44 а * 0,44 а) = 500 ом. |
Ты скажешь: — Зачем мне это все надо? Формулы, цифры… Я ж не собираюсь заниматься расчетами.
А я так отвечу: — Перечитай предыдущую статью . Как можно быть уверенным, не зная простейших истин и расчетов? Хотя, собственно, в бытовом практическом плане наиболее интересна только формула 7, где определяется сила тока при известных напряжении и мощности. Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты .
Есть еще одно обстоятельство, о котором следует упомянуть в контексте этой статьи. В электроэнергетике используется так называемый «переменный» ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад… И эта смена направления движения — 100 раз в секунду.
Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.
Не будем вдаваться в подробности более глубоко, но все же: почему именно переменный, а не постоянный ток?
Вся проблема в передаче электроэнергии на большие расстояния. Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения.
Выход здесь только один: поднять напряжение. Седьмая формула говорит: I = W/U . Совершенно очевидно, что если мы будем подавать напряжение не 220 вольт, а 220 тысяч вольт, то сила тока уменьшится в тысячу раз. А это значит, что сечение проводов можно взять намного меньше.
Поиск по сайту.
Вы можете изменить поисковую фразу.
Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.
Шаги
Последовательное соединение
Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.
Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь. Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.
- Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.
Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.
- Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: R O = 12 В / 8 А = 1,5 Ом.
Параллельное соединение
Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.
Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: , где R 1 – сопротивление первой ветви, R 2 – сопротивление второй ветви и так далее до последней ветви R n .
- Например, параллельная цепь состоит из трех ветвей, сопротивления которых равны 10 Ом, 2 Ом и 1 Ом.
Воспользуйтесь формулой 1 R O = 1 10 + 1 2 + 1 1 {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{10}}+{\frac {1}{2}}+{\frac {1}{1}}} , чтобы вычислить R O
Приведите дроби к общему знаменателю : 1 R O = 1 10 + 5 10 + 10 10 {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{10}}+{\frac {5}{10}}+{\frac {10}{10}}}
1 R O = 1 + 5 + 10 10 = 16 10 = 1 , 6 {\displaystyle {\frac {1}{R_{O}}}={\frac {1+5+10}{10}}={\frac {16}{10}}=1,6}
Умножьте обе части на R O: 1 = 1,6R O
R O = 1 / 1,6 = 0,625 Ом.
- Например, параллельная цепь состоит из трех ветвей, сопротивления которых равны 10 Ом, 2 Ом и 1 Ом.
Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.
Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.
- Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: R O = 9 В / 3 А = 3 Ом.
Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.
Комбинированное соединение
Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.
- Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: 1 R O = 1 R 1 + 1 R 2 + 1 R 3 + . . . 1 R n {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+…{\frac {1}{R_{n}}}} .
- В нашем примере параллельная цепь включает две ветви, сопротивления которых равны R 1 = 5 Ом и R 2 = 3 Ом.
1 R p a r = 1 5 + 1 3 {\displaystyle {\frac {1}{R_{par}}}={\frac {1}{5}}+{\frac {1}{3}}}
1 R p a r = 3 15 + 5 15 = 3 + 5 15 = 8 15 {\displaystyle {\frac {1}{R_{par}}}={\frac {3}{15}}+{\frac {5}{15}}={\frac {3+5}{15}}={\frac {8}{15}}}
R p a r = 15 8 = 1 , 875 {\displaystyle R_{par}={\frac {15}{8}}=1,875} Ом.
- В нашем примере параллельная цепь включает две ветви, сопротивления которых равны R 1 = 5 Ом и R 2 = 3 Ом.
Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.
- В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.
- После упрощения цепи она состоит из трех резисторов со следующими сопротивлениями: 1 Ом, 1,5 Ом и 1,875 Ом. Все три резистора соединены последовательно: R O = 1 + 1 , 5 + 1 , 875 = 4 , 375 {\displaystyle R_{O}=1+1,5+1,875=4,375} Ом.
Среди прочих показателей, характеризующих электрическую цепь, проводник, стоит выделить электрическое сопротивление. Оно определяет способность атомов материала препятствовать направленному прохождению электронов. Помощь в определении данной величины может оказать как специализированный прибор – омметр, так и математические расчеты на основании знаний о взаимосвязях между величинами и физическими свойствами материала. Измерение показателя производится в Омах (Ом), обозначением служит символ R.
Закон Ома – математический подход при определении сопротивления
Соотношение, установленное Георгом Омом, определяет взаимосвязь между напряжением, силой тока, сопротивлением, основанную на математическом взаимоотношении понятий. Справедливость линейной взаимосвязи – R = U/I (отношение напряжения к силе тока) – отмечается не во всех случаях.
Единица измерения [R] = B/A = Ом. 1 Ом – сопротивление материала, по которому идет ток в 1 ампер при напряжении в 1 вольт.
Эмпирическая формула расчета сопротивления
Объективные данные о проводимости материала следуют из его физических характеристик, определяющих как его собственно свойства, так и реакции на внешние влияния. Исходя из этого проводимость зависит от:
- Размера.
- Геометрии.
- Температуры.
Атомы проводящего материала сталкиваются с направленными электронами, препятствуя их дальнейшему продвижению. При высокой концентрации последних атомы не способны им противостоять и проводимость оказывается высокой. Большие значения сопротивления характерны для диэлектриков, которые отличаются практически нулевой проводимостью.
Одной из определяющих характеристик каждого проводника является его удельное сопротивление – ρ. Оно определяет зависимость сопротивления от материала проводника и воздействий извне. Это фиксированная (в пределах одного материала) величина, которая представляет данные проводника следующих размеров – длина 1 м (ℓ), площадь сечения 1 кв.м. Поэтому взаимосвязь между данными величинами выражается соотношением: R = ρ* ℓ/S:
- Проводимость материала падает по мере увеличения его длины.
- Увеличение площади сечения проводника влечет за собой снижение его сопротивления. Такая закономерность обусловлена уменьшением плотности электронов, а, следовательно, и контакт частиц материала с ними становится более редким.
- Рост температуры материала стимулирует рост сопротивления, в то время как падение температуры влечет за собой его снижение.
Расчет площади сечения целесообразно производить согласно формуле S = πd 2 / 4. В определении длины поможет рулетка.
Взаимосвязь c мощностью (P)
Исходя из формулы закона Ома, U = I*R и P = I*U. Следовательно, P = I 2 *R и P = U 2 /R.
Зная величину силы тока и мощность, сопротивление можно определить как: R = P/I 2 .
Зная величину напряжения и мощности, сопротивление легко вычислить по формуле: R = U 2 /P.
Сопротивление материала и величины других сопутствующих характеристик могут быть получены с применением специальных измерительных приборов или на основании установленных математических закономерностей.
В природе существует два основных вида материалов, проводящие ток и не проводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).
Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.
В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.
Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.
В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.
Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.
Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.
Где I – сила тока, измеряется в амперах и обозначается буквой А ; U В ; R – сопротивление, измеряется в омах и обозначается Oм .
Если известны напряжение питания U и сопротивление электроприбора R , то с помощью выше приведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I .
С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.
Применение закона Ома на практике
На практике часто приходится определять не силу тока I , а величину сопротивления R . Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R , зная протекающий ток I и величину напряжения U .
Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.
Формула Закона Джоуля-Ленца
Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца .
Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.
где P – мощность, измеряется в ваттах и обозначается Вт ; U – напряжение, измеряется в вольтах и обозначается буквой В ; I – сила ток, измеряется в амперах и обозначается буквой А .Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.
Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала .
Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.
Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.
Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.
Преобразованные формулы Закона Ома и Джоуля-Ленца
Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой несвязанные между собой четыре сектора и очень удобна для практического применения
По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.
А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.
Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.
Электрическое сопротивление — физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.
Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.
Удельное сопротивление
Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле
где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.
Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)
Вещество | p , Ом*мм 2 /2 | α,10 -3 1/K |
Алюминий | 0.0271 | |
Вольфрам | 0.055 | |
Железо | 0.098 | |
Золото | 0.023 | |
Латунь | 0.025-0.06 | |
Манганин | 0.42-0.48 | 0,002-0,05 |
Медь | 0.0175 | |
Никель | ||
Константан | 0.44-0.52 | 0.02 |
Нихром | 0.15 | |
Серебро | 0.016 | |
Цинк | 0.059 |
Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.
Зависимость удельного сопротивления от деформаций
При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.
При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.
Влияние температуры на удельное сопротивление
Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле
где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 — температура после нагрева.
Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.
Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.
На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.
Удельное сопротивление. Реостаты — урок. Физика, 8 класс.
Для рассмотрения характеристик электрических параметров рассмотрим назначение приборов:
- сила тока в цепи определяется амперметров, который подключается последовательно с соблюдением полярности;
- напряжение на участке цепи измеряется вольтметром, который подключается параллельно к тому участку или прибору, на котором нужно узнать разность потенциалов или напряжения;
- на деревянной изолирующей подставке — устройство, имеющее провода с различными значениями сопротивления;
- значение тока можно регулировать реостатом.
Определим физические параметры (величины), влияющие на значение сопротивления проводника.
Эксперимент \(1\). Физическая величина — длина (прямая пропорциональность).
Эксперимент \(2\). Физическая величина — площадь поперечного сечения (обратная пропорциональность).
Эксперимент \(3\). Материал проводника, физическая величина — удельное сопротивление проводника (прямая пропорциональность).
Примечание: «эксперимент» следует понимать как включение в электрическую цепь проводников с конкретными одинаковыми и различающимися физическими параметрами и сравнение значений сопротивлений данных проводников.
Впервые зависимость сопротивления проводника от вещества, из которого он изготовлен, и от длины проводника обнаружил немецкий физик Георг Ом. Он установил:
Сопротивление проводника напрямую зависит от его длины и материала, но обратным образом зависит от площади поперечного сечения проводника.
Обрати внимание!
Из этого можно сделать вывод: чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.
Удельное сопротивление проводника зависит от строения вещества. Электроны при движении внутри металлов взаимодействуют с атомами (ионами), находящимися в узлах кристаллической решётки. Чем выше температура вещества, тем сильнее колеблются атомы и тем больше удельное сопротивление проводников.
Удельное электрическое сопротивление — физическая величина \(\rho\), характеризующая свойство материала оказывать сопротивление прохождению электрического тока:
ρ=R⋅Sl, где удельное сопротивление проводника обозначается греческой буквой \(\rho\) (ро), \(l\) — длина проводника, \(S\) — площадь его поперечного сечения.
Определим единицу удельного сопротивления. Воспользуемся формулой ρ=R⋅Sl.
Как известно, единицей электрического сопротивления является \(1\) Ом, единицей площади поперечного сечения проводника — \(1\) м², а единицей длины проводника — \(1\) м. Подставляя в формулу, получаем:
1 Ом ⋅1м21 м=1 Ом ⋅1 м, т.е. единицей удельного сопротивления будет Ом⋅м.
На практике (например, в магазине при продаже проводов) площадь поперечного сечения проводника измеряют в квадратных миллиметрах, В этом случае единицей удельного сопротивления будет:
1 Ом ⋅1мм21 м, т.е. Ом⋅мм2м.
В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.
Удельное сопротивление увеличивается пропорционально температуре.
При нагревании колебания ионов металлов в узлах металлической решётки увеличиваются, поэтому свободного пространства для передвижения электронов становится меньше. Электроны чаще отбрасываются назад, поэтому значение тока уменьшается, а значение сопротивления увеличивается.
Обрати внимание!
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. А это значит, что медь и серебро лучше остальных проводят электрический ток.
При проводке электрических цепей, например, в квартирах не используют серебро, т.к. это дорого. Зато используют медь и алюминий, так как эти вещества обладают малым удельным сопротивлением.
Порой необходимы приборы, сопротивление которых должно быть большим. В этом случаем необходимо использовать вещество или сплав с большим удельным сопротивлением. Например, нихром.
Полиэтилен, дерево, стекло и многие другие материалы отличаются очень большим удельным сопротивлением. Поэтому они не проводят электрический ток. Такие материалы называют диэлектриками или изоляторами.
Очень часто нам приходится изменять силу тока в цепи. Иногда мы ее увеличиваем, иногда уменьшаем. Водитель трамвая или троллейбуса изменяет силу тока в электродвигателе, тем самым увеличивая или уменьшая скорость транспорта.
Реостат — это резистор, значение сопротивления которого можно менять.
Реостаты используют в цепи для изменения значений силы тока и напряжения.
Реостат на рисунке состоит из провода с большим удельным сопротивлением (никелин, нихром), по которому передвигается подвижный контакт \(C\) по длине провода, плавно изменяя сопротивление реостата. Сопротивление такого реостата пропорционально длине провода между подвижным контактом \(C\) и неподвижным \(A\). Чем длиннее провод, тем больше сопротивление участка цепи и меньше сила тока. С помощью вольтметра и амперметра можно проследить эту зависимость.
На школьных лабораторных занятиях используют переменное сопротивление — ползунковый реостат.
Он состоит из изолирующего керамического цилиндра, на который намотан провод с большим удельным сопротивлением. Витки проволоки должны быть изолированы друг от друга, поэтому либо проволоку обрабатывают графитом, либо оставляют на проволоке слой окалины. Сверху над проволочной обмоткой закреплен металлический стержень, по которому перемещается ползунок. Контакты ползунка плотно прижаты в виткам и при движении изолирующий слой графиты или окалины стирается, и тогда электрический ток может проходить от витков проволоки к ползунку, через него подводиться к стержню, имеющему на конце зажим \(1\).
Для соединения реостата в цепь используют зажим \(1\) и зажим \(2\). Ток, поступая через зажим \(2\), идёт по никелиновой проволоке и через ползунок подаётся на зажим \(1\). Перемещая ползунок от \(2\) к \(1\), можно увеличивать длину провода, в котором течёт ток, а значит, и сопротивление реостата.
В электрических схемах реостат изображается следующим образом:
Как и любой электрический прибор, реостат имеет допустимое значение силы тока, свыше которого прибор может перегореть. Маркировка реостата содержит диапазон его сопротивления и максимальное допустимое значение силы тока.
Обрати внимание!
Сопротивление реостата нужно учитывать в параметрах электрической цепи. При минимальных значениях сопротивления ток в цепи может вывести из строя амперметр.
Существуют реостаты, в которых переключатель подключается на проводники заданной длины и сопротивления: каждая спираль реостата имеет определённое сопротивление. Поэтому плавно изменять силу тока с помощью такого прибора не получится.
Повторим формулы
Сопротивление проводника: R=ρ⋅lS
Из этой формулы можно выразить и другие величины:
l=R⋅Sρ, S=ρ⋅lR, ρ=R⋅Sl.
Расчет сопротивления медного провода калькулятор. Сопротивление медного провода
Раз будет меньше эта величина, во столько раз понизится сопротивление проводника.
Если есть такая возможность, уменьшите длину проводника, который используется в цепи. Сопротивление прямо пропорционально длине проводника. Если укоротить проводник в n раз, то сопротивление понизится во столько же раз.
Увеличьте площадь поперечного сечения проводника. Установите проводник с большим поперечным сечением или соедините несколько проводников параллельно в пучок проводов. Во сколько раз увеличится площадь поперечного сечения проводника, во столько раз понизится сопротивление проводника.
Можно комбинировать эти способы. Например, чтобы понизить сопротивление проводника в 16 раз, заменяем его проводником, удельное сопротивление в 2 раза меньше, уменьшаем в 2 раза его длину, а площадь поперечного сечения в 4 раза.
Чтобы уменьшить сопротивление на участке цепи, присоедините к нему параллельно еще одно сопротивление , величину которого рассчитайте. Учитывайте, что при параллельном соединении, сопротивление участка цепи всегда меньше самого малого сопротивления, находящегося в параллельных ветках. Рассчитайте необходимое сопротивление , которое нужно присоединить параллельно. Для этого измерьте сопротивление участка цепи R1. Определите то сопротивление , которое должно на нем быть – R. После этого определите сопротивление R2, которое нужно присоединить к сопротивлению R1 параллельно. Для этого найдите произведение сопротивлений R и R1 и поделите на разность R1 и R (R2 = R R1 / (R1 — R)). Учитывайте, что по условию, R1 всегда больше R.
Сопротивление — это некая способность элемента электрической цепи препятствовать прохождению по нему электрического тока. Им обладают различные материалы, например, медь, железо и нихром. Общее сопротивление — это сопротивление всей электрической цепи в целом. Оно измеряется в Омах. Нужно знать сопротивление цепи для оценки токов короткого замыкания и выбора коммутационных аппаратов.
Вам понадобится
- Омметр, измерительный мост, калькулятор.
Инструкция
Для начала определите, как подключены элементы электрической цепи по отношению друг к другу, так как это влияет на подсчет общего сопротивления. Проводники могут находиться в последовательном или параллельном подключении. Последовательное соединение — это такое соединение, когда все элементы связаны так, что включающий их участок цепи не имеет ни одного узла, а параллельное соединение — это такое соединение, когда все элементы цепи объединены двумя узлами и не имеют связей с другими узлами.
Если вы определили, что проводники в электрической цепи подключены последовательно, найти полное сопротивление не составит труда. Просто сложите сопротивления всех элементов . Если вам не дано сопротивление каждого проводника, но даны их напряжения и сила тока какого-либо элемента цепи, то, сложив все напряжения, вы узнаете общее напряжение. Силы тока каждого элемента при последовательном соединении равны, то есть и общая сила тока во всей цепи равна силе тока любого проводника данной цепочки . И тогда, чтобы найти полное сопротивление, разделите общее напряжение на силу тока.
Если же элементы подключены параллельно, то общее сопротивление можно найти следующим способом: перемножьте сопротивления всех проводников и разделите на их сумму. Если вам не дано сопротивление каждого элемента, но даны их силы тока и напряжение какого-либо элемента цепи, то, сложив все силы тока, вы узнаете общую. Напряжения каждого элемента при параллельном соединении равны, то есть и общее напряжение во всей цепи равно напряжению любого проводника данной цепочки. И тогда, чтобы найти полное сопротивление, разделите напряжение на общую силу тока.
Чтобы определить общее сопротивление электрической цепи, воспользуйтесь такими измерительными приборами , как омметр и измерительный мост. Они помогут вам определить электрические активные сопротивления.
Полезный совет
Обязательно определяйте способ подключения элементов в электрической цепи, так как именно от него зависит правильный подсчет общего сопротивления!
Источники:
- рассчитать сопротивление цепи в 2017
Сопротивление провода показывает то, насколько он препятствует прохождению электрического тока. Измерьте его при помощи тестера, переключенного в режим работы омметра. Если такой возможности нет, можно рассчитать его разными способами.
Вам понадобится
- — тестер;
- — линейка или рулетка;
- — калькулятор.
Инструкция
Измерьте сопротивление провода . Для этого к его концам присоедините тестер, включенный в режим работы омметра. На экране прибора появится электрическое сопротивление провода в Омах или кратных им величинах, в зависимости от настроек прибора. Провод при этом должен быть отключен от источника тока.
Рассчитайте сопротивление при помощи тестера, который работает в режиме амперметра и вольтметра. Если провод является участком электрической цепи, подключите ее к источнику тока. К концам провода параллельно присоедините тестер, включенный в режим работы вольтметра. Измерьте падение напряжения на проводе в вольтах.
Переключите тестер в режим работы амперметра и включите его в цепь последовательно. Получите значение силы тока в цепи в амперах. Используя соотношение, полученное из закона Ома, найдите электрическое сопротивление проводника. Для этого поделите значение напряжения U на силу тока I, R=U/I.
Пример. Измерение показало, что при падении напряжения на проводнике 24 В, сила тока в нем составляет 1,2 А. Определите его сопротивление. Найдите отношение напряжения к силе тока R=24/1,2=20 Ом.
Найдите сопротивление провода , не подключая его к источнику тока. Узнайте, из какого материала сделан провод. В специализированной таблице найдите удельное сопротивление этого материала в Ом∙мм2/м.
Рассчитайте сечение провода , если оно не указано изначально. Для этого очистьте его от изоляции, если он изолирован, и измерьте диаметр токопроводящей жилы в мм. Определите ее радиус, поделив диаметр на число 2. Определите сечение провода , умножив число π≈3,14 на квадрат радиуса жилы.
С помощью линейки или рулетки измерьте длину провода в метрах . Рассчитайте сопротивление провода , умножив удельное сопротивление материала ρ на длину проводника l. Поделите результат на его сечение S, R=ρ∙l/S.
Пример. Найдите сопротивление медного провода диаметром 0,4 мм длиной 100 м. Удельное сопротивление меди равно 0,0175 Ом∙мм2/м. Радиус провода равен 0,4/2=0,2 мм. Сечение S=3,14∙0,2²=0,1256 мм². Рассчитайте сопротивление по формуле R=0,0175∙100/0,1256≈14 Ом.
Источники:
- сопротивление медного провода
Если замкнуть электрическую цепь, создав на ее концах разность потенциалов, то по ней побежит электрический ток, силу которого можно измерить Амперметром. Но сила эта будет варьироваться, если в цепи заменить один проводник другим. Это говорит о том, что не только напряжение влияет на силу тока, но и материал, из которого сделан проводник. Вот это свойство проводника препятствовать прохождению электрического тока и называется сопротивлением.
Каждое тело по отношению к электрическому току характеризуется своим сопротивлением. Если вспомнить электронную теорию, то согласно ей, все вещества состоят из атомов и молекул. Эти атомы и молекулы в разных веществах имеют разную структуру. И именно они встречаются на пути движения свободных электронов в проводнике, когда по электрической цепи идет ток. То есть, когда свободный электрон сталкивается с ионом кристаллической решетки материала проводника, он неизбежно теряет часть своей кинетической энергии и испытывает как бы сопротивление своему движению.
Чем больше сопротивление проводника, тем он хуже пропускает электрический ток. Обозначается электрическое сопротивление латинской буквой R, а за единицу измерения принят 1 Ом.
Обратной характеристикой сопротивления вещества является его проводимость. Чем выше электрическая проводимость материала, тем лучше он проводит ток. Изоляторы отличаются от проводников по проводимости в огромное число раз, измеряемое единицей с двадцатью двумя нулями!
Удельное сопротивление. Определение и расчет
Итак, электрическое сопротивление зависит от материала, из которого изготовлен проводник. Но есть еще два важных параметра – это длина проводника и площадь его поперечного сечения. Очевидно, что чем длиннее проводник, тем дольше ионы его вещества будут мешать движению свободных электронов.
А вот чтобы лучше понять, почему сопротивление зависит от площади поперечного сечения, нужно провести аналогию с водой. Представьте два одинаковых сосуда, соединенных в одном случае тонкой трубкой, а в другом – толстой. По тонкой или по толстой трубке вода быстрее перельется из одного сосуда в другой? Ясно, что по толстой.
Удельное сопротивление – это сопротивление проводника, длиной 1 метр и площадью поперечного сечения 1 мм2.
Наименьшим удельным сопротивлением обладают серебро и медь.
Таким образом, чтобы вычислить электрическое сопротивление проводника, надо воспользоваться формулой:
R = pl/S,
где p – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения проводника.
При повышении температуры металлического проводника, его сопротивление увеличивается. Объяснить это явление можно тем, что при передаче тепловой энергии телу повышается интенсивность движения атомов его вещества, и это в большей степени препятствует свободному току электронов.
С понижением же температуры в металлах создаются лучшие условия для проведения электрического тока. Существует даже такое понятие, как сверхпроводимость, то есть такое состояние металлического проводника, когда его сопротивление равно нулю. При этом атомы металла практически застывают на месте, абсолютно не препятствуя движению свободных электронов. Происходит это при температуре -273оС.
Источники:
- Школа для электрика
Когда производится расчет сечения кабеля, то в частном домостроении или в квартирах для определения этой величины используются два показателя: потребляемая мощность сети и сила тока, проходящая по разводке. Сопротивление в данном случае роли не играет. Все дело в небольшой длине проводов. А вот если длина линии электропередач достаточно большая, то без определения данного показателя здесь не обойтись. К примеру, на начале участка напряжение будет 220-2240 вольт, а на конце уже заниженное 200-220 вольт. А так как все чаще в проводке используются медные кабели и провода, то наша задача в этой статье рассмотреть сопротивление медного провода (таблица сопротивления проводов будет ниже приложена).
Что нам дает сопротивление в общем? В принципе, с его помощью можно узнать параметры используемого провода или материал, из которого он изготовлен. К примеру, если для прокладки линии электропередачи использовался скрытый способ, то зная сопротивление линии, можно точно сказать, какой она длины. Ведь часто прокладка производится под землей и непрямолинейным способом. Или еще один вариант, зная длину участка и его сопротивление можно подсчитать диаметр используемого кабеля, а через него и его сечение. Плюс, зная данную величину, можно узнать материал, из которого этот провод был изготовлен. Это все говорит о том, что не стоит сбрасывать со счетов данный показатель.
Все это касалось электрической проводки, но когда дело касается электроники, то в этой области без определения сопротивления и сопоставления его с другими параметрами не обойтись. В некоторых случаях данный параметр может сыграть решающую роль, даже неправильный подбор провода по сопротивлению может привести к тому, что подключаемый к такому проводнику прибор просто не будет работать. К примеру, если к блоку питания обычного компьютера подключить очень тонкий провод. Напряжение в таком проводнике станет низким, не намного, но этого будет хватать, чтобы компьютер работал некорректно.
От чего зависит сопротивление
Так как мы говорим о медном проводе, то первое от чего зависит этот физический параметр, это медь, то есть, сырьевой материал. Второе – это размеры проводника, а, точнее, его диаметр или сечение (обе величины связаны между собой формулой).
Конечно, есть дополнительные физические величины, которые влияют на сопротивление проводника. К примеру, температура окружающей среды. Ведь известно, что при повышении температуры самого провода, его сопротивление увеличивается. А так как этот показатель находится в обратной зависимости от силы (плотность) тока, соответственно ток при повышении сопротивления, наоборот, снижается. Правда, это относится к тем металлам, которые являются обладателями положительного температурного коэффициента. Для примера можно привести сплав вольфрама, который используется для нити накала лампочки. Такому материалу изменения силы (плотность) тока не страшны при высоком нагреве, потому что этот металл обладает отрицательным температурным коэффициентом.
Расчет сопротивления
Сегодня все сделано для человека. И даже такой простой расчет можно сделать несколькими способами. Есть простые, есть сложные. Начнем с простых.
Первый вариант табличный. В чем его простота? К примеру, таблица на нижнем рисунке.
Здесь все четко показано и взаимосвязано. Зная определенные размеры медного провода, можно определить его сопротивление и силу тока, которую провод может выдержать. Или, наоборот, имея в наличие показатели сопротивления или силы (плотность) тока, которые, кстати, можно определить мультиметром, можно легко определить сечение или диаметр проводника. Данный вариант самый удобный, таблицы можно найти в свободном доступе в интернете.
Второй способ определения – с помощью калькулятора (онлайн). Таких интернетовских приспособлений великое множество, работать с ними удобно и легко. Можно в такой калькулятор вставлять физические величины медного проводника и получать размерные показатели, или, наоборот. Правда, основная масса таких калькуляторов в своей программе имеет одно стандартное значение – это удельное сопротивление меди, равное 0,0172 Ом·мм²/м.
И самый сложный вариант расчета – это провести его своими руками, используя формулу. Вот она: R=pl/S, где:
- р – это то самое удельное сопротивление меди;
- l – длина медного провода;
- S – его сечение.
Хотелось бы отметить, что медь обладает одним из самых низких удельных сопротивлений. Ниже него только серебро – 0,016.
Определить сечение проводника можно через формулу, где основным параметром является его диаметр. А вот определить диаметр можно разными способами, кстати, такая статья на нашем сайте есть, можете прочитать и получить полную и достоверную информацию.
Содержание:При проектировании электрических сетей в квартирах или частных домах в обязательном порядке выполняется расчет сечения проводов и кабелей. Для проведения вычислений используются такие показатели, как значение потребляемой мощности и сила тока, которая будет проходить по сети. Сопротивление не принимается в расчет из-за малой протяженности кабельных линий. Однако этот показатель необходим при большой длине ЛЭП и перепадах напряжения на различных участках. Особое значение имеет сопротивление медного провода. Такие провода все чаще используются в современных сетях, поэтому их физические свойства должны обязательно учитываться при проектировании.
Понятия и значение сопротивления
Электрическое сопротивление материалов широко используется и учитывается в электротехнике. Данная величина позволяет установить основные параметры проводов и кабелей, особенно при скрытом способе их прокладки. В первую очередь устанавливается точная длина проложенной линии и материал, использованный для производства провода. Вычислив первоначальные данные, вполне возможно измеряемого кабеля.
По сравнению с обычной электрической проводкой, в электронике параметрам сопротивления придается решающее значение. Оно рассматривается и сопоставляется в совокупности с другими показателями, присутствующими в электронных схемах. В этих случаях неправильно подобранное сопротивление провода, может вызвать сбой в работе всех элементов системы. Такое может произойти, если для подключения к блоку питания компьютера воспользоваться слишком тонким проводом. Произойдет незначительное снижение напряжения в проводнике, что вызовет некорректную работу компьютера.
Сопротивление в медном проводе зависит от многих факторов, и в первую очередь от физических свойств самого материала. Кроме того, учитывается диаметр или сечение проводника, определяемые по формуле или специальной таблице.
Таблица
На сопротивление медного проводника оказывают влияние несколько дополнительных физических величин. Прежде всего должна учитываться температура окружающей среды. Всем известно, что при повышении температуры проводника, наблюдается рост его сопротивления. Одновременно с этим происходит снижение силы тока из-за обратно пропорциональной зависимости обеих величин. В первую очередь это касается металлов с положительным температурным коэффициентом. Примером отрицательного коэффициента является вольфрамовый сплав, применяющийся в лампах накаливания. В этом сплаве сила тока не снижается даже при очень высоком нагреве.
Как рассчитать сопротивление
Для расчетов сопротивления медного провода существует несколько способов. К наиболее простым относится табличный вариант, где указаны взаимосвязанные параметры. Поэтому, кроме сопротивления, определяется сила тока, диаметр или сечение провода.
Во втором случае используются разнообразные . В каждый из них вставляется набор физических величин медного провода, с помощью которых получаются точные результаты. В большинстве подобных калькуляторов используется сопротивление меди в размере 0,0172 Ом*мм 2 /м. В некоторых случаях такое усредненное значение может повлиять на точность вычислений.
Наиболее сложным вариантом считаются ручные вычисления, с использованием формулы: R = p x L/S, в которой р — удельное сопротивление меди, L — длина проводника и S — сечение этого проводника. Следует отметить, что сопротивление медного провода таблица определяет, как одно из наиболее низких. Более низким значением обладает лишь серебро.
Пример расчета сечения кабеля — Расчет сечения провода по потребляемой мощности
Для чего нужен расчёт сечения кабеля
В главную очередь, проведение этой несильно сложной процедуры необходимо для обеспечения безопасности как самого помещения, так и находящихся в нём людей. На сегодня человечеством не изобретено более удобного метода распределения и доставки электрической энергии до потребителя, как по проводам. Людям практически ежедневно необходимы услуги электрика — кто-то нуждается в подключении розетки, кому-то необходимо установить светильник и т. д.
Из этого выходит, что с операцией подбора требуемого сечения связана даже такая, казалось бы, незначительная процедура, как установка нового светильника. Что же тогда говорить о подключении электрической плиты или водонагревателя? Несоблюдение норм может привести к нарушению целостности проводки, что нередко становится причиной короткого замыкания или даже поражения электрическим током.
Если при выборе сечения кабеля допустить ошибку, и приобрести кабель с меньшей площадью проводника, то это приведёт к постоянному нагреву кабеля, что станет причиной разрушения его изоляции. Естественно, все это негативно влияет на продолжительность эксплуатации проводки — нередки случаи, когда через месяц после успешного монтажа электропроводка переставала работать, и требовалось вмешательство специалиста.
Следует помнить, что от правильно подобранного значения сечения кабеля напрямую зависит электро и пожаробезопасность в здании, а значит, и жизнь самих жильцов. Конечно, каждый собственник желает как можно больше сэкономить, но не стоит делать это ценой своей жизни, ставя её под угрозу — ведь в результате короткого замыкания может случиться пожар, который вполне может уничтожить все имущество.
Во избежание этого, перед началом электромонтажных работ следует подобрать кабель оптимального сечения. Для подбора необходимо учитывать несколько факторов:
- общее количество электротехнических устройств, находящихся в помещении;
- совокупную мощность всех приборов и потребляемую ими нагрузку. К полученному значению следует добавить «про запас» 20–30%;
- затем, путём нехитрых математических расчётов, перевести полученное значение в сечение провода, учитывая при этом материал проводника.
Внимание! Ввиду более низкой электропроводимости, провода с алюминиевыми жилами должны приобретаться с большим сечением, нежели медные.
Что будет, если неправильно рассчитать сечение
Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:
- Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
- Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.
Что еще влияет на нагрев проводов
Сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:
- Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
- Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.
Как правильно определить сечение провода
С теорией закончили. Пора переходить к основному вопросу темы – как же определить требуемое сечение токонесущей жилы для различных условий эксплуатации электропроводки. Здесь возможны несколько вариантов поиска нужного результата. Выбрать можно тот, который покажется наиболее удобным или подходящим к конкретному случаю.
Расчет через допустимую плотность тока
Изо всего изложенного выше уже должно быть понятно, что главным ограничителем при выборе требуемого сечения является резистивный нагрев проводников, способный привести к плавлению изоляции, к коротким замыканиям, к перегреву окружающих материалов вплоть до вероятности самовозгорания. То есть выбираемое сечение провода должно исключать подобные явления.
Проведение точных теплотехнических расчетов – дело очень непростое. Но специалисты уже многое сделали в этом плане, так что можно воспользоваться их наработками. В частности, ими просчитана безопасная плотность тока, которая не вызывает опасного нагрева проводника до температур, способных вызвать плавление наиболее распространенной в наше время ПВХ или ПЭ изоляции. Так, для проводников, находящихся в условиях условной комнатной температуры (+20℃), эта плотность тока составляет:
Материал проводов | Оптимальная плотность тока, А/мм² | |
Расположение проводки | Открытая | Закрытая |
Алюминий | 3.5 | 3 |
Медь | 5 | 4 |
Сразу оговорим разницу между открытой и закрытой проводками.
- Открытая встречается не столь часто. Она прокладывается по стенам или потолкам на хомутах или изоляторах, может быть воздушной — самонесущей или же удерживаться несущим тросом. К открытым проводкам можно отнести и сетевые шнуры, удлинители, если, конечно, они не намотаны на катушки, бобины и т.п.
- Все остальное, по сути – это закрытая проводка: расположенная к кабель-каналах, коробах или гофротрубах, вмурованная в стены, проложенная в грунте и т.п. Иными словами, в любых условиях, где отсутствует нормальный теплоотвод. С опорой на этот критерий к закрытой проводке следует отнести и те участки, которые располагаются в распределительных щитах и монтажных коробках – нормального теплообмена здесь тоже нет.
Выше не зря было оговорено, что указанные показатели справедливы для комнатной температуры. Случается, что проводку приходится прокладывать в помещениях с особым температурным режимом, то есть в которых поддерживается нагрев выше обычного (предбанники, сушилки, оранжереи и т.п.) В таком случае в значение допустимой плотности тока вносятся коррективы – применяется коэффициент 0,9 на каждые 10 градусов температуры свыше + 20 ℃.
Например, на какую плотность тока следует ориентироваться, если планируется проложить медную проводку в кабель-канале для подключения ТЭНа в сушилке, в которой будет поддерживаться температура +50 ℃? По таблице плотность тока G для закрытой медной проводки равна 4 А/мм². Разница между нормой температуры и планируемым режимом равна 50 – 20 = 30 ℃. То есть понижающий коэффициент должен быть учтен трижды. Но столько это означает не 0,9 × 3, а 0,9³: G = 4 × 0,9 × 0,9 × 0,9 = 4 × 0,9³ = 4 × 0,729 = 2,92 А/мм² На этот показатель плотности и придется ориентироваться для создания безопасной в данных условиях проводки.
Еще один пример. Скажем, в уже рассмотренных условиях проводка прокладывается для подключения двух обогревателей мощностью по 750 ватт каждый. Суммарная нагрузка по мощности на линию получается: Р = 750 + 750 = 1500 Вт Пересчитаем ее в необходимый ток при напряжении 220 вольт: I = P / U = 1500 / 220 = 6.8 А Нормальная плотность тока для таких условий эксплуатации была нами подсчитана – 2,92 А/мм². То есть ничего уже не стоит подсчитать то сечение медной жилы, которое обеспечит безопасную плотность: S = I / G = 6.8 / 2.92 = 2.33 мм²
Естественно, полученное значение приводится к ближайшему с округлением в большую сторону. То есть для прокладки проводки в указанных условиях подойдет медный провод сечением 2.5 мм². В принципе, по такому же принципу можно проводить расчеты и для любых других помещений. В том числе для линий, к которым планируется подключить несколько электрических приборов различной мощности.
При этом суммарную мощность линии можно подсчитать так: ΣP = (P₁ + Р₂ + … + Рₙ) × Кс × Кз В скобках — мощности подключаемых к линии электроприборов, от 1 до n. Кс – так называемый коэффициент спроса. Вряд ли все подключенные в линии приборы будут работать одновременно. То есть этот коэффициент учитывает вероятность их одновременного включения.
Расчет этого коэффициента – задача непростая, так как учитывает немало нюансов. Но так как наша публикация предназначена для электриков-любителей, которые в своей работе наверняка ограничиваются своими небольшими жилыми владениями, можно задачу упростить. А конкретно: при двух приборах коэффициент оставляем равным единице. При трех ÷ четырех – 0,8. Пять ÷ шесть – 0,75. Большего количества потребителей на линии в условиях дома или квартиры вряд ли встретится, но на всякий случай, если вдруг… – коэффициент 0,7.
Кз – коэффициент запаса. Величина необязательная. Но рачительный хозяин может подумать и наперед, что, возможно, через год-другой к этой же линии придется подключать и дополнительную нагрузку, о которой пока можно только догадываться. Так что имеет смысл сразу заложить резерв, приняв коэффициент, например, от 1,5 до 2,0. Но, повторимся, дело – добровольное, и этот коэффициент можно вообще исключить из расчетов.
Еще один важный нюанс. Реальная мощность электрического прибора может оказаться выше номинальной, указанной в паспорте. Это связано с понятиями активной и реактивной мощностей. Не будем вдаваться особо в физику этого явления, скажем лишь, что полная мощность для некоторых типов нагрузки рассчитывается по формуле:
- Pп = Pn / cos φ
- Pп — полная мощность;
- Pn — указанная в паспорте номинальная мощность;
- cos φ — коэффициент мощности, равный косинусу угла φ — смещения фаз тока и напряжения.
Такое смещение свойственно приборам с мощным электроприводом, с высокой индуктивной нагрузкой (трансформаторами, дросселями). Значение cos φ для такой техники также указывается в паспорте изделия. Значения номинальной мощности и cos φ на шильдике асинхронного двигателя. В бытовых условиях подобные приборы встречаются нечасто, но все же если линия проводится, скажем, для питания мощного насоса, компрессора, электродвигателя, для сварочного поста – лучше этим показателем не манкировать.
А теперь можно попробовать произвести полный расчет с учетом всего сказанного выше. Для этого читателю предлагается онлайн-калькулятор.
В поля ввода программы необходимо ввести запрашиваемые данные:
- Какая проводка будет использоваться: медная или алюминиевая, расположенная открыто или закрытая.
- Напряжение в планируемой линии.
- Если в помещении предполагается какой-то специфический температурный режим, то это следует указать – выбрать из предлагаемых вариантов. Температура в комнате ниже +25℃ будет считаться нормальной – она стоит в перечне первой и учитывается по умолчанию.
- Далее, указывается мощность планируемой к подключению нагрузки. Предусмотрено до 6 разных единиц – для бытовых условий этого обычно достаточно. При этом если поле не заполняется, то мощность считается равной нулю, то есть поле в расчет не принимается.
Два последних поля позволяют учесть нагрузку с реактивной составляющей мощности, если таковая есть. Для этого помимо номинала необходимо указать и значение cos φ. По умолчанию cos φ = 0, то есть как для обычной активной нагрузки.
- В зависимости от количества подключаемых к линии приборов в алгоритме автоматически учитывается коэффициент спроса.
- Наконец, пользователь может заложить резерв мощности, повысив коэффициент запаса, от 1 до 2 с шагом 0,1.
Результат расчета будет выдан в квадратных миллиметрах сечения жилы провода (кабеля) с точностью до сотой. Естественно, после этого придется сделать округление до ближайшего стандартного размера в большую сторону.
Расчет сечения по мощности потребителей
Основное назначение проводников – доставка электрической энергии к потребителям в необходимом количестве. Поскольку в обычных условиях эксплуатации сверхпроводники не доступны, приходится принимать в расчет сопротивление материала проводника. Расчет необходимого сечения проводников и кабелей в зависимости от общей мощности потребителей основан на продолжительном опыте эксплуатации.
Сечение кабеля – одна из основных величин в подборе его для устройства проводки. Сечение определяет, какой мощности ток способен проводить кабель без перегрева из-за превышения мощности. Основой кабеля является однопроволочная или многопроволочная медная жила, которая в сечении может быть круглой, треугольной или прямоугольной. Если в проводнике больше двух жил, то они чаще всего скручиваются. Номинальное сечение многожильных изделий представляет собой сумму сечений всех имеющихся жил.
Общий ход вычислений начнем с того, что сначала проводим расчеты, используя формулу: P = (P1+P2+..PN)*K*J,
Где:
- P – мощность всех потребителей, подключенных к рассчитываемой ветке в Ваттах.
- P1, P2, PN – мощность первого потребителя, второго, n-го соответственно, в Ваттах.
Получив результат по окончанию вычислений по вышеприведенной формуле, настал черед обратиться к табличным данным.
Теперь предстоит выбор необходимого сечения по таблице 1.
Таблица 1. Сечение жил проводов всегда необходимо выбирать в ближайшую большую сторону (+)
Этап #1 — расчет реактивной и активной мощности
Мощности потребителей указаны в документах на оборудование. Обычно в паспортах оборудования указана активная мощность вместе с реактивной мощностью. Устройства с активным видом нагрузки превращают всю полученную электрическую энергию, с учетом КПД, в полезную работу: механическую, тепловую или в другой ее вид.
К устройствам с активной нагрузкой относятся лампы накаливания, обогреватели, электроплиты. Для таких устройств расчет мощности по току и напряжению имеет вид: P = U * I,
Где:
- P – мощность в Вт;
- U – напряжение в В;
- I – сила тока в А.
Устройства с реактивным видом нагрузки способны накапливать энергию поступающую от источника, а затем возвращать. Происходит такой обмен за счет смещения синусоиды силы тока и синусоиды напряжения.
При нулевом смещении фаз мощность P=U*I всегда имеет положительное значение. Такой график фаз силы тока и напряжения имеют устройства с активным видом нагрузки (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14)
К устройствам с реактивной мощностью относятся электродвигатели, электронные приборы всех масштабов и назначений, трансформаторы.
Когда есть смещение фаз между синусоидой силы тока и синусоидой напряжения, мощность P=U*I может быть отрицательной (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14). Устройство с реактивной мощностью возвращает накопленную энергию обратно источнику
Электрические сети построены таким образом, что могут производить передачу электрической энергии в одну сторону от источника к нагрузке. Поэтому возвращенная энергия потребителя с реактивной нагрузкой является паразитной и тратится на нагрев проводников и других компонентов. Реактивная мощность имеет зависимость от угла смещения фаз между синусоидами напряжения и тока. Угол смещения фаз выражают через cosφ.
Для нахождения полной мощности применяют формулу: P = Q / cosφ,
Где Q – реактивная мощность в ВАрах.
Обычно в паспортных данных на устройство указана реактивная мощность и cosφ.
Пример: в паспорте на перфоратор указана реактивная мощность 1200 ВАр и cosφ = 0,7. Следовательно, общая потребляемая мощность будет равна:
P = 1200/0,7 = 1714 Вт
Если cosφ найти не удалось, для подавляющего большинства электроприборов бытового назначения cosφ можно принять равным 0,7.
Этап #2 — поиск коэффициентов одновременности и запаса
K – безразмерный коэффициент одновременности, показывает сколько потребителей одновременно может быть включено в сеть. Редко случается, чтобы все устройства одновременно потребляли электроэнергию. Маловероятна одновременная работа телевизора и музыкального центра. Из устоявшейся практики K можно принять равным 0,8. Если Вы планируете использовать все потребители одновременно, K следует принять равным 1.
J – безразмерный коэффициент запаса. Характеризует создание запаса по мощности для будущих потребителей. Прогресс не стоит на месте, с каждым годом изобретаются все новые удивительные и полезные электрические приборы. Ожидается, что к 2050 году рост потребления электроэнергии составит 84%. Обычно J принимается равным от 1,5 до 2,0.
Этап #3 — выполнение расчета геометрическим методом
Во всех электротехнических расчетах принимается площадь поперечного сечения проводника – сечение жилы. Измеряется в мм². Часто бывает необходимо узнать, как грамотно рассчитать сечение провода по диаметру проволоки проводника. В этом случае есть простая геометрическая формула для монолитного провода круглого сечения: S = π*R2 = π*D2/4, или наоборот D = √(4*S / π)
Для проводников прямоугольного сечения: S = h * m,
Где:
- S – площадь жилы в мм2;
- R – радиус жилы в мм;
- D – диаметр жилы в мм;
- h, m – ширина и высота соответственно в мм;
- π – число пи, равное 3,14.
Если Вы приобретаете многожильный провод, у которого один проводник состоит из множества свитых проволочек круглого сечения, то расчет ведут по формуле:
S = N*D2/1,27,
Где N – число проволочек в жиле.
Провода, имеющие свитые из нескольких проволочек жилы , в общем случае имеют лучшую проводимость, чем монолитные. Это обусловлено особенностями протекания тока по проводнику круглого сечения. Электрический ток представляет собой движение одноименных зарядов по проводнику. Одноименные заряды отталкиваются, поэтому плотность распределения зарядов смещена к поверхности проводника.
Другим достоинством многожильных проводов является их гибкость и механическая стойкость. Монолитные провода дешевле и применяют их в основном для стационарного монтажа.
Этап #4 —рассчитываем сечение по мощности на практике
Задача: общая мощность потребителей на кухне составляет 5000 Вт (имеется ввиду, что мощность всех реактивных потребителей пересчитана). Все потребители подключаются к однофазной сети 220 В и имеют запитку от одной ветки.
Таблица 2. Если вы планируете в будущем подключение дополнительных потребителей, в таблице представлены необходимые мощности распространенных бытовых приборов.
Решение:
Коэффициент одновременности K примем равным 0,8. Кухня место постоянных инноваций, мало ли что, коэффициент запаса J=2,0. Общая расчетная мощность составит: P = 5000*0,8*2 = 8000 Вт = 8 кВт Используя значение расчетной мощности, ищем ближайшее значение в таблице 1.
Ближайшим подходящим значением сечения жилы для однофазной сети является медный проводник с сечением 4 мм². Аналогичный размер провода с алюминиевой жилой 6 мм². Для одножильной проводки минимальный диаметр составит 2,3 мм и 2,8 мм соответственно. В случае применения многожильного варианта сечение отдельных жил суммируется.
Как рассчитать сечения кабеля по мощности
При достаточном значении сечения кабеля электрический ток будет проходить до потребителя, не вызывая нагрева. Почему происходит нагрев? Постараемся объяснить максимально доступно. К примеру, в розетку включён чайник потребляемой мощностью 2 киловатта, но идущий к розетке провод может передать для него ток мощностью только 1 киловатт. Пропускная способность кабеля связана с сопротивлением проводника — чем оно больше, тем меньший ток может передаваться по проводу. В результате высокого сопротивления в проводке и происходит нагрев кабеля, постепенно разрушающий изоляцию.
При соответствующем сечении электрический ток доходит до потребителя в полном объёме, и нагревание провода не происходит. Поэтому, проектируя электропроводку, следует учитывать потребляемую мощность каждого электрического прибора. Это значение можно узнать из технического паспорта на электроприбор или из наклеенной на нём этикетки. Суммируя максимальные значения и используя нехитрую формулу:
I=(P1+P2+…+Pn)/220
и получаем значение общей силы тока. Pn обозначает указанную в паспорте мощность электроприбора, 220 – номинальный вольтаж. Для трехфазной системы (380 В) формула выглядит так:
I=(P1+P2+….+Pn)/√3/380.
Полученное значение I измеряется в Амперах, и на основании него и подбирается соответствующее сечение кабеля. Известно, что пропускная способность медного кабеля составляет 10 А/мм, для алюминиевого кабеля значение пропускной способности составляет 8 А/мм. Для того чтоб рассчитать сечение кабеля нужно величину тока разделить на 8 или 10, в зависимости от вида кабеля. Полученный результат и будет размером сечения кабеля.
Например рассчитаем величину сечения кабеля для подключения стиральной машины, потребляемая мощность которой составляет 2400 Вт. I=2400 Вт/220 В=10,91 А, округлив получаем 11 А.
Дальше, чтоб увеличить запас прочности, согласно правилу “пяти ампер” к полученному значению силы тока нужно прибавить еще 5 А: 11 А+5 А=16 А. Если учитывать, что в квартирах используют трехжильные кабеля и посмотреть по таблице, то к 16 А близкое значение 19 А, поэтому для установки стиральной машины потребуется провод, сечение которого не меньше 2 мм².
Откры- то | в одной трубе | |||||
двух одно- жильных | трех одно- жильных | четырех одно- жильных | одного двух- жильного | одного трех- жильного | ||
0,5 | 11 | – | – | – | – | – |
0,75 | 15 | – | – | – | – | – |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | – | – | – |
185 | 510 | – | – | – | – | – |
240 | 605 | – | – | – | – | – |
300 | 695 | – | – | – | – | – |
400 | 830 | – | – | – | – | – |
Формула расчета сечения кабеля по мощности
Позволяет подобрать сечение по потребляемой мощности и напряжению.
Для однофазных электрических сетей (220 В): I = (P × K и ) / (U × cos(φ) )
где:
- cos(φ) — для бытовых приборов, равняется 1
- U — фазовое напряжение, может колебаться в пределах от 210 V до 240 V
- I — сила тока
- P — суммарная мощность всех электрических приборов
- K и — коэффициент одновременности, для расчетов принимается значение 0,75
Для 380 в трехфазных сетях: I = P / (√3 × U × cos(φ))
Где:
- Cos φ — угол сдвига фаз
- P — сумма мощности всех электроприборов
- I — сила тока, по которой выбирается площадь сечения провода
- U — фазное напряжение, 220V
Как выбрать сечения проводника
Существует ещё несколько критериев, которым должно соответствовать сечение используемых проводов:
- Длина кабеля. Чем больше провод по длине, тем большие в нём наблюдаются потери тока. Это происходит опять-таки в результате увеличения сопротивления, нарастающего по мере увеличения длины проводника. Особенно это ощущается при использовании алюминиевой проводки. При применении медных проводов для организации электропроводки в квартире, длина, как правило, не учитывается — стандартного запаса в 20–30% (при скрытой проводке) с лихвой достаточно, чтобы компенсировать возможные увеличения сопротивления, связанные с длиной провода.
- Тип используемых проводов. В бытовом электроснабжении используются 2 типа проводников — на основе меди или алюминия. Медные провода качественнее и обладают меньшим сопротивлением, но зато алюминиевые дешевле. При полном соответствии нормам, алюминиевая проводка справляется со своими задачами не хуже медной, так что необходимо тщательно взвесить свой выбор перед покупкой провода.
- Конфигурация электрощита. Если все провода, питающие потребителей, подключены к одному автомату, то именно он и будет являться слабым местом в системе. Сильная нагрузка приведёт к нагреву клеммных колодок, а несоблюдение номинала к его постоянному срабатыванию. Рекомендуется разделять электропроводку на несколько «лучей» с установкой отдельного автомата.
Для того, чтобы определить точные данные для выбора сечения кабелей электрической проводки, необходимо учитывать любые, даже самые незначительные параметры, такие как:
- Вид и тип изоляции электрической проводки;
- Длина участков;
- Способы и варианты прокладки;
- Особенности температурного режима;
- Уровень и процент влажности;
- Максимально возможная величина перегрева;
- Разница в мощностях всех приемников тока, относящихся к одной и той же группе. Все эти и многие другие показатели позволяют значительно увеличить эффективность и пользу от использования энергии в любых масштабах. Кроме того, правильные расчеты помогут избежать случаев перегревания или быстрого истирания изоляционного слоя.
Для того, чтобы правильно определить оптимальное кабельное сечение для любых человеческих бытовых нужд, необходимо во всех общих случаях использовать стандартизированные следующие правила:
- для всех розеток, которые будут монтироваться в квартире, необходимо использовать провода с соответствующим сечением в 3,5 мм²;
- для всех элементов точечного освещения необходимо использовать кабеля электрической проводки с сечением в 1,5 мм²;
- что же касается приборов повышенной мощности, то для них следует использовать кабеля с сечением в 4-6 мм².
Если в процессе монтажа или расчетов возникают некоторые сомнения, лучше не действовать вслепую. Идеальным вариантом будет обратиться к соответствующей таблице расчетов и стандартов.
Сечение жил, проводящих ток (мм) | Медные жилы проводов и кабелей | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток (А) | Мощность (кВТ) | Ток (А) | Мощность (кВТ) | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 80 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 265 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Таблица сечения алюминиевого кабеля
Сечение жил, проводящих ток (мм) | Алюминиевые жилы проводов и кабелей | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток (А) | Мощность (кВТ) | Ток (А) | Мощность (кВТ) | |
2,5 | 22 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132 |
От верно подобранного сечения кабеля напрямую зависит безопасность объекта — поэтому необходимо подойти к процедуре выбора со всей ответственностью. Рекомендуется также проконсультироваться со специалистами перед приобретением проводов — опытный электрик подскажет наиболее оптимальный вариант.
Экономия при покупке часто выходит боком — нередко владельцы квартир или домов приобретают алюминиевый кабель взамен медного, не учитывая тот факт, что его сечение должно быть больше. В итоге смонтированная электропроводка сильно греется, и в течение достаточно малого времени требуется полная замена проводов, что не слабо ударит по кошельку собственника жилья. К тому же, это ещё и чрезвычайно опасно – многие любители сэкономить остались в итоге без крыши над головой.
Если возникли сомнения в собственных силах, рекомендуется обратиться к специалисту — только в этом случае можно гарантировать безопасность для жильцов и продолжительность работы новой электропроводки.
Выбор по таблице
Зная диаметр провода, можно определить его сечение по готовой таблице зависимости. Таблица расчета сечения кабеля по диаметру жилы выглядит таким образом:
Диаметр проводника, мм | Сечение проводника, мм2 |
0.8 | 0.5 |
1 | 0.75 |
1.1 | 1 |
1.2 | 1.2 |
1.4 | 1.5 |
1.6 | 2 |
1.8 | 2.5 |
2 | 3 |
2.3 | 4 |
2.5 | 5 |
2.8 | 6 |
3.2 | 8 |
3.6 | 10 |
4.5 | 16 |
Когда сечение известно, можно определить значения допустимых мощности и тока для медного или алюминиевого провода. Таким образом удастся выяснить, на какие параметры нагрузки рассчитана токопроводящая жила. Для этого понадобится таблица зависимости сечения от максимального тока и мощности.
В воздухе (лотки, короба,пустоты,каналы) | Сечение,кв.мм | В земле | |||||||||
Медные жилы | Алюминиевые жилы | Медные жилы | Алюминиевые жилы | ||||||||
Ток. А | Мощность, кВт | Тон. А | Мощность, кВт | Ток, А | Мощность, кВт | Ток. А | Мощность,кВт | ||||
220 (В) | 380 (В) | 220(В) | 380 (В) | 220(В) | 380 (В) | 220(В) | |||||
19 | 4.1 | 17.5 | 1,5 | 77 | 5.9 | 17.7 | |||||
35 | 5.5 | 16.4 | 19 | 4.1 | 17.5 | 7,5 | 38 | 8.3 | 75 | 79 | 6.3 |
35 | 7.7 | 73 | 77 | 5.9 | 17.7 | 4 | 49 | 10.7 | 33.S | 38 | 8.4 |
*2 | 9.7 | 77.6 | 37 | 7 | 71 | 6 | 60 | 13.3 | 39.5 | 46 | 10.1 |
55 | 17.1 | 36.7 | 47 | 9.7 | 77.6 | 10 | 90 | 19.8 | S9.7 | 70 | 15.4 |
75 | 16.5 | 49.3 | 60 | 13.7 | 39.5 | 16 | 115 | 753 | 75.7 | 90 | 19,8 |
95 | 70,9 | 67.5 | 75 | 16.5 | 49.3 | 75 | 150 | 33 | 98.7 | 115 | 75.3 |
170 | 76.4 | 78.9 | 90 | 19.8 | 59.7 | 35 | 180 | 39.6 | 118.5 | 140 | 30.8 |
145 | 31.9 | 95.4 | 110 | 74.7 | 77.4 | 50 | 775 | 493 | 148 | 175 | 38.5 |
ISO | 39.6 | 118.4 | 140 | 30.8 | 97.1 | 70 | 775 | 60.5 | 181 | 710 | 46.7 |
770 | 48.4 | 144.8 | 170 | 37.4 | 111.9 | 95 | 310 | 77.6 | 717.7 | 755 | 56.1 |
760 | 57,7 | 171.1 | 700 | 44 | 131,6 | 170 | 385 | 84.7 | 753.4 | 795 | 6S |
305 | 67.1 | 700.7 | 735 | 51.7 | 154.6 | 150 | 435 | 95.7 | 786.3 | 335 | 73.7 |
350 | 77 | 730.3 | 770 | 59.4 | 177.7 | 185 | 500 | 110 | 379 | 385 | 84.7 |
Заключение
Теперь вы знаете, как произвести расчет сечения провода по потребляемой мощности (определение важных характеристик и прочих мелких факторов вам отныне известно). Исходя из всех вышеперечисленных данных, вы сможете самостоятельно, не прибегая к помощи профессионалов, составить правильно план электроснабжения для своего дома или квартиры.
Полезное видео по теме
Расчет сечения проводника по формулам:
Рекомендации специалистов по подбору кабельно-проводниковой продукции:
Источники
- http://remontnichok.ru/elektrichestvo/raschet-secheniya-kabelya-po-moshchnosti-prakticheskie-sovety-ot-professionalov
- https://www.boncom.by/papers/raschet-secheniya-kabelya
- https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/raschet-secheniya-kabelya-po-toku.html
- https://sovet-ingenera.com/elektrika/provodka/raschyot-secheniya-kabelya.html
- https://220-help.su/cable-sechenie/
- https://SystemsSec.ru/info/calc/raschet-secheniya-kabelya-po-diametru/
- https://FB.ru/article/246807/raschet-secheniya-provoda-po-potreblyaemoy-moschnosti-osobennosti-rascheta
Удельное сопротивление | Физика проводников и изоляторов
Расчет сопротивления проводов
Номинальная допустимая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания. Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела.В этом случае падение напряжения из-за сопротивления проводов может вызвать технические проблемы, будучи в пределах безопасных (пожарных) пределов допустимой нагрузки:
Если нагрузка в указанной выше цепи не выдерживает напряжения ниже 220 В при напряжении источника 230 В, то нам лучше убедиться, что проводка не упадет более чем на 10 вольт по пути. Если считать как питающие, так и обратные проводники этой цепи, это оставляет максимально допустимое падение в 5 вольт по длине каждого провода.Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:
Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для конкретного размера и длины провода? Для этого нам понадобится другая формула:
Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.
Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):
Удельное сопротивление при 20 градусах Цельсия
Материал | Элемент / Сплав | (Ом-смил / фут) | (мкОм-см) |
---|---|---|---|
нихром | Сплав | 675 | 112,2 |
Нихром V | Сплав | 650 | 108,1 |
Манганин | Сплав | 290 | 48.21 |
Константан | Сплав | 272,97 | 45,38 |
Сталь * | Сплав | 100 | 16,62 |
Платина | Элемент | 63,16 | 10,5 |
Утюг | Элемент | 57,81 | 9,61 |
Никель | Элемент | 41,69 | 6,93 |
цинк | Элемент | 35.49 | 5,90 |
Молибден | Элемент | 32,12 | 5,34 |
Вольфрам | Элемент | 31,76 | 5,28 |
Алюминий | Элемент | 15,94 | 2,650 |
Золото | Элемент | 13,32 | 2,214 |
Медь | Элемент | 10,09 | 1.678 |
Серебро | Элемент | 9,546 | 1,587 |
* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%
Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы ожидаем использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.
Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), с 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут (1,66243 x 10 ). -7 Ом-см на Ом-см-дюйм). В столбце таблицы Ом-см цифры фактически масштабированы в мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.
При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь — в квадратных метрах.При использовании единицы Ω-сантиметр (Ω-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.
Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см). Однако можно предпочесть использовать Ом-см-мил / фут при работе с круглым проводом, площадь поперечного сечения которого уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлической заготовки, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления Ом-метр или Ом-см.
Решение
Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:
Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что проволока «двойной длины» (2/0) с длиной 133 100 см является достаточной, в то время как следующий меньший размер, «одинарная проводка» (1/0) с длиной 105 500 см слишком мала. .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медного провода на открытом воздухе, достаточно провода калибра 14 (если речь идет о , а не о , вызывающем пожар). Однако с точки зрения падения напряжения провод 14 калибра был бы очень неприемлемым.
Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы все еще используем медь в качестве материала для проволоки (хороший выбор, если только мы не действительно богаты и не можем позволить себе 4600 футов серебряной проволоки 14-го калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см · дюйм / фут. :
Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый кусок провода в цепи имеет сопротивление 5,651 Ом:
Полное сопротивление проводов нашей схемы равно 2 умноженным на 5.651 или 11,301 Ом. К сожалению, это сопротивление намного больше, чем , чтобы обеспечить ток в 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток цепи до 20,352 ампер! Как видите, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.
Давайте рассмотрим пример проблемы сопротивления для отрезка сборной шины, изготовленной по индивидуальному заказу.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Во-первых, нам нужно определить площадь поперечного сечения стержня:
Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:
Как вы можете видеть, абсолютная толщина шины обеспечивает очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.
Процедура определения сопротивления шины принципиально не отличается от процедуры определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.
ОБЗОР:
- Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
- Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
- Удельное сопротивление материалов указывается в единицах Ом-смил / фут или Ом-метр (метрическая система).Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут или 1,66243 x 10 -7 Ом-см на Ом-см-мил / фут.
- Если падение напряжения в цепи критично, перед выбором сечения проводов необходимо произвести точный расчет сопротивления проводов.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Сопротивление провода, онлайн-калькулятор и формула
Онлайн-калькуляторы и формулы для расчета сопротивления проводов
Расчет сопротивления провода онлайн
На этой странице электрическое сопротивление рассчитывается исходя из длины и поперечного сечения провода.Необходимо знать удельное сопротивление или проводимость материала провода.
Обратите внимание, что сопротивление указанной простой длины рассчитывается. Если вы хотите рассчитать общее сопротивление двухполюсного кабеля, например кабель громкоговорителя, вы должны умножить значение на 2. Общее сопротивление = прямая линия + обратная линия.
Удельные значения проводимости наиболее распространенных кабелей:
Материал
Электропроводность
Медь 56.0 Серебро 62,5 Алюминий 35,0
Для просмотра списка других значений удельного сопротивления и проводимости щелкните здесь.
|
Легенда
\ (\ displaystyle A \) Площадь поперечного сечения (мм 2 )
\ (\ displaystyle l \) Длина провода (м)
\ (\ displaystyle R \) Сопротивление провода
\ (\ Displaystyle S \) Проводимость провода
\ (\ Displaystyle ρ \) Удельное сопротивление
\ (\ Displaystyle σ \) Удельная проводимость
Формулы сопротивления проводов
Сопротивление провода | \ (\ Displaystyle R = \ гидроразрыва {ρ · l} {A} \) \ (\ displaystyle = \ frac {l} {σ · A} \) |
Длина провода | \ (\ Displaystyle л = \ гидроразрыва {R · A} {ρ} \) \ (\ Displaystyle = р · А · σ \) |
Площадь поперечного сечения провода | \ (\ Displaystyle А = \ гидроразрыва {l} {R · σ} \) \ (\ Displaystyle = \ гидроразрыва {л · ρ} {R} \) |
|
Калькулятор размеров калибра проводов и сопротивления
Вычислите диаметр, площадь поперечного сечения и сопротивление провода с учетом его калибра или найдите калибр провода с учетом диаметра.
Калькулятор калибра проводов
Результатов:
Диаметр
дюймов: | дюймов |
миллиметров: | мм |
Площадь поперечного сечения
тыс. Куб. М: | тыс. Куб. |
квадратных дюймов: | дюймов 2 |
квадратных миллиметров: | мм 2 |
Сопротивление
Удельное сопротивление: | Ом · м |
Общее сопротивление: | Ом |
Формулы калибра проволоки
Калибр проволоки — это стандартная единица измерения диаметра проволоки, а американский калибр проволоки, или AWG, является стандартом, используемым в Северной Америке.Диаметр и площадь поперечного сечения провода можно определить с помощью калибра провода и нескольких простых формул.
Диаметр проволоки
Формула для определения диаметра проволоки в дюймах:
диаметр (дюйм) = 0,005 × 92 (36 — AWG) ÷ 39
Формула для определения диаметра проволоки в миллиметрах:
диаметр (мм) = .127 × 92 (36 — AWG) ÷ 39
Шаги для определения диаметра
Сначала — найдите показатель степени в уравнении, вычтя калибр проволоки из 36, а затем разделив на 39.
Нахождение экспоненты для проволоки калибра 00, 000 и 0000 немного отличается. Замените -1, -2 и -3 для манометра в приведенной выше формуле вместо значения AWG.
Второй — найти 92 в степени, вычисленной на предыдущем шаге.
Третий — умножьте значение из второго шага на 0,005 дюйма или 0,127 мм, чтобы найти диаметр проволоки в дюймах или миллиметрах соответственно.
Площадь поперечного сечения провода
Формула для определения площади поперечного сечения провода в килокруглых милах или килограммах:
площадь (тыс. мил) = 1000 × диаметр 2
Формула для определения площади поперечного сечения провода в квадратных миллиметрах:
площадь (мм 2 ) = (π ÷ 4) × диаметр 2
Шаги для определения площади поперечного сечения
Первый — найти диаметр проволоки.Используйте приведенную выше формулу для расчета ширины, если известно AWG.
Второй — умножьте диаметр на 1000, чтобы найти площадь в километрах, или на (3,1415 ÷ 4), чтобы вычислить квадратные миллиметры.
Диаграмма диаметра, площади и сопротивления проволоки
AWG | Диаметр | Площадь поперечного сечения | Сопротивление | |||
---|---|---|---|---|---|---|
(дюймы) | (мм) | (тыс. Мил.) | (мм 2 ) | Ом на 1000 футов | Ом на 1000 м | |
0000 (4/0) | 0.46 | 11,684 | 211,6 | 107,22 | 0,049 | 0,1608 |
000 (3/0) | 0,4096 | 10,405 | 167,81 | 85,029 | 0,0618 | 0,2028 |
00 (2/0) | 0,3648 | 9,266 | 133.08 | 67,431 | 0,0779 | 0,2557 |
0 (1/0) | 0,3249 | 8.251 | 105,53 | 53,475 | 0,0983 | 0,3224 |
1 | 0,2893 | 7,348 | 83,693 | 42,408 | 0,1239 | 0,4066 |
2 | 0,2576 | 6.544 | 66.371 | 33,631 | 0,1563 | 0,5127 |
3 | 0,2294 | 5,827 | 52,635 | 26.67 | 0,197 | 0,6464 |
4 | 0,2043 | 5,189 | 41,741 | 21,151 | 0,2485 | 0,8152 |
5 | 0,1819 | 4,621 | 33.102 | 16,773 | 0,3133 | 1.028 |
6 | 0,162 | 4,115 | 26,251 | 13.302 | 0,3951 | 1.296 |
7 | 0,1443 | 3,665 | 20,818 | 10,549 | 0,4982 | 1,634 |
8 | 0,1285 | 3,264 | 16,51 | 8,366 | 0,6282 | 2,061 |
9 | 0,1144 | 2,906 | 13.093 | 6,634 | 0,7921 | 2,599 |
10 | 0.1019 | 2,588 | 10,383 | 5.261 | 0,9988 | 3,277 |
11 | 0,0907 | 2.305 | 8,234 | 4,172 | 1,26 | 4,132 |
12 | 0,0808 | 2,053 | 6.53 | 3.309 | 1,588 | 5,211 |
13 | 0,072 | 1,828 | 5,178 | 2.624 | 2,003 | 6.571 |
14 | 0,0641 | 1,628 | 4,107 | 2,081 | 2,525 | 8,285 |
15 | 0,0571 | 1,45 | 3,257 | 1,65 | 3,184 | 10,448 |
16 | 0,0508 | 1,291 | 2,583 | 1,309 | 4,015 | 13,174 |
17 | 0.0453 | 1,15 | 2,048 | 1.038 | 5,063 | 16,612 |
18 | 0,0403 | 1.024 | 1,624 | 0,823 | 6.385 | 20,948 |
19 | 0,0359 | 0,9116 | 1,288 | 0,6527 | 8,051 | 26,415 |
20 | 0,032 | 0,8118 | 1.022 | 0,5176 | 10,152 | 33.308 |
21 | 0,0285 | 0,7229 | 0,8101 | 0,4105 | 12,802 | 42,001 |
22 | 0,0253 | 0,6438 | 0,6424 | 0,3255 | 16,143 | 52,962 |
23 | 0,0226 | 0,5733 | 0,5095 | 0,2582 | 20.356 | 66,784 |
24 | 0,0201 | 0,5106 | 0,404 | 0,2047 | 25,668 | 84,213 |
25 | 0,0179 | 0,4547 | 0,3204 | 0,1624 | 32,367 | 106,19 |
26 | 0,0159 | 0,4049 | 0,2541 | 0,128 | 40,814 | 133,9 |
27 | 0.0142 | 0,3606 | 0.2015 | 0,1021 | 51,466 | 168,85 |
28 | 0,0126 | 0,3211 | 0,1598 | 0,081 | 64,897 | 212,92 |
29 | 0,0113 | 0,2859 | 0,1267 | 0,0642 | 81,833 | 268,48 |
30 | 0,01 | 0,2546 | 0.1005 | 0,0509 | 103,19 | 338,55 |
31 | 0,008928 | 0,2268 | 0,0797 | 0,0404 | 130,12 | 426,9 |
32 | 0,00795 | 0,2019 | 0,0632 | 0,032 | 164,08 | 538,32 |
33 | 0,00708 | 0,1798 | 0,0501 | 0,0254 | 206.9 | 678,8 |
34 | 0,006305 | 0,1601 | 0,0398 | 0,0201 | 260,9 | 855,96 |
35 | 0,005615 | 0,1426 | 0,0315 | 0,016 | 328,98 | 1 079,3 |
36 | 0,005 | 0,127 | 0,025 | 0,0127 | 414,84 | 1,361 |
37 | 0.004453 | 0,1131 | 0,0198 | 0,01 | 523,1 | 1716,2 |
38 | 0,003965 | 0,1007 | 0,0157 | 0,007967 | 659,62 | 2 164,1 |
39 | 0,003531 | 0,0897 | 0,0125 | 0,006318 | 831,77 | 2 728,9 |
40 | 0,003145 | 0.0799 | 0,009888 | 0,00501 | 1 048,8 | 3 441,1 |
Также ознакомьтесь с нашим калькулятором стоимости электроэнергии и нашим калькулятором стоимости освещения, прежде чем планировать свой следующий электрический проект.
Сопротивление провода — Электроника — Таблицы Basic
Сопротивление провода определяется материалом, длиной и поперечным сечением провода. Вы можете рассчитать сопротивление провода с помощью калькулятора ниже или рассчитать его самостоятельно по формулам.
Формулы
R — это обозначение сопротивления, которое измеряется в омах (Ом).
A — это обозначение площади, которое измеряется в квадратных метрах ( 2 м).
ρ является символом удельного сопротивления и измеряется в ом-метре (Ом⋅м).
l — обозначение длины, измеряемое в метрах (м).
Калькулятор
Введите три значения, чтобы вычислить оставшееся.
материал | удельное сопротивление ρ 10 Ом · м |
---|---|
серебро | 15.9 |
медь | 16,8 |
алюминий | 26,5 |
вольфрам | 56 |
железо | 97,1 |
платина | 106 |
манганин | 482 900 |
свинец | 220 |
ртуть | 980 |
нихром | 1000 |
константан | 490 |
AWG | диаметр (дюйм) | диаметр (мм) | площадь (тыс. Мил) | площадь (мм 2 ) | |||||
---|---|---|---|---|---|---|---|---|---|
0000 (4/0) | 0.46 | 11,684 | 211,6 | 107,219 | |||||
000 (3/0) | 0,40964 | 10,4049 | 167,806 | 85,0288 | |||||
00 (2/0) | 0,3648 | 9,26583 900 133,077 | 67,4309 | ||||||
0 (1/0) | 0,32486 | 8,25146 | 105,534 | 53,4751 | |||||
1 | 0.2893 | 7,34814 | 83,6927 | 42,4077 | |||||
2 | 0,25763 | 6,54371 | 66,3713 | 33,6308 | |||||
3 | 0,22942 | 5,82734 | 52,6348 4,82734 | 52,6348 4,9 | 0,20431 | 5,1894 | 41,7413 | 21,1506 | |
5 | 0,18194 | 4.62129 | 33,1024 | 16,7732 | |||||
6 | 0,16202 | 4,11538 | 26,2514 | 13,3018 | |||||
7 | 0,14429 | 3,66485 | 20,8183 | 10,548835 | 3,26364 | 16,5097 | 8,36556 | ||
9 | 0,11442 | 2, | 13.0928 | 6,63419 | |||||
10 | 0,1019 | 2,58819 | 10,383 | 5,26115 | |||||
11 | 0,09074 | 2,30485 | 8,23411 | 4,17229 | |||||
12,0 | 6,52995 | 3,30877 | |||||||
13 | 0,07196 | 1,82783 | 5,17848 | 2.62398 | |||||
14 | 0,06408 | 1,62773 | 4,10672 | 2,08091 | |||||
15 | 0,05707 | 1,44953 | 3,25678 | 1,65023 | |||||
16 | 0,0 | 1,3087 | |||||||
17 | 0,04526 | 1,14953 | 2,04821 | 1,03784 | |||||
18 | 0.0403 | 1,02369 | 1,6243 | 0,82305 | |||||
19 | 0,03589 | 0, | 1,28813 | 0,65271 | |||||
20 | 0,03196 | 0,81182 | 1,021524 | 0,511821,021524 | 0,02846 | 0,72295 | 0,81011 | 0,41049 | |
22 | 0,02535 | 0.6438 | 0,64245 | 0,32553 | |||||
23 | 0,02257 | 0,57332 | 0,50949 | 0,25816 | |||||
24 | 0,0201 | 0,51056 | 0,40404 | 0,204735 | 0,20473 | 0,45467 | 0,32042 | 0,16236 | |
26 | 0,01594 | 0,40489 | 0.2541 | 0,12876 | |||||
27 | 0,0142 | 0,36057 | 0.20151 | 0,10211 | |||||
28 | 0,01264 | 0,32109 | 0,15981 | 0,08098 | 0,15981 | 0,08098 | |||
0,0149 | 0,12673 | 0,06422 | |||||||
30 | 0,01003 | 0,25464 | 0,1005 | 0.05093 | |||||
31 | 0,00893 | 0,22676 | 0,0797 | 0,04039 | |||||
32 | 0,00795 | 0,20194 | 0,06321 | 0,03203 | |||||
33 9003 | 0,03203 | ||||||||
33 9003 | 0,19 | 0,0254 | |||||||
34 | 0,0063 | 0,16014 | 0,03975 | 0,02014 | |||||
35 | 0.00561 | 0,14261 | 0,03152 | 0,01597 | |||||
36 | 0,005 | 0,127 | 0,025 | 0,01267 | |||||
37 | 0,00445 | 0,1131 | 0,01983 | 0,01005 | 0,00397 | 0,10072 | 0,01572 | 0,00797 | |
39 | 0,00353 | 0.08969 | 0,01247 | 0,00632 | |||||
40 | 0,00314 | 0,07987 | 0,00989 | 0,00501 |
Калькулятор падения напряжения
Калькулятор падения напряжения в проводах / кабелях и способы его расчета.
Калькулятор падения напряжения
* при 68 ° F или 20 ° C
** Результаты могут отличаться для реальных проволок: различное удельное сопротивление материала и количество жил в проволоке.
*** Для провода длиной 2×10 футов длина провода должна составлять 10 футов.
Калькулятор калибра провода ►
Расчет падения напряжения
DC / однофазный расчет
Падение напряжения V в вольтах (В) равно току провода I в амперах (А), умноженному на 2 умноженной на длину одностороннего провода L в футах (футах), умноженного на сопротивление провода на 1000 футов R в омах (Ом / kft), деленное на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (фут) × R провод (Ω / kft) /1000 (ft / kft) )
Падение напряжения V в вольтах (В) равно току провода I в амперах (А), умноженному на 2. длина одностороннего провода L в метрах (м), умноженная на сопротивление провода на 1000 метров R в омах (Ом / км), деленное на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (м) × R провод (Ом / км) /1000 (м / км) )
3-фазный расчет
Падение линейного напряжения V в вольтах (В) равно квадратному корню из 3-кратного значения тока провода I в амперах (A), умноженного на длина одностороннего провода L в футах (футах), умноженная на сопротивление провода на 1000 футов R в омах (Ω / kft), деленное на 1000:
V падение (V) = √3 × I провод (A) × R провод (Ом)
= 1.732 × I провод (A) × ( L (фут) × R провод (Ом / кВт) /1000 (фут / кВт) )
Падение линейного напряжения V в вольтах (В) равно квадратному корню из 3-кратного значения тока провода I в амперах (A), умноженного на односторонняя длина провода L в метрах (м), умноженная на сопротивление провода на 1000 метры R в омах (Ом / км) разделить на 1000:
V падение (V) = √3 × I провод (A) × R провод (Ом)
= 1.732 × I провод (A) × ( L (м) × R провод (Ом / км) /1000 (м / км) )
Расчет диаметра проволоки
Диаметр проволоки калибра n d n дюймов (дюймов) равен 0,005 дюйма, умноженному на 92 в степени 36 минус калибр n, деленное на 39:
d n (дюйм) = 0,005 дюйма × 92 (36- n ) / 39
Диаметр проволоки n-го калибра d n в миллиметрах (мм) равен 0.127 мм умножить на 92 в степени 36 минус число n, разделенное на 39:
d n (мм) = 0,127 мм × 92 (36- n ) / 39
Расчет площади поперечного сечения провода
Площадь поперечного сечения провода калибра n A n в килокруглых милах (kcmil) равна 1000 диаметрам квадратного провода d в дюймах (дюймах):
A n (kcmil) = 1000 × d n 2 = 0.025 дюйм 2 × 92 (36- n ) /19,5
Площадь поперечного сечения провода калибра n A n в квадратных дюймах (в дюймах 2 ) равно пи, деленному на 4 диаметра квадратной проволоки d в дюймах (дюймах):
A n (дюйм 2 ) = (π / 4) × d n 2 = 0,000019635 дюйм 2 × 92 (36- n ) / 19,5
Площадь поперечного сечения провода калибра n A n в квадратных миллиметрах ( 2 мм) равно pi, деленному на 4, умноженное на диаметр квадратной проволоки d в миллиметрах (мм):
A n (мм 2 ) = (π / 4) × d n 2 = 0.012668 мм 2 × 92 (36- n ) /19,5
Расчет сопротивления проводов
Сопротивление провода калибра n R в омах на килофит (Ом / кфут) равно 0,3048 × 1000000000 удельному сопротивлению провода ρ дюйм Ом-метр (Ом · м), разделенное на 25,4 2 , умноженное на площадь поперечного сечения A n в квадратных дюймах (в 2 ):
R n (Ом / kft) = 0,3048 × 10 9 × ρ (Ом · м) / (25.4 2 × A n (в 2 ) )
Сопротивление провода калибра n R в омах на километр (Ом / км) равно 1000000000 удельному сопротивлению провода ρ дюйм ом-метры (Ом · м), разделенные на площадь поперечного сечения A n в квадратных миллиметрах (мм 2 ):
R n (Ом / км) = 10 9 × ρ (Ом · м) / A n (мм 2 )
AWG диаграмма
AWG # | Диаметр (дюйм) | Диаметр (мм) | Площадь (тыс. Мил) | Площадь (мм 2 ) |
---|---|---|---|---|
0000 (4/0) | 0.4600 | 11,6840 | 211.6000 | 107.2193 |
000 (3/0) | 0,4096 | 10,4049 | 167.8064 | 85.0288 |
00 (2/0) | 0,3648 | 9,2658 | 133.0765 | 67.4309 |
0 (1/0) | 0,3249 | 8,2515 | 105,5345 | 53,4751 |
1 | 0,2893 | 7.3481 | 83,6927 | 42,4077 |
2 | 0,2576 | 6.5437 | 66,3713 | 33,6308 |
3 | 0,2294 | 5,8273 | 52,6348 | 26.6705 |
4 | 0,2043 | 5,1894 | 41,7413 | 21.1506 |
5 | 0,1819 | 4.6213 | 33.1024 | 16.7732 |
6 | 0,1620 | 4,1154 | 26,2514 | 13,3018 |
7 | 0,1443 | 3,6649 | 20,8183 | 10,5488 |
8 | 0,1285 | 3,2636 | 16,5097 | 8,3656 |
9 | 0,1144 | 2,9064 | 13,0927 | 6,6342 |
10 | 0.1019 | 2,5882 | 10,3830 | 5,2612 |
11 | 0,0907 | 2.3048 | 8,2341 | 4,1723 |
12 | 0,0808 | 2,0525 | 6.5299 | 3.3088 |
13 | 0,0720 | 1,8278 | 5,1785 | 2,6240 |
14 | 0,0641 | 1,6277 | 4.1067 | 2,0809 |
15 | 0,0571 | 1.4495 | 3,2568 | 1,6502 |
16 | 0,0508 | 1,2908 | 2,5827 | 1,3087 |
17 | 0,0453 | 1,1495 | 2,0482 | 1.0378 |
18 | 0,0403 | 1.0237 | 1,6243 | 0,8230 |
19 | 0.0359 | 0,9116 | 1,2881 | 0,6527 |
20 | 0,0320 | 0,8118 | 1.0215 | 0,5176 |
21 | 0,0285 | 0,7229 | 0,8101 | 0,4105 |
22 | 0,0253 | 0,6438 | 0,6424 | 0,3255 |
23 | 0,0226 | 0,5733 | 0.5095 | 0,2582 |
24 | 0,0201 | 0,5106 | 0,4040 | 0,2047 |
25 | 0,0179 | 0,4547 | 0,3204 | 0,1624 |
26 | 0,0159 | 0,4049 | 0,2541 | 0,128 |
27 | 0,0142 | 0,3606 | 0.2015 | 0,1021 |
28 | 0.0126 | 0,3211 | 0,1598 | 0,0810 |
29 | 0,0113 | 0,2859 | 0,1267 | 0,0642 |
30 | 0,0100 | 0,2546 | 0,1005 | 0,0509 |
31 | 0,0089 | 0,2268 | 0,0797 | 0,0404 |
32 | 0,0080 | 0,2019 | 0.0632 | 0,0320 |
33 | 0,0071 | 0,1798 | 0,0501 | 0,0254 |
34 | 0,0063 | 0,1601 | 0,0398 | 0,0201 |
35 | 0,0056 | 0,1426 | 0,0315 | 0,0160 |
36 | 0,0050 | 0,1270 | 0,0250 | 0,0127 |
37 | 0.0045 | 0,1131 | 0,0198 | 0,0100 |
38 | 0,0040 | 0,1007 | 0,0157 | 0,0080 |
39 | 0,0035 | 0,0897 | 0,0125 | 0,0063 |
40 | 0,0031 | 0,0799 | 0,0099 | 0,0050 |
См. Также
Калькуляторы сопротивления медного провода, падения напряжения и сечения проводника
AWG означает «Американский калибр проводов» и является стандартизированная система калибра проволоки, используемая в США с 1857 г. для диаметры круглой, цветной, электропроводящей проволоки. Площадь поперечного сечения провода определяет его сопротивление и допустимая нагрузка по току. Чем больше диаметр проволоки, тем меньшее сопротивление он имеет потоку электронов, а тем больше ток его можно носить без перегрева. В таблице ниже перечислены сопротивление медной проволоки для медной проволоки различного калибра. Это должно быть используется в качестве практического правила, поскольку есть и другие факторы, которые влияют на номинальные токи провода, включая температуру окружающей среды, изоляцию ограничение температуры, конвекция воздуха и т. д.Вам следует проконсультироваться с Национальный электротехнический кодекс (NEC) для конкретных рекомендаций.
AWG Размеры и сопротивление проводовКалибр AWG | Диаметр проводника, дюймы | Диаметр проводника мм | Ом на 1000 футов | ||
0000 | 0.46 | 11,684 | 0,049 | ||
000 | 0,4096 | 10,40384 | 0,0618 | ||
00 | 0,3648 | 9.26592 | 0,0779 | ||
0 | 0,3249 | 8,25 246 | 0,0983 | ||
1 | 0,2893 | 7.34822 | 0,1239 | ||
2 | 0,2576 | 6.54304 | 0,1563 | ||
3 | 0,2294 | 5,82676 | 0,197 | ||
4 | 0,2043 | 5,18922 | 0,2485 | ||
5 | 0,1819 | 4.62026 | 0.3133 | ||
6 | 0,162 | 4,1148 | 0,3951 | ||
7 | 0,1443 | 3,66522 | 0,4982 | ||
8 | 0,1285 | 3,2639 | 0,6282 | ||
9 | 0,1144 | 2, | 0,7921 | ||
10 | 0.1019 | 2,58826 | 0,9989 | ||
11 | 0,0907 | 2.30378 | 1,26 | ||
12 | 0,0808 | 2,05232 | 1,588 | ||
13 | 0,072 | 1,8288 | 2,003 | ||
14 | 0,0641 | 1,62814 | 2.525 | ||
15 | 0,0571 | 1,45034 | 3,184 | ||
16 | 0,0508 | 1,29032 | 4,016 | ||
17 | 0,0453 | 1,15062 | 5,064 | ||
18 | 0,0403 | 1.02362 | 6.385 | ||
19 | 0.0359 | 0, | 8,051 | ||
20 | 0,032 | 0,8128 | 10,15 | ||
21 | 0,0285 | 0,7239 | 12,8 | ||
22 | 0,0254 | 0,64516 | 16,14 | ||
23 | 0,0226 | 0,57404 | 20.36 | ||
24 | 0,0201 | 0,51054 | 25,67 | ||
25 | 0,0179 | 0,45466 | 32,37 | ||
26 | 0,0159 | 0,40386 | 40,81 | ||
27 | 0,0142 | 0,36068 | 51,47 | ||
28 | 0.0126 | 0,32004 | 64,9 | ||
29 | 0,0113 | 0,28702 | 81,83 | ||
30 | 0,01 | 0,254 | 103,2 | ||
31 | 0,0089 | 0,22606 | 130,1 | ||
32 | 0,008 | 0,2032 | 164.1 |
В На диаграмме ниже показаны многие из стандартных размеров медных проводов, используемых при проводка дома. Также перечислены общие номинальные значения допустимой нагрузки, но для получения более точной информации о допустимой нагрузке обратитесь к таблицам ниже. рейтинги. На этой иллюстрации показаны относительные размеры обычные калибры проволоки.
Обычные размеры медных проводов
В этой таблице приведены значения силы тока для обычных изолированных дирижеры, включая Romex.Изолированные жилы должны иметь номинал температуры и тип (например, THWN 75ºC), напечатанные на внешней стороне кабель. Затем вы можете следить за таблицей ниже, чтобы узнать, сколько ток можно пропустить через проводник. Этот таблица предполагает наличие не более трех проводников в кабельной канавке или кабеле. или земля (непосредственно закопанная) и зависит от температуры окружающей среды 30ºC (86ºF).
Сечения изолированных проводников
Размер | Температурный рейтинг проводника | Размер | |||||
AWG | 60ºC | 75ºC | 90ºC | 60ºC | 75ºC | 90ºC | AWG |
(140ºF) | (167ºF) | (194ºF) | (140ºF) | (167ºF) | (194ºF) | ||
Типы | Типы | Типы | Типы | Типы | Типы | ||
Т TW UF | THW THWN XHHW ИСПОЛЬЗОВАТЬ | RHH THHN XHHW | T TW UF | THW THWN XHHW ИСПОЛЬЗОВАТЬ | RHH THHN XHHW | ||
0 | Медь | Алюминий | |||||
14 | 20 | 20 | 25 | —- | —- | —- | —- |
12 | 25 | 25 | 30 | 20 | 20 | 25 | 12 |
10 | 30 | 35 | 40 | 25 | 30 | 35 | 10 |
8 | 40 | 50 | 55 | 30 | 40 | 45 | 8 |
6 | 55 | 65 | 75 | 40 | 50 | 60 | 6 |
4 | 70 | 85 | 95 | 55 | 65 | 75 | 4 |
3 | 85 | 100 | 110 | 65 | 75 | 85 | 3 |
2 | 95 | 115 | 130 | 75 | 90 | 100 | 2 |
1 | 110 | 130 | 150 | 85 | 100 | 115 | 1 |
0 | 125 | 150 | 170 | 100 | 120 | 135 | 0 |
00 | 145 | 175 | 195 | 115 | 135 | 150 | 00 |
000 | 165 | 200 | 225 | 130 | 155 | 175 | 000 |
0000 | 195 | 230 | 260 | 150 | 180 | 205 | 0000 |
250 | 215 | 255 | 290 | 170 | 205 | 230 | 250 |
300 | 240 | 285 | 320 | 190 | 230 | 255 | 300 |
350 | 260 | 310 | 350 | 210 | 250 | 280 | 350 |
400 | 280 | 335 | 380 | 225 | 270 | 305 | 400 |
500 | 320 | 380 | 430 | 260 | 310 | 350 | 500 |
В таблице ниже указано максимальное количество проводников THNN, которые вы можете вставить кабелепровод заданного размера.Коэффициенты коррекции должны использоваться, если в дорожку кабельного ввода помещается более 3 проводов.
Максимальное количество проводников THNN в кабелепроводе
Размер кабелепровода (дюймы) | ||||||||||||
AWG | 1/2 | 3/4 | 1 | 1 1/4 | 1 1/2 | 2 | 2 1/2 | 3 | 3 1/2 | 4 | 5 | 6 |
14 | 13 | 24 | 39 | 69 | 94 | 154 | ||||||
12 | 10 | 18 | 29 | 51 | 70 | 114 | 164 | |||||
10 | 6 | 11 | 18 | 32 | 44 | 73 | 104 | 160 | ||||
8 | 3 | 5 | 9 | 16 | 22 | 36 | 51 | 51 | 106 | 136 | ||
6 | 1 | 4 | 6 | 11 | 15 | 26 | 37 | 37 | 76 | 98 | 154 | |
4 | 1 | 2 | 4 | 7 | 9 | 16 | 22 | 22 | 47 | 60 | 94 | 137 |
3 | 1 | 1 | 3 | 6 | 8 | 13 | 19 | 29 | 39 | 51 | 80 | 116 |
2 | 1 | 1 | 3 | 5 | 7 | 11 | 16 | 25 | 33 | 43 | 67 | 97 |
1 | 1 | 1 | 3 | 5 | 8 | 12 | 18 | 25 | 32 | 50 | 72 | |
0 | 1 | 1 | 3 | 4 | 7 | 10 | 15 | 21 | 27 | 42 | 61 | |
00 | 1 | 1 | 2 | 3 | 6 | 8 | 13 | 17 | 22 | 35 | 51 | |
000 | 1 | 1 | 1 | 3 | 5 | 7 | 11 | 14 | 18 | 29 | 42 | |
0000 | 1 | 1 | 1 | 2 | 4 | 6 | 9 | 12 | 15 | 24 | 35 | |
250 | 1 | 1 | 1 | 3 | 4 | 7 | 10 | 12 | 20 | 28 | ||
300 | 1 | 1 | 1 | 3 | 4 | 6 | 8 | 11 | 17 | 24 | ||
350 | 1 | 1 | 1 | 2 | 3 | 5 | 7 | 9 | 15 | 21 | ||
400 | 1 | 1 | 1 | 3 | 5 | 6 | 8 | 13 | 19 | |||
500 | 1 | 1 | 1 | 2 | 4 | 5 | 7 | 11 | 16 |
Поправочные коэффициенты амплитуды для более 3 проводов в Дорожка качения
Нет.Проводники | от 4 до 6 | от 7 до 9 | от 10 до 20 | 21-30 | 31-40 |
Фактор | 0,8 | 0,7 | 0,5 | 0,45 | 0,4 |
Зачем мне нужен провод большего сечения, чтобы пропускать больше тока?
Чем больше размер медного провода, тем меньше сопротивление и, следовательно, больше тока он может проводить без перегрева.Сопротивление мешает к потоку электронов и вызывает падение напряжения на проводе. Вы хотите, чтобы напряжение в вашей проводке не падало, насколько это возможно. потому что они выделяют тепло и расходуют энергию. Калькулятор ниже поможет определить, какое падение напряжения вы получите с учитывая медный провод и связанное с ним сопротивление.
Калькулятор падения напряженияЭтот калькулятор определяет падение напряжения для алюминиевый или медный провод любого калибра.Ты обычно должна быть меньше 3% падение напряжения в данной цепи. Сопротивления проводов равны на основе NEC 2008, таблица 8 при 75 o C. |
Калькулятор падения напряжения Скачать
Следующая таблица Excel представляет собой калькулятор падения напряжения, который немного более продвинутый. Его можно использовать для определения рекомендуемые калибры проводов, максимальные расстояния или максимальная сила тока.
Расчет падения напряжения (.xls, 650KB)
Калькулятор сечения заземляющего проводника
Как рассчитать сопротивление медного провода
Существует специальная формула, которую вы можете использовать для расчета сопротивления медного провода на основе его площади и длины. Чтобы сэкономить время, пригодится калькулятор для вычисления чисел. Площадь электрического провода измеряется в единицах, называемых «круглые милы».» Это число понадобится вам для расчета сопротивления провода. Чтобы получить эту информацию для вашего конкретного проекта, вы можете найти ее в «Национальном справочнике по электротехническим нормам NFPA 70», глава 9, таблица 8. Та же информация может содержаться в карманном справочнике по электрическим кодам, в учебнике по электрике или КИП.
Найдите площадь поперечного сечения для калибра провода, который вы хотите рассчитать, из надежного источника, например из справочника кодов. Если за размером провода следует «мкм» или «kc mil», просто добавьте три нуля после числа.Например, площади круглых милов для проволоки калибра # 10 и 500 мкм могут выглядеть следующим образом:
Измерьте длину проволоки в футах с округлением до ближайшего фута. Если длина провода составляет 110 футов 8 дюймов, округлите его до 111 футов. Если это 110 футов 5 дюймов в длину, округлите его до 110 футов.
Вставьте значения из шагов 1 и 2 в формулу ниже и решите.
Формула: L * K / A = R проводника
L = длина в футах
K = 10,4 (константа, Ом на мил-фут для меди) A = площадь поперечного сечения в круглых милах
R = сопротивление проводника в Ом
Например, чтобы рассчитать сопротивление 250-футового медного провода №10 калибра, умножьте длину на константу 10.