Как правильно рассчитать параметры средневолновой антенны. Какие типы антенн лучше использовать для увеличения дальности передачи. Влияет ли высота подвеса и толщина провода на эффективность антенны.
Основные характеристики антенн и их влияние на дальность передачи
Для увеличения дальности передачи средневолновой антенны необходимо учитывать несколько ключевых параметров:
- Коэффициент усиления антенны
- Диаграмма направленности
- Высота подвеса антенны
- Длина и толщина антенного полотна
- Входное сопротивление антенны
Рассмотрим подробнее, как эти характеристики влияют на дальность передачи и эффективность антенны.
Коэффициент усиления и его роль в увеличении радиуса действия
Коэффициент усиления антенны измеряется в децибелах (дБ) и показывает, насколько антенна усиливает сигнал по сравнению с эталонным изотропным излучателем. Чем выше коэффициент усиления, тем больше дальность передачи сигнала в определенном направлении.
Каждые 3 дБ увеличения коэффициента усиления позволяют увеличить радиус действия антенны примерно в 2 раза. Однако при этом диаграмма направленности становится уже, то есть антенна излучает в меньший сектор пространства.
Диаграмма направленности и ее оптимизация для увеличения дальности
Диаграмма направленности показывает, как распределяется излучаемая мощность антенны в пространстве. Для увеличения дальности передачи в определенном направлении используют направленные антенны с узкой диаграммой.
Например, стандартный штыревой вибратор имеет диаграмму в виде «бублика» с усилением около 3 дБ. А направленная антенна типа «волновой канал» может иметь усиление 8-12 дБ в основном лепестке при существенно меньшем угле излучения.
Влияние высоты подвеса антенны на дальность связи
Высота подвеса антенны критически важна для увеличения дальности передачи, особенно в средневолновом диапазоне. Чем выше расположена антенна, тем больший радиус действия она обеспечивает.
При увеличении высоты подвеса:
- Уменьшаются потери сигнала из-за поглощения земной поверхностью
- Увеличивается зона прямой видимости
- Улучшается распространение поверхностной волны
Даже небольшое увеличение высоты, например с 10 до 15 метров, может дать заметный прирост дальности.
Оптимальная длина антенного полотна для средневолнового диапазона
Длина антенного полотна напрямую влияет на эффективность излучения. Для средневолнового диапазона оптимальная длина составляет 0.1-0.25 длины волны. При этом входное сопротивление антенны имеет емкостный характер.
Например, для частоты 1584 кГц (длина волны около 189 м) можно использовать антенну длиной 36-40 метров. Такая длина обеспечивает хороший компромисс между эффективностью излучения и габаритами конструкции.
Увеличение эффективного диаметра антенны для повышения КПД
Увеличение толщины антенного провода позволяет снизить потери и повысить КПД антенны. Для средневолнового передатчика мощностью 10-50 Вт рекомендуется использовать эквивалентный диаметр антенны не менее 10-15 см.
Этого можно добиться, применяя:
- Толстый одиночный провод диаметром 5-10 мм
- Конструкцию типа «клетка» из нескольких тонких проводов
- «Колбасу» — цилиндрическую конструкцию диаметром 20-30 см из 4-6 проводов
Чем толще эффективный диаметр антенны, тем выше ее КПД и, соответственно, дальность действия.
Методы согласования антенны с передатчиком для максимальной мощности излучения
Для максимальной передачи мощности в антенну необходимо согласовать ее входное сопротивление с выходным сопротивлением передатчика. Основные методы согласования:
- Г-образный согласующий контур
- П-контур
- Автотрансформаторное согласование
- Применение удлинительных катушек
Правильное согласование позволяет передать в антенну максимум мощности от передатчика и увеличить эффективную излучаемую мощность.
Заземление антенны и его роль в увеличении эффективности излучения
Качественное заземление критически важно для работы средневолновых антенн. Оно выполняет функции:
- Противовеса, формирующего диаграмму направленности
- Отвода статических зарядов
- Снижения уровня помех
В городских условиях сложно создать эффективное заземление. Можно использовать:
- Подключение к контуру заземления здания
- Искусственную землю (противовес из проводов)
- Комбинацию из нескольких заземлителей
Качественное заземление позволяет повысить КПД антенны на 20-30% и заметно увеличить дальность связи.
Выбор оптимальной конструкции антенны для конкретных условий установки
При выборе типа антенны для увеличения дальности передачи нужно учитывать имеющиеся условия:
- Доступную высоту подвеса
- Возможную длину полотна
- Мощность передатчика
- Требуемый сектор покрытия
Для большинства городских условий оптимальным выбором будет:
- Наклонный луч длиной 30-40 м
- Г-образная антенна с вертикальной частью 10-15 м
- Укороченный диполь с емкостной нагрузкой
При ограниченном пространстве можно применять компактные конструкции с удлинительными катушками, хотя их эффективность будет ниже.
Ликбез по антеннам: диаграмма направленности
Аннотация
Перед тем как перейти к рассмотрению конструкции и работы разного типа антенн, рассмотрим одну из важнейших характеристик антенны – диаграмму направленности и те параметры, которые из нее напрямую вытекают.
Рекомендую, также, ознакомиться с предыдущей статьёй — Ликбез: основы теории по антеннам.
Введение
Антенна, вне зависимости от конструкции, обладает свойством обратимости (может работать как на прием, так и на излучение). Часто в радиорелейных трактах одна и та же антенна может быть подключена одновременно к приемнику и передатчику. Это позволяет излучать и принимать сигнал в одном направлении на разных частотах.
Почти все параметры приемной антенны соответствуют параметрам передающей антенны, но иногда имеют несколько другой физический смысл.
Несмотря на то, что приемная и передающая антенны обладают принципом двойственности, в конструктивном отношении они могут существенно отличаться. Связано это с тем, что передающая антенна должна пропускать через себя значительные мощности для передачи электромагнитного сигнала на большие (максимально возможные) расстояния. Если же антенна работает на прием, то она взаимодействует с полями очень малой напряженности. Вид токопередающей конструкции антенны часто определяет ее конечные габариты.
Пожалуй, основная характеристика любой антенны это диаграмма направленности. Из нее вытекает множество вспомогательных параметров и такие важные энергетические характеристики как коэффициент усиления и коэффициент направленного действия.
Диаграмма направленности
Диаграмма направленности (ДН) – это зависимость напряженности поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве. В объеме диаграмма направленной антенны может выглядеть так, как показано на рисунке 1.
Рисунок 1
То, что изображено на рисунке выше также еще называют пространственной диаграммной направленностью, которая является поверхностью объема и может иметь несколько максимумов. Главный максимум, выделенный на рисунке красным цветом, называется главным лепестком диаграммы и соответствует направлению главного излучения (или приема). Соответственно первые минимальные или (реже) нулевые значения напряженности поля вокруг главного лепестка определяют его границу. Все остальные максимальные значения поля называются боковыми лепестками.
На практике встречаются различные антенны, которые могут иметь несколько направлений максимального излучения, или не иметь боковых лепестков вовсе.
Для удобства изображения (и технического применения) ДН их принято рассматривать в двух перпендикулярных плоскостях. Как правило, это плоскости электрического вектора E и магнитного вектора H (которые друг другу в большинстве сред перпендикулярны), рисунок 2.
Рисунок 2
В некоторых случаях ДН рассматривают в вертикальной и горизонтальной плоскостях по отношению к плоскости Земли. Плоские диаграммы изображают полярной или декартовой (прямоугольной) системами координат. В полярных координатах диаграмма более наглядна, и при наложении ее на карту можно получить представление о зоне действия антенны радиостанции, рисунок 3.
Рисунок 3
Представление диаграммы направленности в прямоугольной системе координат более удобно для инженерных расчетов, такое построение чаще применяется для исследования самой структуры диаграммы. Для этого диаграммы строят нормированными, с главным максимумом, приведенным к единице. На рисунке ниже приводится типичная нормированная диаграмма направленности зеркальной антенны.
Рисунок 4
В том случае, когда интенсивность бокового излучения довольно небольшая и в линейном масштабе измерение бокового излучения затруднительно, применяют логарифмический масштаб. Как известно децибелы маленькие значения делают большими, а большие – маленькими, поэтому та же самая диаграмма в логарифмическом масштабе выглядит так, как показано ниже:
Рисунок 5
Из одной только диаграммы направленности можно вытащить довольно большое количество важных для практики характеристик. Исследуем подробнее диаграмму, изображенную выше.
Один из наиболее важных параметров – это ширина главного лепестка по нулевому излучению θ0 и ширина главного лепестка по уровню половинной мощности θ0,5. Половина мощности соответствует уровню 3 дБ, или уровню 0,707 по напряженности поля.
Рисунок 6
Из рисунка 6 видно, что ширина главного лепестка по нулевому излучению составляет θ0 = 5,18 град, а ширина по уровню половины мощности θ0,5 = 2,15 град.
Также диаграммы оценивают по интенсивности бокового и обратного излучения (мощности боковых и задних лепестков), отсюда вытекает еще два важных параметры антенны – это коэффициент защитного действия, и уровень боковых лепестков.
Коэффициент защитного действия – это отношение напряженности поля, излученного антенной в главном направлении к напряженности поля, излученного в противоположном направлении. Если рассматривают ориентацию главного лепестка диаграммы в направлении на 180 градусов, то обратного – на 0 градусов. Возможны и любые другие направления излучения. Найдем коэффициент защитного действия рассматриваемой диаграммы. Для наглядности изобразим ее в полярной системе координат (рисунок 7):
Рисунок 7
На диаграмме маркерами m1,m2 изображены уровни излучения в обратном и прямом направлениях соответственно. Коэффициент защитного действия определяется как:
— в относительных единицах. То же самое значение в дБ:
.
Уровень боковых лепестков (УБЛ) принято указывать в дБ, показывая тем самым, насколько уровень бокового излучения слаб по сравнению с уровнем главного лепестка, рисунок 8.
Рисунок 8
УБЛ в районе -18 дБ считается довольно хорошим показателем для высоконаправленной антенны. На рисунке изображены уровни первых боковых лепестков. Аналогично можно указывать также уровни всех последующих, но практической ценности их значение имеет мало, а представляет скорее академический интерес. Дело в том, что первые боковые лепестки находятся как правило «ближе всех остальных» к максимуму диаграммы направленности и могут оказывать помехи. Например, если сопровождение объекта происходит на уровне главного лепестка диаграммы -3дБ, а уровень первого бокового лепестка близок к этому значению (например -5:7 дБ), то велика вероятность начать цеплять объект боковым излучением со всеми вытекающими отсюда последствиями (неправильное позиционирование, потеря объекта и др.). Низкий УБЛ необходим не только для радиолокации, но и для области связи, ведь наличие паразитного излучения это всегда дополнительные помехи.
Коэффициент направленного действия и коэффициент усиления
Это два немаловажных параметра любой антенной системы, которые напрямую вытекают из определения диаграммы направленности. КНД и КУ часто путают между собой. Перейдем к их рассмотрению.
Коэффициент направленного действия
Коэффициент направленного действия (КНД) – это отношение квадрата напряженности поля, созданного в главном направлении (Е02), к среднему значению квадрата напряженности поля по всем направлениям (Еср2). Как понятно из определения, КНД характеризует направленные свойства антенны. КНД не учитывает потери, так как определяется по излучаемой мощности. Из сказанного выше можно указать формулу для расчета КНД:
D=E02/Eср2
Если антенна работает на прием, то КНД показывает, во сколько раз улучшится отношение сигнал/шум по мощности, при замене направленной антенны ненаправленной, если помехи приходят равномерно со всех направлений.
Для передающей антенны КНД показывает, во сколько раз нужно уменьшить мощность излучения, если ненаправленную антенну заменить направленной, при сохранении одинаковых напряженностей поля в главном направлении.
КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы:
Рисунок 9
Такая антенна одинаково хорошо излучает во всех направлениях, но на практике нереализуема. Поэтому это своего рода математическая абстракция.
Коэффициент усиления
Как уже было сказано выше, КНД не учитывает потери в антенне. Параметр, который характеризует направленные свойства антенны и учитывает потери в ней, называется коэффициентом усиления.
Коэффициент усиления (КУ) G – это отношение квадрата напряженности поля, созданного антенной в главном направлении (Е02), к среднему значению квадрата напряженности поля (Еоэ2), созданного эталонной антенной, при равенстве подводимых к антеннам мощностей. Также отметим, что при определении КУ учитываются КПД эталонной и измеряемой антенны.
Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны (рисунок 10).
Рисунок 10
Для такого эталонного вибратора Dэ=3,28, поэтому коэффициент усиления длинноволновой/средневолновой антенны определяется через КНД так: G=D*ŋ/3,28, где ŋ – КПД антенны.
В диапазоне коротких волн в качестве эталонной антенны принимают симметричный полуволновый вибратор, для которого Dэ=1,64, тогда КУ:
G=D*ŋ/1,64
В диапазоне СВЧ (а это почти все современные Wi-Fi, LTE и др. антенны) за эталонный излучатель принят изотропный излучатель, дающий Dэ=1, и имеющий пространственную диаграмму, изображенную на рисунке 9.
Коэффициент усиления является определяющим параметром передающих антенн, так как показывает, во сколько раз необходимо уменьшить мощность, подводимую к направленной антенне, по сравнению с эталонной, чтобы напряженность поля в главном направлении осталась неизменной.
КНД и КУ в основном выражают в децибелах: 10lgD, 10lgG.
Заключение
Таким образом, мы рассмотрели некоторые полевые характеристики антенны, вытекающие из диаграммы направленности и энергетические характеристики (КНД и КУ). Коэффициент усиления антенны всегда меньше коэффициента направленного действия, так как КУ учитывает потери в антенне. Потери могут возникать из-за отражения мощности обратно в линию питания облучателя, затекания токов за стенки (например, рупора), затенение диаграммы конструктивными частями антенны и др. В реальных антенных системах разница между КНД и КУ может составлять 1.5-2 дБ.
nag.ru
Теория радиоволн: антенны / Habr
Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.
Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.
Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.
Антенны
Симметричный вибратор
В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.
Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.
Диаграмма направленности симметричного вибратора
В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.
В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:
Основное применение, в диапазонах коротких, метровых и дециметровых волн.
Несимметричный вибратор
Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.
Диаграмма направленности следующая:
Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.
Наклонная V-образная
Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V
Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.
Антенна бегущей волны
Также имеет название — антенна наклонный луч.
Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.
Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:
Антенна волновой канал
Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.
Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.
За счет такой конструкции, антенна имеет явную направленность:
Рамочная антенна
Направленность — двулепестковая
Применяется для приема ТВ программ дециметрового диапазона.
Как разновидность — рамочная антенна с рефлектором:
Логопериодическая антенна
Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.
Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:
Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.
Поляризация
Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.
Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.
Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.
При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.
Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.
PS:
Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.
habr.com
Как коэффициент усиления антенны влияет на радиус приема FPV
Коэффициент усиления антенны и диаграмма направленности излучения связаны между собой и, по сути, показывают максимально достижимый радиус уверенного приема. В этой статье мы рассмотрим, как именно коэффициент усиления влияет на расстояние уверенного приема сигнала, разберем все достоинства и недостатки антенн с большим коэффициентом усиления.
Оригинал: How Antenna Gain affects Range in FPV
Есть 2 простых способа увеличения радиуса приема FPV сигнала: увеличить мощность видео передатчика или использовать направленную антенну с большим коэффициентом усиления.
Хоббийщикам не следует слепо увеличивать мощность видео передатчика для увеличения радиуса, просто потому что: первое, он будет тяжелее; второе — он, возможно, будет незаконным; и, третье, он будет потреблять больше энергии и сильнее греться. Так что остается только один вариант — использование антенн с высоким коэффициентом усиления.
Что такое коэффициент усиления антенны
Коэффициент усиления антенны измеряется в децибелах (дБ, dB). 10*log(Pout/Pin). Подробнее на википедии.
Как правило производители антенн указывают их коэффициент усиления. Это значение дает нам кое-какую информацию про изменение диаграммы направленности. Однако, как правило, значение указывается у направленных антенн, и неизвестно у ненаправленных.
Каждые 3 дБ увеличивают радиус уверенного приема сигнала в два раза. Однако увеличение радиуса происходит из-за фокусировки в одном направлении, т.е. антенна становится все более направленной, угол основного лепестка уменьшается.
Очень похоже на шарик. Его объем — это мощность передатчика (или общая площадь покрытия сигналом), это значение не меняется, оно постоянно, но антенна с другим коэффициентом усиления и с другой диаграммой направленности может изменить форму этого шарика. Чем сильнее вы его растягиваете, тем более вытянутым он будет.
Другой пример — лампочка и фонарик. Где лампочка — это аналог ненаправленной антенны, а фонарик — направленной.
Несмотря на то, что с увеличением коэффициента усиления антенны, излучение становится все более направленным, а расстояние приема увеличивается; общее правило остается тем же — использовать диверсити приемник с 2 антеннами, работающими одновременно. Этот способ позволяет увеличить радиус приема, и дает большой угол на малых дистанциях.
Диаграмма направленности
У всех антенн своя диаграмма направленности, и сейчас вы хорошо увидите влияние коэффициента усиления.
Диаграмма направленности гипотетической, идеальной антенны с усилением 0 дБ. Это практически идеальная сфера.
А это стандартная ненаправленная штыревая антенна с коэффициентом усиления 3 дБ. Обратите внимание на значительную потерю в вертикальной плоскости сверху и снизу (именно поэтому при пролете над собой связь часто прерывается, прим. перев). Подобная диаграмма направленности у всех ненаправленных антенн.
Если изобразить эту диаграмму направленности в 3D, то получится пончик.
Вот пачт, направленная антенна с коэффициентом усиления 8 дБ. Как видите, сигнал сфокусирован в одном направлении (справа, в вертикальной плоскости), собственно, чего и следовало ждать от направленной антенны.
Заключение
Использование антенн с высоким коэффициентом усиления не может волшебным образом добавить мощности в вашу FPV систему, просто происходит фокусировка сигнала в определенном направлении, так что дистанция уверенного приема увеличивается только в одном, нужном направлении. Важно помнить, что увеличение расстояния и коэффициента усиления приводит к уменьшению угла приема.
При выборе антенны для мини коптера лучше выбирать ненаправленные антенны с небольшим коэффициентом усиления, т.к. на коптере вы будете летать около себя.
В диверсити системах обычно используют пару антенн — ненаправленная антенна + направленная антенна. Направленная антенна позволит вам отлететь подальше в одном направлении, а ненаправленная антенна даст возможность летать на коптере вокруг себя, без потери сигнала.
История изменений
- Октябрь 2013 — написана первая версия статьи
- Май 2017 — обновление статьи
blog.rcdetails.info
Антенны для Средневолнового передатчика — Зеленогорская завалинка
«Колбаска», укороченный вариант.
Рассмотрим наиболее простые варианты антенн которые можно было бы использовать в городских условиях, в том числе и на селе.
Обычно подвес бывает не столь высок, особенно в том случае где некуда подцепиться. Обычное явление это дома невысокой этажности. В частности — пятиэтажки. Для домов более высокой этажности принципиально ничего не меняется, за исключением увеличения высоты подвеса.
Разберём вариант достаточно не очень толстой «колбаски» как одиночного провода прокинутого между домами в 5 этажей. Для того чтобы не было высокого сопротивления ветрам и всю конструкцию сильно не болтало, желательно её сделать поскромнее. Допустим, у нас подвес 15 метров, передатчик будет мощностью (средняя мощность) 10 Вт, длина полотна 36 метров. Это относительно короткое полотно наиболее вероятно подходящее под большее количество вариантов дворов.
Тогда, если частота канала 1584 кГц, то длина волны будет около 189,4 м.
Входное сопротивление Ra
смотрим по графику в книге Сергея Комарова «Индивидуальное радиовещание. 1. Самодельные передающие антенны диапазона 200 метров» и будет около 19 Ом.
Вибратор составной из 6 проводов с диаметром проводника в 1,6 мм
Высота подвеса (мы тянем антенну с балкона до крыши и начальная высота будет около 10 метров, а ближе к крыше около 15 метров. Средняя высота подвеса всего порядка 12 метров.
Диаметр колец «колбаски» берём 20 см. Тогда эквивалентный диаметр будет 0,1206 метра.
Сопротивление излучения 358,8 Ом, Реактивное 298,4 Ом
Добротность антенны 15,7
КПД выходного каскада нагруженного на эту антенну 0,927
Полоса пропускания 2^f ~ 101 kHz
При использовании с передатчиком мощностью в 10 Вт Uвх = 12,78 В
Развиваемое напряжение на удалённом конце антенны порядка Umax ~ 200,6 В
Напряжённость поля E под удалённым концом провода может достигать (средняя) ~ 15,4 В/м
Тоесть это предельная толщина (минимально предельный диаметр колбаски) антенны для наших условий. Лучше если диаметр будет побольше. Можно взять для запаса диаметр порядка 30 см (колец распорок). А, уж, если Вы планируете использовать мощности свыше 10 Вт, то тогда придётся мастерить антенну большого диаметра для аналогичного подвеса и/или подвешивать её по возможности ещё выше.
Чтобы эта антенна заработала, её нужно обязательно заземлить. В городских условиях создать собственное заземление практически невозможно — это фантастика. Поэтому, скорее всего, придётся мириться с «заземлением» на контур здания, например. Это можно пробовать и «напрямую» и через аппарат «искусственная земля». Во втором случае всё-равно нужно заземление не только по ВЧ току (настройка по ВЧ здесь происходит), но и для переменного сетевого тока.
civisradio.ru
Влияние частоты сигнала на энергетику радиолинков в свободном пространстве / Habr
Что меняется при изменении применяемого диапазона частот в радиосвязи – не всегда корректно могут сформулировать даже опытные радиолюбители. С одной стороны формула передачи Фрииса крайне проста, и обсуждать, казалось бы, нечего. С другой стороны, в этой формуле кроме явного упоминания длины волны λ, она неявно скрыта в других коэффициентах. Есть много утверждений, заметок и статей, что с более высокими частотами энергетика радиолинков хуже, не меньше есть и статей «разоблачений мифа» — мол ничем высокие частоты не хуже, учите матчасть.
Оба утверждения верны, причем верно и третье – с повышением частоты энергетика линка может значительно улучшаться. Всё зависит от сценария применения (накладываемых ограничений).
Любая передача информации, не только с помощью радиоволн, а и любых других волн (звуковых, ЭМ волн более высоких частот – т.е. света, гравитационных волн) может происходить в 3 сценариях:
- Всенаправленное излучение и всенаправленный прием энергии.
- Направленное (секторное, узколучевое) излучение и всенаправленный прием
- Направленное излучение и направленный прием
В первом случае ни одна из сторон не знает местоположение в пространстве второй стороны, или не имеет средств наведения своих антенн на корреспондента.
К такому сценарию относятся практически все виды раций (военные, гражданские, авиационные), бытовые устройства (WiFi, Bluetooth, радиотелефоны, IoT, беспроводные сенсоры, телематика, брелки-отмычки), связь между спускаемым зондом и его космической станцией. Антенны обоих подвижных корреспондентов должны быть всенаправленными (изотропными) или близкими к ним.
Во втором случае, если одна из сторон стационарная и вероятное местоположение подвижного корреспондента ограничено некоторым сектором пространства – на стационарной стороне возможно применение направленной антенны, которая концентрирует энергию в избранном направлении, формируя луч (beam). Абонент подвижен, ни своего местоположения, ни положение базовой станции он не знает (или не имеет средств наведения антенн).
К такому сценарию относятся все виды обслуживания, когда стационарная базовая станция обслуживает подвижных абонентов (сотовая связь, репитеры для военных или гражданских раций, телерадиовещание на подвижных абонентов, спутниковая связь с подвижными абонентами, наземные станции космической связи обслуживающие высокоподвижные космические зонды). Антенна базовой станции имеет умеренную направленность и формирует луч для обслуживания желаемой зоны пространства. В идеале в любой точке зоны обслуживания на одинаковом расстоянии R от базы будет одинаковая плотность потока энергии Вт/м2. Антенна подвижного корреспондента должна быть всенаправленная (изотропная).
В третьем случае, если обе стороны знают о расположении другой стороны и имеют возможность направить туда свои антенны – можно существенно сэкономить энергию или увеличить скорость связи при тех же затратах энергии, за счет концентрации луча в пространстве.
К такому сценарию относятся все стационарные линии точка-точка: радиорелейные, WiFi точка-точка, радиолюбительская связь между 2 абонентами использующими направленные антенны; малоподвижные абоненты с возможностью точного позиционирования антенн на корреспондента (наземная станция космической связи и космическая станция с сервоприводами направленных антенн или двигателями позиционирования всей станции с жестко прикрепленной направленной антенной; перспективные модемы 5G mmWave или StarLink Илона Маска с автоматической настройкой луча активной фазированной решеткой АФАР; перспективные massive-MIMO модемы и базовые станции 4G/5G использующие большое количество антенн как АФАР)
Вернемся к формулам Фрииса
Здесь r (receiver) и t (transmitter) относятся к приемной и передающей антеннам, Pr/Pt – соотношение мощности на клеммах приемной антенны к мощности на передающей (больше – лучше), d – расстояние в тех же единицах измерения что и λ (например, в метрах)
Апертура антенны A (то же что «Эффективная/действующая площадь») связана с диаграммой направленности (ДН) антенны и её КНД (D = Directivity):
Для антенны в режиме приема эффективная площадь антенны (используется также термин эффективная поверхность антенны) характеризует способность антенны собирать (перехватывать) падающий на неё поток мощности электромагнитного излучения и преобразовывать этот поток мощности в мощность на нагрузке.
Независимо от типа и конструкции антенны, её апертура A и направленность D связаны математически через длину волны.
У всенаправленной (изотропной) антенны D=1 (0 dBi). Идеального изотропного излучателя на практике не существует, наиболее близким аналогом является обычный полуволновый диполь, у которого D ~1.64 (2.15 dBi)
Сравним апертуру полуволнового диполя (или его аналога – четвертьволновый штырь с противовесом), у которого КНД = 2.15 dBi
Передающая антенна во всех диапазонах формирует одинаковую, близкую к сферической, диаграмму излучения. Плотность потока мощности Вт/м2 от всех источников на одинаковом расстоянии R будет одинаковая.
Но поскольку апертура приемной (тоже всенаправленной) антенны отличается на порядки, то и количество собранной энергии из той же плотности потока будет сильно отличаться.
Возьмем некий абстрактный канал связи, в котором мощность передатчика TX=1W, а чувствительность приемника -101 dBm (2 мкВ при 50 Ом нагрузке). В открытом пространстве (препятствия, поглощения, отражения, помехи здесь не рассматриваем), дальность связи составит:
В открытом пространстве (пока дальность не ограничена видимостью), увеличение частоты в 2 раза увеличивает требования к мощности передатчика в 4 раза. При одинаковой мощности передатчика, увеличение частоты в 2 раза снижает дальность тоже в 2 раза.
Именно этот эффект является доминирующим для объяснения, почему:
- CDMA/LTE-450 дальнобойнее за GSM-900, который в свою очередь дальнобойнее за GSM-1800.
- WiFi-2400 дальнобойнее за WiFi-5400
- Рации 27-40 МГц дальнобойнее за 144-174, которые в свою очередь дальнобойнее за 433-470
В сценарии №2, если на одной стороне разрешено использовать малонаправленную (секторную) антенну ситуация точно такая же как и в сценарии №1, только мощность передатчика может быть уменьшена на усиление антенны базовой станции. Поскольку требуемый сектор обслуживания не зависит от частоты, то направленность антенны БС нужна одинаковая (апертура антенны БС при этом конечно будет разной на разных диапазонах). При направленности БС 12 dBi (на 10 dB или в 10 раз больше чем у диполя 2 dBi) – выигрыш в мощности составит 10 dB (10 раз), дальность связи на мобильного абонента может быть такая же, как в предыдущей таблице, но уже при TX=0.1W. Для 5400 МГц она опять составит 25.7 км, а для 27 МГц – 5142 км.
В сценарии №3 возможны очень различные комбинации решений.
Если отбросить конструктивные ограничения и сложности, то при равной площади (апертуре) обоих антенн направленность обоих антенн Dr и Dt пропорциональна квадрату частоты. Поэтому эффективность приемной антенны останется неизменной (из одного и того же потока плотности Вт/м2 будет извлечена одинаковая мощность на клеммах, независимо от частоты), а направленность передающей антенны увеличится пропорционально квадрату частоты. При увеличении частоты в 2 раза, луч станет тоньше в 4 раза, плотность потока Вт/м2 в направлении на абонента увеличится в 4 раза.
При равных ограничениях на габариты/вес антенн, более высокие частоты более выгодны энергетически.
На практике же реализовать такое фундаментальное преимущество не так просто.
К антеннам с фиксированной частотно-независимой апертурой относятся только зеркальные параболические антенны. Количество энергии, которое собирает такое зеркало, не зависит от частоты, а луч диаграммы направленности становится более тонким с ростом частоты.
Но сложность в производстве параболической антенны заданного диаметра зависит не только от диаметра. Чем более высокая частота, тем более высокие требования к точности поверхности зеркала и более высокие требования к точности позиционирования и вообще жесткости всей конструкции.
С другими, незеркальными антеннами, ситуация намного сложнее. Все конструкции таких антенн могут быть описаны в частотно-независимых размерах (в лямбдах) и имеют фиксированную диаграмму направленности, присущую этому типу антенн, которая не зависит от выбранной частоты проектирования. Иными словами, например 7-элементная антенна волновой канал (Уда-Яги) будет иметь одинаковую диаграмму направленности и усиление ~10 dBi независимо на какую частоту её рассчитать: на 30 МГц или на 3000 МГц. Во втором случае её апертура будет в 10 000 раз меньше. Просто так, взять и увеличить размеры какого-то типа антенн чтобы увеличить апертуру – нельзя. Добавление каких-либо пассивных (паразитных) структур добавляет направленности очень незначительно (по сравнению с ростом габаритов) и лишь до небольших значений порядка 16 dBi (40 раз).
Дальнейшее повышение апертуры, которое соответствует направленности более 16 dBi на практике возможно только соединением многих антенн в ФАР (фазированную антенную решетку). Теоретически удвоение количества элементов в решетке может увеличивать апертуру в 2 раза, т.е. формировать в 2 раза более тонкий луч с усилением +3 dB. Но практически построение таких ФАР сопряжено с большими трудностями: сигнал от единого источника надо согласованными (по волновому сопротивлению) волноводами синфазно доставить к каждому из N элементов решетки.
Для небольшого количества элементов, например 2х2, 2х4, 3х3 такая задача решаема, а для бОльшего количества элементов она настолько сложна, что всегда проигрывает зеркальным параболическим антеннам, с помощью которых легко создается направленность 20-40 dBi, а в больших проектах (как наземные станции дальней космической связи) достигает 70 dBi (усиление параболической антенны диаметром 70 метров на частоте 5885 МГц).
Для примера рассчитаем дальность связи линии «точка-точка» с TX=1W, чувствительностью -101 dBm с парой параболических антенн диаметром D=1 метр и эффективностью использования апертуры k=60% (типичное значение для современных облучателей зеркала)
Для расчета КНД параболического зеркала воспользуемся формулой:
Увеличение частоты в 2 раза увеличивает дальность в 2 раза или позволяет применить на одной из сторон антенну с диаметром апертуры меньше в 2 раза, или с каждой стороны уменьшить диаметр антенны в SQRT(2) ~ 1,4 раза.
Требования к точности наведения луча (юстировки антенны на абонента) тоже растут пропорционально квадрату частоты.
В этой статье мы НЕ рассматриваем вообще другие вопросы, такие как отражение, дифракция, рефракция, поглощение в газах, препятствиях, атмосфере, ионосфере, шумовая и помеховая обстановка
Выводы
Повышение частоты радиосвязи может давать как преимущества так и недостатки в зависимости от сценария применения (техзадания).
В условиях подвижной безподстроечной связи низкие частоты более выгодны, т.к. апертура всенаправленной антенны пропорциональна квадрату длины волны. Увеличение длины волны в 2 раза увеличивает апертуру антенны в 4 раза. Это дает возможность или увеличить дальность в 2 раза (в условиях видимости и ограничения дальности связи по энергетическому бюджету) или снизить мощность передатчика в 4 раза при прочих равных.
По этой причине военные ранцевые, автомобильные и танковые рации продолжают проектироваться на самый низ диапазона УКВ – от 27 до 50 МГц, в то время как гражданская и коммерческая связь неумолимо осваивает всё более высокие частоты.
Полуволновый диполь (или четвертьволновый штырь с противовесом) на низких частотах более крупные, что является с одной стороны недостатком. С другой стороны именно этот недостаток и позволяет собирать из пространства больше энергии.
В условиях линий точка-точка низкие частоты тоже более выгодны во всех случаях, кроме применения параболических антенн с фиксированной апертурой. Для антенн с одинаковой направленностью апертура убывает пропорционально квадрату роста частоты. При росте частоты в 2 раза, размеры антенны того же типа уменьшаются в 2 раза (в каждом измерении, т.е. объем уменьшается в 8 раз), но расплатой за этой является снижение в 4 раза апертуры такой антенны.
А вот в линиях «точка-точка» с параболическими антеннами – наоборот переход на более высокие частоты позволяет при тех же диаметрах зеркала улучшать энергетический бюджет в 4 раза при росте частоты в 2 раза. Повышение частоты в 2 раза позволяет:
- при прочих равных увеличить дальность в условиях видимости в 2 раза
- при той же дальности уменьшить мощность излучения в 4 раза
- при прочих равных увеличить в 4 раза скорость линии
Расплатой за такое повышение являются повышенные требования к прецизионности изготовления, как самой антенны, так и механизма наведения (юстировки) на абонента.
habr.com
Справочник по антеннам для радаров / Habr
Статья на перевод предложена alessandro893. Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.
Слева – изотропная антенна, справа – направленная
Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.
Диаграмма направленности
Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.
Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.
Диаграмма направленности
Антенна Яги – направленная антенна, состоящая из нескольких параллельных элементов, расположенных на одной линии. Часто состоят из одного элемента-облучателя, обычно диполя или петлевого вибратора. Только этот элемент испытывает возбуждение. Остальные элементы паразитные – они отражают или помогают передавать энергию в нужном направлении. Облучатель (активный вибратор) обычно находится вторым с конца, как на картинке ниже. Её размер подбирается с целью достижения резонанса при наличии паразитных элементов (для диполя это обычно 0,45 – 0,48 от длины волны). Элемент слева от облучателя – отражатель (рефлектор). Он обычно длиннее облучателя. Отражатель обычно один, поскольку добавление дополнительных отражателей мало влияет на эффективность. Он влияет на отношение мощностей сигналов антенны, излучаемых в направлениях назад/вперед (усиление в максимальном направлении по отношению к противоположному). Справа от облучателя находятся элементы-директоры, которые обычно короче облучателя. У антенны Яги очень узкий диапазон рабочих частот, а максимальное усиление составляет примерно 17 дБ.
Диаграмма направленности
Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.
Диаграмма направленности
Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов
Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.
Диаграмма направленности
Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.
Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.
Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.
Диаграмма направленности
Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.
Диаграмма направленности
Двумерная антенная решётка
Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов — 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.
Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.
Диаграмма направленности
Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.
Диаграмма направленности
Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.
Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.
Диаграмма направленности
Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.
Диаграмма направленности
Слева – антенна Грегори, справа — Кассегрена
Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.
Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.
Антенна Кассегрена с плоской фазовой пластиной
Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.
Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.
На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.
Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:
Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.
Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.
Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.
Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).
Диаграмма направленности
Пассивная фазированная антенная решётка (ПФАР) [passive electronically scanned array, PESA]
Радар с МИГ-31
С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.
Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.
Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.
Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:
На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.
Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:
Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.
Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.
Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.
Они бывают разных видов, но в целом их можно разделить на четыре типа.
Фазовращатели с временной задержкой
Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.
Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)
Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.
Отражательный/квадратурный фазовращатель
Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.
Векторный IQ-модулятор
Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.
Фазовращатель на фильтрах верхних/нижних частот
Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.
Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).
Активная фазированная антенная решётка [Active Electronically Scanned Array, AESA]
Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.
У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:
Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.
Во-вторых, у обычного радара возможность уменьшения паразитной интерференции ограничена ошибками нестабильности аппаратуры. Больше всего в эти ошибки вносят вклад аналого-цифровой преобразователь, преобразователь с понижением частоты, усилителей высокой мощности, усилители слабых сигналов и генератор волн. У АФАР с распределённой группой усилителей высокой мощности и усилителей слабых сигналов такие ошибки можно уменьшать. В результате у АФАР повышается чувствительность в шумных условиях.
Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.
Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.
Гибридные электронно-механические фазированная антенные решётки
Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.
habr.com
Штыревые антенны для «чайников» — Паркфлаер
Как и многие любители радиоуправляемой авиации у меня нет ни образования радиофизика ни радиоэлектронщика. Это местами очень подводит. Где-то помогают советы более опытных товарищей, где-то собственное изучение вопроса. Теория в интернетах, как правило, написана так, что отбивает всякое желание её читать. Рассчёт авторов строго на подготовленного читателя: 4 из 5 курсов радиофизики должны быть уже за плечами.
Сравнительно недавно я понял, что деда мороза нет не всё так просто со штыревыми антеннами. Ну казалось бы, что там за секреты Полишинеля уж такие? Однако, секреты есть, и я постараюсь поделисться своими новыми открытиями.
1. Изменить окуржающие условия. Не всё в наших силах, но всё же. Полёт в центре города очень отличается в плане помех от полёта в 10 км от города. Стоять лучше на пригорке крупной поляны, чем возле здания или леса. И т. д.
2. Выбрать погоду. Влажность и т. п. Например, для аппаратуры 5,8 ГГц облака — это очень белокрылые непрозрачные лошадки. Они с таким же успехом могли быть листами металла. Короче: если у вас 5,8 ГГц — летайте в безоблачную погоду или ниже облаков.
3. Увеличить мощность передатчика. Железно помогает, но есть свои проблемы:
- Замена со 100 мВт на 200мВт не даст увеличиния дальности в 2 раза. Всё очень нелинейно.
- Чем выше мощность передатчика тем печальнее ситуация для близлежащей аппаратуры. У вас рядом приёмник? Ему станет хуже! У вас 1,5 Ваттный видеопередатчик на борту? Сервомашинки начинают слушаться видео-передатчик, а не РУ-приёмник, к которому они подключены. Требуется разнос аппаратуры, экранирование и т. п. Масса увеличивается, дальность управления снижается и т. д. и т.п.
- Энергопотребление.
- Охлаждение.
- Ограничения законодательства.
- Цены
4. И наконец самый сложный способ: подбор более выгодной антенны. Тут несколько направлений:
- Выбор направленой или всенаправленой антенны.
- Выбор конкретного типа антенны.
- Выбор способа её установки и механизации.
- Выбор коэффициента усиления.
Собственно, рассказать я бы хотел именно о выборе коэффициента усиления для всенаправленных штыревых антенн. Они чаще всего оказываются в руках граждан поскольку идут в комплектах с аппаратурой. Кроме того, они самые приемлимые по цене.
Перед дальнейшим объяснением мне нужно понимание трёх вопросов. Постараюсь объясить так, чтобы любой понял.1. Антенны существуют для радиосвязи. Таких понятий как, антенна для приёма или для передачи — нет. Антенна с одинаковым успехом будет приёмной и передающей. На практике, для конкретных условий, выгодней на передачу поставить такую-то антенну, а на приём другую, но это совсем другая история. Ниже расскажу.
2. Диаграмма направленности антенны — это область в пространстве, в которую уходит сигнал от антенны. Дальше этой области сигнал слишком слаб, чтобы его можно было использовать. Если антенна установлена на на приёмнике — значит область из которой антенна может принимать сигнал. Дальше этой области не примет. Форма этой области бывает очень разной: шары, лепестки, торы, конусы и т. п. Суть в том, что если в пространстве пересеклись диаграммы направлености приёмной и передающей антенны — связь будет. А если не пересеклись — связи не будет.
3. Коэффициент усиления антенны. Очень примитивно — это во сколько раз сильнее антенна излучает/принимает сигнал при прочих равных.
Я, как и многие, считал, что жизнь устроена просто. При прочих равных однотипная антенна на 5dbi лучше чем на 2 dbi. А на 8 dbi ещё лучше! Это ужасно, но это не так. Так получилось, что про этот аспект мне некому было рассказать, и я стал страдать гигантоманией. У меня было 12 dbi на передатчике и 5 dbi на приёмнике. Антенны по длине почти как на мегагерцовой аппаратуре! Но я человек простой: мощности двигателя самолёта хватит чтобы тащить такие вещи? Значит — не проблема.
В теории антенна с 0 dbi даёт диаграмму направленности по типу шара. Размер шара (при отсутствии внешних раздражителей, а ещё лучше в открытом космосе) будет зависить только от мощности передатчика или чувствительности приёмника (смотря, на приём или на передачу работает антенна).
Антенна с коэффициентом усиления в 1 dbi даст при прочих равных шар покрупнее, но он будет немного уже не идеальный шар, а такой… приплюснутый сверху и снизу.
Чем большй коэффициент усиления антенны вы будете использовать, тем больше будет радиус шара, но тем более он будет сплюснут по вертикали. В итоге вы получите этакий блин огромного радиуса, но малой толщины.
Вот диаграмма направлености вертикально установленой на земле антенны с 12dbi. Вид сбоку.
Т. е. антенна, говоря по честному, уже перестанет быть всенаправленной. Например к антенне c 8dbi производетель пишет:
Угол направления по горизонтали = 360 градусов.
Угол направления по вертикали = 15 градусов.
Если вы держите штырь отвесно возле земли (1 м над поверхностью), то из 15 градусов 7,5 уходят под землю. Остальные 7,5 — в вашем полном распоряжении. Вы даже можете целиться боком антенны в самолёт.
Для сравнения маленькая таблица штыревых антенн на 2,4 ГГц по данным нескольких производителей.
КУ вертикальный угол
5 dbi 32-40 градусов
8 dbi 13-30 градусов
12 dbi 6-12 градусов
Напрашиваются выводы:
1. На самом самолёте все приёмные/передающие антенны, если они штыревые, должны быть с минимально разумным коэффициентом усиления. Полагаю, что разумно — это 1-2,5 dbi. Это связано с невозможностью сохранения постоянными крена и тангажа самолёта.
2. На земле антенны с высоким коэффициентом усиления будут очень мешать высоким полётам и проходом над собой. Однако, далеко и невысоко — хорошо. Например, описаный выше угол в 7,5 градусов на расстоянии в 1,5 км предполагает нахождение самолёта не выше 100 м.
3. Тыканье концом антенны в самолёт тем хуже даст эффект, чем выше коэффициент усиления этой антенны.
4. При выборе штыря есть смысл учитывать ещё одну характеристику: вертикальный угол направленности. Для равных по КУ антенн он может различаться.
Ещё мои статьи:
1. Как я завёл своё FPV. С блекджеком и фатшарком (версия 1).
2. FPV. Чудеса на виражах. Разбор FPV-аварии.
3. Расследование FPV катастрофы
4. Полётный ящик с перспективой
www.parkflyer.ru