Как запустить электродвигатель без конденсатора видео: Как запустить электродвигатель без конденсатора

Содержание

Схема подключения однофазного электродвигателя на 220 вольт через конденсатор

Решил проверить, что случиться если подключить двигатель от пылесоса к зарядному устройству для аккумулятора

Если подключать двигатель от старого пылесоса напрямую в сеть 220, у него слишком большие обороты. В таком режиме использовать его для самоделок нельзя — сгорит. Вот и решил я поэкспериментировать и подключить к менее мощному источнику питания.

Добрый день, уважаемые подписчики и гости канала.

Не так давно я писал статью о том, как сделал из катушки от старого пылесоса переноску(ссылку на неё оставлю в конце). Так вот у меня ещё остался двигатель, который тоже нужно пустить в дело, не валятся же ему, пусть пользу приносит.

Но у меня возникла проблема, дело в том, что двигатель от пылесоса, если подключать его к 220 вольт без крыльчатки, выдаёт очень большие обороты, вдобавок ещё и греется. Начал я думать, как решить проблему своими силами и вспомнил про зарядное устройство для автомобильного аккумулятора, которое у меня лежит практически без дела, использую его крайне редко.

Зарядка самая простенькая, с возможностью переключения с 12 на 24 вольта и регулировкой силы тока.

Расчёт был такой, двигатель коллекторный, значит, ему по сути, должно быть без разницы, от какого напряжения работать. Но на 100% в успехе операции я не уверен.

Ещё немного подумал, а потом верх надо мной взял наш родной «авось» — авось обойдётся. Подключил провода от зарядки к двигателю, поставил переключатель вольтажа в положение 12 вольт, ток убавил на минимум.

Включил в розетку — зарядка заработала, двигатель загудел, но вращаться не начал.

Попробовал понемногу добавлять силу тока и вал закрутился. Всё работает, погонял минут 10 двигатель не греться. Регулировкой силы тока можно уменьшать или увеличивать количество оборотов, это достаточно удобно.

Хорошо. А что будет если переключить на 24 вольта? Но как ни странно, запустить двигатель от 24 вольт не получилось, может моя зарядка в этом режиме не работает, других причин не вижу. Если кто знает в чём причина, почему так могло случиться, напишите в комментариях.

Теперь, нужно сделать на движок шкив и пробовать собрать какой-нибудь станочек. Какой именно, пока не решил. Если у кого есть предложения по этому поводу — пишите, идти по протоптанной тропинке оно надёжнее. Заранее спасибо.

Источник

Сайт и форум

  1. International Forum

    This is a special forum for English spoken people, read it first.

  2. Образование в области электроники

    все что касается образования, процесса обучения, студентам, преподавателям.

    • Решение задач
  3. Обучающие видео-материалы и обмен опытом

    Обсуждение вопросов создания видео-материалов

    Модераторы раздела iosifk 
  • Конструктивные особенности

    Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

    Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

    Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

    Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

    При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

    Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

    Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

    Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

    Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

    Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

    Пошаговая инструкция по разбору двигателя

    Следующий шаг в ремонте пылесоса Samsung — осмотр и починка мотора устройства. Чтобы осуществить ремонт двигателя пылесоса Самсунг, для начала его нужно разобрать. Делается это следующим образом:

    1. При помощи отвертки выкручиваются два боковых болта, находящиеся наверху корпуса.
    2. Поверните немного корпус, и посмотрите на двигатель. Если вы попробуете его снять, то обнаружите, что вам мешает это сделать катушка. Аккуратно освободите двигатель от ее проводов и отсоедините все разъемы.
    3. Осторожно выведите провода катушки так, чтобы, сама катушка осталась на корпусе, и снимите двигатель.
    4. После того, как двигатель будет снят, нужно еще раз повторить чистку.
    5. Теперь нужно снять уплотняющую резинку. Для этого нужно открутить два боковых болта.
    6. При помощи отвертки разъединяются две половины корпуса двигателя.
    7. Далее из пластмассового корпуса вынимается сам двигатель.
    8. Посмотрите на верхнюю часть двигателя. Вы увидите завальцовки. Их нужно выгнуть в обратную сторону. Затем в любую щель втыкается отвертка. Обе половины разъединяются между собой. Таким образом турбина освобождается от корпуса.
    9. При помощи торцевой головки на 12 откручивается болт. Что важно: резьба левая, поэтому при снятии болта, его надо крутить по часовой стрелке. При этом надо статор двигателя заклинить деревянными маленькими брусочками. Всю конструкцию нужно придерживать.
    10. Теперь можно снимать турбинку.
    11. Снимите шайбочку и открутите два болта.
    12. Внизу вы найдете еще четыре винта, которые нужно открутить.
    13. Далее нужно снять щетки, предварительно открутив все болты.
    14. Выбиваем якорь. Вставляем ключ в отверстие и стучим по нему молотком. Двигатель выскочит наружу.
    15. Обратите внимание на подшибники. Если они в хорошем состоянии их можно промазать маслом.
    16. Пинцетом вынимаем пыльник. Если подшибник крутится с шелестящим звуком и остается сухим, его нужно прочистить и смазать. Для прочистки можно использовать очиститель карбюратора.

    Соберите пылесос в обратном порядке.

    Как разобрать пылесос видео посмотрите ниже:

    Важно. Прежде чем отремонтировать свой пылесос Самсунг, в особенности, двигатель, учите, что его стоимость может составлять большую часть от всей стоимости устройства. При сомнениях, лучше не браться за работы по ремонту пылесоса Самсунг самостоятельно. Отнесите его в сервисный центр производителя, или в хорошую мастерскую, где произведут качественное обслуживание техники.

    При желании даже можно перемотать статор двигателя пылесоса. Как перемотать двигатель пылесоса видео смотрите ниже:

    Извлечение щеток

    Поочередно устанавливаем отвертку на винт крепления и выворачиваем его.

    Рукой осторожно извлекаем щетку и осматриваем ее.

    Невооруженным глазом видны следы нагара с образованием наслоений графитовой пыли.

    Такая же картина наблюдается на второй щетке. На торцевой поверхности явно заметны следы искрения.

    Это позволяет сделать вывод, что необходим внешний осмотр коллектора и электрическая проверка состояния обмоток ротора и статора.

    Через закрытый кожух двигателя это сделать невозможно: требуется его разборка и изъятие якоря.

    Цифровая обработка сигналов – ЦОС (DSP)

    1. Сигнальные процессоры и их программирование – DSP

      Обсуждение различных сигнальных (DSP) процессоров, возможностей, совместимости и связанных с этим тем.

    2. Алгоритмы ЦОС (DSP)

      Обсуждение вопросов разработки и применения (программирования) алгоритмов цифровой обработки сигналов.

  • Присоединяйтесь к обсуждению

    Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
    Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

    Видео описание

    Смотрите в этом видео, как подключить трёхфазный двигатель по схеме «звезда-треугольник»:

    Как подключить электродвигатель стиральной машины

    В современных стиральных машинах могут стоять либо коллекторные или трехфазные двигатели. Последние можно запустить только при помощи электронного пуск-регулирующего устройства, которое необходимо будет достать со стиральной машины и переделать схему на ручной запуск. Но для этого надо хорошо разбираться в радиотехнике.

    Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Как правило на колодку подключения выходит 6-7 проводов, не считая на заземление корпуса.

    Два провода идут с тахометра, которые не будут использоваться. И по паре проводов выходит со статора и якоря (ротора). Так же иногда может выходить еще один конец с половины обмотки.

    Вызваниваем пары обмоток и соединяем перемычкой между собой конец роторной с началом статарной обмотки. На начало роторной подключаем один конец электропитания и другой- на конец статарной.

    Если необходимо подключение второй скорости, тогда один конец электропитания подключаем к выходу с половины обмотки. У нее будет меньше сопротивление, чем у целой.

    Иногда на колодку подключения еще может выходить дополнительно пара контактов от термозащиты.

    В старых стиральных машинах советского образца стояли простые асинхронные электродвигатели с пусковой обмоткой. Для их запуска рекомендую использовать соответствующее реле от стиральной машины, которое устанавливается только вертикально по указателю на корпусе. Подключение производится по этой схеме.

    А можно запустить и по другой схеме только с рабочим конденсатором, подключенным к пусковой обмотке.

    Печатные платы (PCB)

    1. Разрабатываем ПП в САПР – PCB development

      FAQ, вопросы проектирования в ORCAD, PCAD, Protel, Allegro, Spectra, DXP, SDD, WG и др.

      • Библиотеки компонентов
      • Altium Designer, DXP, Protel
      • P-CAD 200x howto
      • Эремекс, Delta Design
      • Cadence
      • Примеры
      • Zuken CADSTAR
      • Mentor Xpedition Enterprise, PADS
      • KiCAD
    2. Работаем с трассировкой

      тонкости PCB дизайна, от Spectra и далее.

      Модераторы раздела fill 
  • Преимущества и недостатки

    К неоспоримым достоинствам таких машин следует отнести:

    • компактные габариты,
    • увеличенный пусковой момент, «универсальность» работа на переменном и постоянном напряжении,
    • быстрота и независимость от частоты сети,
    • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

    Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

    • снижение долговечности механизма,
    • искрение между и коллектором и щетками,
    • повышенный уровень шумов,
    • большое количество элементов коллектора.

    Полезные советы

    Несколько полезных советов, как подключить электродвигатель с 3 проводами, чтобы избежать проблемы во время эксплуатации:

    1. Перед началом работы мотор рекомендуется испытать на холостом ходу, если он функционирует исправно – затем под нагрузкой.
    2. При сильном нагреве корпуса даже без нагрузки необходимо понизить ёмкость рабочего конденсатора.
    3. Если после пуска мотор просто гудит, но не вращает вал, то можно задать ему старт вручную – крутанув вал. Далее можно повысить ёмкость пускового конденсатора.
    4. При остановке двигателя под рабочей нагрузкой, следует повысить ёмкость рабочего конденсатора.

    Проверка работоспособности

    Для того, что бы проверить правильность собранной схемы необходимо включить электродвигатель и дать ему поработать сначала  одну минуту, а затем около 15. Если двигатель горячий, то причинами может быть:

    1. Изношенность, загрязненность или зажатость подшипников.
    2. Большая ёмкость конденсатора, отключите его и запустите двигатель рукой, если он перестанет греться- уменьшите емкость конденсаторов.

    Сборка РЭУ

    1. Пайка и монтаж

      вопросы сборки ПП, готовых изделий, а также устранения производственных дефектов

    2. Корпуса

      обсуждаем какие есть копруса, где делать и прочее

  • Встроенные (центральные) конструкции

    Это самый редкий, экзотический вид. Такие пылесосы не мобильны, они имеют рабочие части — воздуховоды, двигатель, фильтры, — спрятанные в стену. Шланг с насадками у этого чудо-агрегата подключают не к пылесосу, а к пневматическим розеткам, расположенным по всему периметру площади, на которой необходима уборка.

    Внутри стен оборудуется лабиринт воздуховодов, который ведет в одном направлении — к общему пылесборнику. Такой контейнер, а также мотор и фильтры обычно монтируют в подвальных либо подсобных помещениях. Огромный минус — шланги очень большой длины, они лишь затрудняют уборку, мешая ей.

    Аналоговая и цифровая техника, прикладная электроника

    1. Вопросы аналоговой техники

      разработка аналоговых схем, моделирование схем в SPICE, расчёты и анализ, выбор элементной базы

      • Операционные усилители и АЦП
    2. Rf & Microwave Design

      wireless технологии и не только

      Модераторы раздела l1l1l1 
    3. Метрология, датчики, измерительная техника

      Все что связано с измерениями: измерительные приборы (осциллографы, анализаторы спектра и пр.), датчики, обработка результатов измерений, калибровка, технологии измерений и др.

      • Оптика и оптоэлектроника
    4. АВТО электроника

      особенности электроники любых транспортных средств: автомашин и мотоциклов, поездов, судов и самолетов, космических кораблей и летающих тарелок.

      Модераторы раздела Vasily_ 
    5. 3D печать

      3D принтеры, наборы, аксессуары, ПО

    6. Робототехника

      Модели, классификация, решения, научные исследования, варианты применения

    7. Ремонт и отладка

      обсуждение вопросов ремонта и отладки различных устройств и готовых изделий

      Модераторы раздела Herz 
  • Не включается/не выключается

    Если устройство не включается, то мастера ищут причину в одном из трех вариантов:

    • отсутствие подачи электроэнергии – в выключателе, вилке, розетке нет питания, перетерся провод, оборвалась цепь питания прибора;
    • защита от перегрева;
    • поломка электродвигателя.

    В первом случае найти обрыв в цепи подачи электроэнергии сможет любой знакомый с электрической сферой владелец. Если же необходимого для проверки напряжения инструмента нет, лучше обратиться к специалисту.

    Причинами срабатывания защиты от перегрева могут быть нарушения условий эксплуатации:

    • длительная работа агрегата с переполненным пылесборником;
    • недостаточное напряжение сети;
    • длительная уборка в жарком помещении.

    В большинстве пылесосов предусмотрено специальное реле, отключающее устройство при обнаружении его перегрева. В этом случае нужно немного подождать, пока электроприбор остынет, предварительно выключив его из розетки. Выход из строя электродвигателя требует его ремонта или замены – для этого необходимо обратиться к квалифицированным специалистам.

    ( 2 оценки, среднее 5 из 5 )

    Итоги

    Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

    Силовая Электроника – Power Electronics

    1. Силовая Преобразовательная Техника

      Источники питания электронной аппаратуры, импульсные и линейные регуляторы. Топологии AC-DC, DC-DC преобразователей (Forward, Flyback, Buck, Boost, Push-Pull, SEPIC, Cuk, Full-Bridge, Half-Bridge). Драйвера ключевых элементов, динамика, алгоритмы управления, защита. Синхронное выпрямление, коррекция коэффициента мощности (PFC)

    2. Обратная Связь, Стабилизация, Регулирование, Компенсация

      Организация обратных связей в цепях регулирования, выбор топологии, обеспечение стабильности, схемотехника, расчёт

    3. Первичные и Вторичные Химические Источники Питания

      Li-ion, Li-pol, литиевые, Ni-MH, Ni-Cd, свинцово-кислотные аккумуляторы. Солевые, щелочные (алкалиновые), литиевые первичные элементы. Применение, зарядные устройства, методы и алгоритмы заряда, условия эксплуатации. Системы бесперебойного и резервного питания

    4. Высоковольтные Устройства – High-Voltage

      Высоковольтные выпрямители, умножители напряжения, делители напряжения, высоковольтная развязка, изоляция, электрическая прочность. Высоковольтная наносекундная импульсная техника

      Модераторы раздела Herz 
    5. Электрические машины, Электропривод и Управление

      Электропривод постоянного тока, асинхронный электропривод, шаговый электропривод, сервопривод. Синхронные, асинхронные, вентильные электродвигатели, генераторы

      Модераторы раздела Herz 
    6. Индукционный Нагрев – Induction Heating

      Технологии, теория и практика индукционного нагрева

      Модераторы раздела Herz 
    7. Системы Охлаждения, Тепловой Расчет – Cooling Systems

      Охлаждение компонентов, систем, корпусов, расчёт параметров охладителей

      Модераторы раздела Herz 
    8. Моделирование и Анализ Силовых Устройств – Power Supply Simulation

      Моделирование силовых устройств в популярных САПР, самостоятельных симуляторах и специализированных программах. Анализ устойчивости источников питания, непрерывные модели устройств, модели компонентов

    9. Компоненты Силовой Электроники – Parts for Power Supply Design

      Силовые полупроводниковые приборы (MOSFET, BJT, IGBT, SCR, GTO, диоды). Силовые трансформаторы, дроссели, фильтры (проектирование, экранирование, изготовление), конденсаторы, разъемы, электромеханические изделия, датчики, микросхемы для ИП. Электротехнические и изоляционные материалы.

  • Коротко о главном

    Подключить электродвигатель 380 на 220 вольт можно 4-мя основными способами:

    • С конденсатором.
    • Без конденсатора.
    • С реверсом.
    • По схеме «звезда-треугольник».

    Прежде чем начать работы по подключению, необходимо определить и удостовериться, каким образом соединена обмотка в клеммной коробке, а также узнать необходимые характеристики из технической таблицы. Выполнять электротехнические работы можно при наличии опыта, но лучше доверить её профессионалам с соответствующим допуском.

    Поставщики компонентов для электроники

    1. Поставщики всего остального

      от транзисторов до проводов

  • Дополнительные разделы – Additional sections

    1. Встречи и поздравления

      Предложения встретиться, поздравления участников форума и обсуждение мест и поводов для встреч.

    2. Ищу работу

      ищу работу, выполню заказ, нужны клиенты – все это сюда

    3. Предлагаю работу

      нужен постоянный работник, разовое предложение, совместные проекты, кто возьмется за работу, нужно сделать.

    4. Куплю

      микросхему; устройство; то, что предложишь ты 🙂

    5. Продам

      есть что продать за деньги, пиво, даром ?
      Реклама товаров и сайтов также здесь.

    6. Объявления пользователей

      Тренинги, семинары, анонсы и прочие события

  • 669 посетителей(за последние 15 минут)

    26 участников, 639 гостей, 3 скрытых участников.

    IceS

    ,

    andreizaiats6071

    ,

    baranovskiykonstantin

    ,

    yes

    ,

    oratie

    ,

    alex_zhuravlyov

    ,

    Nick_K

    ,

    golubenko_d

    ,

    pcb-design

    ,

    Mysteo

    ,

    Atridies

    ,

    EugeneS

    ,

    redzub

    ,

    Dr.Alex

    ,

    pulsar-17

    ,

    Orcas

    ,

    syuha

    ,

    xelaukxaxa

    ,

    forummailandlogin

    ,

    RVlad

    ,

    servol

    ,

    ivan24190

    ,

    Dmitry Dubrovenko

    ,

    gin

    ,

    likeasm

    ,

    seemann

    Статистика форума

    Сообщений 1 696 451
    Тем 151 956
    Участников 64 653
    Новый участник Orcas 

    Как подключить трехфазный электродвигатель в сеть 220в

    Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.

    Блок: 1/6 | Кол-во символов: 360
    Источник: https://odinelectric.ru/equipment/kak-podklyuchit-3-faznyj-elektrodvigatel-k-seti-220-volt-cherez-kondensator

    Схема подключения коллекторного электродвигателя на 220 вольт

    Где можно встретить в быту?

    Электрические дрели, некоторые стиральные машинки, перфораторы и болгарки имеют синхронный коллекторный двигатель. Он способен работать в сетях с одной фазой даже без пусковых механизмов. Схема такая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два кончика, которые остались, необходимо присоединить к питанию в 220 вольт.

    Подключение электродвигателя 220 вольт с пусковой обмоткой

    Внимание!

    • Такая схема исключает блок электроники, а следовательно – мотор сразу же с момента старта, будет работать на полную мощность – на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе;
    • существуют электромоторы с двумя скоростями. Их можно определить по трем концам в статоре, выходящим из обмотки. В этом случае скорость вала при подключении уменьшается, а риск деформации изоляции при старте – увеличивается;
    • направление вращения можно изменить, для этого следует поменять местами окончания подключения в статоре или якоре.

    Блок: 2/4 | Кол-во символов: 1110
    Источник: https://bouw.ru/article/kak-podklyuchity-odnofazniy-elektrodvigately-na-220-volyt

    Принцип действия

    Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

    Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

    Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

    Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

    Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

    Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

    Блок: 2/10 | Кол-во символов: 1586
    Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

    Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе

    Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.

    Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.

    За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.

    Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.

    Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).

    Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.

    Максимальное введение сопротивления резистора R7 закрывает электронный ключ.

    Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.

    Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.

    Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.

    Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.

    Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.

    Блок: 3/5 | Кол-во символов: 2344
    Источник: https://ElectrikBlog.ru/podklyuchenie-tryohfaznogo-dvigatelya-k-odnofaznoj-seti-bez-kondensatorov-4-shemy/

    Тип конденсаторов

    Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

    Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

    Блок: 3/6 | Кол-во символов: 857
    Источник: https://onlineelektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

    Переключение на нужное напряжение

    Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

    Увеличение напряжения

    Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

    Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

    В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

    Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

    Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

    Уменьшение напряжения

    Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

    Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

    Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

    Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

    В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

    Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

    Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

    Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

    Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

    Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

    Блок: 2/3 | Кол-во символов: 3495
    Источник: https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-asinhronnogo-dvigatelya-na-220.html

    2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия

    Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.

    Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…

    Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.

    Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.

    Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик

    Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.

    Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.

    При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.

    Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.

    Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.

    Рекомендации автора по сборке и наладке

    Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.

    На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.

    При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.

    Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.

    Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами

    Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.

    На картинке ниже их полярность показана точками.

    В этой ситуации создается больший крутящий момент для запуска ротора.

    Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.

    Рекомендации автора по наладке и работе не изменились.

    Блок: 4/5 | Кол-во символов: 3224
    Источник: https://ElectrikBlog.ru/podklyuchenie-tryohfaznogo-dvigatelya-k-odnofaznoj-seti-bez-kondensatorov-4-shemy/

    Однофазный

    Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

    По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

    Схема однофазного асинхронного двигателя

    Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

    Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

    Включение в работу

    Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

    Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

    Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

    Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

    Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

    Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

    Если нужен реверс, то он делается по такой схеме:

    Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

    Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

    Блок: 3/3 | Кол-во символов: 2485
    Источник: https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-asinhronnogo-dvigatelya-na-220.html

    Как подключить трехфазный электродвигатель в сеть 220в

    Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

    Соединение звездой

    При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение “звезда”. К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

    Соединение треугольником

    Самая распространенная  схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

    Подключение звездой и треугольником

    Блок: 3/9 | Кол-во символов: 940
    Источник: https://amperof.ru/elektropribory/podklyuchit-trehfaznyj-elektrodvigatel-220v.html

    Преимущества схемы тиристорного преобразователя: автор В Соломыков

    Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

    Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

    Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

    Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

    Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

    1. DD1 — К176ЛЕ5;
    2. DD2 — К176 ИР2.

    Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

    Логическая часть

    Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

    Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

    Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

    Таблица данных К176ИР2 и состояний регистров

    Число разрядов

    4х2

    Входы

    Выход

    Сторона сдвига

    Направо

    C

    D

    R

    Q0

    Qn

    Тип ввода

    Последовательно

    H

    Н

    H

    Qn-1

    Тип вывода

    Параллельно

    B

    H

    B

    Qn-1

    Тактовая частота

    2,5MHz

    X

    H

    Q1

    Qn не меняется

    Рабочая температура

    -45÷+85

    X

    X

    B

    H

    H

    Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

    Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

    Силовая часть схемы, принципы ее управления и наладки

    При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

    При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

    В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

    Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

    Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

    Емкость конденсаторов предварительно рассчитывают по формуле:

    С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).

    При номинальной частоте вращения ротора выставляют n=1.

    Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

    Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

    Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

    Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

    Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

    Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

    Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

    Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

    Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

    Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом . Обязательно обсудим.

    Блок: 5/5 | Кол-во символов: 4410
    Источник: https://ElectrikBlog.ru/podklyuchenie-tryohfaznogo-dvigatelya-k-odnofaznoj-seti-bez-kondensatorov-4-shemy/

    Схема подключения электродвигателя 380 на 220 вольт с конденсатором

    Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.

    Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть. Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е. конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.

    Эти соединения и будут выводами двигателя для подключения к электропитанию. Два вывода необходимо через двухполюсной выключатель подсоединить к нулю и фазе сети в 220 вольт. Третий вывод через рабочие конденсаторы, соединить с каким либо из первых двух выводов из двигателя. Можно пробовать запускать.

    Если запуск прошел успешно, двигатель работает с приемлемой мощностью и не сильно греется, то можно ничего не менять. Получилась работоспособная схема только с рабочими конденсаторами.

    В случае запуска под нагрузкой или просто тяжелого пуска двигателя, он может раскручиваться долго и не достигать приемлемой мощности. Тогда потребуется включить в схему еще и пусковую емкость. Пусковые конденсаторы выбираются того же типа, что и рабочие. Одинаковой или в два раза превышающей ёмкость рабочих. И подключаются параллельно им. Используются только для пуска электродвигателя.

    Очень удобно для такого пуска использовать своеобразный выключатель серии АП. Важно чтобы он был в исполнении с блок контактами. В нем при нажатии кнопки Пуск пара контактов остается замкнутыми до нажатия на кнопку Стоп. К ним подключают выводы двигателя и электросеть. Третий контакт замкнут только во время удержания кнопки Пуск, через него и подсоединяется пусковой конденсатор. Выключатели такого типа, только без предохранительной аппаратуры часто устанавливали на старые советские центрифуговые стиральные машинки.

    Блок: 4/6 | Кол-во символов: 2146
    Источник: https://odinelectric.ru/equipment/kak-podklyuchit-3-faznyj-elektrodvigatel-k-seti-220-volt-cherez-kondensator

    Заключение по теме

    Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

    Блок: 6/6 | Кол-во символов: 394
    Источник: https://onlineelektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

    Как переделать схему вращения в реверсивную

    Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

    Реверс конденсаторного двигателя

    Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

    Блок: 7/9 | Кол-во символов: 558
    Источник: https://amperof.ru/elektropribory/podklyuchit-trehfaznyj-elektrodvigatel-220v.html

    Подсоединение к однофазной сети

    Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

    Блок: 8/10 | Кол-во символов: 303
    Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

    Видео

    Блок: 9/9 | Кол-во символов: 6
    Источник: https://amperof.ru/elektropribory/podklyuchit-trehfaznyj-elektrodvigatel-220v.html

    Как включить однофазный асинхронный двигатель

    Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

    Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

    Блок: 10/10 | Кол-во символов: 458
    Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html

    Кол-во блоков: 24 | Общее кол-во символов: 32745
    Количество использованных доноров: 7
    Информация по каждому донору:
    1. https://bouw.ru/article/kak-podklyuchity-odnofazniy-elektrodvigately-na-220-volyt: использовано 1 блоков из 4, кол-во символов 1110 (3%)
    2. https://odinelectric.ru/equipment/kak-podklyuchit-3-faznyj-elektrodvigatel-k-seti-220-volt-cherez-kondensator: использовано 2 блоков из 6, кол-во символов 2506 (8%)
    3. https://amperof.ru/elektropribory/podklyuchit-trehfaznyj-elektrodvigatel-220v.html: использовано 5 блоков из 9, кол-во символов 3653 (11%)
    4. https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-asinhronnogo-dvigatelya-na-220.html: использовано 2 блоков из 3, кол-во символов 5980 (18%)
    5. https://ElectrikBlog.ru/podklyuchenie-tryohfaznogo-dvigatelya-k-odnofaznoj-seti-bez-kondensatorov-4-shemy/: использовано 4 блоков из 5, кол-во символов 12554 (38%)
    6. https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-elektrodvigatelya-k-seti-220-volt.html: использовано 5 блоков из 10, кол-во символов 3827 (12%)
    7. https://onlineelektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html: использовано 3 блоков из 6, кол-во символов 3115 (10%)

    отличия от рабочего и подключение электродвигателей

    Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

    Отличия между ними

    Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз. В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

    Пусковой (второй) обеспечивает повышение стартового момента мотора, находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

    Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

    Способы присоединения

    Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

    Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

    Условия работы

    Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500—600 вольт.

    Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

    Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

    Обычные электролитические конденсаторы, применяемые в различных приборах, и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

    Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

    • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
    • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

    Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

    Как подключить двигатель 380 в сеть 220

    Трёхфазные электродвигатели асинхронного типа с короткозамкнутым ротором доминируют над однофазными и двухфазными собратьями в применении, т.к. имеют более высокую эффективность, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию отечественные электродвигатели делятся на два типа: напряжением 220 / 380 и 127 / 220 Вольт. Последний тип электромоторов небольшой мощности применяется значительно реже.

    В шильдике, размещенном на корпусе электродвигателя, обозначена необходимая информация – напряжение питания, мощность, ток потребления, КПД, возможные варианты включения и коэффицент мощности, количество оборотов.

    Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК

    Производители предлагают трехфазные электродвигатели как с возможностью изменять схему подключения, так и без таковой.

    Более раннему обозначению выводов обмоток С1 – С6 соответствует современное U1 – U2, W1 – W2 и V1 – V2. В распред. коробке выведены провода в количестве трёх (заводом изготовителем по умолчанию осуществлена схема подключения *звезда*) или шести (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо начала обмоток (W2, U2, V2) соединить в единой точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2, L3).

    Преимущество метода звезда – плавный запуск мотора и мягкая работа (обусловленная щадящим режимом и благоприятно сказывающаяся на эксплуатационном сроке агрегата), а также меньший пусковой ток. Недостаток – потеря по мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого оборудования, не требовательного к крутящему моменту. Схему треугольник применяют для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора.
    Для снижения пускового тока осуществляют комбинированный тип включения (применим для электромоторов мощностью от 5 кВт) – сочетающий в себе преимущества первых двух схем – пуск происходит по схеме звезда, а после вхождения электромотора в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакетник) – мощность возрастает до номинальной.

    Включение трёхфазного двигателя в однофазную сеть через конденсатор (380 на 220)

    На практике часто приходится подключать трёхфазный двигатель к сети 220 вольт; хотя КПД при этом падает до 50 % (в лучшем случае до 70%), такая переделка бывает оправданной. Фактически мотор начинает работать как двухфазный, используя фазосдвигающий элемент.
    Конденсатор подбирают исходя из мощности двигателя – на каждые 100Вт потребуется ёмкость 6, 5 мкф, по рабочему напряжению должен быть больше питающего минимум в 1,5 раза, иначе от скачков напряжения в момент включения и выключения они могут выйти из строя; тип – МБГО, МБГ4, К78-17 МБГП, К75-12, БГТ, КГБ, МБГЧ. Хорошо себя зарекомендовали металлизированные полипропиленовые конденсаторы типа СВВ5, СВВ60, СВВ61. В случае применения конденсатора бОльшей ёмкости двигатель будет перегреваться, меньшей – будет работать в недогруженном режиме либо вообще не запустится. В схеме ниже Сп – пусковой, Ср – конденсатор рабочий.

    Пусковой конденсатор при наличии нагрузки на валу двигателя

    В случае, если на валу имеется нагрузка, либо мощность превышает 1,5 кВт, движок может не запуститься или медленно набирать обороты. *Поправить* это можно применением рабочего и пускового конденсатора, служащих для сдвига фазы и разгона. Кнопку разгона нужно удерживать пока обороты не достигнут примерно 70% от номинальных (2 – 3 секунды), после чего отпустить.

    Ёмкость пускового кондера должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если проблематично достать вышеуказанные конденсаторы нужной ёмкости, возможно применение электролитических, спаянных по особой схеме с диодами. Однако для работы мощных станков следует избегать подобной замены и рекомендовать её лишь для временного включения.

    Важно!

    Не рекомендуется подключать электродвигатель мощностью более 3 кВт к домашней сети ввиду её невысокой нагрузочной способности.
    Автоматический выключатель в цепи питания электродвигателя должен быть с время – токовой характеристикой C или D ввиду существенного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник) соответственно.
    Если 3 – фазный электродвигатель будет долго работать без нагрузки от однофазной сети, он сгорит!
    Выбирая правильное соединение или переключение, необходимо учитывать особенности электрической сети, силовой мощности электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

    Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

    Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

    В связи с этим двигатель желательно иметь помощнее.

    Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

    Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

    Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

    Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

    Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

    Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

    Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

    Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

    Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

    На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

    На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

    Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

    Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

    Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

    Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

    Расчет конденсаторов. Емкость рабочего конденсатора.

    Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

    Емкость пускового конденсатора.

    Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

    Особенности подбора конденсаторов.

    Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

    Реверс.

    Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

    Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Более подробно можно увидеть на рисунке.

    В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

    Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

    Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

    СОДЕРЖАНИЕ (нажмите на кнопку справа):

    Конструктивные особенности

    Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

    Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

    Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

    Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

    При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

    Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

    Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

    Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

    Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

    Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

    Как подключить электродвигатель с 380 на 220В без конденсатора?

    Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

    Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

    Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

    Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

    По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

    Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

    Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

    Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

    Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

    Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

    Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

    В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

    Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

    Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

    Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

    Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

    Делается это следующим образом:

    • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
    • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

    При реализации рассмотренных схем стоит учесть ряд особенностей:

    • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
    • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

    Как подключить через конденсаторы

    Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

    Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

    Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

    Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

    Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

    Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

    Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

    • Рабочие конденсаторы подключаются параллельно;
    • Номинальное напряжение должно быть не меньше 300 Вольт;
    • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
    • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

    Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

    Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

    Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

    Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

    Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

    Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

    • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
    • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
    • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

    С конденсатором дополнительная упрощенная — для схемы звезда.

    С конденсатором дополнительная упрощенная — для схемы треугольник.

    Как подключить с реверсом

    В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

    Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

    Для реализации схемы можно использовать переключатель с двумя положениями.

    К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

    Как подключить по схеме «звезда-треугольник» (с тремя проводами)

    В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

    Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

    Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

    Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

    К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

    Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

    Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

    Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

    Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

    Принцип работы схемы прост:

    • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
    • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
    • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

    Итоги

    Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

    Как подключить вентилятор через конденсатор

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Затем мотор работает как асинхронный двигатель на основной обмотке. Расчет емкости должен производиться с учетом номинальной мощности ЭД.


    Найти требуемую емкость опытным путем — самое правильное решение.

    Для запуска электромашины этого типа, может быть использован пусковой резистор. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока.
    Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.

    При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

    В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

    Подключается все просто, на толстые провода подается в. Они играют роль шунтов, однако действую не мгновенно.

    Эти соединения и будут выводами двигателя для подключения к электропитанию. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Подключение

    Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

    Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник.

    Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    Называют их конденсаторными.

    Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

    Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

    Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности.
    Подключение 3-фазного двигателя в сеть 220В через пусковой и рабочий конденсаторы

    Навигация по записям

    Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

    Принцип действия и схема запуска


    Конденсаторы, которые находятся в цепи, могут быть заряжены. Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД. И во многих случаях электрооборудование приводится в движение трехфазными двигателями.

    Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно Установка и подбор компонентов Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно распределительная коробка на корпусе электродвигателя. Сразу же заниматься расчетами схемы подключения не имеет смысла.

    Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего. Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Подключается все просто, на толстые провода подается в.
    подключение двигателя 380 на 220 вольт

    Для чего нужен конденсатор

    Например, если ток равен 1. Подключение трехфазного двигателя к однофазной сети Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.

    В качестве кнопки так же можно использовать обычный выключатель. Как правильно подобрать конденсаторы Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент.

    Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. На какой из них разницы нет, направление вращения от этого не зависит.

    Мы не будем изменять направление тока в той или иной обмотке. Трехфазные агрегаты на практике получили большее распространение, чем однофазные. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Это тоже одна из разновидностей обмоток. При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Она всегда работает короткое время и служит для запуска двигателя. Напряжение на них может достигать больших значений.

    Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Статор электродвигателя.

    На этом все. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

    Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого. Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Были сделаны выводы, что скорость вращения ротора прибора, который используется в качестве генератора, не зависит от напряжения, которое подано на питающую однофазную сеть. Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе.
    Как подключить электродвигатель на 220 вольт.

    Трехфазный двигатель в однофазной сети без конденсаторов: схема и описание подключения

    Трёхфазный асинхронный двигатель можно запускать в однофазной сети, без подключения конденсаторов, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух тиристорах, с тиристорными ключами и транзисторным управлением.

    Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора, потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.

     

    Схема пускового устройства для трёхфазного двигателя.

    В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные.
    Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В.
    Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.

    Пусковое устройство подключается к двигателю вместо конденсатора.

    Подключенный к устройству резистор, позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.

     

    С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.

     

     

    В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.


    Работа этого пускового устройства показана в этом видео:

    Можете ли вы запустить двигатель без конденсатора?

    Без конденсатора двигатель не запустится автоматически, но без конденсатора щелчок на валу заставит однофазный двигатель работать в любом направлении, при условии, что основная обмотка работает должным образом.

    Как технический специалист, я до сих пор сталкиваюсь с этими кондиционерами последних моделей, и я удивлен, что их конденсаторы все еще работают нормально. Я видел бейсболки, которые длились всего два года! Я знаю некоторые марки кондиционеров, которые устанавливаются совершенно новыми, и два или три года спустя мы заменяем конденсатор.Теперь это работает! Это классический признак того, что конденсатор для этого двигателя вентилятора плохой, и хороший пример для вас, демонстрирующий, почему эти двигатели не могут запускаться и работать эффективно без хорошего конденсатора. Есть различия в типичном двойном рабочем конденсаторе, который обычно входит в вашу сеть переменного тока, и пусковом конденсаторе, который может быть добавлен в вашу систему либо производителем, либо техническим специалистом у вас дома.

    Могу ли я работать от сети переменного тока без конденсатора? Большинство двигателей вашего кондиционера не могут работать без исправного конденсатора.Они помогают двигателю запускаться и эффективно работать. Некоторые люди подошли к своему кондиционеру и заметили, что вентилятор на их кондиционере не вращается, как должно быть.

    Будет ли двигатель запускаться из-за плохого рабочего конденсатора? Двигатель, подключенный к конденсатору работы и запуска, может все еще пытаться запуститься, если один или оба конденсатора вышли из строя, и это приведет к тому, что двигатель будет гудеть и не будет работать долгое время. В большинстве случаев проблем с конденсатором, таких как повреждение или потеря заряда, необходимо заменить конденсатор.

    Каковы симптомы плохого пускового конденсатора? — Дым или запах гари от внешних компонентов системы кондиционирования воздуха.
    — Гудящий шум из вашего кондиционера.
    — Вашему кондиционеру требуется некоторое время, чтобы начать цикл охлаждения после его включения.
    — Система кондиционирования воздуха отключается случайным образом.

    Безопасно ли шунтировать конденсатор? Эти нежелательные возмущения (если их не контролировать) могут напрямую влиять на цепь и вызывать нестабильность или повреждение.В этом случае шунтирующий конденсатор является первой линией защиты. Он устраняет падение напряжения на источнике питания, сохраняя электрический заряд, который высвобождается при возникновении скачка напряжения.

    Можно ли запустить двигатель без конденсатора? — Дополнительные вопросы

    Будет ли двигатель работать без пускового конденсатора?

    Без конденсатора двигатель не запустится автоматически, но без конденсатора щелчок на валу заставит однофазный двигатель работать в любом направлении, при условии, что основная обмотка работает должным образом.

    Может ли неисправный конденсатор испортить двигатель?

    Использование конденсатора неправильного номинала или некачественного конденсатора может отрицательно повлиять на работу двигателя, компрессора или всей системы отопления, вентиляции и кондиционирования воздуха. В большинстве систем отопления, вентиляции и кондиционирования воздуха используется рабочий конденсатор двигателя для запуска двигателя нагнетателя, двигателя вентилятора конденсатора и / или компрессора.

    Что произойдет, если рабочий конденсатор выйдет из строя?

    Двигатель, подключенный к пусковому конденсатору, все еще может пытаться запуститься, если один или оба конденсатора вышли из строя, и это приведет к тому, что двигатель будет гудеть и не будет работать долгое время.В большинстве случаев проблем с конденсатором, таких как повреждение или потеря заряда, необходимо заменить конденсатор.

    Будет ли электродвигатель работать с неисправным конденсатором?

    Неисправный конденсатор двигателя может вызвать проблемы с запуском или выключить двигатель во время работы. Конденсаторы двигателя накапливают электрическую энергию для использования двигателем. Поврежденный или сгоревший конденсатор может удерживать только часть энергии, необходимой для двигателя, если его емкость мала.

    Могу ли я обойти пусковой конденсатор?

    Среди бытовых электронных компонентов лишь немногие воспринимаются так же неправильно, как байпасный конденсатор.Вы можете наслаждаться своим вентилятором без конденсатора, если слегка подтолкните вентилятор рукой во время запуска. Нормально будет работать. Конденсатор необходим для запуска вентилятора, создавая фазовый сдвиг в электрическом поле двигателя.

    Могу ли я обойти конденсатор вентилятора?

    Среди бытовых электронных компонентов лишь немногие воспринимаются так же неправильно, как байпасный конденсатор. Вы можете наслаждаться своим вентилятором без конденсатора, если слегка подтолкните вентилятор рукой во время запуска. Нормально будет работать.Конденсатор необходим для запуска вентилятора, создавая фазовый сдвиг в электрическом поле двигателя.

    Может ли однофазный двигатель работать без конденсатора?

    Однофазные двигатели с экранированными полюсами и с расщепленной фазой не требуют для работы конденсатора. В то время как конденсаторные двигатели работают с помощью конденсаторов. Конденсаторные двигатели также имеют разные типы в зависимости от роли конденсатора.

    Что произойдет, если конденсатор выйдет из строя в двигателе?

    При коротком замыкании конденсатора обмотка двигателя может перегореть.Когда конденсатор выходит из строя или открывается, двигатель имеет плохой пусковой момент. Низкий пусковой крутящий момент может помешать запуску двигателя, что обычно вызывает перегрузки.

    Что конденсатор делает для двигателя?

    Конденсаторы двигателя накапливают электрическую энергию для использования двигателем. Чем выше емкость конденсатора, тем больше энергии он может хранить. Поврежденный или сгоревший конденсатор может удерживать только часть энергии, необходимой для двигателя, если его емкость мала.

    Что произойдет, если вы отключите конденсатор?

    Эти нежелательные возмущения (если их не контролировать) могут напрямую влиять на цепь и вызывать нестабильность или повреждение.В этом случае шунтирующий конденсатор является первой линией защиты. Он устраняет падение напряжения на источнике питания, сохраняя электрический заряд, который высвобождается при возникновении скачка напряжения.

    На сколько хватает рабочего конденсатора?

    примерно 20 лет

    В чем разница между конденсатором и батареей?

    Потенциальная энергия в конденсаторе хранится в электрическом поле, где аккумулятор хранит свою потенциальную энергию в химической форме. Однако в целом батареи обеспечивают более высокую плотность энергии для хранения, в то время как конденсаторы обладают более быстрой способностью заряжаться и разряжаться (более высокая плотность мощности).

    Что происходит, когда конденсатор подключен к батарее?

    Конденсатор, подключенный к батарее, некоторое время проводит ток, но вскоре после этого действует как разомкнутая цепь. Если незаряженный конденсатор C подключен к батарее с потенциалом V, то при зарядке пластин конденсатора протекает переходный ток.

    Что происходит, когда вы заряжаете конденсатор, подключив его к батарее через резистор?

    Что происходит, когда вы заряжаете конденсатор, подключив его к батарее через резистор?

    Будет ли неисправный рабочий конденсатор препятствовать запуску двигателя?

    При коротком замыкании конденсатора обмотка двигателя может перегореть.Когда конденсатор выходит из строя или открывается, двигатель имеет плохой пусковой момент. Низкий пусковой крутящий момент может помешать запуску двигателя, что обычно вызывает перегрузки.

    Зачем двигателю конденсатор?

    Некоторым однофазным электродвигателям переменного тока требуется «рабочий конденсатор» для подачи питания на обмотку второй фазы (вспомогательную катушку) для создания вращающегося магнитного поля во время работы двигателя. Это колебание может привести к шуму двигателя, увеличению потребления энергии, снижению производительности и перегреву двигателя.

    Groschopp Tech Tips: Основы работы с двигателями переменного тока

    Понимание характеристик двигателей переменного тока позволяет инженерам выбрать двигатель, наиболее подходящий для их применения.

    Стенограмма видеоматериала: Технические советы Groschopp — Основы работы двигателя переменного тока

    Здравствуйте! Это Арло с техническим советом Groschopp. Сегодня мы обсудим основы асинхронных двигателей переменного тока с кратким обзором однофазных и трехфазных двигателей.

    Двигатели переменного тока

    являются наиболее распространенными двигателями, используемыми в приложениях, поскольку они используют напряжение переменного тока (имеется в каждой розетке), работают бесшумно, имеют длительный срок службы и экономичны.

    Все двигатели переменного тока имеют одинаковые основные компоненты, статор и ротор. Статор — это неподвижные катушки в двигателе, в которых вырабатывается ток для создания магнитного поля. Это магнитное поле индуцирует ток в стержнях ротора, заставляя ротор вращаться.

    В трехфазном двигателе ток в статоре создает вращающееся магнитное поле. Магнитное поле вращается из-за сдвига фаз на 120 ° в каждой фазе источника питания. Это вращающееся магнитное поле индуцирует ток в стержнях ротора.Ток в роторе создает собственное магнитное поле. Взаимодействие между магнитными полями статора и ротора заставляет ротор вращаться. При использовании трехфазных двигателей важно помнить, что поскольку они работают от трех фаз, которые смещены друг относительно друга, они самозапускаются.

    Однофазные двигатели работают по тому же принципу, что и трехфазные двигатели, за исключением того, что они работают только от одной фазы. Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле.Это приводит к тому, что настоящий однофазный двигатель имеет нулевой пусковой момент. Однако, как только ротор начинает вращаться, он продолжает вращаться в результате колебания магнитного поля в статоре. Есть много способов запустить однофазные двигатели. Большинство из них связано с созданием второй фазы, которая помогает создать вращающееся магнитное поле в статоре. Некоторыми распространенными типами являются электродвигатели с экранированными полюсами, электродвигатели с расщепленной фазой, электродвигатели с постоянными разделенными конденсаторами или электродвигатели с однозначными конденсаторами) и электродвигатели с двухзначными конденсаторами.

    Поскольку мы фокусируемся на асинхронных или асинхронных двигателях переменного тока, нам необходимо кратко обсудить скольжение. Скольжение — это разница между синхронной скоростью и фактической скоростью двигателя. Асинхронным двигателям требуется скольжение для индукции тока в роторе, и величина скольжения изменяется при изменении нагрузки на двигатель. Чтобы изменить скорость асинхронного двигателя, необходимо изменить частоту. Это достигается за счет управления двигателем, наиболее распространенным из которых является частотно-регулируемый привод (VFD).Без управления скорость двигателя фиксируется уравнением. Определяющими факторами являются входная частота и полюса двигателя переменного тока.

    Две ключевые характеристики двигателей переменного тока, которые следует учитывать для любого применения, — это рабочая скорость и пусковой крутящий момент. Во-первых, давайте посмотрим на скорость бега. Это зависит от частоты источника питания, количества полюсов двигателя и величины скольжения ротора. Для двигателей с линейным приводом количество полюсов будет определяться скоростью ротора за вычетом некоторого скольжения из-за нагрузки.Кривая производительности двигателя покажет максимальный доступный пусковой крутящий момент двигателя.

    Вторая характеристика двигателей переменного тока — это пусковой момент. Это главное ограничение двигателя переменного тока. Помните, что если ваше приложение требует, чтобы двигатель запускался с нагрузкой, проконсультируйтесь с производителем двигателя, чтобы убедиться, что двигатель имеет достаточный крутящий момент для запуска под нагрузкой, и чтобы убедиться, что правильный тип двигателя указан для вашего приложения.

    По сравнению с однофазными двигателями, трехфазные двигатели имеют более высокую удельную мощность, более высокий пусковой момент и более эффективны, чем однофазные двигатели.Они запускаются сами по себе, избавляя от необходимости использовать пусковую обмотку или конденсатор. Такой же расчет скорости применяется к трехфазным двигателям как к однофазным, поэтому для изменения скорости двигателя требуется частотно-регулируемый привод. Кроме того, когда трехфазный источник питания недоступен, доступны элементы управления для преобразования однофазной мощности в трехфазную, что делает трехфазный двигатель более универсальным.

    Двигатели переменного тока

    отлично подходят для множества различных применений, таких как насосы, конвейеры и коммерческие продукты. При выборе двигателя переменного тока помните об основных характеристиках и проконсультируйтесь с производителем двигателя относительно технических характеристик вашего приложения, чтобы убедиться, что вы получаете двигатель, подходящий для вашего приложения.

    Это был технический совет Groschopp. Для получения дополнительной информации о любом из наших продуктов или просмотра других технических советов посетите нас на сайте www.groschopp.com.

    Дополнительные видео

  • Основные сведения о мотор-редукторах | Примеры из практики

    Мы берем все, что обсуждали, и применяем это в трех сценариях. Любой мотор-редуктор подойдет для большинства применений, но обычно лучше всего подходят только один или два типа.

  • Основные сведения о мотор-редукторах | Подходящие мотор-редукторы — комплексные решения

    В этом видео мы обсудим, как выбрать мотор-редуктор в четыре простых шага, выбрав встроенный мотор-редуктор.

  • Основные сведения о мотор-редукторах | Подходящие мотор-редукторы — выбор двигателя

    В этом видео мы продолжаем обсуждение выбора мотор-редуктора путем соединения отдельных компонентов. Теперь посмотрим, как выбрать двигатель в зависимости от редуктора, выбранного для приложения.

  • Основные сведения о мотор-редукторах | Подходящие мотор-редукторы — выбор редуктора

    В этом видео мы начинаем наше глубокое погружение в выбор мотор-редуктора.Есть два метода соединения двигателей и редукторов для создания оптимального мотор-редуктора. Здесь мы начнем с первого метода, посмотрев на выбор коробки передач.

  • Основные сведения о мотор-редукторах | Параметры приложения

    В этом видео рассматриваются важные критерии применения, которые необходимо учитывать при выборе мотор-редуктора.

  • Основные сведения о мотор-редукторах | Редукторы угловые
    Редукторы

    Right Angle отлично подходят для приложений, где размер и пространство имеют большое значение.С возможностью выхода поворота на угол 90 градусов.

  • Основные сведения о мотор-редукторах | Планетарные редукторы
    Планетарные редукторы

    идеально подходят для применений, требующих высокого крутящего момента в небольшом корпусе и выходном валу с соосным выравниванием. Обсудим конструкцию, характеристики, преимущества и недостатки планетарных коробок передач.

  • Основные сведения о мотор-редукторах | Редуктор с параллельным валом

    Редукторы с параллельными валами — идеальное решение для непрерывного режима работы; приложения, требующие низкого крутящего момента; приложения с более высокими температурами окружающей среды; или экономичные приложения.

  • Основные сведения о мотор-редукторах | Введение в мотор-редукторы

    В этом видео мы даем краткий обзор двигателей и объясняем причины использования мотор-редукторов — почему использование редуктора (коробки передач) с двигателем позволяет использовать двигатель меньшего размера и увеличить крутящий момент и / или скорость.

  • Технический совет: устранение неисправностей двигателя при перегреве

    Даже если двигатель соответствует заявлению на бумаге, вы все равно можете столкнуться с новыми переменными во время тестирования.Вот шесть общих проверок, которые помогут определить, почему ваш двигатель может перегреваться.

  • Технический совет: планетарные редукторы

    В этом видео мы обсуждаем планетарные редукторы. Изучите все тонкости работы этих редукторов, а также их преимущества и недостатки.

  • Как выбрать электродвигатель: инструменты для проектирования

    Завершая эту серию видеороликов, мы поделимся несколькими формулами расчета двигателя и другими инструментами, которые помогут вам в процессе выбора.

  • Как выбрать электродвигатель: примеры из практики

    Мы берем все, что обсуждали, и применяем это в трех сценариях с различными уровнями индивидуальных двигателей. Любой двигатель подойдет для большинства применений, но обычно лучше всего подходят только один или два типа.

  • Как выбрать электродвигатель: электродвигатели, изготовленные на заказ

    В этом видео мы надеемся развеять любые сомнения, которые могут у вас возникнуть по поводу настройки двигателя для вашего приложения.Вам не нужно брать стандартный двигатель и пытаться подогнать его под ваше приложение.

  • Как выбрать электродвигатель: бесщеточные двигатели постоянного тока

    В этом видео мы обсуждаем конструкцию, характеристики, преимущества и недостатки двигателей BLDC. Мы также рассмотрим кривые производительности двигателя BLDC для определения скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: двигатели переменного тока

    В этом видео мы обсуждаем конструкцию, характеристики, преимущества и недостатки асинхронных двигателей.Мы также рассмотрим кривые производительности двигателя переменного тока для определения скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: двигатели постоянного тока

    В этом видео мы обсуждаем конструкцию, характеристики, преимущества и недостатки двигателей постоянного тока. Мы также рассмотрим кривые производительности двигателя постоянного тока для определения скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: универсальные двигатели

    В этом видео мы обсуждаем конструкцию, характеристики, преимущества и недостатки Universal Motors.Мы также рассмотрим кривые производительности универсального двигателя для определения скорости, крутящего момента и эффективности.

  • Как выбрать электродвигатель: критерии применения (часть 2)

    Это вторая часть нашего обсуждения критериев подачи заявок. Это кажется очевидным, но мы хотели бы напомнить нашим клиентам, что всегда следует учитывать максимальный размер и вес двигателя, которые позволяет их применение, и знать, какой ожидаемый срок службы двигателя потребуется.

  • Как выбрать электродвигатель: критерии применения (часть 1)

    В этом (и в следующем) видео рассматриваются важные критерии приложения. Сначала мы сосредоточимся на ограничениях приложения, которые необходимо учитывать в процессе проектирования.

  • Как выбрать электродвигатель: введение и основы

    Выбор подходящего двигателя может быть сложным процессом.В этом первом видео мы познакомим вас с основными концепциями электродвигателей.

  • Как переключить напряжение между 12В и 24В-48В на бесщеточном контроллере Groschopp

    В этом видео показано короткое пошаговое руководство по переключению выходного напряжения на бесщеточном элементе управления Groschopp.

  • Как установить предел тока на бесщеточном управлении Groschopp

    В этом коротком видео показано, как установить текущий предел для бесщеточного управления Groschopp.

  • Как установить усиление на бесщеточном регуляторе Groschopp

    Посмотрите это видео, чтобы узнать об усилении и о том, как установить его на бесщеточном регуляторе Groschopp.

  • Groschopp Tech Tips: Инструмент для поиска двигателей

    В этом обучающем видео показано, как использовать инструмент поиска двигателя Groschopp, чтобы найти свой идеальный двигатель.

  • Технические советы: основы бесщеточного управления

    Посмотрев это видео, вы познакомитесь с основами всех бесщеточных средств управления Groschopp, их типами корпусов и опциями низкого и высокого напряжения.

  • Технические советы: масло против смазки

    В этом видео мы объясним 7 факторов, которые следует учитывать при выборе масла и консистентной смазки, чтобы определить, какой тип смазки лучше всего подходит для вашего мотор-редуктора.

  • Планетарные мотор-редукторы постоянного тока с прямым углом

    Groschopp предлагает линейку планетарных прямоугольных мотор-редукторов постоянного тока, которые обеспечивают преимущества стандартных прямоугольных мотор-редукторов без снижения эффективности.

  • Groschopp представляет индивидуальные настройки и 3D-модели

    Groschopp упрощает выбор подходящего двигателя или мотор-редуктора за счет включения 3D-моделей на каждую страницу продукта, а также на страницы настройки.

  • Технические советы: Основы работы с бесщеточным двигателем постоянного тока

    В этом видеоролике с техническими советами объясняются основы бесщеточных двигателей постоянного тока: как они сконструированы и как работают.

  • Технические советы: задний ход и торможение

    В этих технических советах обсуждаются преимущества заднего привода и тормозов, а также типы приложений, для которых они лучше всего подходят.

  • Технические советы: рабочий цикл

    В этом видео мы даем вам краткое руководство по важности рабочего цикла для оптимальной работы двигателей с малой мощностью и мотор-редукторов.

  • Технические советы: тяжелые условия эксплуатации двигателя

    Как двигатели с дробной мощностью рассчитаны на работу в жестких моторных средах.Понимание рейтингов IP и жестких требований к работе важно для точной передачи требований приложения.

  • Технические советы: Основы работы с двигателями переменного тока

    Понимание характеристик двигателей переменного тока позволяет инженерам выбрать двигатель, наиболее подходящий для их применения.

  • Преимущество Groschopp

    Что делает Groschopp особенной компанией для наших клиентов? Все сводится к людям, составляющим компанию.Узнайте, как они лежат в основе преимущества Groschopp.

  • История Groschopp, Inc.

    Богатая история Groschopp, Inc. начинается в 1930 году с компании Wincharger. Как мы добрались от Винчарджера до Грошоппа? Смотрите и узнайте.

  • Технические советы: как проверить, не повреждена ли якорь

    Вот три быстрые проверки, которые вы можете выполнить с помощью вольт / омметра, чтобы проверить обмотку якоря двигателя постоянного тока, чтобы определить, правильно ли работает якорь двигателя.

  • Новый бесщеточный двигатель постоянного тока

    Представляем надежную комбинацию бесщеточного двигателя постоянного тока и коробки передач. Новый бесщеточный двигатель не требует обслуживания, отличается высокой надежностью и имеет срок службы более 20 000 часов.

  • Выберите мотор-редуктор — 4 ступени

    Это видео-руководство охватывает основы выбора мотор-редуктора в четыре простых шага: включая скорость, крутящий момент и требования к применению.

  • Производство чудес

    Ознакомьтесь с производственными возможностями Groschopp, обеспечением качества и инженерными возможностями, а также взгляните изнутри на производственные мощности и инженерную лабораторию Groschopp, расположенные в Сиу-Центре, штат Айова.

  • Что такое асинхронный двигатель с расщепленной фазой? — его Приложения

    Электродвигатель с разделенной фазой также известен как электродвигатель для запуска с сопротивлением. Он имеет ротор с одной клеткой, а его статор имеет две обмотки, известные как основная обмотка и пусковая обмотка.Обе обмотки смещены в пространстве на 90 градусов. Основная обмотка имеет очень низкое сопротивление и высокое индуктивное сопротивление, тогда как пусковая обмотка имеет высокое сопротивление и низкое индуктивное реактивное сопротивление. Схема подключения двигателя представлена ​​ниже:

    Резистор включен последовательно со вспомогательной обмоткой. В результате ток в двух обмотках неодинаков, вращающееся поле неоднородно. Следовательно, пусковой крутящий момент невелик, порядка 1,5–2-кратного заявленного рабочего крутящего момента.При запуске двигателя обе обмотки включаются параллельно.

    Как только двигатель достигает скорости примерно 70 от до 80% синхронной скорости, пусковая обмотка автоматически отключается от сети питания. Если мощность двигателей составляет около 100 Вт или более, центробежный выключатель используется для отключения пусковой обмотки, а для двигателей меньшего номинала используется реле для отключения обмотки.

    Реле подключено последовательно с основной обмоткой.При запуске в цепи протекает сильный ток, и контакт реле замыкается. Таким образом, пусковая обмотка находится в цепи, и по мере того, как двигатель достигает заданной скорости, ток в реле начинает уменьшаться. Таким образом, реле размыкает и отключает вспомогательную обмотку от источника питания, в результате чего двигатель работает только от основной обмотки.

    Векторная диаграмма асинхронного двигателя с расщепленной фазой показана ниже:

    Ток в основной обмотке (I M ) отстает от напряжения питания V почти на угол 90 градусов.Ток во вспомогательной обмотке I A примерно совпадает по фазе с линейным напряжением. Таким образом, существует разница во времени между токами двух обмоток. Разность фаз во времени ϕ составляет не 90 градусов, а порядка 30 градусов. Этой разности фаз достаточно для создания вращающегося магнитного поля.

    Характеристика крутящего момента и скорости двигателя с расщепленной фазой показана ниже:

    Здесь n 0 — точка, в которой срабатывает центробежный переключатель.Пусковой крутящий момент двигателя с сопротивлением пуска примерно в 1,5 раза превышает крутящий момент при полной нагрузке. Максимальный крутящий момент примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Пусковой ток двигателя примерно в 7-8 раз превышает значение полной нагрузки.

    Направление электродвигателя с резистивным пуском можно изменить, изменив направление подключения основной или пусковой обмотки. Реверс двигателя возможен только в состоянии покоя.

    Применение асинхронного двигателя с расщепленной фазой

    Этот тип двигателя дешев и подходит для легко запускаемых нагрузок, когда частота запуска ограничена. Этот тип двигателя не используется для приводов, которым требуется более 1 кВт из-за низкого пускового момента. Различные приложения следующие:

    • Используется в стиральных машинах и вентиляторах кондиционеров.
    • Двигатели используются в миксерах-шлифовальных машинах, полировальных машинах.
    • Воздуходувки, Центробежные насосы.
    • Станок сверлильно-токарный.

    Это все об асинхронных двигателях с расщепленной фазой.

    Введение в схемы коррекции коэффициента мощности на основе конденсаторов — Блог о пассивных компонентах

    Источник: блог Capacitor Faks

    Часть мощности переменного тока, потребляемой индуктивными нагрузками, используется для поддержания инверсии магнитного поля из-за фазового сдвига между током и напряжением. Эту энергию можно рассматривать как потерянную энергию, поскольку она не используется для выполнения полезной работы.Цепи коррекции коэффициента мощности используются для минимизации реактивной мощности и повышения эффективности, с которой индуктивные нагрузки потребляют мощность переменного тока. Конденсаторы являются важными компонентами в схемах компенсации коэффициента мощности, и в этой статье будут рассмотрены некоторые конструктивные особенности при использовании этих компонентов для коррекции коэффициента мощности.

    Реактивная мощность при индуктивных нагрузках

    Индуктивные нагрузки, такие как дроссели, двигатели, оборудование для индукционного нагрева, генераторы, трансформаторы и оборудование для дуговой сварки, создают электрическую задержку, которую обычно называют индуктивностью.Эта индуктивность вызывает разность фаз между током и напряжением. На рисунке 1 показаны формы сигналов тока и напряжения для нагрузки с нулевым запаздыванием (чисто резистивная нагрузка).

    Рисунок 1 Напряжение и ток для идеальной нагрузки

    В результате фазового сдвига из-за индуктивности бывают моменты, когда ток и напряжение имеют разные знаки. В это время генерируется отрицательная энергия, которая возвращается в сеть электроснабжения. Когда два возвращают одинаковый знак, для генерации магнитных полей требуется аналогичное количество энергии.Энергия, которая теряется из-за перемагничивания в индуктивных нагрузках, обычно называется реактивной мощностью.

    Индуктивные нагрузки переменного тока подразделяются на линейные и нелинейные устройства. Для линейных нагрузок форма сигнала тока и форма сигнала напряжения имеют совпадающие синусоидальные профили. На рисунке 2 показаны кривые тока и напряжения для типичной линейной нагрузки. С другой стороны, поскольку нелинейные нагрузки потребляют ток на разных частотах, формы сигналов тока и напряжения различаются.Для большинства нелинейных нагрузок форма сигнала тока обычно несинусоидальная. На рис. 3 показаны кривые тока и напряжения для нелинейной нагрузки.

    Рисунок 2 Напряжение и ток для линейной нагрузки

    Рисунок 3 Напряжение и ток для нелинейной нагрузки

    Некоторые примеры линейных электрических нагрузок включают нагревательное оборудование, двигатели и лампы накаливания. К нелинейным устройствам относятся частотно-регулируемые приводы, приводы постоянного тока, программируемые контроллеры, осветительные устройства дугового типа, индукционные печи, источники бесперебойного питания и персональные компьютеры.Известно, что нелинейные электрические нагрузки являются основной причиной гармонических искажений в системах распределения электроэнергии.

    Коэффициент мощности

    Эффективность, с которой электрические устройства или установки потребляют мощность переменного тока, различается. Некоторые нагрузки используют энергию эффективно, в то время как другие тратят значительную часть потребляемой мощности. Коэффициент мощности используется для описания эффективности, с которой нагрузки потребляют мощность переменного тока. Эта безразмерная величина находится в диапазоне от 0 до 1.

    Как показано на рис. 4 и рис. 5 , общая мощность переменного тока, также известная как полная мощность, потребляемая электрическим устройством или оборудованием, зависит от двух компонентов: полезной мощности (активной мощности) и реактивной мощности. Под полезной мощностью понимается мощность, необходимая устройству для выполнения задачи. С другой стороны, реактивная мощность не дает полезной работы. Полезная мощность обычно измеряется в кВт, а реактивная мощность — в кВАр.

    Рисунок 4 и 5, активная и реактивная мощности диаграммы полной полной мощности

    Как показано в уравнении 1 , коэффициент мощности равен отношению активной мощности (полезной мощности) к общей мощности (полной мощности), потребляемой электрическим устройством или оборудованием.Математически можно показать, что коэффициент мощности равен косинусу угла θ ( Уравнение 2 ). Чем ближе это отношение к 1,0, тем выше эффективность устройства или оборудования.

    Для идеальной электрической нагрузки коэффициент мощности равен 1,0 (единичный коэффициент мощности). Это означает, что вся мощность, потребляемая нагрузкой, используется для полезной работы. Однако реальной электрической нагрузке добиться этого сложно. Импеданс для нагрузки, представленной , рис. 5, определяется уравнением 3, где XL — индуктивное реактивное сопротивление, которое определяется уравнением , уравнением 4 .

    Почему электрической нагрузке трудно достичь единичного коэффициента мощности? Большинству электрических нагрузок присущи реактивные свойства, которые затрудняют достижение идеального коэффициента мощности. Чтобы преодолеть это ограничение, в сеть добавляются схемы коррекции коэффициента мощности для компенсации реактивных характеристик нагрузки.

    Коррекция коэффициента мощности (компенсация)

    Электрические нагрузки с низким коэффициентом мощности потребляют больше энергии, чем необходимо для выполнения задачи.Это может привести к значительным потерям мощности в сети и высоким потерям в трансформаторе. Такое увеличение потребления энергии увеличивает стоимость работающего оборудования или установок. Низкие коэффициенты мощности также вызывают повышенное падение напряжения в распределительной сети. Поставщики электроэнергии обычно наказывают отрасли, коэффициент мощности которых ниже установленного значения.

    Поставщики электроэнергии побуждают промышленных потребителей повышать коэффициент мощности по разным причинам. Начнем с того, что повышение коэффициента мощности может помочь значительно сократить расходы на электроэнергию.Во-вторых, высокий коэффициент мощности помогает минимизировать потери КПД в трансформаторах потребителя. В-третьих, добавление системы коррекции коэффициента мощности помогает увеличить эффективную мощность электрической сети потребителя. Наконец, высокий коэффициент мощности способствует увеличению срока службы электрооборудования.

    Сеть компенсации коэффициента мощности снижает мощность, потребляемую нагрузкой, тем самым улучшая общий коэффициент мощности. Компенсационная сеть позволяет электрическим нагрузкам достигать хорошего коэффициента мощности, обычно от 0.95 и 0,98. Коэффициент мощности 0,85 и ниже обычно рассматривается коммунальными предприятиями как плохой коэффициент мощности.

    Цепи конденсаторной коррекции коэффициента мощности

    Существуют различные методы повышения коэффициента мощности нагрузки или установки. Один из часто используемых методов включает добавление в сеть конденсаторов для коррекции коэффициента мощности. На рисунке 6 показана простая схема, состоящая из источника переменного тока и индуктивной нагрузки.

    Рисунок 6 и 7 индуктивная нагрузка с конденсатором коррекции коэффициента мощности и без него

    Как конденсатор помогает улучшить коэффициент мощности? В цепи переменного тока реверсирование магнитного поля из-за разности фаз между током и напряжением происходит 50 или 60 раз в секунду.Конденсатор помогает улучшить коэффициент мощности, освобождая линию питания от реактивной мощности. Конденсатор достигает этого за счет накопления энергии обратного магнитного поля.

    На рисунке 7 показана индуктивная нагрузка с конденсатором коррекции коэффициента мощности. На рисунке 8 выше показано улучшение коэффициента мощности при добавлении конденсатора в схему. Импеданс для цепи с конденсатором компенсации коэффициента мощности определяется уравнением , уравнение 5, , где XC — емкостное реактивное сопротивление, которое определяется уравнением , уравнением 6, .

    В большинстве отраслей для компенсации реактивной мощности устанавливается система конденсаторов, управляемая контроллером коррекции коэффициента мощности. При проектировании системы коррекции коэффициента мощности важно избегать увеличения емкости сети. Добавление избыточной емкости к цепи может привести к чрезмерной коррекции, как показано на Рис. 9.

    Полупроводниковые приборы также широко используются для коррекции коэффициента мощности. Использование полупроводниковых устройств в цепи для улучшения коэффициента мощности обычно называется активной компенсацией.Синхронные машины с перевозбуждением также обычно используются для улучшения коэффициента мощности сети.

    Заключение

    Индуктивные нагрузки, такие как трансформаторы, генераторы, двигатели, дроссели и оборудование для дуговой сварки, создают электрическую задержку, в результате чего ток и напряжение имеют разные знаки. Энергия, необходимая для поддержания разворота магнитного поля в индуктивных нагрузках, называется реактивной мощностью. Снижение реактивной мощности за счет повышения коэффициента мощности нагрузки переменного тока помогает минимизировать общие затраты на работу индуктивных нагрузок.Конденсаторы обычно используются в промышленности для повышения коэффициента мощности и минимизации потерь энергии.

    предоставленное изображение: Hydra

    оригинальная статья, которая впервые появилась на Capacitor Faks здесь, была отредактирована по объему и содержанию EPCI

    Электродвигатели и генераторы

    Электродвигатели, генераторы, генераторы и громкоговорители объясняются с помощью анимации и схем.
    Это страница ресурсов Physclips, многоуровневого мультимедийного введения в физику (загрузите анимацию с этой страницы).

    Двигатели постоянного тока

    Простой двигатель постоянного тока имеет катушку с проволокой, которая может вращаться в магнитном поле. В ток в катушке подается через две щетки, которые обеспечивают подвижный контакт с разрезное кольцо. Катушка находится в постоянном магнитном поле. Силы приложили на токоведущих проводах создают крутящий момент на катушке. Сила F на проводе длиной L, по которому течет ток i в магнитном поле. B равно iLB, умноженному на синус угла между B и i, который будет равен 90 °, если поля были равномерно вертикальными.Направление F идет справа ручная линейка *, как показано здесь. Две силы, показанные здесь, равны и противоположны, но они смещены вертикально, поэтому создают крутящий момент. (Силы на две другие стороны катушки действуют по одной и той же линии и поэтому не создают крутящего момента.)
      * Для запоминания направления силы используется ряд различных nmemonics. Некоторые используют правую руку, некоторые — левую. Для студентов, которые знают умножение векторов, легко использовать силу Лоренца напрямую: F = q v X B , откуда F = i dL В .Это источник диаграммы, показанной здесь.
    Катушку также можно рассматривать как магнитный диполь или небольшой электромагнит, как указано стрелкой SN: согните пальцы правой руки в направление течения, а ваш большой палец — северный полюс. В эскизе Справа изображен электромагнит, образованный катушкой ротора. как постоянный магнит, и тот же крутящий момент (север притягивает юг) действовать, чтобы выровнять центральный магнит.
      Мы используем синий для Северного полюса и красный для Южного. Это просто соглашение, чтобы сделать ориентацию ясной: нет никакой разницы в материале на обоих концах магнита, и они обычно не окрашиваются в другой цвет.

    Обратите внимание на влияние щеток на разрезное кольцо . Когда плоскость вращающейся катушки достигает горизонтали, щетки разорвут контакт (теряется не так много, потому что это точка нулевого момента все равно — силы действовать внутрь).Угловой момент катушки переносит ее через этот разрыв. точка, и ток затем течет в противоположном направлении, что меняет направление на противоположное. магнитный диполь. Итак, после прохождения точки останова ротор продолжает движение. повернуть против часовой стрелки и начать выравнивание в обратном направлении. в В следующем тексте я буду в основном использовать картинку «крутящий момент на магните», но имейте в виду, что использование щеток или переменного тока может привести к появлению полюсов электромагнит, о котором идет речь, меняет положение, когда ток меняет направление.

    Крутящий момент, создаваемый в течение цикла, зависит от вертикального разделения две силы. Следовательно, это зависит от синуса угла между ось катушки и поле. Однако из-за разрезного кольца оно всегда в том же смысле. Анимация ниже показывает его изменение во времени, а вы можно остановить на любом этапе и проверить направление, приложив правую руку правило.

    Двигатели и генераторы

    Теперь двигатель постоянного тока также является генератором постоянного тока.Взгляните на следующую анимацию. В катушка, разрезное кольцо, щетки и магнит — это то же оборудование, что и двигатель выше, но катушка вращается, что генерирует ЭДС.

    Если вы используете механическую энергию для вращения катушки (N витков, область A) с равномерной угловая скорость ω в магнитном поле B , это создаст в катушке синусоидальную ЭДС. ЭДС (ЭДС или электродвижущая сила — это почти то же самое, что и напряжение).Пусть θ будет угол между B и нормалью к катушке, поэтому магнитный поток φ равен NAB.cos θ. Закон Фарадея дает:

    Приведенная выше анимация будет называться генератором постоянного тока. Как и в двигателе постоянного тока, концы катушки соединяются с разрезным кольцом, две половины которого контактируют кистями. Обратите внимание, что щетки и разрезное кольцо «исправляют» создаваемую ЭДС: контакты организованы так, что ток всегда будет течь в одном и том же направление, потому что, когда катушка проходит мимо мертвой точки, где щетки встречаются зазор в кольце, соединения между концами катушки и внешние клеммы перевернуты.ЭДС здесь (без учета мертвой зоны, которая обычно бывает при нулевом напряжении) равна | NBAω sin ωt |, как нарисовано.

    Генератор

    Если нам нужен AC, нам не нужно исправление, поэтому нам не нужны разрезные кольца. (Этот это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если хочешь Постоянного тока, часто лучше использовать генератор и выпрямлять диоды.)

    В следующей анимации две кисти соприкасаются с двумя непрерывными кольцами, поэтому две внешние клеммы всегда подключены к одним и тем же концам катушки.Результатом является не исправленная синусоидальная ЭДС, заданная NBAω sin ωt, который показан на следующей анимации.


    Это генератор переменного тока. Преимущества переменного и постоянного тока генераторы сравниваются в разделе ниже. Выше мы видели, что двигатель постоянного тока также является генератором постоянного тока. Точно так же генератор переменного тока также является двигателем переменного тока. Тем не мение, это довольно негибкий. (Смотри как настоящие электродвигатели работают для более подробной информации.)

    Задняя ЭДС

    Теперь, как показывают первые две анимации, двигатели и генераторы постоянного тока могут быть то же самое. Например, двигатели поездов становятся генераторами, когда поезд замедляется: они преобразуют кинетическую энергию в электрическую и мощность обратно в сеть. В последнее время несколько производителей начали производить легковые автомобили. рационально. В таких автомобилях электродвигатели, используемые для привода автомобиля, также используется для зарядки аккумуляторов при остановке автомобиля — это называется регенеративным торможение.

    Итак, вот интересное следствие. Каждый двигатель — это генератор . Это правда, в некотором смысле, даже когда он функционирует как двигатель. ЭДС, что мотор генерирует называется обратной ЭДС . Обратная ЭДС увеличивается с увеличением скорость из-за закона Фарадея. Итак, если двигатель не нагружен, он очень сильно крутится. быстро и разгоняется до появления обратной ЭДС плюс падение напряжения из-за потерь, равно напряжению питания. Обратную ЭДС можно рассматривать как «регулятор»: он останавливает двигатель бесконечно быстро (что избавляет физиков от некоторого затруднения).Когда двигатель нагружен, то фаза напряжения становится ближе к фазе тока (начинает выглядят резистивными), и это кажущееся сопротивление дает напряжение. Итак, спина Требуемая ЭДС меньше, и двигатель вращается медленнее. (Чтобы добавить обратно ЭДС, которая является индуктивной, к резистивной составляющей необходимо добавить напряжения которые не совпадают по фазе. См. AC схем.)

    Катушки обычно имеют сердечники

    На практике (и в отличие от схем, которые мы нарисовали) генераторы и постоянный ток двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большие магнитные поля создаются умеренными токами.Это показано слева в рисунок ниже, на котором статоры (статические магниты) постоянные магниты.

    Моторы универсальные

    Магниты статора тоже могут быть выполнены в виде электромагнитов, как показано выше. справа. Два статора намотаны в одном направлении, чтобы поле в том же направлении, а ротор имеет поле, которое дважды меняет направление за цикл, потому что он подключен к щеткам, которые здесь не указаны.Один Преимущество наличия статоров в двигателе состоит в том, что можно сделать двигатель который работает от переменного или постоянного тока, так называемый универсальный двигатель . Когда вы едете у такого мотора с переменным током ток в катушке меняется дважды в каждом цикле (помимо изменений со щеток), а вот полярность статоров изменяется одновременно, поэтому эти изменения аннулируются. (К сожалению, кисти еще остались, хотя я спрятал их в этом наброске.) За преимущества и недостатки постоянного магнита по сравнению со статорами с обмоткой см. ниже. Также смотрите больше на универсальных моторах.

    Построить простой мотор

    Чтобы построить этот простой, но странный мотор, вам понадобятся два довольно сильных магнита. (подойдут редкоземельные магниты диаметром около 10 мм, магниты), жёсткий медный провод (не менее 50 см), два провода с крокодилом зажимы на обоих концах, фонарь на шесть вольт, две банки для безалкогольных напитков, два блока дерева, липкой ленты и острого гвоздя.

    Сделайте катушку из жесткого медного провода, чтобы не нуждаться во внешних служба поддержки. Намотайте от 5 до 20 витков по кругу диаметром около 20 мм и два конца радиально направлены наружу в противоположных направлениях. Эти цели будут быть одновременно осью и контактами. Если провод имеет лаковую или пластиковую изоляцию, снимите его на концах.

    Опоры оси могут быть выполнены из алюминия, поэтому что они создают электрический контакт.Например, проткнуть безалкогольный напиток банки с гвоздем, как показано на рисунке. Расположите два магнита с севера на юг, так что магнитное поле проходит через катушку под прямым углом к оси. Приклейте магниты изолентой или приклейте к деревянным блокам (не показаны на диаграмме), чтобы они оставались на нужной высоте, затем переместите блоки поставить их на место, достаточно близко к катушке. Сначала поверните катушку так что магнитный поток через катушку равен нулю, как показано на схеме.

    Теперь возьмем аккумулятор и два провода с зажимами типа «крокодил». Соединять два вывода батареи к двум металлическим опорам для катушка и она должна повернуться.

    Обратите внимание, что у этого двигателя есть как минимум одна «мертвая зона»: он часто останавливается. в положении, когда на катушке отсутствует крутящий момент. Не уходи он горит слишком долго: он быстро разряжает аккумулятор.

    Оптимальное количество витков в катушке зависит от внутреннего сопротивление аккумулятора, качество опорных контактов и тип провода, поэтому вам следует поэкспериментировать с разными значениями.

    Как уже говорилось выше, это тоже генератор, но очень неэффективный. Чтобы увеличить ЭДС, используйте больше витков (может потребоваться использовать более тонкую проволоку и рамку для наматывания.) Вы можете использовать например, электродрель, чтобы быстро ее повернуть, как показано на рисунке выше. Воспользуйтесь осциллографом, чтобы посмотреть на генерируемую ЭДС. Это переменный или постоянный ток?

    У этого двигателя нет разъемного кольца, почему он работает на DC? Проще говоря, если бы он был точно симметричным, это не сработало бы.Однако, если ток в одном полупериоде немного меньше, чем в другом, то средний крутящий момент не будет равен нулю, и, поскольку он вращается достаточно быстро, угловой момент, приобретенный во время полупериода с большим током, переносит его через полупериод, когда крутящий момент находится в противоположном направлении. По крайней мере два эффекта могут вызвать асимметрию. Даже если провода полностью зачищены и чистые, контактное сопротивление вряд ли будет одинаковым даже в состоянии покоя. Кроме того, само вращение приводит к прерывистому контакту, поэтому, если в течение одной фазы есть более длительные отскоки, этой асимметрии будет достаточно.В принципе, вы можете частично зачистить провода таким образом, чтобы ток был равен нулю за один полупериод.

    Альтернативная версия простого двигателя Джеймса Тейлор.
    Еще более простой двигатель (который также намного проще для понимания!) — это униполярный двигатель.

    Двигатели переменного тока

    С помощью переменного тока мы можем изменить направление поля без использования щеток.Это хорошие новости, потому что мы можем избежать дуги, образования озона и омическая потеря энергии, которую могут повлечь за собой щетки. Далее, потому что кисти контактируют между движущимися поверхностями, они изнашиваются.

    Первое, что нужно сделать в двигателе переменного тока, — это создать вращающееся поле. ‘Обычный’ Переменный ток от 2-х или 3-х контактной розетки — это однофазный переменный ток — он имеет одну синусоидальную разность потенциалов создается только между двумя проводами — активным и нейтральным. (Обратите внимание, что заземляющий провод не пропускает ток, за исключением электрические неисправности.) При однофазном переменном токе можно создать вращающееся поле. за счет генерации двух противофазных токов с помощью, например, конденсатора. В показанном примере два тока сдвинуты по фазе на 90 °, поэтому вертикальный составляющая магнитного поля синусоидальная, а горизонтальная косусоидальная, как показано. Это дает поле, вращающееся против часовой стрелки.

    (* Меня попросили объяснить это: из простого AC Теоретически, ни катушки, ни конденсаторы не имеют напряжения в фазе с электрический ток.В конденсаторе напряжение максимально, когда заряд закончил течь на конденсатор и вот-вот начнет стекать. Таким образом, напряжение отстает от тока. В чисто индуктивной катушке падение напряжения является наибольшим, когда ток изменяется наиболее быстро, что также когда ток равен нулю. Напряжение (падение) опережает ток. В моторных катушках фазовый угол меньше 90, потому что электрические энергия преобразуется в механическую энергию.)

    На этой анимации графики показывают изменение токов во времени. в вертикальной и горизонтальной катушках. График компонент поля B x и B y показывает, что векторная сумма этих двух полей является вращающейся поле. Основное изображение показывает вращающееся поле. Он также показывает полярность магнитов: как указано выше, синий представляет северный полюс, а красный — южный полюс.

    Если мы поместим постоянный магнит в эту область вращающегося поля, или если мы положим в катушке, ток которой всегда течет в одном и том же направлении, тогда это становится синхронный двигатель .В широком диапазоне условий двигатель будет повернуть со скоростью магнитного поля. Если у нас много статоров, вместо этого всего двух пар, показанных здесь, то мы могли бы рассматривать его как шаговый двигатель: каждый импульс перемещает ротор на следующую пару задействованных полюсов. Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели десятки полюсов и довольно сложные геометрические формы!

    Двигатели асинхронные

    Теперь, поскольку у нас есть изменяющееся во времени магнитное поле, мы можем использовать наведенную ЭДС в катушке — или даже просто вихревые токи в проводнике — чтобы ротор магнит.Правильно, если у вас есть вращающееся магнитное поле, вы можете просто вставил проводник и получается. Это дает некоторые из преимуществ : асинхронные двигатели : отсутствие щеток или коммутатора означает более простое производство, нет износ, отсутствие искр, отсутствие образования озона и отсутствие связанных с этим потерь энергии с ними. Слева внизу схематическое изображение асинхронного двигателя. (Для фотографий настоящие асинхронные двигатели и более подробную информацию см. в разделе «Индукция». двигатели.) Ваш браузер не поддерживает видео тег.

    Анимация справа представляет двигатель с короткозамкнутым ротором . Белка клетка имеет (во всяком случае, в этой упрощенной геометрии!) два круглых проводника, соединенных несколькими прямыми стержнями. Любые два стержня и соединяющие их дуги образуют катушка — на что указывают синие черточки на анимации. (Только два из для простоты показано много возможных схем.)

    На этой схеме показано, почему их можно назвать двигателями с короткозамкнутым ротором.Реальность иная: фотографии и подробности см. В разделе «Индукция». моторы. Проблема с показанными асинхронными двигателями и двигателями с короткозамкнутым ротором в этой анимации показано, что конденсаторы высокой стоимости и высокого напряжения стоят дорого. Одно из решений — двигатель с экранированным полюсом, но его вращающийся поле имеет некоторые направления, в которых крутящий момент небольшой, и имеет тенденцию бежать назад при некоторых условиях. Самый простой способ избежать этого — использовать многофазные двигатели.

    Трехфазные асинхронные двигатели переменного тока

    Однофазный используется в домашних условиях для приложений с низким энергопотреблением, но у него есть недостатки. Во-первых, он выключается 100 раз в секунду (вы не обратите внимание, что флуоресцентные лампы мигают с такой скоростью, потому что ваши глаза слишком медленные: даже 25 изображений в секунду на экране телевизора достаточно, чтобы дать иллюзию непрерывного движения.) Во-вторых, это делает его неудобным для создания вращающихся магнитных полей.По этой причине некоторая высокая мощность (несколько кВт) для бытовых устройств может потребоваться трехфазная установка. Промышленное применение широко использовать трехфазный двигатель, трехфазный асинхронный двигатель является стандартным рабочая лошадка для приложений большой мощности. Три провода (не считая земли) несут три возможных разности потенциалов, которые не совпадают по фазе с каждым другое на 120 °, как показано на анимации ниже. Таким образом, три статора плавно вращающееся поле. (Видеть это ссылка для получения дополнительной информации о трехфазном питании.)

    Если поместить постоянный магнит в такой набор статоров, он станет синхронным. трехфазный мотор . На анимации изображена беличья клетка, в которой простота показана только одна из многих петель наведенного тока. Без механической нагрузки, он вращается практически синхронно с вращающимся полем. Ротор не обязательно должен быть беличьей клеткой: на самом деле любой проводник, который будет переносимые вихревые токи будут вращаться, стремясь следовать за вращающимся полем.Такая компоновка может дать асинхронный двигатель , обладающий высокой эффективностью, высокая мощность и высокие крутящие моменты в диапазоне скоростей вращения.

    Двигатели линейные

    Набор катушек можно использовать для создания магнитного поля, которое переводит, скорее, чем вращается. На паре катушек на анимации ниже подается импульс от слева направо, поэтому область магнитного поля перемещается слева направо. А постоянный или электромагнит будет стремиться следовать за полем.Так что простой плита из проводящего материала, потому что наведенные в ней вихревые токи (не показаны) содержат электромагнит. В качестве альтернативы мы могли бы сказать, что из Фарадея закон, ЭДС в металлической плите всегда индуцируется, чтобы противодействовать любому изменению в магнитном потоке, а силы на токах, вызванные этой ЭДС, сохраняют поток в плите почти постоянный. (Вихревые токи на этой анимации не показаны.)

    В качестве альтернативы мы могли бы иметь комплекты катушек с питанием в подвижной части, и индуцируют вихревые токи в рельсе.В любом случае получается линейный двигатель, который был бы полезен, скажем, для поездов на магнитной подвеске. (В анимации геометрия как обычно на этом сайте, в высшей степени идеализирован, и только один вихретоковый ток показано.)

    Некоторые примечания к двигателям переменного и постоянного тока для приложений большой мощности

      Этот сайт изначально был написан в помощь старшеклассникам. и учителя в Новом Южном Уэльсе, Австралия, где в новой программе по истории и приложениям физики за счет самой физики, был введен.В новой программе в одной из точек есть следующее: озадачивающее требование: «объясните, что двигатели переменного тока обычно вырабатывают малую мощность и связывают это с их использованием в электроинструментах «.
    Двигатели переменного тока используются для приложений с большой мощностью, когда это возможно. Три фазные асинхронные двигатели переменного тока широко используются для приложений большой мощности, в том числе тяжелая индустрия. Однако такие двигатели не подходят, если многофазность недоступна, или трудно доставить. Электропоезда тому пример: строить проще линии электропередач и пантографы, если нужен только один активный проводник, так что это обычно имеет постоянный ток, и многие двигатели поездов работают на постоянном токе.Однако из-за недостатков постоянного тока для высокой мощности, более современные поезда преобразуют постоянный ток в переменный, а затем бегут трехфазные двигатели.

    Однофазные асинхронные двигатели имеют проблемы при объединении приложений высокая мощность и гибкие условия нагрузки. Проблема заключается в создании вращающееся поле. Конденсатор может использоваться для подачи тока в один набор катушки впереди, но дорогие высоковольтные конденсаторы стоят дорого. Затененный Вместо них используются полюсы, но крутящий момент на некоторых углах невелик.Если нельзя создают плавно вращающееся поле, и если груз «проскальзывает» далеко за поле, то крутящий момент падает или даже меняется на противоположное.

    В электроинструментах и ​​некоторых приборах используются щеточные электродвигатели переменного тока. Кисти вводят потери (плюс образование дуги и озона). Полярность статора изменена. 100 раз в секунду. Даже если материал сердечника выбран так, чтобы минимизировать гистерезис потерь («потери в железе»), это способствует неэффективности и возможности перегрева.Эти моторы можно назвать универсальными. двигатели, потому что они могут работать на постоянном токе. Это дешевое, но грубое решение. и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты, неэффективность обычно экономически не важна.

    Если доступен только однофазный переменный ток, можно исправить переменный ток и использовать Двигатель постоянного тока. Раньше сильноточные выпрямители были дорогими, но сейчас они становятся все более дорогими. менее дорогой и более широко используемый. Если вы уверены, что понимаете принципы, пора перейти к разделу «Как настоящие электродвигатели работают Джона Стори.Или продолжайте здесь, чтобы найти о громкоговорителях и трансформаторах.


    Громкоговорители

    Громкоговоритель — это линейный двигатель с небольшим диапазоном. Имеет одинарное перемещение катушка, которая постоянно, но гибко подключена к источнику напряжения, поэтому кистей нет.
    The катушка движется в поле постоянного магнита, который обычно имеет форму для создания максимального усилия на катушке.Подвижная катушка не имеет сердечника, поэтому его масса невелика, и он может быстро ускоряться, что позволяет частота движения. В громкоговорителе катушка прикреплена к легкому весу. бумажный конус, который поддерживается на внутреннем и внешнем краях круглыми, плиссированные бумажные «пружины». На фотографии ниже динамик выходит за рамки нормальный верхний предел его перемещения, поэтому катушка видна над полюса магнита.

    Для низкочастотного звука с большой длиной волны необходимы большие диффузоры.Диаметр динамика, показанного ниже, составляет 380 мм. Колонки, предназначенные для низкие частоты называются вуферами. Они имеют большую массу и поэтому трудно быстро разогнаться для высокочастотных звуков. На фотографии ниже часть вырезана, чтобы показать внутренние компоненты.

    Твитеры — громкоговорители, предназначенные для высоких частот — могут быть просто динамики аналогичной конструкции, но с небольшими диффузорами и катушками малой массы.В качестве альтернативы они могут использовать пьезоэлектрические кристаллы для перемещения конуса.

    Громкоговорители представляют собой линейные двигатели со скромным диапазоном — возможно, десятки мм. Подобные линейные двигатели, хотя, конечно, без бумажного конуса, часто используется для радиального перемещения считывающей и записывающей головок на дисководе.
    Громкоговорители как микрофоны
    На картинке выше вы можете видеть, что картонная диафрагма (конус громкоговорителя) соединена с катушкой с проводом в магнитном поле.Если звуковая волна перемещает диафрагму, катушка будет двигаться в поле, создавая напряжение. Это принцип динамического микрофона — хотя в большинстве микрофонов диафрагма гораздо меньше конуса громкоговорителя. Итак, громкоговоритель должен работать как микрофон. Хороший проект: все, что вам нужно, это громкоговоритель и два провода, чтобы подключить его ко входу осциллографа или микрофонному входу вашего компьютера. Два вопроса: как вы думаете, что масса диффузора и катушки повлияет на частотную характеристику? Как насчет длины волны звуков, которые вы используете?

    Предупреждение: настоящие двигатели сложнее

    Эскизы двигателей были схемами, чтобы показать принципы.Пожалуйста, не сердитесь, если, когда вы разбираете мотор, он выглядит больше. сложный! (Смотри как настоящие электродвигатели работают.) Например, типичный двигатель постоянного тока вероятно, будет иметь много отдельно намотанных катушек для обеспечения более плавного крутящего момента: всегда есть одна катушка, для которой синусоидальный член близок к единице. Это показано ниже для двигателя с обмотанными статорами (вверху) и постоянные статоры (внизу).

    Трансформаторы

    На фотографии изображен трансформатор, предназначенный для демонстрационных целей: первичная и вторичная обмотки четко разделены и могут быть удалены и заменен поднятием верхней части сердечника.Для наших целей отметим что у катушки слева меньше катушек, чем у правой (вставки показать крупные планы).

    На эскизе и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор, достаточно разместить источник справа, а нагрузку — слева. ( Важно Примечание по безопасности : для настоящего трансформатора вы можете только «подключить его задом наперед» только после проверки соответствия номинального напряжения.) Итак, как же трансформатор работает?

    Сердечник (заштрихован) имеет высокую магнитную проницаемость, т.е. материал, образующий магнитное поле намного легче, чем свободное пространство, из-за ориентации атомных диполей. (На фотографии сердечник — ламинированное мягкое железо.) В результате поле сконцентрировано внутри ядра, и почти силовые линии не выходят из ядра. Если следует, что магнитные потоки φ через первичный и вторичный примерно равны, как показано.Из Фарадея По закону ЭДС на каждом витке первичной или вторичной обмотки составляет −dφ / dt. Если пренебречь сопротивлением и другими потерями в трансформаторе, вывод напряжение равно ЭДС. Для N p витков первичной обмотки, это дает

    Для N с витков вторичной обмотки это дает Разделение этих уравнений дает уравнение преобразователя где r — коэффициент поворотов. А что с током? Если пренебречь потерями в трансформатор (см. ниже раздел об эффективности), и если мы предположим, что напряжение и ток имеют одинаковое фазовое соотношение в первичной обмотке и вторичный, то из сохранения энергии мы можем записать в установившемся состоянии:
      Power in = power out, поэтому

      V p I p = V s I s , откуда

      I s / I p = N p / N s = 1 / r.

    Так что ничего не получишь даром: если увеличишь напряжение, то уменьшишься. ток (по крайней мере) в тот же фактор. Обратите внимание, что на фотографии катушка с большим количеством витков имеет более тонкий провод, потому что она предназначена для меньшего ток, чем тот, с меньшим количеством витков.

    В некоторых случаях целью упражнения является уменьшение силы тока. В силе линии передачи, например, потери мощности при нагревании проводов из-за их ненулевое сопротивление пропорционально квадрату тока.Таким образом, передача электроэнергии от электростанции позволяет сэкономить много энергии. в город при очень высоких напряжениях, так что токи невелики.

    Наконец, и снова предполагая, что трансформатор идеален, давайте спросим, ​​что резистор во вторичной цепи «похож» на первичную цепь. В первичном контуре:

      V p = V s / r и I p = Я с .г так

      V p / I p = V s / r 2 I s = Р / р 2 .

    R / r 2 называется отраженным сопротивлением . При условии, что частота не слишком высока, и при наличии сопротивления нагрузки (условия обычно встречается в практических трансформаторах), индуктивное сопротивление первичной обмотки намного меньше, чем это отраженное сопротивление, поэтому первичная цепь ведет себя как если бы источник управлял резистором номиналом R / r 2 .
    КПД трансформаторов
    На практике реальные трансформаторы имеют КПД менее 100%.
    • Во-первых, это резистивные потери в катушках (потеря мощности I 2 .r). Для данного материала сопротивление катушек можно уменьшить, сделав их поперечное сечение большое. Удельное сопротивление также можно сделать низким, используя медь высокой чистоты. (См. Дрейф скорости и закон Ома.)
    • Во-вторых, в сердечнике наблюдаются потери на вихревые токи.Это может быть уменьшается за счет ламинирования сердечника. Ламинирование уменьшает площадь цепей в ядре, и таким образом уменьшите ЭДС Фарадея, и, таким образом, текущий текущий в ядре, и таким образом теряется энергия.
    • В-третьих, в сердечнике есть гистерезисные потери. Намагничивание и кривые размагничивания магнитных материалов часто немного отличаются (гистерезис или зависимость от истории), и это означает, что требуемая энергия намагничивать сердечник (при увеличении тока) не совсем восстанавливается во время размагничивания.Разница в энергии теряется в виде тепла. в основном.
    • Наконец, геометрический дизайн, а также материал сердечника могут быть оптимизированным, чтобы гарантировать, что магнитный поток в каждой катушке вторичной обмотки почти такой же, как и в каждой катушке первичной обмотки.
    Подробнее о трансформаторах: генераторы переменного и постоянного тока
    Трансформаторы работают только от переменного тока, что является одним из больших преимуществ переменного тока. Трансформеры позволяют понижать 240 В до уровня, удобного для цифровой электроники (всего несколько вольт) или для других приложений с низким энергопотреблением (обычно 12 В).Трансформеры повышайте напряжение для передачи, как упомянуто выше, и понижайте для безопасности распределение. Без трансформаторов потери электроэнергии при распределении сети, и без того высокие, были бы огромными. Возможно преобразование напряжения в DC, но сложнее, чем в AC. Кроме того, такие преобразования часто неэффективно и / или дорого. Дополнительным преимуществом переменного тока является то, что его можно использовать на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для приложений большой мощности.

    Другие ресурсы от нас

    Некоторые внешние ссылки на веб-ресурсы по двигателям и генераторам

    • Гиперфизика: Электромоторы с сайта HyperPhysics в штате Джорджия. Отлично сайт габаритный, и моторный отсек для этого идеально подходит. Хороший использование веб-графики. Имеет двигатели постоянного, переменного и асинхронного ссылки
    • Громкоговорители .. Еще больше хороших материалов от Государственной Гиперфизики Джорджии.Хорошая графика, хорошие объяснения и ссылки. Этот громкоговоритель сайт также включает в себя вложения.
    • http://members.tripod.com/simplemotor/rsmotor.htm A сайт, описывающий двигатель, построенный студентами. Ссылки на другие двигатели, построенные тот же студент и ссылки также на сайты о моторах.
    • http://www.specamotor.com A сайт, который сортирует двигатели различных производителей в соответствии со спецификациями, введенными пользователем.

    В чем разница между постоянными магнитами и наличие электромагнитов в двигателе постоянного тока? Это делает его более эффективным или более могущественный? Или просто дешевле?

    Когда я получил этот вопрос на Высшем Доска объявлений школьной физики, я отправил ее Джону Стори, который не только выдающийся астроном, но и строитель электромобилей.Вот его ответ:

    В общем, для маленького мотора намного дешевле использовать постоянные магниты. Материалы для постоянных магнитов продолжают совершенствоваться и стали настолько недорогими что даже правительство время от времени присылает вам бессмысленные магниты на холодильник через почту. Постоянные магниты также более эффективны, потому что нет энергии тратится на создание магнитного поля. Так зачем вообще использовать раневое поле Двигатель постоянного тока? Вот несколько причин:

    • Если вы строите действительно большой двигатель, вам понадобится очень большой магнит и в какой-то момент раневое поле может подешеветь, особенно если очень Для создания большого крутящего момента необходимо сильное магнитное поле.Имейте это в виду если вы проектируете поезд. По этой причине в большинстве автомобилей есть стартеры. которые используют поле раны (хотя некоторые современные автомобили теперь используют постоянные магнитные двигатели).
    • У постоянного магнита магнитное поле имеет фиксированное значение (т.е. что означает «постоянный»!) Напомним, что крутящий момент, создаваемый двигателем заданная геометрия равна произведению тока через якорь и напряженность магнитного поля.С двигателем с возбужденным полем у вас есть возможность изменения тока через поле и, следовательно, изменения моторные характеристики. Это открывает ряд интересных возможностей; Вы ставите обмотку возбуждения последовательно с якорем, параллельно, или кормить из отдельно контролируемого источника? Пока есть достаточно крутящий момент для преодоления нагрузки на двигатель, внутреннего трения и т. д., чем слабее магнитное поле, тем * быстрее * двигатель будет вращаться (при фиксированном Напряжение).Сначала это может показаться странным, но это правда! Итак, если вы хотите двигатель, который может производить большой крутящий момент в состоянии покоя, но при этом сильно вращаться скорости при низкой нагрузке (как продвигается конструкция поезда?), возможно раневое поле — вот ответ.
    • Если вы хотите, чтобы ваш двигатель работал как от переменного, так и от постоянного тока (так называемый «универсальный» двигатель), магнитное поле должно менять свою полярность каждые полупериод Электропитание переменного тока, чтобы крутящий момент на роторе всегда был в одном и том же направлении.Очевидно, что для достижения этой цели вам понадобится мотор с возбужденным полем.

    Мнения, выраженные в этих заметках, принадлежат мне и не обязательно отражают политика Университета Нового Южного Уэльса или Школы физики. В анимации сделал Джордж Hatsidimitris.
    Джо Вулф / [email protected]/ 61-2-9385 4954 (UT + 10, +11 окт-март)

    2-3-2. Принцип вращения асинхронного двигателя

    Инжир.2.35 Силовой двигатель для промышленного использования

    Как описано в главе 1, существует много типов двигателей с вращающимся магнитным полем.

    В этой главе рассматриваются силовые двигатели, используемые на заводах (рис. 2.35), и асинхронные двигатели , широко используемые в домашних условиях для электрических вентиляторов и стиральных машин.

    Вводная книга по двигателям объясняет принцип вращения асинхронного двигателя с использованием диска Arago (см. Рис. 2.42).

    Ротор асинхронных двигателей общего назначения имеет конструкцию, показанную на рис.2.36 (а). Если вы разберете ротор, вы увидите, что это не диск и что он состоит из пластины из кремнистой стали и алюминиевой детали в форме клетки, как показано на рис. 2.36 (b). Такой ротор называется короткозамкнутым ротором .

    Использование диска Араго для объяснения принципа вращения двигателей, оснащенных короткозамкнутым ротором, неуместно. Это может быть лучше объяснено подходом, используемым для двигателей постоянного тока.

    Инжир.2.36 Конструкция ротора с короткозамкнутым ротором

    Как показано на рис. 2.37, замкнутая катушка помещается в магнитное поле, а внешний магнит вращается. Затем, как видно из принципа выработки энергии в двигателях постоянного тока, в катушке происходит выработка энергии, и через катушку протекает ток.

    По мере протекания тока катушка создает крутящий момент, который взаимодействует с исходным магнитным полем, а затем катушка начинает вращаться.

    Если увеличить количество витков, как показано на рис. 2.38, можно заменить катушки на обойму.

    А именно, обойма асинхронных двигателей соответствует обмотке двигателей постоянного тока.

    Рис. 2.37 Принцип вращения асинхронных двигателей Рис. 2.38 Замена с короткозамкнутым ротором

    Ниже приводится краткое описание принципа вращения асинхронных двигателей.

    • <1> Вращение магнитного поля
    • <2> Генерация индукционного тока
    • <3> Возникновение силы при взаимодействии тока и магнитного поля
    • <4> Вращение ротора

    На реальных двигателях механизм последовательно возбуждает несколько катушек вместо перемещения магнитов для получения того же эффекта.Чтобы изменить возбуждение, необходимы две или несколько синусоид, сдвинутых во времени.

    Обычно на заводах используются трехфазные 200 В переменного тока, сдвинутые на 120 градусов друг от друга (рис. 2.39).

    Рис. 2.39 При использовании трехфазного переменного тока с фазами, смещенными друг от друга на 120 градусов

    Поскольку источник питания для домашнего использования однофазный 100 В переменного тока, мы должны создать, так или иначе, синусоидальную волну, смещенную от этого источника питания при использовании асинхронного двигателя. Один из способов — увеличить фазу тока катушки на 90 градусов с помощью конденсатора.Двигатель, который работает таким образом, называется однофазным двигателем с конденсаторным питанием.

    Однофазный двигатель с конденсаторным питанием создает вращающееся магнитное поле с помощью набора из двух обмоток, одна из которых является главной обмоткой, которая подключена непосредственно к источнику питания, а другая — вспомогательной обмоткой, которая подключена к источнику питания через конденсатор. .

    Конструкция конденсаторного двигателя показана на рис. 1.2 главы 1.

    Двигатель с расщепленными полюсами — Как обсуждать

    Электродвигатель с экранированными полюсами

    Для чего нужен двигатель с экранированными полюсами? Применение асинхронных двигателей с экранированными полюсами Они подходят для небольших устройств, таких как реле и вентиляторы.Рекордеры, рекордеры, проекторы, копировальные аппараты. Он используется в кондиционерах и холодильном оборудовании, а также в охлаждающих вентиляторах. Используется в вытяжных вентиляторах, фенах и настольных вентиляторах. Используется для запуска электронных часов и однофазных синхронных двигателей.

    Как работает асинхронный двигатель с экранированными полюсами?

    Двигатель с экранированными полюсами является уникальным асинхронным двигателем, поскольку обмотки медного экрана не нагружаются напрямую. Вместо этого именно магнитный поток, создаваемый взаимодействием полюсных обмоток с движущимся ротором, дополнительно увеличивает крутящий момент после запуска.

    Что такое статор в двигателе с экранированными полюсами?

    Статор Статор двигателя с экранированными полюсами имеет чистый полюс. Выраженный полюс означает, что полюса магнита выступают в сторону якоря двигателя. На каждый полюс двигателя подается питание от собственной катушки возбуждения. Медные кольца смешивают локоны. Петли называются теневой катушкой.

    Что такое однофазный экранированный полюс?

    Определение: Асинхронный двигатель с экранированными полюсами — это простой однофазный асинхронный двигатель, который запускается автоматически, когда один из полюсов закрашен медным кольцом.Другое название медного кольца — заштрихованное кольцо, в котором оно действует как вторичный двигатель. Он вращается только в одном направлении, и повернуть момент невозможно.

    Для чего нужен асинхронный двигатель с экранированными полюсами?

    Применение асинхронных двигателей с экранированными полюсами. Ниже перечислены различные области применения двигателей с теневыми полюсами. Благодаря низкой стоимости и простоте ввода в эксплуатацию они подходят для небольших устройств, таких как реле и вентиляторы. Используется в вытяжных вентиляторах, фенах и настольных вентиляторах.

    Сколько полюсов используется в двигателе с экранированными полюсами?

    Конструкция асинхронного двигателя с экранированными полюсами. Двигатель с экранированными полюсами может быть двух- или четырехполюсным. В этой статье для простоты используется двухполюсный двигатель. Скорость двигателя обратно пропорциональна количеству полюсов, используемых в двигателе.

    В двигателе с экранированными полюсами направление вращения меняется на обратное?

    У двигателя с экранированными полюсами направление вращения не может быть изменено на обратное. При необходимости вы можете изменить направление вращения, установив две катушки затенения, по одной на каждом конце каждого полюса, разомкнув одну цепь катушки затенения и закоротив другой набор.

    Что дает заштрихованный столб?

    Фактически, теневые катушки или теневые полюсы генерируют вращающееся магнитное поле. Эффект тени катушек заставляет поток основного поля перемещаться по поверхности полюса от незаштрихованной части к заштрихованной части.

    Что такое полюс двигателя переменного тока?

    Полюс и скорость. У каждого асинхронного двигателя переменного тока есть полюса, как у магнита. Однако, в отличие от простого магнита, эти полюса состоят из пучков магнитных проводов (обмоток), намотанных в канавки сердечника статора.

    Каковы применения двигателя с экранированным полюсом, работающего в обратном направлении youtube

    Как работает электродвигатель с экранированным полюсом Когда ток подается на статор, в основной части полюса индуцируется магнитный поток. Этот поток индуцирует напряжение в теневой катушке. Это действует как вторичная обмотка.

    Может ли асинхронный двигатель с экранированными полюсами работать без конденсатора?

    Асинхронный двигатель с экранированными полюсами — это асинхронный однофазный двигатель, который может работать без конденсатора, поэтому его называют однофазным асинхронным двигателем без конденсатора.В этой статье вы узнаете о конструкции, функциях и применении асинхронных двигателей с экранированными полюсами.

    Что такое медное кольцо на асинхронном двигателе с экранированными полюсами?

    Медное кольцо также известно как теневое кольцо. Это медное кольцо служит вторичной обмоткой двигателя. Двигатель с экранированными полюсами вращается только в определенном направлении, и двигатель не может двигаться назад. Почему асинхронный двигатель с экранированными полюсами подходит для малой мощности?

    Каковы области применения управления скоростью двигателя с экранированными полюсами?

    Использование асинхронных двигателей с экранированными полюсами.Асинхронный двигатель с экранированными полюсами используется для привода оборудования, требующего низкого пускового момента. 1. Они подходят для небольших устройств, таких как реле и вентиляторы. 2. Рекордеры, рекордеры, проекторы, копировальные аппараты. 3. Используется в кондиционерах, холодильниках и охлаждающих вентиляторах.

    Какова частота вращения 6-полюсного двигателя?

    Это означает, что 6-полюсный двигатель 1075 работает со скоростью 1075 об / мин при номинальной нагрузке и высокой скорости. Средняя скорость имеет большее сопротивление намотке, чем высокая скорость, и, следовательно, большее скольжение.

    Сколько полюсов может быть у двигателя с экранированными полюсами?

    Двигатель с экранированными полюсами может быть 2- или 4-полюсным. Представьте себе двухполюсный двигатель с заштрихованными полюсами. На изображениях в этой статье также показан 2-полюсный двигатель. У статора торчащие полюса. Обычно используются от 2 до 4 постов. У каждого полюса своя катушка возбуждения.

    Каковы области применения двигателя с экранированными полюсами в курятнике

    Ниже вы найдете различные применения двигателя с экранированными полюсами. Они подходят для небольших устройств, таких как реле и вентиляторы, из-за их низкой стоимости и легкости запуска.Используется в вытяжных вентиляторах, фенах и настольных вентиляторах. Он используется в кондиционерах и холодильном оборудовании, а также в охлаждающих вентиляторах.

    Какой провод используется для заштрихованной опоры?

    Чтобы изолировать заштрихованную часть полюса, в остальной части полюса используется медный проводник, который образует единую катушку вокруг полюса. По мере увеличения тока магнитный поток увеличивается в незатененной части через обмотку.

    Каковы применения анимации двигателя с экранированными полюсами

    Ниже вы найдете различные применения двигателя с экранированными полюсами.Они подходят для небольших устройств, таких как реле и вентиляторы, из-за их низкой стоимости и легкости запуска. Используется в вытяжных вентиляторах, фенах и настольных вентиляторах. Он используется в кондиционерах и холодильном оборудовании, а также в охлаждающих вентиляторах.

    Почему двигатель с экранированными полюсами имеет низкую мощность?

    Этот двигатель имеет очень высокие индукционные потери, а также очень низкий коэффициент мощности. Пусковой крутящий момент, создаваемый в двигателе, очень низкий. По этим причинам его эффективность невысока.У этого низкий рейтинг. Это также замечательный двигатель с расщепленными полюсами.

    Что такое асинхронный двигатель с экранированными полюсами?

    Определение: Асинхронный двигатель с экранированными полюсами — это простой однофазный асинхронный двигатель, который запускается автоматически, когда один из полюсов закрашен медным кольцом. Другое название медного кольца — заштрихованное кольцо, в котором оно действует как вторичный двигатель. Он вращается только в одном направлении и момент изменить невозможно.

    Как разделены полюса асинхронного двигателя?

    Полюса разделены на две неравные половины.Меньшая часть несет медную полосу и называется заштрихованной частью столба. ДЕЙСТВИЕ: Когда однофазный ток подается на статор асинхронного двигателя с экранированными полюсами, создается переменный магнитный поток. Это изменение магнитного потока индуцирует электродвижущую силу в теневой катушке.

    Какой крутящий момент вырабатывает двигатель с экранированными полюсами?

    Асинхронный двигатель с экранированными полюсами создает очень низкий пусковой момент, составляющий примерно 50% от момента полной нагрузки.Эффективность двигателя с экранированными полюсами низкая из-за постоянных потерь мощности в теневой катушке.

    Что такое статор заштрихованного полюса?

    Статор однофазного асинхронного двигателя с теневыми полюсами имеет торчащие или выступающие полюса. Эти стойки закрашены индукционной медной лентой или кольцом. Полюса делятся на две неравные половины. Самая маленькая часть несет медную полосу и называется затемненной частью столба.

    Как работает асинхронный двигатель с экранированными полюсами видео

    Принцип работы Принцип работы асинхронного двигателя с экранированными полюсами прост: основная обмотка проводит переменный ток и создает магнитный поток в обмотке статора.Такой же магнитный поток проходит через заштрихованную медную полоску. По этой причине в медной полосе индуцируется ЭМС.

    Можно ли изменить направление двигателя с экранированными полюсами?

    Направление двигателя с экранированным полюсом — от незатененной части к заштрихованной части. Посмотрите на картинку по часовой стрелке в этом направлении. они не могут электрически изменять направление вращения двигателя. Однако вы можете изменить направление вращения мотора, изменив положение глухих столбов.

    Какая скорость у заштрихованного шеста?

    Змеевик, установленный на основной стойке, называется опорой шторы. Выбор 2-полюсного статора приводит к синхронной скорости 3000 об / мин, тогда как скорость 4-полюсного статора составляет 1500 об / мин для источника питания 50 Гц. Медная полоса — часть каждого полюса, обычно 1/3, окружена медной полосой с низким сопротивлением.

    Как разделены полюса в статоре?

    Полюса статора разделены на две части неравномерно, самая маленькая часть — это заштрихованная часть, где расположена медная полоса.В самой маленькой части находится медное кольцо, также называемое теневой катушкой. Змеевик, установленный на основной стойке, называется опорой для шторы.

    Что вызывает ЭДС в двигателе с экранированными полюсами?

    При переключении источника питания скорость изменения магнитного потока имеет тенденцию индуцировать электродвижущую силу в экранирующей катушке этого полюса. Когда теневая катушка закорочена, через нее будут протекать токи. В то же время теневая катушка генерирует дополнительный ток s, который течет в направлении, противоположном основному току, как показано ниже.

    Какие четыре типа асинхронных двигателей?

    Однофазные асинхронные двигатели далее подразделяются на четыре типа двигателей с разделением фаз, асинхронные двигатели с экранированными полюсами, асинхронные двигатели с возвратным пуском и асинхронные двигатели с возвратным пуском. В этой статье описывается двигатель с экранированными полюсами и принцип его работы.

    Как работает асинхронный двигатель с экранированными полюсами в 2020 г.

    Как работает асинхронный электродвигатель с экранированными полюсами Во время OA-части цикла переменного тока магнитный поток начинает увеличиваться, и в теневой катушке индуцируется ЭДС.Этот поток индуцирует напряжение и, следовательно, ток в медном кольце, и, согласно закону Ленца, ток направлен таким образом, что он противодействует потоку, входящему в катушку.

    Почему у двигателей с экранированными полюсами низкий КПД?

    КПД двигателя с экранированными полюсами низкий из-за постоянных потерь мощности в теневой катушке. Он используется для небольших вентиляторов и мелкой бытовой техники. Направление вращения двигателя с экранированным полюсом зависит от положения теневой катушки, половина которой намотана в теневой катушке.

    Как работает асинхронный двигатель с экранированными полюсами в 2018 г.

    Принцип работы асинхронного двигателя с экранированными полюсами прост: основная обмотка проводит переменный ток и создает магнитный поток в обмотке статора. Такой же магнитный поток проходит через заштрихованную медную полоску. По этой причине в медной полосе индуцируется электродвижущая сила. Эта ЭДС позволяет току течь.

    Что входит в состав двигателя с экранированными полюсами?

    Двигатель с экранированными полюсами имеет короткозамкнутую клетку (G) и статор (M) с хорошо заметными полюсами (P 1, P 2).В дополнение к собственной катушке возбуждения (C 1, C 2), каждый полюс имеет медную защитную катушку, полосу или кольцо (B 1, B 2) в одной из его неравномерно расположенных частей (рис. 1).

    Когда на обмотку статора подается однофазный переменный ток?

    Когда к обмотке статора подается однофазный переменный ток, тень полюсов создает вращающееся магнитное поле. Эта вспомогательная обмотка с одним витком называется теневой катушкой.

    Что такое статор в двигателях с экранированным полюсом?

    Статор: Статор двигателя с затененным полюсом имеет яркий полюс.Выраженный полюс означает, что полюса магнита выступают в сторону якоря двигателя. На каждый полюс двигателя подается питание от собственной катушки возбуждения. Медные кольца смешивают локоны.

    Что такое статор с экранированным полюсом Характеристики двигателя

    Статор, неподвижная часть, несущая основную обмотку и экранированную обмотку двигателя. Свойства Полюса статора — это заметные полюса. Обычно он имеет два или четыре полюса в зависимости от требований к скорости. Конструкция с глубоким ворсом увеличивает сложность двигателя.

    Каковы характеристики двигателя с экранированными полюсами?

    Двигатель с экранированными полюсами имеет следующие характеристики. Он создает пусковой крутящий момент, который составляет половину крутящего момента при полной нагрузке. Эффективность низкая из-за потерь мощности в змеевике для защиты от солнца. Направление вращения зависит от заштрихованного положения катушки.

    Какой ротор используется для индукции с экранированным полюсом?

    Ротор асинхронных двигателей с теневыми полюсами представляет собой ротор с короткозамкнутым ротором.Штанги ротора имеют наклон 60 градусов. Это используется для получения оптимального пускового момента и ограничения потери крутящего момента при пуске.

    Как работает реверс двигателя с экранированными полюсами?

    Ротор всегда поворачивается от центра сваи к затемненной части сваи. Затененная часть полюса обнажена небольшими медными витками. Если смотреть с этой стороны, мотор вращается по часовой стрелке.

    Что делает асинхронный двигатель с экранированными полюсами?

    Асинхронный двигатель с экранированными полюсами Асинхронный двигатель с экранированными полюсами представляет собой простой однополюсный асинхронный однофазный двигатель с автоматическим запуском, затененный медным кольцом.Медное кольцо также известно как теневое кольцо. Это медное кольцо служит вторичной обмоткой двигателя.

    Как заштрихованное кольцо влияет на статор?

    Следовательно, заштрихованный кольцевой поток противостоит основному потоку, что приводит к его застою в незатененной части статора, и поток ослабевает в заштрихованной части. Это неравномерное распределение магнитного потока вызывает смещение магнитной оси в центре незатененной части.

    Что такое статор в системе управления скоростью двигателя с экранированными полюсами

    Асинхронный двигатель с теневым полюсом — это не что иное, как однофазный автоматический пускатель, главный полюс которого затенен вспомогательной обмоткой или внешней обмоткой.Эта внешняя обмотка называется теневой катушкой или теневой полосой. Внешняя обмотка не имеет электрического контакта с входным источником питания.

    Почему ротор перекошен в двигателе с экранированными полюсами?

    Для увеличения пускового момента двигателя ротор выполнен с V-образным шагом, V-образный шаг более дорогой, но у них есть лучший способ уменьшить магнитный замок между ротором и стартером.

    Когда вышел двигатель с экранированными полюсами?

    Двигатель с экранированными полюсами является прототипом однофазного асинхронного двигателя переменного тока и датируется по крайней мере 1890 годом.

    Что такое однофазный двигатель с экранированными полюсами?

    Двигатель с экранированными полюсами — это однофазный двигатель. Они имеют низкий пусковой момент и используются в приложениях с низкой нагрузкой, например, в небольших двигателях вентиляторов. На изображении ниже вы можете увидеть медные петли вокруг зелья с железным сердечником. Их называют теневыми полюсами.

    Почему у асинхронного двигателя с экранированными полюсами низкий КПД?

    В асинхронных двигателях с экранированными полюсами потери мощности очень велики, а коэффициент мощности двигателя низкий.Индуцированный пусковой момент в асинхронном двигателе также очень низкий. Двигатель неэффективен по следующим причинам.

    Какая часть заштрихованной части шеста с прорезями?

    Самая маленькая часть разделенного полюса закорочена катушкой. Катушки изготовлены из меди и имеют высокую индуктивность. Эта катушка называется теневой катушкой. Часть полюса, где расположена катушка, называется заштрихованной частью, а другая часть полюса — незатененной частью.

    Что такое однофазный выключатель с экранированными полюсами?

    Двигатель с экранированными полюсами представляет собой однофазный асинхронный двигатель с расщепленной фазой.Двигатель с экранированными полюсами популярен благодаря своей чрезвычайно простой конструкции для мощности ниже HP (~ 40 Вт). Он имеет выступающие полюса на статоре, которые питаются от однофазного источника питания и ротора с короткозамкнутым ротором.

    Что это за двигатель с экранированным полюсом?

    Асинхронный двигатель с затемнением — это однофазный асинхронный двигатель с расщепленной фазой. Двигатель с экранированными полюсами популярен благодаря своей чрезвычайно простой конструкции для мощности ниже HP (~ 40 Вт). Этот двигатель запускается автоматически, когда один из полюсов закрашен медным кольцом.

    Как называется медное кольцо на заштрихованном полюсе?

    Самая маленькая деталь с латунным кольцом, однооборотная. Это кольцо еще называют затеняющей катушкой. Затеняющая катушка, установленная на основной опоре, называется затеняющей стойкой. Когда ток подается на статор, в основной части полюса индуцируется магнитный поток.

    Схема однофазного двигателя с экранированными полюсами

    Введение Электродвигатель с экранированными полюсами — это тип однофазного асинхронного двигателя, который используется для создания магнитного потока вращающегося статора для создания однофазного асинхронного двигателя с самозапуском.Пусть они обсудят детали конструкции, принципиальных схем и работы двигателей с экранированными полюсами.

    Как работает однофазный электродвигатель?

    Отталкивающий двигатель определяется как однофазный двигатель с обмоткой статора, подключенной к источнику питания, и обмоткой ротора, подключенной к переключателю. Щетки и коллекторы закорочены и размещены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.

    Что это за катушка с заштрихованным полюсом?

    Катушки изготовлены из меди и имеют высокую индуктивность.Эта катушка называется теневой катушкой. Часть полюса, где расположена катушка, называется заштрихованной частью, а другая часть полюса — незатененной частью. Теперь представьте переменный ток, протекающий через обмотку вокруг полюса под напряжением.

    В чем разница между одной фазой и разделенной фазой?

    Из-за природы цепи фаз, находящихся под напряжением, и нулевого провода, ее обычно называют цепью с расщепленной фазой. Однофазный провод имеет два горячих провода, окруженных черной и красной изоляцией, нейтральный провод всегда белый и есть зеленый провод заземления.

    Как работает разделенная фаза?

    Как ты работаешь? Машина разделения фаз имеет две однофазные обмотки на статоре. Одна является основной обмоткой, а другая — пусковой обмоткой, которая используется только для запуска. Обмотка лифта имеет низкое сопротивление, но высокую реактивную способность.

    Что такое электроэнергия с расщепленной фазой?

    Двухфазная или однофазная трехпроводная система — это тип однофазного распределения электроэнергии. Это переменный эквивалент оригинальной 3-проводной системы постоянного тока Эдисона.

    Можно ли преобразовать трехфазное в однофазное?

    Преобразователь фазы может использоваться для преобразования трехфазного тока в однофазный ток. Это устройство можно подключить к двигателю, которым вы хотите управлять, для которого требуется однофазный источник питания. Имейте в виду, что это влияет только на подключенное к нему устройство, а не на всю розетку, поскольку оно не подключено к вашей электрической системе.

    Работа двигателя с экранированными полюсами

    Принцип работы асинхронного двигателя с экранированными полюсами прост: основная обмотка проводит переменный ток и создает магнитный поток в обмотке статора.Такой же магнитный поток проходит через заштрихованную медную полоску. По этой причине в медной полосе индуцируется электродвижущая сила. Эта ЭДС позволяет току течь.

    Двигатели с постоянной разделенной фазой

    Более конкретно, двигатель с постоянным конденсатором (PSC) — это тип однофазного двигателя переменного тока, тип асинхронного двигателя с разделенной фазой, в котором конденсатор постоянно подключен (а не просто подключен к Начните).

    Как работает электродвигатель с расщепленной фазой?

    Двигатель с разделителем фаз имеет вторичную пусковую обмотку, которая расположена под электрическим углом 90 градусов к основной обмотке, всегда центрирована непосредственно между полюсами основной обмотки и соединена с основной обмоткой через набор электрических контактов.

    Что такое пусковая обмотка двигателя с расщепленной фазой?

    Асинхронный двигатель с разделением фаз имеет основную обмотку и двухобмоточную пусковую обмотку. В пусковой обмотке используются провода меньшего размера (более тонкие), которые имеют более высокое сопротивление и меньшее количество витков (меньшую индуктивность и меньшее соотношение X / R), чем основная обмотка. Это приводит к тому, что ток пусковой обмотки будет больше совпадать по фазе с приложенным напряжением относительно основной обмотки.

    Для чего нужен двигатель с расщепленной фазой?

    Асинхронный двигатель с расщепленной фазой применяется следующим образом.Применения этого двигателя включают различные нагрузки общего назначения. Обычно это переменный ток, шлифовальные станки, токарные станки, дрели, шайбы, вентиляторы переменного тока, дрели, центробежные насосы, полировщики, воздуходувки, мельничные смесители, вентиляторы с подогревом с ременным приводом и небольшие конвейеры с ременным приводом.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *