Как работает люминесцентная лампа без дросселя. Какие существуют способы подключения лампы дневного света без использования дросселя. Какие схемы можно использовать для запуска люминесцентной лампы с перегоревшими нитями накала. Какие преимущества и недостатки имеет подключение лампы дневного света без дросселя.
Принцип работы люминесцентной лампы
Люминесцентная лампа (лампа дневного света) представляет собой газоразрядный источник света, в котором видимое излучение создается с помощью люминофора, нанесенного на внутреннюю поверхность стеклянной трубки. Внутри трубки находятся пары ртути и инертный газ (обычно аргон). При подаче напряжения между электродами возникает электрический разряд, в результате которого атомы ртути излучают ультрафиолетовые лучи. Эти лучи, в свою очередь, вызывают свечение люминофора.
Для зажигания лампы необходимо высокое напряжение (около 1000 В), а для стабильной работы — ограничение тока. Обычно эти функции выполняет специальная пускорегулирующая аппаратура (ПРА), состоящая из дросселя и стартера. Однако существуют способы подключения люминесцентных ламп и без использования стандартного ПРА.
Способы подключения лампы дневного света без дросселя
Существует несколько способов подключить люминесцентную лампу без использования дросселя:
- С помощью лампы накаливания в качестве балласта
- С использованием конденсаторов и диодов
- С применением электронной схемы на транзисторах
- С помощью трансформатора
Рассмотрим подробнее некоторые из этих способов.
Схема с лампой накаливания
Одна из самых простых схем подключения люминесцентной лампы без дросселя использует обычную лампу накаливания в качестве балластного сопротивления. Принципиальная схема выглядит следующим образом:
«` «`В этой схеме:
- ЛН — лампа накаливания
- ЛДС — люминесцентная лампа (лампа дневного света)
Лампа накаливания выполняет роль ограничителя тока, заменяя собой дроссель. При этом она также дает дополнительное освещение. Мощность лампы накаливания обычно выбирают примерно равной мощности люминесцентной лампы.
Схема с конденсаторами и диодами
Более сложная, но эффективная схема использует конденсаторы и диоды для создания высокого напряжения, необходимого для зажигания лампы. Вот пример такой схемы:
«` «`
В данной схеме используются:
- Два конденсатора (обозначены вертикальными линиями)
- Два диода (обозначены треугольниками с линией)
- Люминесцентная лампа (ЛДС)
Эта схема работает как умножитель напряжения, создавая высокое напряжение для зажигания лампы, а затем обеспечивая стабильный ток для ее работы.
Преимущества и недостатки подключения без дросселя
Подключение люминесцентной лампы без использования стандартного ПРА имеет свои плюсы и минусы.
Преимущества:
- Возможность использования лампы с перегоревшими нитями накала
- Отсутствие гудения, характерного для дросселя
- Мгновенное зажигание лампы без мерцания
- Простота конструкции (в некоторых схемах)
Недостатки:
- Возможное снижение срока службы лампы из-за отсутствия предварительного подогрева электродов
- Необходимость дополнительных компонентов (конденсаторов, диодов)
- Потенциально меньшая энергоэффективность по сравнению с современными электронными ПРА
Правила безопасности при подключении лампы дневного света
При самостоятельном подключении люминесцентной лампы без дросселя необходимо соблюдать следующие правила безопасности:
- Всегда отключайте электропитание перед началом работы с электрической схемой.
- Используйте качественные компоненты, рассчитанные на соответствующее напряжение и ток.
- Обеспечьте надежную изоляцию всех электрических соединений.
- Не прикасайтесь к схеме во время ее работы.
- Помните, что в схеме присутствует высокое напряжение, опасное для жизни.
- При возникновении сомнений обратитесь к профессиональному электрику.
Выбор компонентов для схемы подключения
При сборке схемы подключения люминесцентной лампы без дросселя важно правильно выбрать компоненты. Вот несколько рекомендаций:
- Конденсаторы должны иметь рабочее напряжение не менее 400В.
- Диоды следует выбирать с обратным напряжением не менее 1000В.
- Мощность лампы накаливания (если используется) должна быть сопоставима с мощностью люминесцентной лампы.
- Все компоненты должны быть рассчитаны на соответствующий ток.
Конкретные номиналы компонентов зависят от мощности используемой люминесцентной лампы и выбранной схемы подключения.
Альтернативные способы освещения
Хотя подключение люминесцентной лампы без дросселя может быть интересным экспериментом или временным решением, стоит рассмотреть и другие современные варианты освещения:
- Светодиодные лампы: более энергоэффективны и долговечны, не требуют специальных схем подключения
- Компактные люминесцентные лампы со встроенным электронным балластом
- Современные люминесцентные светильники с электронным ПРА
Эти варианты могут обеспечить более качественное и энергоэффективное освещение без необходимости самостоятельной сборки сложных схем.
Лампа дневного света без стартера
категория
Радиосхемы для дома
материалы в категории
Люминесцентные лампы (или как мы еще привыкли их называть Лампа дневного света) зажигаются при помощи разряда, создаваемого внутри колбы.
если кому интересно узнать об устройстве такой лампы- о их преимуществах и недостатках то можете заглянуть в эту статью.
Для того чтобы получить высоковольтный разряд применяются специальные приспособления- балластные дроссели управляемые стартером.
Работает это примерно так: внутри фурнитуры лампы размещается дроссель и конденсатор которые образуют колебательный контур. Последовательно с этим контуров устанавливается стартер- неоновая лампа с небольшим конденсатором. При прохождении тока через неоновую лампу в ней возникает электрический пробой, сопротивление лампы падает практически до нуля, но она практически сразу-же начинает разряжаться через конденсатор. Таким образом стартер хаотично открывается-закрывается и в дросселе возникают хаотичные колебания.
За счет ЭДС самоиндукции эти колебания могут иметь амплитуду до 1000 Вольт, они-то и служат источником высоковольтных импульсов зажигающих лампу.
Данная конструкция применяется в быту уже много лет и имеет целый ряд недостатков- неопределенное время включения, износ нитей накала ламп и огромный уровень радиопомех.
Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.
Более перспективны — без стартерные устройства зажигания, где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы — на них подается напряжение, необходимое для поджига газа в лампе.
Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.
Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.
В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.
Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.
Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.
Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.
Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.
Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.
В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.
Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.
Похожий материал:
Вечная люминесцентная лампа
Восстановление ламп дневного света
Ремонт энергосберегающих ламп самостоятельно
Лампа люминесцентная без стартера. Принцип работы и схема подключения люминесцентной лампы. Кратко об особенностях работы лампы
Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.
Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе.
Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.- Дроссель.
- Колба лампы.
- Люминесцентный слой.
- Контакты стартера.
- Электроды стартера.
- Корпус стартера.
- Биметаллическая пластина.
- Нити накала лампы.
- Ультрафиолетовое излучение.
- Ток разряда.
Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.
Принцип действия стартера
На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).
Рис. 1 Функциональная схема подключения ЛДС
Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.
Принцип действия ЭПРА
Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.
Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.
Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.
Способы пуска ЛДС без специализированного ПРА
При выходе из строя лампы дневного света возможны две причины:
1) . В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) . Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.
Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).
Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.
Рис. 6. Структурная схема подключения ЛДС без дросселя
Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.
Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.
Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.
Заключение
При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.
Недавно посмотрел на целую коробку сгоревших энергосберегающих ламп, в основном с хорошей электроникой, но перегоревшими нитями накала люминисцентной лампы, и подумал – надо куда-то всё это добро применить. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов.
И хотя зажигание с холодными электродами является для более тяжелым режимом, чем включение обычным образом, этот метод позволяет ещё долгое время использовать люминисцентную лампу для освещения. Как известно, зажигание лампы с холодными электродами требует повышенного напряжения до 400…600 В. Реализуется это простым выпрямителем, напряжение выхода которого будет почти в два раза выше входного сетевого 220В. В качестве балласта устанавливается обычная маломощная лампочка накаливания, и хотя использование лампы вместо дросселя снижает экономичность такого светильника, если использовать лампы накаливания на напряжение 127 В и её включить в цепь постоянного тока последовательно с лампой, то будем иметь достаточную яркость.
Диоды любые выпрямительные, на напряжение от 400В и ток 1А, можно и советские коричневые КЦ-шки. Конденсаторы так-же с рабочим напряжением не менее 400В.
Данное устройство работает как удвоитель напряжения, выходное напряжение которого приложено к катоду — аноду ЛДС. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой и напряжение одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30 — 80 Вт, имеющих рабочее напряжение в среднем около 100 В. При таком включении схемы, световой поток лампы накаливания будет составлять примерно четверть от потока ЛДС.
Для люминисцентной лампоы мощностью 40 Вт необходима лампа накаливания 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. А для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания — около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность — 34 % от номинальной.
Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.
Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.
Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.
При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.
Схемы
При подключении люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА: электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).
Схема подключения с применением электромагнитный балласта или ЭмПРА (дросель и стартер)Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.
Принцип работы: при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.
Основные недостатки
- В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
- Долгий пуск не менее 1 до 3 секунд (зависимость от износа лампы)
- Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
- Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем детали станков, вращающихся синхронно с частотой сети- кажутся неподвижными.
- Звук от гудения пластинок дросселя, растущий со временем.
Схема включения с двумя лампами но одним дросселем . Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения двох ламп применяются стартеры на 127 Вольт, они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт
Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.
Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства
А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.
или сложнее
Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)
тот же случай но уже для лампы с перегоревшей нитей накала
Схема подключения с применением электронного балласта или ЭПРА
Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного подает на лампы напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.
Ну конечно насчет «вечной лампы » это громко сказано, но вот «оживить» люминесцентную лампу с перегоревшими нитями накала вполне возможно. ..
В общем-то все, наверное, уже поняли что речь у нас пойдет не о обычной лампочке накаливания а о газоразрядных (как их еще называли раньше «лампа дневного света»), которая выглядит вот так:
Принцип работы такой лампы: за счет высоковольтного разряда внутри лампы начинает светиться газ (обычно аргон с примесью паров ртути). Для того чтобы зажечь такую лампу требуется довольно высокое напряжение, которое получают за счет специального преобразователя (балласта) находящегося внутри корпуса.
полезные ссылки для общего развития : самостоятельный ремонт энергосберегающих ламп , лампы энергосберегающие- преимущества и недостатки
Стандартные используемые люминесцентные лампы не лишены недостатков: во время их работы прослушивается гудение дросселя, в системе питания имеется стартер, который ненадежен в работе, и самое главное — лампа имеет нить накала, которая может перегореть, из-за чего лампу приходится заменять новой.
Но есть и альтернативный вариант: газ в лампе можно зажечь даже и при оборванных нитях накала- для этого достаточно просто увеличить напряжение на выводах.
Причем при таком варианте использования есть еще и свои преимущества: лампа зажигается практически мгновенно, отсутствует гудение при работе, не нужен стартер.
Чтобы зажечь люминесцентную лампу с оборванными нитями накала (кстати и не обязательно с оборванными…) нам потребуется небольшая схема:
Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, СЗ желательно чтобы были слюдяными. Резистор R1 обязательно проволочный, по мощности лампы, указанной в таблице
Мощноcть лампы, Вт | С1 -С4 мкФ | С2 — СЗ пФ | Д1 -Д4 | Ом |
3300 | Д226Б | |||
6800 | Д226Б | |||
6800 | Д205 | |||
6800 | Д231 |
Диоды Д2, ДЗ и конденсаторы С1, С4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостейС1, С4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работы лампы Л1, рассчитанной на напряжение 220 В.
Применение диодов Д1, Д4 и конденсаторов С2, СЗ повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы в момент включения. Конденсаторы С2, СЗ одновременно способствуют подавлению радиопомех.
Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.
Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.
При выборе современного способа освещения помещения, необходимо знать, как подключить лампу дневного света самостоятельно.
Большая площадь поверхности свечения способствует получению ровного и рассеянного освещения.
Поэтому именно такой вариант стал в последние годы очень популярным и востребованным.
Лампы люминесцентные относятся к газоразрядным источникам освещения, характеризующимся образованием ультрафиолетового излучения под воздействием электрического разряда в ртутных парах с последующим преобразованием в высокую видимую светоотдачу.
Появление света обусловлено наличием на внутренней поверхности лампы особого вещества под названием люминофор, поглощающего УФ-излучение. Изменение состава люминофора позволяет менять оттеночную гамму свечения. Люминофор может быть представлен галофосфатами кальция и ортофосфатами кальция-цинка.
Принцип работы люминесцентной лампочки
Поддержка дугового разряда происходит посредством термоэлектронной эмиссии электронов на поверхности катодов, которые разогреваются при пропускании тока, ограничивающегося балластом.
Недостаток ламп дневного света представлен отсутствием возможности выполнить прямое подключение к электрической сети, что обусловлено физической природой лампового свечения.
Значительная часть светильников, предназначенных для установки ламп дневного света, имеет встроенные механизмы свечения или дроссели.
Подключение лампы дневного света
Чтобы грамотно осуществить самостоятельное подключение, необходимо правильно выбрать лампу дневного света.
Такая продукция маркируется трёх-цифровым кодом, содержащим всю информацию о качестве света или индекса цветопередачи и температуры цвета.
Первой цифрой маркировки обозначается уровень цветовой передачи, и чем выше являются эти показатели, тем более достоверную цветопередачу удаётся получить в процессе освещения.
Обозначение температуры свечения лампы представлено цифровыми показатели второго и третьего порядка.
Наибольшее распространение получило экономичное и высокоэффективное подключение на основе электромагнитного балласта, дополненного неоновым стартером, а также схемой со стандартным балластом электронного типа.
Схемы подключения лампы дневного света со стартером
Самостоятельно подключить лампу накаливания достаточно просто, что обусловлено наличием в комплекте всех необходимых элементов и схемы стандартной сборки.
Две трубки и два дросселя
Технология и особенности самостоятельного последовательного подключения таким способом следующие:
- подача фазного провода на балластный вход;
- подключение дроссельного выхода на первую контактную группу лампы;
- подсоединение второй контактной группы на первый стартер;
- подключение с первого стартера на вторую ламповую контактную группу;
- соединение свободного контакта с проводом на ноль.
Аналогичным способом производится подключение второй трубки. С балласта идёт подключение на первый ламповый контакт, после чего второй контакт с этой группы переходит на второй стартер. Затем осуществляется соединение стартерного выхода со второй ламповой парой контактов и соединение свободной контактной группы с нулевым вводным проводом.
Такой способ подключения, по мнению специалистов, является оптимальным при наличии пары источников освещения и пары соединительных комплектов.
Схема подключения двух ламп от одного дросселя
Самостоятельное подключение от одного дросселя – менее распространённый, но совершенно несложный вариант. Такое двухламповое последовательное подключение отличается экономичностью и требует приобретения индукционного дросселя, а также пары стартеров:
- к лампам посредством параллельного подсоединения присоединяется стартер на штыревой выход с торцов;
- последовательное присоединение свободных контактов к электрической сети при помощи дросселя;
- присоединение конденсаторов параллельно к контактной группе осветительного устройства.
Две лампы и один дроссель
Стандартные выключатели, относящиеся к категории бюджетных моделей, часто характеризуются залипанием контактов в результате повышения стартовых токов, поэтому целесообразно применять специальные высококачественные варианты контактных коммутационных аппаратов.
Как подключить лампу дневного света без дросселя?
Рассмотрим, как происходит подключение люминесцентных ламп дневного света. Простейшая схема бездроссельного подключения применяется даже на сгоревших трубках ламп дневного света и отличается отсутствием использования нити накаливания.
В этом случае питание трубки осветительного прибора обусловлено наличием повышенного постоянного напряжения посредством диодного моста.
Схема включения лампы без дросселя
Такая схема характеризуется присутствием токопроводящего провода или широкой полоски фольгированной бумаги, одной стороной присоединенной к выводу электродов лампы. Для фиксации на концах колбы применяются металлические хомутики, аналогичного с лампой диаметра.
Электронный балласт
Принцип функционирования осветительного прибора с электронным балластом заключается в прохождении электрического тока через выпрямитель, с последующим поступлением в буферную зону конденсатора.
В электронном балласте, наряду с классическими пусковыми регулирующими устройствами, осуществление старта и стабилизации происходит посредством дросселя. Питание зависит от высокочастотного тока.
Электронный балласт
Естественное усложнение схемы сопровождается целым рядом преимуществ по сравнению с низкочастотным вариантом:
- повышение показателей эффективности;
- устранение эффекта мерцания;
- снижение веса и габаритов;
- отсутствие шумности в процессе работы;
- повышение надежности;
- продолжительный эксплуатационный срок.
В любом случае следует учитывать тот факт, что электронные балласты относятся к категории импульсных устройств, поэтому их включение без достаточной нагрузки является основной причиной выхода из строя.
Проверка работоспособности энергосберегающей лампы
Несложное тестирование позволяет своевременно выявить поломку и правильно определить основную причину неисправности, а иногда и выполнить самостоятельно наиболее простые ремонтные работы:
- Демонтаж рассеивателя и внимательный осмотр люминесцентной трубки с целью обнаружения участков выраженного почернения. Очень быстрое почернение концов колбы свидетельствует о перегорании спирали.
- Проверка нитей накала на предмет отсутствия разрывов при помощи стандартного мультиметра. При отсутствии повреждений нитей – показатели сопротивления могут варьироваться в пределах 9,5-9,2Om.
Если проверка лампы не показала сбоев в работе, то отсутствие функционирование может быть обусловлено поломкой дополнительных элементов, включая электронный балласт и контактную группу, которая достаточно часто подвергается окислению и нуждается в зачистке.
Проверка работоспособности дросселя осуществляется отключением стартера и замыканием на патрон. После этого нужно накоротко замкнуть патроны лампы и замерить дроссельное сопротивление. Если заменой стартера не удаётся получить желаемый результат, то основная неисправность, как правило, кроется в конденсаторе.
Что вызывает опасность в энергосберегающей лампе?
Ставшие относительно недавно очень популярными и модными различные энергосберегающие осветительные приборы, по мнению некоторых ученых, способны нанести достаточно серьезный вред не только окружающей среде, но и здоровью человека:
- отравление ртутьсодержащими парами;
- поражения кожных покровов с образованием выраженной аллергической реакции;
- повышение риска развития злокачественных опухолей.
Мерцающие лампы часто становятся причиной бессонницы, хронической усталости, снижения иммунитета и развития невротических состояний.
Важно знать, что из разбитой колбы люминесцентной лампы высвобождается ртуть, поэтому эксплуатация и дальнейшая утилизация должны осуществляться с соблюдением всех правил и мер предосторожности.
Значительное сокращение срока службы лампы люминесцентной, как правило, бывает спровоцировано нестабильностью напряжения или неисправностями балластного сопротивления, поэтому при недостаточно качественной работе электросети предполагается использование обычных ламп накаливания.
Видео на тему
Запуск люминесцентных ламп. Включение люминесцентной лампы-без дросселя. Электронная система включения
Ну конечно насчет «вечной лампы » это громко сказано, но вот «оживить» люминесцентную лампу с перегоревшими нитями накала вполне возможно…
В общем-то все, наверное, уже поняли что речь у нас пойдет не о обычной лампочке накаливания а о газоразрядных (как их еще называли раньше «лампа дневного света»), которая выглядит вот так:
Принцип работы такой лампы: за счет высоковольтного разряда внутри лампы начинает светиться газ (обычно аргон с примесью паров ртути). Для того чтобы зажечь такую лампу требуется довольно высокое напряжение, которое получают за счет специального преобразователя (балласта) находящегося внутри корпуса.
полезные ссылки для общего развития : самостоятельный ремонт энергосберегающих ламп , лампы энергосберегающие- преимущества и недостатки
Стандартные используемые люминесцентные лампы не лишены недостатков: во время их работы прослушивается гудение дросселя, в системе питания имеется стартер, который ненадежен в работе, и самое главное — лампа имеет нить накала, которая может перегореть, из-за чего лампу приходится заменять новой.
Но есть и альтернативный вариант: газ в лампе можно зажечь даже и при оборванных нитях накала- для этого достаточно просто увеличить напряжение на выводах.
Причем при таком варианте использования есть еще и свои преимущества: лампа зажигается практически мгновенно, отсутствует гудение при работе, не нужен стартер.
Чтобы зажечь люминесцентную лампу с оборванными нитями накала (кстати и не обязательно с оборванными…) нам потребуется небольшая схема:
Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, СЗ желательно чтобы были слюдяными. Резистор R1 обязательно проволочный, по мощности лампы, указанной в таблице
Мощноcть лампы, Вт | С1 -С4 мкФ | С2 — СЗ пФ | Д1 -Д4 | Ом |
3300 | Д226Б | |||
6800 | Д226Б | |||
6800 | Д205 | |||
6800 | Д231 |
Диоды Д2, ДЗ и конденсаторы С1, С4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостейС1, С4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работы лампы Л1, рассчитанной на напряжение 220 В.
Применение диодов Д1, Д4 и конденсаторов С2, СЗ повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы в момент включения. Конденсаторы С2, СЗ одновременно способствуют подавлению радиопомех.
Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.
Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.
Широко используемые люминесцентные лампы не лишены недостатков: во время их работы прослушивается гудение дросселя, в системе питания имеется стартер, который ненадежен в работе, и самое главное-лампа имеет нить накала, которая может перегореть, из-за чего лампу приходится заменять новой.
Люминесцентная лампа становится «вечной»
Здесь показана схема, которая позволяет устранить перечисленные недостатки. Нет привычного гудения, лампа загорается моментально, отсутствует ненадежный стартер, и, что самое главное, можно использовать лампу с перегоревшей нитью накала.
Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.
Резистор R1 обязательно проволочный, его сопротивление зависит от мощности лампы.
Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице:
Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение 220 В.
Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы Л1 в момент включения. Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.
Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.
(или как мы еще привыкли их называть Лампа дневного света ) зажигаются при помощи разряда, создаваемого внутри колбы.
если кому интересно узнать об устройстве такой лампы- о их преимуществах и недостатках то можете заглянуть в
.
Для того чтобы получить высоковольтный разряд применяются специальные приспособления- балластные дроссели управляемые стартером.
Работает это примерно так: внутри фурнитуры лампы размещается дроссель и конденсатор которые образуют колебательный контур. Последовательно с этим контуров устанавливается стартер- неоновая лампа с небольшим конденсатором. При прохождении тока через неоновую лампу в ней возникает электрический пробой, сопротивление лампы падает практически до нуля, но она практически сразу-же начинает разряжаться через конденсатор. Таким образом стартер хаотично открывается-закрывается и в дросселе возникают хаотичные колебания.
За счет ЭДС самоиндукции эти колебания могут иметь амплитуду до 1000 Вольт, они-то и служат источником высоковольтных импульсов зажигающих лампу.
Данная конструкция применяется в быту уже много лет и имеет целый ряд недостатков- неопределенное время включения, износ нитей накала ламп и огромный уровень радиопомех.
Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.
Более перспективны — без стартерные устройства зажигания , где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы — на них подается напряжение, необходимое для поджига газа в лампе.
Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.
Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.
В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.
Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.
Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.
Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.
Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.
Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.
В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.
Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.
Потребность общества в осветительных устройствах большой мощности свечения и одновременно экономичных в потреблении электроэнергии, а также долговечных в эксплуатации удовлетворяют производители ламп ДРЛ и других газоразрядных ламп. Их применяют для освещения большой территории, объектов хранения материалов, зданий заводов. Лампа ДРЛ может иметь разброс мощности от 50 до 2 000 ватт, а подключается к однофазной электрической сети с напряжением 220 вольт и частотой 50 герц.
Для чего нужен дроссель?
Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:
Все осветительные устройства имеют отличия в принципе получения светового потока, есть и другие различия:
- в их устройстве применяются разные материалы;
- отличаются наличием химических элементов;
- внутри колб давление по собственным параметрам каждого осветительного устройства;
- они различны по мощности и яркости светового потока.
Объединяет эти виды ламп непостоянная величина пускового тока и сопротивления в процессе пуска и дальнейшей работы.
Для того чтобы ограничить величину рабочего тока, в осветительных устройствах этого вида применяют разного вида балласт: ЭПРА, ПРА и ЭмПРА, которые представляют собой катушки индуктивности (дроссели). В момент пуска каждое устройство этого типа имеет высокое значение сопротивления; когда осветительный прибор разжигается, происходит процесс электропробоя в среде инертного газа, которым наполнена лампа (ртутный или натриевый пар), и возникает дуговой разряд.
Схема подключения:
Розжиг лампы:
В процессе, когда происходит зажигание лампы, ионизированный газ теряет сопротивление от дугового разряда в несколько десятков раз, и по этой причине возрастает ток, идет выделение тепла. Если не ограничивать величину тока, он мгновенно создаст перегретую газовую среду, что приведет к поломке осветительного устройства, его повреждению изнутри. Для предотвращения этого в цепь прибора освещения включают сопротивление (дроссель).
Физические параметры и схема подключения дросселя
Последовательно включенный дроссель ДРЛ имеет реактивное сопротивление, величина которого зависит от катушки индуктивности: один генри пропускает один ампер тока, когда напряжение – один вольт.
К параметрам катушки индуктивности относятся:
- квадрат используемой медной проволоки;
- количество витков;
- какой сердечник и величина поперечного сечения магнитопровода;
- какое электромагнитное насыщение.
Катушка индуктивности имеет активное сопротивление, которое всегда учитывается, когда проводится расчет балласта для каждого типа прибора освещения этого вида с учетом его мощности, от этого зависят габаритные размеры дросселя.
Рассмотрим простую схему включения балласта, когда в конструкции лампы ДРЛ предусмотрены электроды (дополнительные) для процесса возникновения тлеющего разряда, переходящего в электродугу.
В этом случае индуктивность ограничивает величину рабочего тока в осветительном устройстве.
Балласт для люминесцентных ламп
Конструктивно люминесцентный прибор освещения для пуска использует дроссель ПРА, в новых видах этого осветительного устройства применяется ЭПРА, это электронный вид пускорегулирующего аппарата. Задачей этого устройства является сдерживание возрастающего значения тока на одном уровне, который поддерживает необходимое напряжение на электродах внутри осветительного прибора.
Рассмотрим, как работает балласт для люминесцентных светильников. Когда его подключают, в цепи между параметрами напряжения и тока происходит сдвиг фаз, отставание характеризуется коэффициентом мощности, cos φ. Когда рассчитывается активная нагрузка, эту величину надо учитывать, так как при маленьком значении этого параметра нагрузка растет, по этой причине в схему пуска включается и конденсатор, который выполняет компенсационную функцию.
Специалисты по параметрам потери мощности различают несколько исполнений этих осветительных устройств:
- обычный вид исполнения, с литерой D;
- пониженный вид исполнения, с литерой B;
- низкий вид исполнения, с литерой C.
Применение балласта имеет свои положительные моменты:
- осветительное устройство работает в безопасном режиме, необходимо использовать и стартер для пуска;
- появляется способность сдерживать значение тока на установленном уровне;
- световой поток становится намного стабильнее, хотя полностью мерцание убрать нет возможности;
- стоимость такого исполнения светильника доступна для широкого потребления.
Подключение ламп с применением конденсатора с компенсационной функцией
Существует способ подключения люминесцентного прибора освещения без использования балласта, но для этого необходимо в два раза повысить сетевое напряжение с выпрямленным током, а вместо балласта использовать лампу с нитью накаливания. Схема такого включения:
Как самостоятельно сделать дроссель?
Благодаря своим параметрам дуговые приборы освещения мощностью 250 или 125 ватт применяются обществом для освещения следующих помещений:
- гаражные кооперативы;
- дачные участки;
- загородный дом.
Купить устройство освещения этого вида можно в магазине или на рынке, часто возникает проблема, как найти дроссель для ламп ДРЛ, стоимость дросселя может быть выше самой лампы из-за конструктивных особенностей и наличия медной проволоки.
Решить этот вопрос помогут народные идеи изготовления балласта для лампы ДРЛ 250 из других материалов: три дросселя для лампы дневного света при мощности лампы 40 ватт или же два дросселя от лампы дневного света мощностью в 80 ватт. В нашем случае для того чтобы зажечь лампу ДРЛ, используя самодельный балласт, сделанный своими руками, рекомендуется применить два дросселя мощностью 80 ватт и один балласт мощностью 40 ватт, соединение показано на фото.
Из схемы видно, что все балласты образуют один дроссель, собрать пусковой балласт можно в общий ящик. Важно! Особенное внимание нужно уделить контактам на дросселях, они должны быть надежными, чтобы не нагревались и не искрились.
Как можно запустить ДРЛ-лампу без дросселя?
Существует возможность пуска дугового устройства освещения 250 ватт без балласта, но для этого необходимо применить другую технологию включения прибора. Специалисты рекомендуют вариант покупки специальной лампы ДРЛ 250, у которой есть способность включения без балласта (дросселя), когда в конструкцию лампы добавляется спираль, в задачу которой входит разбавлять световой поток.
Еще народными умельцами применяется способ пуска ламп этого вида с использованием набора конденсаторов, но в этом случае надо точно знать величину получаемого тока. Также применяют пуск ламп ДРЛ с использованием простой лампы, но только при условии, что она имеет одинаковую мощность с ДРЛ-лампой.
Ультрафиолет лампы ДРЛ»>
Сейчас химия на основе фотокатализаторов получает большое распространение. Разнообразные клеи лаки, фоточувствительные эмульсии и прочие интересные достижения химической промышленности. К сожалению, промышленные установки для УФ стоят приличных денег.
А что, делать если хочется только попробовать химию? подойдёт или нет? Для этой цели покупать фирменные устройства за N килобаксов, слишком кучеряво…
На территории бывшего СССР обычно из положения выходят добывая кварцевые трубки из лам типа ДРЛ, иметься целая линейка лам от ДРЛ-125 до ДРЛ-1000 с помощью них можно получить достаточно мощное излучение, этого излучения обычно хватает для большинства эпизодических задач. Типа отвердеть клей или лак раз в месяц, или засветить фоторизист.
Как добывать трубку из ламп ДРЛ, как это делать безопасно, написано много информации. Хочется коснуться другого аспекта, а именно запуска этих ламп с минимальными финансовыми затратами.
Штатно для запуска используется специальный дроссель с увеличенных магнитным рассеянием. Но даже он не всегда доступен, а т.к. он тяжёлый то обычно в регионы доставка влетает в копеечку. Дроссель на 700W + доставка тянет на 100$. Что для варианта попробовать, тоже, так не разу не дешёво.
Немного теории:
Основной проблемой запуска ртутных ламп являться наличие дугового разряда. Причём холодная лампа и горячая имеют принципиально разное сопротивление горящей дуги. Примерно от единиц Ом до десятков Ом. Соответственно для этого и служит дроссель который ограничивает ток во время запуска и работы лампы. Надо признать, что дроссель является достаточно архаичным инструментом, и для дорогих и мощных лам применяемых в UF-сушилках (несколько килловат мощности, и несколько тыс. долларов за лампу) применяют блоки электронной стабилизации горения дуги. Эти блоки позволяют более точно выдерживать параметры горения дуги продлевая тем самым жизнь лампы, и уменьшая проблемы при отверждении. Даже для архаичной ДРЛ производитель пишет, разброс напряжения не более 3% в противном случае уменьшение срока службы.
Как запустить Лампу ДРЛ без дросселя подручными средствами?
Ответ простой, надо всё го лишь ограничить ток, на всех режимах работы, начиная с разогрева, и заканчивая рабочим режимом. Ограничивать будем резистором.
Но так как резистор надо очень мощный, будем использовать имеющиеся под рукой нагревательные приборы (лампы накаливания, утюги, чайники, тены для нагрева воды, ручные кипятильники и т.д.) Это звучит смешно, но это будет работать и выполнять свои задачи.
Единственный недостаток, это перерасход электричества, т.е. если мы запустим лампу ДРЛ на 400W на балласте будет выделяться в тепло около 250W. Но думаю для задачи попробовать ультрафиолет, или для эпизодических работ это несущественно.
Почему так никто не делал?
Почему никто, существуют лампы ДРБ в которых использован именно этот принцип. Рядом с кварцевой трубкой, расположена нить накаливания обычной лампочки.
А писатели в интернете видимо не учили в школе физику. Ну конечно ещё один маленький нюанс, нужна цепь прогрева, т.е. греем лампу одним резистором, а на рабочий режим выводим другим. Но думаю, с выключателем и двумя проводками многие справятся:)
Итак схема:
Так, для многих правильные схемы, это тёмный лес, постарался изобразить в картинках. Более приближенно к жизни.
Как это работает?
1) Этап прогрева, выключатель должен быть обязательно разомкнут!!! Включаем лампу в сеть. Лампа накаливания начинает ярко светиться, трубка в лампе ДРЛ начинает мерцать и медленно разгораться. Минут через 3..5 трубка в лампе уже начнёт светить достаточно ярко.
2) Второе замыкаем выключатель на основной балласт, ток ещё увеличиться и ещё через 3 мин лампа выйдет на рабочий режим.
Внимание суммарно на нагрузке лампы + утюги чайники и т.д. будет выделять мощности сопоставимые с мощностью лампы. Утюг допустим, может отключиться встроенным термореле, и мощность лампы ДРЛ снизиться.
Для большинства такая схема будет очень сложной, особенно для тех у кого нет прибора для замера сопротивления. Для них я ещё более упростил схему:
Запуск простой, выкручиваем лампы, оставляем только нужное количество (1-2шт) для запуска горелки, и по мере прогрева начинаем вкручивать. Для мощных лам ДРЛ можно использовать в качестве резистора трубчатые галогенные лампы.
Теперь самое сложное:
Наверно, уже многие поняли, что лампы и нагрузки надо как то подбирать? Безусловно, если взять какой то утюг и подключить к лампе ДРЛ-125 от лампы ничего не останется, а вы получите ртутное заражение. К стати, тоже самое будет, если вы возьмете для лампы ДРЛ-125 дроссель от ДРЛ-700. Т.е. мозг всё таки надо включать!!!
Несколько простых правил, что бы сберечь силы нервы и здоровье:)
1)Ориентироваться на шильдики приборов нельзя, нужно замерять реальное сопротивление омметром и делать вычисления. Либо использовать с запасом прочности, выбирая чуть меньшую мощность чем можно.
2)Замерять сопротивление ламп накаливания бесполезно, холодная спираль имеет в 10 раз меньшее сопротивление, чем горячая. Лампы накаливания худший выбор, приходиться ориентироваться по надписи на лампе. И не в коем случае не включаете нагрузку из лам накаливания разом, вкручивайте их по 1-штуке, уменьшая броски тока. Так как подозреваю, что это будет самый популярный способ включения лампы ДРЛ без дросселя. Снял ролик для примера.
3)Из общих соображений для начала разогрева лампы ДРЛ используйте нагрузку не сильно больше её номинальной мощности. Для примера ДРЛ-400 для прогрева используйте 300-400ват.
Таблица для разных ламп:
Тип лампы | V-дуги | I-дуги | R-дуги | Баластный резистор | Надпись на баласте\утюге\лампе\тэн | Тепло на баласте при работе |
---|---|---|---|---|---|---|
ДРЛ-125 | 125 В | 1 А | 125 Ом | 80 Ом | 500 Вт | 116 Вт |
ДРЛ-250 | 130 В | 2 А | 68 Ом | 48 Ом | 1000 Вт | 170 Вт |
ДРЛ-400 | 135 В | 3 А | 45 Ом | 30 Ом | 1600 Вт | 250 Вт |
ДРЛ-700 | 140 В | 5 А | 28 Ом | 17 Ом | 2850 Вт | 380 Вт |
Комментарии к таблице:
1 — наименование лампы.
2 – рабочее напряжение на прогретой лампе.
3 – номинальный рабочий ток лампы.
4 – примерное рабочее сопротивление лампы в разогретом состоянии.
5 – сопротивление балластного резистора для работы на полную мощность.
6 – примерная мощность написанная на шильдике устройства (тэны, лампы и т.д.) которое будет использовано в качестве балластного резистора.
7 – мощность в ватах, которая будет выделяться на балластном резисторе, или устройстве его заменяющем.
Если сложно, или вам кажется, что это не будет работать. Снял ролик, в качестве примера лампа ДРЛ-400 запускаю её тремя лампами по 300вт (обошлись мне по 30руб штука). Мощность на лампе ДРЛ получилась около 300W потери на лампах накаливания 180W. Как видно ничего сложно нет.
Теперь ложка дёгтя:
К сожалению, использовать горелки от ламп ДРЛ в коммерческом применении не так просто как кажется. Кварцевая трубка в лампах ДРЛ выполнена из расчётов работы в среде инертного газа. В связи с этим введены некоторые технологические упрощения в производстве. Что незамедлительно сказывается на сроке службы, как только вы разбиваете внешний баллон лампы. Хотя конечно с учётом дешевизны (Ватт\рубль) ещё не известно, что более выгодно специализированные лампы, или постоянно меняемые излучатели из ДРЛ. Перечислю, основные ошибки при проектировании всяких устройств из ламп ДРЛ:
1) Охлаждение лампы. Лампа должна быть горячая, охлаждение только косвенное. Т.е. охлаждать надо отражатель лампы а не лампу саму. Идеальный вариант засунуть излучатель в кварцевую трубку, и охлаждать внешнюю кварцевую трубку, а не сам излучатель.
2) Использование лампы без отражателей, т.е. разбили колбу и вкрутили лампу в патрон. Дело в том, что при таком подходе лампа не прогревается до рабочих температур, идёт сильная деградация и уменьшение срока службы в тысячи раз. Лампу надо поставить как минимум в U-образный отражатель из алюминия, что бы поднять температуру вокруг лампы. И заодно сфокусировать излучение.
3) Борьба с озоном. Ставят мощные вентиляторы вытяжки, и если поток идёт сквозь лампу, то получаем охлаждение. Надо разрабатывать косвенный отвод озона, что бы забор воздуха\озона шёл в как можно дальше от лампы.
4) Топорность при обрезке цоколя. При добывании излучателя, надо действовать максимально осторожно, иначе микротрещины в местах подключения проводников к лампе разгерметизируют её за десяток часов горения.
Очень частый вопрос про спектр излучения кварцевой колбы от ламп ДРЛ . Потому как некоторые производители химии пишут спектр чувствительности своих фотоинициаторов.
Так УФ излучатель лампы ДРЛ находиться в средней точке между высоким и очень высоким давлением у неё несколько резонансов в диапазоне от 312 до 579нм. Основные спектры резонанса выглядят примерно так.
Так же хочется отметить, что большинство доступных оконных стёкол отрежут спектр лампы с низу до 400нм с коэффициентом затухания 50-70%. Учитывайте это при проектировании установок экспонирования отверждении и т.д. Либо ищите химически чистые стёкла с нормированными показателями пропускания.
Хочется напомнить используйте средства защиты при работе с UF излучением, вот пару роликов для просмотра.
Первый ролик. Обращаем внимание на инопланетянина таскающего оттиски к сушке со снятым чехлом, вот так вот защищаться приходиться от UF излучения.
Второй ролик ручная сушилка для лака. К сожалению не сказано, что нужна вытяжка, озон не сильно полезен…
Ну что, ещё не страшно тогда продвигаемся дальше. А как быть бедным полиграфистам\шелкографам которые решили попробовать современные UF краски. Цены от фирменных сушилок захватывают дух, а если перевести в рубли, то просто прибивают.
Думаю многие пробовали сушить ДРЛ трубками, и ничего не получалось, ну кроме некоторых сортов лака.
В общем продолжение следует.
Читайте мои обзоры о принтерах и прочем оборудовании на моём следите за обновлениями.
Тематические материалы:
Ошибка «Запрещено администратором или политикой шифрования в Android Почему не отключается блокировка экрана Приложение Плей Маркет остановлено – что делать Как исправить ошибку «Приложение Google остановлено» на Android? Ошибка «Запрещено администратором или политикой шифрования в Android Что такое отключено администратором политикой шифрования Полное руководство по разблокировке телефона LG Как открыть заблокированный телефон lg Полное руководство по разблокировке телефона LG Как снимает пароль лджи 0168 Устранение ошибки «Приложение Сервисы Google Play остановлено» на Android Скачать red call русская версия 7Обновлено: 04. 06.2021
103583
Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
Подключение ламп дневного без дросселя. Схемы подключения люминесцентных ламп дневного света. Схема подключения через дроссель
Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Они долго работают и не перегорают, а значит их нужно значительно реже обслуживать. Основная проблема — это не перегорание самой лампочки (выгорание спирали и люминофора), а выход из строя пускорегулирующей аппаратуры. В этой статье мы расскажем, как выполнить подключение люминесцентной лампы без дросселя и стартера, а также запитать от низковольтного источника постоянного тока.
Классическая схема включения люминесцентных ламп
Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:
Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.
Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:
Фаза-дроссель-спираль-стартер-вторая спираль-ноль.
В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.
Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.
Питание от 220В без дросселя и стартера
Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.
Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ. Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели.
Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.
Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.
На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:
Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.
Лампу накаливания использовать на 40-60 Вт, как показано на фото:
Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.
На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:
Питание ламп от 12В
Но любители самоделок часто задаются вопросом «Как зажечь люминесцентную лампу от низкого напряжения?», мы нашли один из вариантов ответа на этот вопрос. Для подключения люминесцентной трубки к низковольтному источнику постоянного тока, например, аккумулятору на 12В, нужно собрать повышающий преобразователь. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Такую схему можно использовать для подключения люминесцентных ламп к бортовой сети автомобиля. Для её работы также не нужен дроссель и стартер. Более того она будет работать даже если её спирали перегорели. Возможно вам понравится одна из вариаций рассмотренной схемы.
Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам. Это не идеальное решение, а скорее выход из ситуации. Светильник с такой схемой подключения не следует использовать в качестве основного освещения рабочих мест, но допустимо для освещения помещений, где человек не приводит много времени — коридоры, кладовые и прочее.
Наверняка вы не знаете:
Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).
Устройство и описание ЛЛ
Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.
Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из В исходном состоянии электроды разомкнуты.
Принцип работы ЛЛ
Стартерная схема включения люминесцентных ламп работает следующим образом.
- На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
- При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
- Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
- Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.
Схема включения двух установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.
Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.
Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.
Бездроссельное включение люминесцентных ламп: схемы
Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).
Как запускается ЛЛ с ЭПРА
Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.
Достоинства электронной схемы запуска:
- возможность пуска с любой временной задержкой;
- не нужны массивный электромагнитный дроссель и стартер;
- отсутствие гудения и моргания ламп;
- высокая светоотдача;
- легкость и компактность устройства;
- больший срок эксплуатации.
Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.
Система ЭПРА преобразует сетевое переменное напряжение в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения может обеспечивать или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.
Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.
Выпрямление напряжения осуществляется после чего оно сглаживается параллельно подключенным конденсатором С 1 . После подключения к сети сразу заряжается конденсатор С 4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR 1 и транзисторах Т 1 и Т 2 . При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С 2 , С 3 , L 1 , подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.
ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.
Преимущества современных ЭПРА следующие:
- плавное включение;
- экономичность работы;
- сохранение электродов;
- исключение мерцания;
- работоспособность при низкой температуре;
- компактность;
- долговечность.
Недостатками являются более высокая стоимость и сложная схема зажигания.
Применение умножителей напряжения
Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.
После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С 1 , С 2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С 3 , С 4 устанавливают слюдяные на 1000 В.
ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.
Бесстартерная схема включения люминесцентных ламп
Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.
Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.
Как включить сгоревшую лампу?
Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.
Заключение
Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.
Уважаемые посетители!!!
Данный способ подключения люминесцентного светильника должен быть всем хорошо знаком, в частности, для профессиональных электриков. При такой схеме включения люминесцентного светильника присутствует одна характерная особенность способа такого подключения, — с которой вам предстоит ознакомиться. Информация, представленная в этой теме, имеет место в обучении студентов по профессии «Электромонтажник электрических сетей и электрооборудования», — преподавательской деятельностью которой я занимаюсь в настоящее время.
Как включить люминесцентную лампу-без дросселя
На рисунке показаны два способа подключения люминесцентных светильников:
принципиальная схема включения люминесцентной лампы со стартерным зажиганием (рис.1, а) и схема включения люминесцентной лампы без дросселя (рис.1, б).
Для обоих схем включения люминесцентных ламп, импульсом повышенного напряжения, способствующему образованию дугового разряда в лампах (необходимого для их зажигания) служат: дроссель LL и лампа накаливания EL2.
Во второй схеме (рис.1,б) представлена схема включения люминесцентной лампы с использованием лампы накаливания (вместо дросселя). В данной схеме присутствует наличие токоведущего провода, один конец которого присоединен к одному из выводов электродов люминесцентной лампы. Вместо токоведущего провода можно использовать широкую полосу фольги, которая имеет такое же электрическое соединение как и провод. Соответственно, как сам отрезок провода, так и полоса фольги, должны быть закреплены по концам колбы металлическими хомутиками под диаметр колбы (люминесцентной лампы).
На этом пока все. Следите за рубрикой.
Ультрафиолет лампы ДРЛ»>
Сейчас химия на основе фотокатализаторов получает большое распространение. Разнообразные клеи лаки, фоточувствительные эмульсии и прочие интересные достижения химической промышленности. К сожалению, промышленные установки для УФ стоят приличных денег.
А что, делать если хочется только попробовать химию? подойдёт или нет? Для этой цели покупать фирменные устройства за N килобаксов, слишком кучеряво…
На территории бывшего СССР обычно из положения выходят добывая кварцевые трубки из лам типа ДРЛ, иметься целая линейка лам от ДРЛ-125 до ДРЛ-1000 с помощью них можно получить достаточно мощное излучение, этого излучения обычно хватает для большинства эпизодических задач. Типа отвердеть клей или лак раз в месяц, или засветить фоторизист.
Как добывать трубку из ламп ДРЛ, как это делать безопасно, написано много информации. Хочется коснуться другого аспекта, а именно запуска этих ламп с минимальными финансовыми затратами.
Штатно для запуска используется специальный дроссель с увеличенных магнитным рассеянием. Но даже он не всегда доступен, а т.к. он тяжёлый то обычно в регионы доставка влетает в копеечку. Дроссель на 700W + доставка тянет на 100$. Что для варианта попробовать, тоже, так не разу не дешёво.
Немного теории:
Основной проблемой запуска ртутных ламп являться наличие дугового разряда. Причём холодная лампа и горячая имеют принципиально разное сопротивление горящей дуги. Примерно от единиц Ом до десятков Ом. Соответственно для этого и служит дроссель который ограничивает ток во время запуска и работы лампы. Надо признать, что дроссель является достаточно архаичным инструментом, и для дорогих и мощных лам применяемых в UF-сушилках (несколько килловат мощности, и несколько тыс. долларов за лампу) применяют блоки электронной стабилизации горения дуги. Эти блоки позволяют более точно выдерживать параметры горения дуги продлевая тем самым жизнь лампы, и уменьшая проблемы при отверждении. Даже для архаичной ДРЛ производитель пишет, разброс напряжения не более 3% в противном случае уменьшение срока службы.
Как запустить Лампу ДРЛ без дросселя подручными средствами?
Ответ простой, надо всё го лишь ограничить ток, на всех режимах работы, начиная с разогрева, и заканчивая рабочим режимом. Ограничивать будем резистором.
Но так как резистор надо очень мощный, будем использовать имеющиеся под рукой нагревательные приборы (лампы накаливания, утюги, чайники, тены для нагрева воды, ручные кипятильники и т.д.) Это звучит смешно, но это будет работать и выполнять свои задачи.
Единственный недостаток, это перерасход электричества, т.е. если мы запустим лампу ДРЛ на 400W на балласте будет выделяться в тепло около 250W. Но думаю для задачи попробовать ультрафиолет, или для эпизодических работ это несущественно.
Почему так никто не делал?
Почему никто, существуют лампы ДРБ в которых использован именно этот принцип. Рядом с кварцевой трубкой, расположена нить накаливания обычной лампочки.
А писатели в интернете видимо не учили в школе физику. Ну конечно ещё один маленький нюанс, нужна цепь прогрева, т.е. греем лампу одним резистором, а на рабочий режим выводим другим. Но думаю, с выключателем и двумя проводками многие справятся:)
Итак схема:
Так, для многих правильные схемы, это тёмный лес, постарался изобразить в картинках. Более приближенно к жизни.
Как это работает?
1) Этап прогрева, выключатель должен быть обязательно разомкнут!!! Включаем лампу в сеть. Лампа накаливания начинает ярко светиться, трубка в лампе ДРЛ начинает мерцать и медленно разгораться. Минут через 3..5 трубка в лампе уже начнёт светить достаточно ярко.
2) Второе замыкаем выключатель на основной балласт, ток ещё увеличиться и ещё через 3 мин лампа выйдет на рабочий режим.
Внимание суммарно на нагрузке лампы + утюги чайники и т.д. будет выделять мощности сопоставимые с мощностью лампы. Утюг допустим, может отключиться встроенным термореле, и мощность лампы ДРЛ снизиться.
Для большинства такая схема будет очень сложной, особенно для тех у кого нет прибора для замера сопротивления. Для них я ещё более упростил схему:
Запуск простой, выкручиваем лампы, оставляем только нужное количество (1-2шт) для запуска горелки, и по мере прогрева начинаем вкручивать. Для мощных лам ДРЛ можно использовать в качестве резистора трубчатые галогенные лампы.
Теперь самое сложное:
Наверно, уже многие поняли, что лампы и нагрузки надо как то подбирать? Безусловно, если взять какой то утюг и подключить к лампе ДРЛ-125 от лампы ничего не останется, а вы получите ртутное заражение. К стати, тоже самое будет, если вы возьмете для лампы ДРЛ-125 дроссель от ДРЛ-700. Т.е. мозг всё таки надо включать!!!
Несколько простых правил, что бы сберечь силы нервы и здоровье:)
1)Ориентироваться на шильдики приборов нельзя, нужно замерять реальное сопротивление омметром и делать вычисления. Либо использовать с запасом прочности, выбирая чуть меньшую мощность чем можно.
2)Замерять сопротивление ламп накаливания бесполезно, холодная спираль имеет в 10 раз меньшее сопротивление, чем горячая. Лампы накаливания худший выбор, приходиться ориентироваться по надписи на лампе. И не в коем случае не включаете нагрузку из лам накаливания разом, вкручивайте их по 1-штуке, уменьшая броски тока. Так как подозреваю, что это будет самый популярный способ включения лампы ДРЛ без дросселя. Снял ролик для примера.
3)Из общих соображений для начала разогрева лампы ДРЛ используйте нагрузку не сильно больше её номинальной мощности. Для примера ДРЛ-400 для прогрева используйте 300-400ват.
Таблица для разных ламп:
Тип лампы | V-дуги | I-дуги | R-дуги | Баластный резистор | Надпись на баласте\утюге\лампе\тэн | Тепло на баласте при работе |
---|---|---|---|---|---|---|
ДРЛ-125 | 125 В | 1 А | 125 Ом | 80 Ом | 500 Вт | 116 Вт |
ДРЛ-250 | 130 В | 2 А | 68 Ом | 48 Ом | 1000 Вт | 170 Вт |
ДРЛ-400 | 135 В | 3 А | 45 Ом | 30 Ом | 1600 Вт | 250 Вт |
ДРЛ-700 | 140 В | 5 А | 28 Ом | 17 Ом | 2850 Вт | 380 Вт |
Комментарии к таблице:
1 — наименование лампы.
2 – рабочее напряжение на прогретой лампе.
3 – номинальный рабочий ток лампы.
4 – примерное рабочее сопротивление лампы в разогретом состоянии.
5 – сопротивление балластного резистора для работы на полную мощность.
6 – примерная мощность написанная на шильдике устройства (тэны, лампы и т.д.) которое будет использовано в качестве балластного резистора.
7 – мощность в ватах, которая будет выделяться на балластном резисторе, или устройстве его заменяющем.
Если сложно, или вам кажется, что это не будет работать. Снял ролик, в качестве примера лампа ДРЛ-400 запускаю её тремя лампами по 300вт (обошлись мне по 30руб штука). Мощность на лампе ДРЛ получилась около 300W потери на лампах накаливания 180W. Как видно ничего сложно нет.
Теперь ложка дёгтя:
К сожалению, использовать горелки от ламп ДРЛ в коммерческом применении не так просто как кажется. Кварцевая трубка в лампах ДРЛ выполнена из расчётов работы в среде инертного газа. В связи с этим введены некоторые технологические упрощения в производстве. Что незамедлительно сказывается на сроке службы, как только вы разбиваете внешний баллон лампы. Хотя конечно с учётом дешевизны (Ватт\рубль) ещё не известно, что более выгодно специализированные лампы, или постоянно меняемые излучатели из ДРЛ. Перечислю, основные ошибки при проектировании всяких устройств из ламп ДРЛ:
1) Охлаждение лампы. Лампа должна быть горячая, охлаждение только косвенное. Т.е. охлаждать надо отражатель лампы а не лампу саму. Идеальный вариант засунуть излучатель в кварцевую трубку, и охлаждать внешнюю кварцевую трубку, а не сам излучатель.
2) Использование лампы без отражателей, т.е. разбили колбу и вкрутили лампу в патрон. Дело в том, что при таком подходе лампа не прогревается до рабочих температур, идёт сильная деградация и уменьшение срока службы в тысячи раз. Лампу надо поставить как минимум в U-образный отражатель из алюминия, что бы поднять температуру вокруг лампы. И заодно сфокусировать излучение.
3) Борьба с озоном. Ставят мощные вентиляторы вытяжки, и если поток идёт сквозь лампу, то получаем охлаждение. Надо разрабатывать косвенный отвод озона, что бы забор воздуха\озона шёл в как можно дальше от лампы.
4) Топорность при обрезке цоколя. При добывании излучателя, надо действовать максимально осторожно, иначе микротрещины в местах подключения проводников к лампе разгерметизируют её за десяток часов горения.
Очень частый вопрос про спектр излучения кварцевой колбы от ламп ДРЛ . Потому как некоторые производители химии пишут спектр чувствительности своих фотоинициаторов.
Так УФ излучатель лампы ДРЛ находиться в средней точке между высоким и очень высоким давлением у неё несколько резонансов в диапазоне от 312 до 579нм. Основные спектры резонанса выглядят примерно так.
Так же хочется отметить, что большинство доступных оконных стёкол отрежут спектр лампы с низу до 400нм с коэффициентом затухания 50-70%. Учитывайте это при проектировании установок экспонирования отверждении и т.д. Либо ищите химически чистые стёкла с нормированными показателями пропускания.
Хочется напомнить используйте средства защиты при работе с UF излучением, вот пару роликов для просмотра.
Первый ролик. Обращаем внимание на инопланетянина таскающего оттиски к сушке со снятым чехлом, вот так вот защищаться приходиться от UF излучения.
Второй ролик ручная сушилка для лака. К сожалению не сказано, что нужна вытяжка, озон не сильно полезен…
Ну что, ещё не страшно тогда продвигаемся дальше. А как быть бедным полиграфистам\шелкографам которые решили попробовать современные UF краски. Цены от фирменных сушилок захватывают дух, а если перевести в рубли, то просто прибивают.
Думаю многие пробовали сушить ДРЛ трубками, и ничего не получалось, ну кроме некоторых сортов лака.
В общем продолжение следует.
Читайте мои обзоры о принтерах и прочем оборудовании на моём следите за обновлениями.
Запуск ламп дневного света без дросселя
Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.
Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.
В первую очередь вам нужно выяснить, что же именно сгорело:
- сама люминесцентная лампочка
- стартер
- или дроссель
Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.
Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.
Одна из наиболее серьезных проблем — это вышедший из строя дроссель.
Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.
Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.
Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.
В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.
Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?
Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.
Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.
Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.
Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.
Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.
Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.
Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.
Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.
При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.
Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).
При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.
Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.
При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.
Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.
При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.
Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.
Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.
Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.
То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.
Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.
Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.
Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.
Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?
А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.
То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.
Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.
Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.
Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает — это качество товаров из поднебесной не соответствует «железобетонным» советским гостам.
Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.
Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.
Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.
Для трубок мощностью 18Вт подойдут следующие компоненты:
- диодный мост GBU408
- конденсатор 2нФ (до 1кв)
- конденсатор 3нФ (до 1кв)
- лампочка накаливания 40Вт
Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить. Все элементы соединяются вот таким образом.
После чего схемка подключается к лампе дневного света.
Вот еще одна подобная бездроссельная схема.
Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).
В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.
Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.
Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.
Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.
Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.
Принцип действия лампы дневного света
Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.
- Дроссель.
- Колба лампы.
- Люминесцентный слой.
- Контакты стартера.
- Электроды стартера.
- Корпус стартера.
- Биметаллическая пластина.
- Газ.
- Нити накала лампы.
- Ультрафиолетовое излучение.
- Ток разряда.
Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.
Принцип действия стартера
На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).
Рис. 1 Функциональная схема подключения ЛДС
Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.
Принцип действия ЭПРА
Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.
Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.
Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.
Способы пуска ЛДС без специализированного ПРА
При выходе из строя лампы дневного света возможны две причины:
1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.
Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).
Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.
Рис. 6. Структурная схема подключения ЛДС без дросселя
Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.
Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.
Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.
Заключение
При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.
Широко используемые люминесцентные лампы не лишены недостатков: во время их работы прослушивается гудение дросселя, в системе питания имеется стартер, который ненадежен в работе, и самое главное — лампа имеет нить накала, которая может перегореть, из-за чего лампу приходится заменять новой.
На рисунке показана схема, которая позволяет устранить перечисленные недостатки. Нет привычного гудения, лампа загорается моментально, отсутствует ненадежный стартер, и, что самое главное, можно использовать лампу с перегоревшей нитью накала.
Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, СЗ желательно чтобы были слюдяными. Резистор R1 обязательно проволочный, по мощности лампы, указанной в таблице.
Диоды Д2, ДЗ и конденсаторы С1, С4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостейС1, С4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работы лампы Л1, рассчитанной на напряжение 220 В.
Применение диодов Д1, Д4 и конденсаторов С2, СЗ повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы в момент включения. Конденсаторы С2, СЗ одновременно способствуют подавлению радиопомех.
Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.
Данные элементов схемы в зависимости от мощности люминисцентных ламп приведены в таблице.
«300 практических советов», М.,1986г.
Оценить статью
- Техническая грамотность
Средний балл статьи: 0 Проголосовало: 0 чел.
Комментарии (38) | Я собрал ( 0 ) | Подписаться
Для добавления Вашей сборки необходима регистрация
Вечная лампа дневного света | Электрик в доме
Автор: admin, 06 Июн 2013
Схема подключения ламп дневного света
Многие используют лампы дневного света, конечно в основном они используются на предприятиях, но используют их и дома, эти лампы экономичны, по сравнению с обычными лампами накаливания они дают примерно в три раза больший световой поток, при одинаковой электрической мощности. Когда лампа «перегорает» её обычно выкидывают на помойку, что неправильно, люминесцентные лампы нужно сдавать в специальные пункты утилизации.
Но оказывается и перегоревшую лампу дневного света (ЛДС) можно использовать повторно, причём срок её эксплуатации будет большим, но конечно же не вечным…Обычно перегорает одна из спиралей лампы, служащих для разогрева электродов лампы. Рассмотрим стандартную схему подключения лампы дневного света изображенную выше.
На схеме обозначено:
- Др — дроссель (балласт, ПРА).
- L — лампа дневного света.
- S — стартёр.
Работа схемы
При подаче сетевого напряжения 220В на схему на стартёр подаётся полное напряжение сети, так как контакты его разомкнуты, ток через лампу не идёт и падение напряжения на дросселе практически равно нулю. Напряжения сети недостаточно для розжига разряда в лампе, но достаточно для розжига разряда в неоновой лампочке стартёра. Неоновая лампочка имеет два электрода, неподвижный и биметаллический. Биметаллический электрод в стартёре разогревается изгибается и замыкает электрическую цепь, при этом начинают разогреваться нити разогрева электродов лампы, разряд в неоновой лампочке гаснет и биметаллический электрод остывает, за это время нити люминесцентной лампы успевают разогреться. Затем остывший электрод размыкает цепь и происходит скачок напряжения на дросселе из-за явления самоиндукции. Для разогретых электродов этого скачка напряжения достаточно для розжига тлеющего разряда в лампе. Происходит, так называемый, «тёплый» пуск лампы.
Теперь уже падение напряжения на дросселе есть, соответственно к стартёру приложено уже не полное напряжение сети, поэтому розжига неоновой лампочки и повторного срабатывания стартёра не будет. В стартёре также стоит параллельно неоновой лампочке конденсатор, который вместе с дросселем образует резонансный контур, служащий для увеличения длительности скачка напряжения и уменьшения его амплитуды. Дроссель также служит для ограничения тока через лампу. Также параллельно схеме ставят конденсатор, для компенсации индуктивности дросселя, он увеличивает коэффициент мощности (cos φ), тем самым уменьшая потребляемую схемой мощность.
Электроды лампы это вольфрамовые нити накала, покрытые специальной защитной пастой, со временем паста выгорает и нить накала перегорает, также нить накала может перегореть из-за неисправного стартёра. При перегорании хотя бы одной нити накала лампа перестаёт зажигаться. Рассмотрим схему, позволяющую запустить лампу даже с перегоревшими нитями накала.
Вечная лампа дневного света
Вечная лампа дневного света
На схеме обозначено:
С1 — конденсатор 0,047 мкФ, 630В.
С2 — конденсатор 1,0-2,0 мкФ, 400 В.
L — лампа дневного света ЛБ — 40.
Др — дроссель УБИ 36-002, 220В, 40 Вт.
Как видно из схемы добавились конденсаторы С1 — про него я уже говорил, это компенсирующий конденсатор (его ставить необязательно), С2 — конденсатор, с помощью которого создаётся скачок напряжения, необходимого для розжига разряда. Обе нити накала лампы закорочены, чтобы в качестве электродов использовались обе половинки перегоревшей нити накала. В этой схеме происходит розжиг лампы повышенным напряжением, без предварительного прогрева электродов, это, так называемый, «холодный» пуск лампы.
Все детали схемы взяты от стандартной лампы дневного света с ПРА (пускорегулирующее устройство), за исключением конденсатора С2.
На испытаниях макета этой схемы, разжигались лампы как хорошие, так и уже вышедшие из строя, но дроссель в обоих случаях нагревался выше допустимой температуры. Существуют и другие схемы подключения лампы дневного света с перегоревшими нитями накала.
Розжиг перегоревшей ЛДС
Альтернативная схема подключения
Вечная ЛДС
На схеме обозначено:
Др — дроссель (ПРА) соответствующий по мощности лампе.
D1-D4 — диоды Д226Б или Кд105.
С1, С2 — конденсаторы 0,47 мкФ, 400 В.
L — лампа дневного света (ЛДС).
Данная схема представляется мне наиболее надёжной из многих разновидностей подобных схем. Дроссель можно заменить на обычную лампу накаливания, в этом случае мощность лампы накаливания будет зависеть от мощности ЛДС, в следующих соотношениях:
- ЛДС 20 Вт — лампа накаливания 40 Вт.
- ЛДС 30 Вт — лампа накаливания 60 Вт.
- ЛДС 40 Вт — лампа накаливания 75 Вт.
В этой схеме также используется «холодный» запуск ЛДС. Но без стартёра. Единственным недостатком схемы является то, что свечение ЛДС будет со временем смещаться к одному из концов лампы, так как питается она выпрямленным током. Это явление называется электрофорез. Бороться с ним можно время от времени меняя полярность подключения лампы (1-2 раза в месяц) менять полярность можно переворачиванием лампы, либо поставить переключатель, что значительно упростит эксплуатацию.
Будьте осторожны при эксплуатации устройства, детали схемы могут быть под опасным напряжением. Помните о способности конденсаторов сохранять заряд, даже после отключения от сети.
Пишите вопросы и пожелания в комментариях ниже, статья может быть изменена и дополнена.
P.S. Выражаю благодарность г-ну Яковлеву В.М. за помощь.
Будет интересно почитать:
Рубрики: Экономим электричество, Электросхемы
Метки: экономия, электричество, электросхема
Простые решения проблем с медленным запуском, мерцанием или неисправностью люминесцентных ламп
Поиск
Ключевые моменты
Если у вас возникли какие-либо из следующих проблем с люминесцентными лампами, на этой странице вы найдете инструкции по их устранению, включая информацию. о том, что, вероятно, вызвало проблему и как проверить ваши стартеры и балласты:
- Люминесцентная лампа не включается
- Проверка и ремонт стартеров
- Проверка и фиксация балластов
- Другие проблемы, которые можно выявить и устранить с помощью вышеуказанных проверок
Если с вашими лампами возникают какие-либо из следующих проблем, эта статья расскажет вам, как их устранить:
- Люминесцентная лампа не включается (и гудит или не гудит)
- Трубка долго прогревается и включается
- Середина трубки не горит, но горят концы
- Трубка постоянно мигает или гаснет
Мы расскажем вам, что вызвало проблему и как проверить ваши стартеры и балласты. Следующие исправления помогут вам получить максимальную отдачу от флуоресцентного света.
Люминесцентная лампа не включается
Возможные причины:
- Отсутствие электроэнергии из-за срабатывания выключателя или перегоревшего предохранителя
- Мертвый или умирающий балласт
- Внедорожник
- Перегоревшая лампочка
Проверки:
Проверьте питание лампы
Начните с проверки того, что предохранитель не отключил блок питания. Обычно, когда это происходит, срабатывает более одного источника света, поэтому проверьте несколько выключателей освещения, и если ни один из них не включается, проверьте блок предохранителей.
Тестовая пробирка
- Выключите выключатель питания лампы
- Поверните трубку на 90 градусов, пока она не перестанет вращаться, затем сдвиньте трубку вниз
- Проверьте оба конца трубки на предмет потемнения стекла. Если трубка темная с обоих концов, то она либо неисправна, либо близка к концу срока службы, поэтому в любом случае ее необходимо заменить
- Если цвет лампочки выглядит нормально, попробуйте использовать другой светильник, который, как вы знаете, работает, чтобы увидеть, загорается ли он.
- Если не горит, то лампочку нужно заменить. Если загорится, то проблема, скорее всего, в стартере .
Проверка и ремонт стартеров
- Стартер представляет собой небольшую коробку в светильнике, рядом с которой находится трубка.
- Функция этого стартера, как следует из названия, заключается в подаче достаточного количества энергии в трубку, чтобы она зажглась.
- Стартеры можно найти только в фитингах, которым 15 лет или больше.
- Они стоят всего 20 пенсов — самый простой способ проверить стартер — это купить новый и заменить старый.
Как найти и заменить стартер:
- Если вы не видите стартер, снимите трубку, так как иногда стартеры устанавливаются под трубкой, но помните, что только старые фитинги имеют стартеры — если фитинг современный, то Вы можете искать что-то, чего там нет.
- Выключите выключатель освещения и снимите стартер, осторожно надавив на него и повернув влево
- Просто замените стартер и посмотрите, работает ли свет
Проверка и ремонт балластов
- Балласт обеспечивает достаточное напряжение для запуска лампы, но затем ограничивает ток, проходящий через лампу, позволяя лампе излучать постоянный свет.
- Признаком того, что балласт не работает должным образом, является жужжащий звук, исходящий от лампочки.
- Если в светильнике установлено более одной лампочки, и все лампочки мерцают или перегорают, то, скорее всего, дело в балласте.
Как проверить балласт:
- Выключите свет выключателем и отключите питание светильника с помощью автоматического выключателя.
- Снимите трубку с светильника, так как балласт обычно находится за лампой или между лампами в фитингах с более чем одной трубкой.
- Балласт обычно имеет крышку, поэтому снимите крышку балласта с помощью отвертки и проверьте балласт, который обычно представляет собой прямоугольную серую или черную коробку, чтобы убедиться, что из него не вытекает масло или он не выглядит сгоревшим.
- Во-первых, проверьте правильность подключения всех проводов, так как ослабление проводов может привести к неправильной работе балласта. Если провода подключены правильно, проблема, скорее всего, связана с самим балластом.
- Балласты бывают разных форм и размеров, поэтому, если вам нужно купить новый, внимательно проверьте размеры при покупке в Интернете или возьмите старый балласт с собой в магазин осветительных приборов.
- Скорее всего, на вашем балласте есть электрическая схема (или, если нет, она должна быть в коробке), которая покажет вам, какие провода куда идут при замене балласта. Обычно провода окрашены в красный, белый, синий, желтый и черный цвета, а соответствующие цвета на балластных проводах совпадают с цветами на фитингах.
- На YouTube есть множество видеороликов, демонстрирующих, как безопасно заменить балласт. Это один из наших любимых способов замены балласта T8.
Обратите внимание, что существует много различных типов балласта, и каждый из них имеет свои инструкции по замене. При замене балласта существует риск поражения электрическим током, поэтому убедитесь, что вы знаете, что делаете, или попросите электрика сделать эту работу за вас, если вы не уверены. Будьте осторожны при работе с флуоресцентным светом.
Другие проблемы, которые можно определить и устранить с помощью вышеуказанных проверок
Середина трубки не горит, но горят концы
- Проверить стартер
Лампа постоянно мигает или гаснет
- Проверить стартер
- Проверить балласт
- Убедитесь, что лампа, которую вы использовали в светильнике, имеет правильный размер и подходит
Трубка долго прогревается и включается
- Проверить стартер
Если у вас есть какие-либо вопросы о люминесцентных лампах и ламповых лампах, мы будем рады ответить! Свяжитесь с нами по адресу [email protected], и мы добавим вопрос и ответ на эту страницу!
Дополнительные ресурсы
Чтобы купить товары для освещения в Интернете, перейдите по ссылкам ниже:
- Пусковые выключатели
- Аварийные комбинированные балласты — обычные высокочастотные балласты и функция резервного питания в одном устройстве для люминесцентных ламп, предназначенных для использования с аварийным аккумулятором.
- Электронные балласты HID – для работы газоразрядных ламп высокой мощности с запуском без мерцания (HID), например. Металлогалогенные лампы.
- ВЧ балласты – высокочастотный балласт для работы люминесцентной лампы (включение-выключение без мерцания).
Купить сейчас, чтобы заменить старые люминесцентные лампы
— Если вам нужна помощь в поиске подходящей лампы, мы всегда готовы помочь 0113 882 6270 —
© 2022 LampShopOnline. Все права защищены. Компания № 07754783 — НДС № ГБ 991 4552 91
Проверка поражения дневной светильники (с мультиметром и без мультиметра)
Опубликовано: 01.09.2021
1960
1. Таблица основных ошибок
2. Способы для проверки
2.1. Без тестера
2.2. С мультиметром
2.2.1. Разомкнутая цепь
2.2.2. Короткое замыкание
2. 2.3. Разбивка корпуса
3. Заключение
Не так давно люминесцентная лампа была единственной альтернативой лампе накаливания. Это помогло сэкономить энергию и в определенной степени выбрать цветовую температуру света. Но одна проблема, с которой справится не каждый домашний умелец – поиск неисправностей и их устранение в доборных элементах, сопровождающих лампочки дневного света.
Таблица основных неисправностей
Основные виды неисправностей, встречающихся на практике в дросселях, сведены в таблицу.
Type of failure | What does it lead to | External manifestation |
---|---|---|
Breakage of coil winding or internal wiring | Circuit breakage | Lamp does not light (not even flashing) |
Intertwist неисправность | Потеря индуктивности, уменьшение реактивного сопротивления | Перегорание катушек ламп (в т.ч. после замены), мигание без стабильного зажигания |
Замыкание на землю | В цепи с защитным проводником создает замыкание на землю | защитное устройство При отсутствии защитного заземления в сети оно может не проявляться, но сетевое напряжение все еще присутствует на корпусе устройства |
Потеря ферромагнитных свойств сердечника катушки (в результате перегрева и т. п. ) | Потеря индуктивности, уменьшение реактивного сопротивления | Перегорание катушек ламп (включая повторное возгорание после замены), мигание без устойчивого зажигания |
Способы проверки
Для диагностики состояния желательно использовать приборы, но если они недоступны, состояние можно оценить без них.
Без тестера
Проверить дроссель люминесцентной лампы можно без тестера и других инструментов (хотя бы отвертки). Но надежность этих методов ограничена.
- В первую очередь это поведение лампы . Если при подаче питания он мигает, но не достигает устойчивого свечения, то есть повод проверить дроссель (хотя могут быть и другие причины, в том числе неисправность самой лампы). Если в катушке обрыв, то перепрошивки не будет — схема вообще не будет подавать признаков жизни.
- Визуальный осмотр . Если дроссельная заслонка почернела, вздулась, следы местного перегрева – все это повод усомниться в исправности устройства. Его необходимо заменить или продиагностировать с помощью приборов.
- Установка в заведомо неисправный светильник вместо штатного. . Если после замены светильник перестал работать, значит, проблема в дросселе. Или, наоборот, можно установить в неработающий светильник заведомо исправный дроссель. Если проблема решена, то неисправность найдена.
Можно собрать стенд для проверки элементов ПРА. Это имеет смысл, если вам необходимо обслуживать систему освещения здания, офиса. Это необходимо для обслуживания системы освещения здания, офиса, мастерской и т.п., построенных с использованием люминесцентных ламп. В качестве испытательного стенда можно взять готовую лампу и заменить в ней штатные детали на пробные, а можно собрать простую схему. В нем используется обычная лампа накаливания на 220 вольт.
Испытательный стенд для балластов.
Свойства индуктивного сопротивления катушки дросселя используются для проверки дросселя лампы дневного света. Возможны разные ситуации:
- лампа горит на полусвете — дроссель исправен, его реактивное сопротивление ограничивает ток в последовательной цепи;
- лампа горит на полную яркость — имеется межвитковое замыкание, индуктивность катушки мала, реактивная составляющая сопротивления близка к нулю
- Лампа не горит — Поломка прерывателя внутри дросселя.
Проверка элементов ЭПРА (ЭПРА) на таком испытательном стенде невозможна. Он работает по другому принципу.
Если испытывается дроссель с пробоем корпуса, то при подаче питания на его корпусе будет присутствовать линейное напряжение. Подключаемые элементы ПРА должны быть выключены. Примите меры предосторожности при подаче питания.
Использование мультиметра
Мультиметр дает больше возможностей для проверки элементов ПРА и надежность такой проверки выше.
Обрыв цепи
Для проверки на обрыв подключите мультиметр в режиме измерения сопротивления (или аудиодиод) к контактам балласта. Если прибор исправен, тестер покажет сопротивление в несколько десятков Ом (зависит от типа дросселя, у большинства распространенных моделей около 55…60 Ом).
Проверка обрыва цепи.
Если цепь внутри разомкнута, измеритель покажет бесконечное сопротивление.
Балласт также можно проверить на поломку с помощью индикаторной отвертки. Это можно сделать, не снимая блок со светильника, просто сняв крышку и подав питание 220 вольт (включив выключатель света).
Проверить на поломку индикаторной отверткой.
Необходимо проверить наличие напряжения на входе дросселя и затем на выходе. Если на вход балласта приходит питание, а на выходе нет, значит, в дросселе обрыв.
Читайте также: Как правильно подключить люминесцентную лампу
Короткое замыкание
Короткое замыкание не является обычной неисправностью. Может возникнуть в результате глобальной проблемы — спекания витков катушки и т.д.
Проверить на замыкание.
Это то же самое, что и проверка на обрыв цепи, но в случае неисправности цифровой измеритель покажет сопротивление около нуля.
Гораздо более вероятная проблема — межвитковая неисправность. Практически невозможно обнаружить в режиме проверки сопротивления. Если закоротить небольшое количество витков (2-3), омическое сопротивление сильно не изменится, а индуктивность сильно упадет. Не каждый недорогой мультиметр имеет функцию измерения индуктивности с достаточной точностью. Кроме того, необходимо знать индуктивность работающего устройства, а этот параметр редко указывается производителями. Однако можно попробовать сравнить индуктивность проверяемого балласта с индуктивностью заведомо исправного балласта.
Проверить наличие межвитковых замыканий.
Также изменение параметров сердечника (из-за перегрева, механических повреждений и т.п.) может привести к потере индуктивности. И в этом случае неисправность обнаружить непросто.
Читайте также
Как отремонтировать люминесцентные светильники своими руками
Для проверки на пробой корпуса
Для проверки на пробой на землю необходимо подключить один щуп тестера к корпусу прибора , другой к свинцу балласта (затем к другому).
Проверить короткое замыкание на шасси.
Если дроссель цел, мультиметр покажет бесконечное сопротивление. При наличии пробоя либо ноль, либо некоторое значение в зависимости от места пробоя:
- если пробой произошел в точке 2, тестер покажет полное сопротивление катушки;
- если в точке 1 ноль;
- в точке 3 — какое-то промежуточное значение.
Независимо от места пробоя измеренное сопротивление будет меньше бесконечности.
Заключение
Традиционные балласты люминесцентных ламп заменяются электронными (ЭБ), а сами люминесцентные лампы активно уходят в прошлое — пришло время тотального господства светодиодного освещения. Но в прошлом были популярны лампы дневного света, ими комплектовалось большое количество систем освещения, они выпускаются и сегодня. Поэтому вопрос проверки дросселей на неисправность будет актуален еще долгое время.
Для каких лампочек нужен балласт?
Если вы новичок в коммерческом освещении, концепция балласта может показаться странной. Вы, наверное, привыкли просто вкручивать лампочки в розетки и щелкать выключателями. Переход на технологию освещения, зависящую от балласта, может быть разочаровывающим и запутанным.
Вам может быть интересно, что такое балласт? Мы подробно объясняем это в нашем посте «Что такое балласт?» Но вот в чем суть:
Балласт — это функциональное сердце флуоресцентного или газоразрядного источника света. Подобно тому, как сердце регулирует приток крови к вашему телу, балласт обеспечивает постоянное горение лампочки, управляя распределением энергии по всему прибору. Сердца работают, распределяя кровь по каналам или артериям в организме, чтобы тело оставалось активным и живым. Балласты делают то же самое для флуоресцентных и газоразрядных ламп в ваших зданиях, но с энергией.
Итак, для каких ламп нужен балласт? Ознакомьтесь с таблицей ниже.
Технология | Зависит от балласта? |
Лампы накаливания | Для ламп накаливания не требуется балласт. |
Галоген | Для галогенных ламп не требуется балласт. |
Флуоресцентный | Для всех люминесцентных ламп требуется балласт. |
Компактные люминесцентные лампы | Для всех компактных люминесцентных ламп (CFL) требуется балласт, который часто встроен. |
HID | Для всех газоразрядных ламп требуется балласт, который иногда встроен. |
Светодиод | Для светодиодных ламп не требуется балласт, хотя некоторые из них спроектированы для работы с существующим балластом. Вы найдете совместимые с балластом или «подключи и работай» светодиоды, которые предназначены для замены линейных люминесцентных ламп, компактных люминесцентных ламп или HID. |
Для ламп накаливания и галогенных ламп балласт не требуется. Как мы уже упоминали, вы просто вкручиваете их в гнездо, и все готово.
Для люминесцентных ламп и газоразрядных ламп высокой интенсивности до требуется балласт.
В обоих семействах ламп используются балласты двух разных типов: магнитные и электронные.
Магнитные балласты используют более старую технологию, но все еще используются с некоторыми лампочками. Электронные балласты, как правило, более энергоэффективны. Мы объясняем различия, а также различные типы балластов люминесцентных и газоразрядных ламп в этом сообщении в блоге.
Какие лампочки имеют собственный балласт?
Некоторые лампочки содержат балласт внутри лампочки.
Флуоресцентные технологии изменились в 1990-х годах и стали включать компактные люминесцентные лампы (КЛЛ). Они более энергоэффективны и созданы для замены ламп накаливания. Точно так же, как лампы накаливания, они вкручиваются в патрон, и у вас есть свет.
Создание меньшего и более компактного балласта (показанного на изображении выше) было настоящей проблемой, когда дело дошло до конструкции КЛЛ.
Большинство лампочек компактных люминесцентных ламп, которые выглядят как «пружина» или спираль, имеют встроенный балласт. Лампы CFL со штифтовым цоколем не имеют балласта.
Нужен ли балласт для светодиодных ламп?
Светодиоды используют технологию, аналогичную балласту, который называется драйвером.
Подобно балласту, драйвер регулирует электричество в осветительном приборе, чтобы поддерживать постоянный ток.
Для работы каждой светодиодной лампочки требуется драйвер. Вы можете подумать: «Я просто использовал светодиод и не устанавливал драйвер». Это потому, что, как и в КЛЛ, драйвер может быть встроен в лампочку (так называемый внутренний драйвер). Это распространено в жилых помещениях или небольших светильниках.
Если у вас есть новый светодиодный светильник или вы модернизируете свои старые светильники, вы можете использовать внешний светодиодный драйвер. Это распространено в коммерческих условиях и для светодиодных трубок.
Нужно ли снимать балласт, чтобы использовать светодиодную лампочку?
Когда речь идет о светодиодах, работающих с балластом, может возникнуть большая путаница. Светодиоды используют драйвер для работы, но вы можете использовать светодиоды в светильнике, в котором уже есть балласт.
Самый быстрый и простой способ модернизировать этот прибор до светодиодного — это купить лампу, работающую по принципу plug-and-play, и продолжать работать от балласта. Светодиод с технологией plug-and-play, который работает с существующим балластом, означает, что вы не будете вносить какие-либо модификации в светильники, что приведет к снижению затрат на установку и, возможно, к более легкому соблюдению строгих строительных норм, таких как Раздел 24 в Калифорнии.
Тем не менее, есть некоторые проблемы с plug-and-play и еще несколько вариантов, которые следует рассмотреть. Мы описываем преимущества и недостатки в нашей статье «Подключи и работай по сравнению с обходом балласта и другими вариантами линейных светодиодов».
Если у вас есть дополнительные вопросы, пожалуйста, не стесняйтесь обращаться к нам. Наши специалисты по освещению рады помочь.
Если вы готовы совершить покупку в нашем интернет-магазине, нажмите здесь, чтобы получить скидку для бизнеса.
Как обойти балласт? – LEDMyplace
Как обойти балласт?
от команды LEDMyplace 01 сент. 2020 г. Модернизация светодиодной трубкивключает установку энергосберегающей светодиодной трубки путем замены существующей люминесцентной лампы T8.
Почему следует обходить балласт?Следует понимать, что балласт отвечает за обеспечение люминесцентной лампы начальным всплеском высокого напряжения . Когда свет горит, балласт действует как регулятор тока. С другой стороны, 9Драйвер светодиода 0526 преобразует переменный ток высокого напряжения в постоянный ток низкого напряжения . Поскольку светодиодные фонари работают от низкого напряжения постоянного тока, им нужен драйвер.
Для большинства светодиодных ламп T8 балласт не требуется. Таким образом, если вы собираетесь установить T8 светодиодный трубчатый светильник , для него потребуется обход балласта , если только вы не выберете совместимую с балластом светодиодную трубку T8 .
Существует три типа светодиодных трубок T8:
Тип A: Эти трубки также известны как «подключи и работай». Они совместимы с балластами линейных люминесцентных ламп. Таким образом, при покупке светодиодной трубки типа A T8 не забудьте попросить лист совместимости балласта.
Тип B: Эти трубки также известны как светодиодные трубки T8 с обходом балласта или прямым проводом. Их установка означает, что вам придется удалить существующий балласт люминесцентной лампы.
Тип A+B: Также известные как «гибридные» светодиодные лампы T8, лампы типа A+B работают с балластом или без него.
Шунтировать или не шунтировать!Вы также должны знать, что для большинства светодиодных трубок T8 требуются надгробные плиты (гнезда) без шунтирования . (Это означает, что надгробный камень не должен показывать непрерывность электрического тока.) Если существующий светильник люминесцентной лампы, который вы хотите заменить, имеет нешунтированный надгробный камень, вы можете продолжить процедуру обхода балласта. Тем не менее , если в существующем светильнике предусмотрен надгробный камень с шунтированием, его следует заменить вариантом без шунтирования .
На первый взгляд выполнение обхода балласта кажется простым: Снимите балласт и помашите им на прощание. Затем почините новую люминесцентную лампу T8, и все.Однако незнание (и соблюдение) основ электрических соединений, электропроводки и схемотехники может привести вас в «шокирующую ситуацию» (на самом деле)!
Вот руководство , которое поможет вам понять основы системы электропроводки.
Когда вы будете уверены в работе с электропроводкой, розетками и осветительными приборами, Выполнение следующих шагов позволит успешно выполнить обход балласта: Электропитание от сети гарантирует, что вы не получите удар током во время процесса. Итак, найдите выключатель, который подает питание в зону, где вы будете выполнять байпас, и выключите его .
2. Найдите балласт на люминесцентном светильникеТеперь найдите балласт на существующем люминесцентном светильнике. Большинство ламп T8 имеют скрытый балласт, закрытый кожухом и расположенный за лампой . Снимите корпус, лампу и все крышки, которые мешают вам добраться до балласта.
3. Отрезать горячий и нейтральный проводаПосле того, как вы сняли трубку и обнажили балласт, отрежьте горячий и нейтральный провода, подающие питание. В общем, горячие провода черные, а нейтральные белые. Сделайте небольшой разрез и убедитесь, что осталось не более 2 дюймов проводов.
4. Обрежьте провода розеткиПосле обрезки проводов, ведущих к балласту, отрежьте нейтральный и горячий провода, выходящие с другой стороны розетки.
ПРИМЕЧАНИЕ. Существует два типа балластов: электронные и магнитные. Ламповые фонари, использующие магнитный балласт, также будут иметь стартер. Если в вашем ламповом светильнике используется магнитный балласт, обязательно найдите и удалите стартер, прежде чем переходить к следующему шагу.5. Снимите балласт
Теперь вы должны вынуть балласт, открутив его.
6. Подсоедините проводаТеперь снимите цветную изоляцию с оставшихся проводов. Обязательно зачистите около 1 дюйма проводов. Подсоедините входной «горячий» и «нейтральный» провода (черный и белый), идущие от сборки, к выходному «горячему» и «нейтральному» проводам, идущим от светильника. Используйте вставные соединители или проволочные гайки, чтобы завершить и закрепить соединение. Поскольку светодиодные лампы T8 нуждаются в однотактном источнике питания. Таким образом, вам нужно только подключить входные провода к одной стороне выходных горячих и нейтральных проводов. (как показано на рисунке)
Теперь установите светодиодную трубку T8 на светильник. Включите питание от сети. Включите светодиодную лампу и проверьте, работает ли она.
Поздравляем! Ваш балластный байпас и модернизация трубы T8 прошли успешно.Вернуться к блогуПримечание. Весь этот блог был написан только для модернизации одностороннего обхода балласта. Если вам интересно узнать о модернизации двухстороннего байпаса балласта , ознакомьтесь с этим блогом.
Люминесцентная лампа — электрическая волна
ЛЮМИНЕСЦЕНТНАЯ ЛАМПА
Принципал — Люминесцентные лампы работают путем ионизации паров ртути в стеклянной трубке. Это заставляет электроны в газе излучать фотоны на УФ-частотах. Ультрафиолетовый свет преобразуется в стандартный видимый свет с помощью люминофорного покрытия внутри трубки.
Рабочий – Трубчатый светильник/стержень, состоящий из стеклянной трубки длиной 4 фута, внутренняя сторона которой покрыта люминофором и заполнена парами ртути. Он имеет два металлических электрода/нити на обоих концах. Для завершения его работы необходимы еще два элемента — 1) Дроссель и 2) Стартер.
Когда мы включаем свет, ток проходит через дроссель, затем один из электродов и доходит до стартера. Первоначально ток через стартер не течет, так как контакты стартера разомкнуты, эти контакты окружены газом. Этот газ начинает нагреваться и делает газ ионизированным, и через него течет ток. Когда ток начинает течь через стартер, газ начинает охлаждаться, что останавливает ток, поскольку он деионизирует газ в стартере. Этот процесс повторяется. Во время этого процесса ионизации/деионизации газа в стартере дроссель генерирует высокое напряжение, которое вызывает ионизацию инертного газа в трубке.
После нескольких попыток газ внутри трубки полностью ионизируется (возгорается дуга) между двумя электродами, и ток начинает течь от одного электрода к другому, и световые индикаторы трубки светятся (или излучается свет). Как только газ ионизируется, высокое напряжение снижается в значительной степени для нормальной работы ламповой лампы, через стартер не протекает ток.
Ионизация газообразной ртути заставляет электроны газа испускать фотоны в ультрафиолетовом свете (или частотах, или излучении). Ультрафиолетовый свет попадает на люминофорное покрытие внутри него, и покрытие светится, создавая видимый свет.
НАЗНАЧЕНИЕ ДРОССЕЛЯ –
В люминесцентных лампах используются два типа дросселей – электромагнитные и электронные.
Дроссель (или магнитный дроссель/балласт) – Функция дросселя заключается в создании очень высокого напряжения между двумя электродами (на двух концах трубки). Как только газ ионизируется, между двумя электродами создается путь (возгорается дуга), и через него начинает течь ток, после чего через стартер не будет тока. Стартер перестает работать и дроссель обеспечивает низкое напряжение.
Дроссель также ограничивает ток при возникновении дуги между двумя электродами во избежание перегорания лампы или выхода из строя источника питания.
Дроссель способен вырабатывать высокое напряжение с помощью пускателя . Стартер включает и выключает ток (проходящий через дроссель) очень часто (вызывает мерцание света), что создает очень высокое напряжение на дросселе и, следовательно, между концами трубки.
Стартер будет работать до тех пор, пока газ не ионизируется внутри трубки.
Поскольку пуски перестают работать, на дросселе больше нет высокого напряжения. И напряжение на дросселе (и между нитями накала) очень сильно снижается.
Электронный балласт – Электронный балласт выполняет функции дросселя и стартера. Когда электронный дроссель используется с подсветкой, стартер не требуется. Электронный балласт преобразует переменный ток в постоянный, а затем обратно в переменный ток с более высокой частотой для работы лампы. Электронный балласт выполняет две основные функции:
- Для обеспечения начального высокого напряжения, необходимого для ионизации газа, тем самым создавая дугу между двумя электродами.
- Для ограничения тока через трубку после ее запуска. Если ток не контролируется, это может привести к скачку напряжения, что приведет к повреждению лампы.
Другие функции электронного балласта включают зажигание, прогрев, постоянный контроль мощности, коррекцию коэффициента мощности и защиту от всех состояний лампы и неисправности балласта. Электронный балласт работает на частоте от 20 кГц до 80 кГц, в отличие от магнитного балласта, который работает на частоте 50-80 кГц. 60 Гц. При высокой частоте лампа требует меньше входной мощности, тем самым повышая эффективность. Электронный балласт используется для работы люминесцентной лампы, неоновой лампы или газоразрядной лампы высокой интенсивности (HID).
Схема подключения люминесцентной лампы с электронным балластом –
НАЗНАЧЕНИЕ СТАРТЕРА –Стартер состоит из небольшой колбы, содержащей газ (обычно аргон), и биметаллического контакта (обычно не касающегося друг друга).
Когда на светильник подается питание и ток не может течь через люминесцентную лампу, возникает дуга (через газ аргон) в стартере и ток течет в нем и газ в стартере нагревается и один из металлических контактов начинает гнуться. Когда газ достаточно нагрет, биметалл смещается и создает прямой путь для тока в стартере. Теперь через нити/электроды люминесцентной лампы протекает максимальный ток, который нагревает газ в лампе.Между тем, в этой ситуации в стартере не возникает искрения, и стартер начинает охлаждаться, а биметаллический контакт начинает прогибаться в исходное положение. Этот процесс повторяется до тех пор, пока пары ртути не ионизуются в лампе и через нее не потечет ток. После успешного запуска люминесцентной лампы лампа стартера продолжает остывать, и в конечном итоге биметаллический контакт возвращается в исходное положение. Стартер намеренно спроектирован так, чтобы иметь более высокое напряжение пробоя, чем у люминесцентной лампы с гораздо большей длиной. Стартер также имеет сопротивление двух нитей накала люминесцентной лампы как часть его электрической цепи.
Некоторые пускатели также содержат конденсатор (также известный как конденсатор), который может уменьшить электрические помехи и облегчить процесс запуска.
АССОРТИМЕНТ ЛЮМИНЕСЦЕНТНЫХ ЛАМП –
Доступны люминесцентные лампы различных форм и размеров – T5, T8 и T12. Где T означает трубчатый, форма и номер указывают диаметр трубы. Например – T5, где 5 означает 5/8”. Трубчатые светильники T12 были первыми трубчатыми светильниками диаметром 38 мм (= 12/8 дюйма). Светильники T8 имеют диаметр (25 мм = 8/8 дюйма) меньше, чем T12, а трубки T5 (16 мм) имеют меньший диаметр, чем T8. В настоящее время T12 больше не производятся из-за неэффективности. На рынке доступны следующие типы ламп –
- В зависимости от длины – 4 фута и 2 фута
- В зависимости от диаметра – T12, T8 и T5,
Они доступны со следующей мощностью: 36 Вт при длине 4 фута, 18 Вт при длине 2 фута и т. д.
Добро пожаловать на EDAboard.
comДобро пожаловать на наш сайт! EDAboard.com — это международный дискуссионный форум по электронике, посвященный программному обеспечению EDA, схемам, схемам, книгам, теории, документам, asic, pld, 8051, DSP, сети, радиочастотам, аналоговому дизайну, печатным платам, руководствам по обслуживанию… и многому другому. более! Для участия необходимо зарегистрироваться. Регистрация бесплатна. Нажмите здесь для регистрации.
Регистрация Авторизоваться
JavaScript отключен. Для лучшего опыта, пожалуйста, включите JavaScript в вашем браузере, прежде чем продолжить.
- Автор темы самгепард
- Дата начала
- Статус
- Закрыто для дальнейших ответов.
самчита
Расширенный член уровня 2
Дроссель лампового светильника
Привет, у меня есть вопрос об обычном ламповом фонаре. что делает дроссель и стартер в лампе.
Я слышал от кого-то, что стартер в основном представляет собой конденсатор, и он работает аналогично конденсатору вентилятора. это дает начальный толчок для запуска лампового освещения. а дроссель представляет собой RL-цепь. он фильтрует сетевое напряжение. он пропускает только 50 Гц (или 60 Гц).
это правильно. подскажите пожалуйста????
Е-дизайн
Расширенный член уровня 5
Цепь лампового освещения
Стартер нагревает газ внутри трубки и подключается последовательно к нитям накала. После срабатывания дроссель (балласт) ограничивает ток, протекающий через трубку.
Борбер
Расширенный член уровня 5
Стартер ламповой лампы
Вся схема неоновой лампы выглядит следующим образом: L (фаза), индуктор, первый нагреватель, стартер, второй нагреватель, N (нейтраль) соединены последовательно. Стартер представляет собой газовую лампочку накаливания, в которой один из электродов выполнен из биметалла, а параллельный конденсатор для ВЧ. При включении стартера лампочка замыкается накоротко и ток нагрева протекает по последовательной цепи. Через некоторое время (несколько секунд) газовая колба достаточно нагреется и биметаллический электрод разомкнет последовательную цепь. Внезапное уменьшение тока в цепи вызывает индукцию высокого напряжения на катушке индуктивности и, следовательно, на противоположных электродах неоновой трубки. Неоновая трубка начинает светиться, давая свет. В то же время лампочка стартера продолжает гореть и оставаться горячей, не давая биметаллическому электроду снова замкнуться. Запуск неоновой трубки может быть чистым или через несколько попыток (мерцание). Индуктор ограничивает напряжение неоновой трубки, когда она накаляется до ок. 50В.
ФоксиРик
Расширенный член уровня 4
Подключение к трубчатому светильнику
Привет, Samcheetah,
Здесь есть отличное руководство по люминесцентным лампам, балластам и т. д.:
https://members.misty.com/don/f-lamp.html
Cheers,
ФоксиРик.
e_eja
Уровень полноправного члена 2
лампа дроссельной трубки
в начальном периоде до включения трубки дроссель будет сохранять ток, протекающий через него, в виде магнитной энергии, тогда на статере будет разное напряжение (поскольку статер соединен параллельно с трубкой), что делает электрод на статере замкнутым накоротко ( вы можете видеть, как пламя периодически гаснет с коротким периодом на статере) и вся энергия, накопленная в дросселе, внезапно выходит, создавая разницу высокого напряжения между электродом на трубке. и газы на трубке стали светлее (из-за столкновений электронов с газами) и напряжение между электродом на трубке упало меньше, чем начальный период, и из-за характеристик газов на статере нельзя было включить выстрел при низком напряжении и из-за параллельное соединение между трубкой и статером, то ток течет через дроссель, трубку. дроссель теперь используется для сопротивления току через трубку.
Шурбункин
Уровень новичка 3
назначение дросселя в лампе
Я начинающий электрик. мне предстоит испытание. Я уже попробовал это. Вы должны измерить 3-х фазные цепи и цепь люминесцентного света. вы должны прокомментировать, почему, если вы измеряете напряжение между дросселем, а затем напряжение между лампой, почему при суммировании двух напряжений они не приходят к напряжению питания. может ли кто-нибудь помочь. Я просматриваю свои заметки, но не могу получить четкого ответа, и нет сайтов, которые могли бы мне помочь. пожалуйста помогите
(извините за орфографические ошибки)
мистер_рф
Расширенный член уровня 5
как работает ламповый фонарь
У вас есть последовательная цепь = лампа и дроссель.
Трубка = сопротивление
В резисторе ток всегда совпадает по фазе с напряжением. Это означает, что пики и спады двух сигналов возникают в одно и то же время. Резисторы можно просто определить как устройства, которые выполняют единственную функцию подавления протекания тока через электрическую цепь.
дроссель = индуктор
В индукторах ток является отрицательной производной напряжения, а это означает, что независимо от изменения напряжения ток пытается противодействовать этому изменению. Когда напряжение не меняется, нет тока и нет магнитного поля.
В цепи переменного тока напряжение опережает ток на четверть фазы или на 90 градусов.
http://www.physics.sjsu.edu/becker/physics51/ac_circuits.htm
http://en.wikibooks.org/wiki/Electronics/AC_Voltage_and_Current
http://www.allaboutcircuits.com/vol_2 /chpt_6/1.html
**разорванное звено удалено**
**разорванное звено удалено**
То же самое с 3-фазными цепями.
Все 3 напряжения имеют одинаковую амплитуду, имеют одинаковую частоту, но напряжения сдвинуты по фазе на 120°.
ПКБХАРДВАЙ
Уровень новичка 4
функция стартера в лампе
стартер представляет собой конденсатор, и он просто обеспечивает путь проводимости в начале, а затем ток течет через трубку, поэтому его удаление не влияет вообще, в то время как дроссель используется для управления током в цепи. также во избежание переходных токов.
мистер_рф
Расширенный член уровня 5
Подушка лампового освещения
@pkbhardwaj
Ваш ответ неполный. .. 8)
Вы читали это: ?
Борбер сказал:
Вся схема неоновой лампы выглядит следующим образом: L (фаза), индуктор, первый нагреватель, стартер, второй нагреватель, N (нейтраль), соединенные последовательно. Стартер представляет собой газовую лампочку накаливания, в которой один из электродов выполнен из биметалла, а параллельный конденсатор для ВЧ. При включении стартера лампочка замыкается накоротко и ток нагрева протекает по последовательной цепи. Через некоторое время (несколько секунд) газовая колба достаточно нагреется и биметаллический электрод разомкнет последовательную цепь. Внезапное уменьшение тока в цепи вызывает индукцию высокого напряжения на катушке индуктивности и, следовательно, на противоположных электродах неоновой трубки. Неоновая трубка начинает светиться, давая свет. В то же время лампочка стартера продолжает гореть и оставаться горячей, не давая биметаллическому электроду снова закрыться. Запуск неоновой трубки может быть чистым или через несколько попыток (мерцание). Индуктор ограничивает напряжение неоновой трубки, когда она накаляется до ок. 50В.
Нажмите, чтобы развернуть…
Аудиогуру
Расширенный член уровня 5
Ламповый дроссель
В Канаде в наших люминесцентных ламповых лампах используются балласты «Rapid Start» без стартеров. Нити накала включены последовательно с катушкой индуктивности и горят все время, пока свет горит, что тратит энергию впустую и приводит к выходу из строя трубки, когда нить накала перегорает.
Балласты и трубки для быстрого пуска сняты с производства и заменены электронными балластами. Я не знаю, есть ли в новых лампах нити накаливания. Если они это делают, они используются только для запуска.
Аудиогуру
Расширенный член уровня 5
Использование дросселя в ламповых лампах
В Канаде в наших люминесцентных лампах используются балласты «Rapid Start» без стартеров. Нити накала включены последовательно с катушкой индуктивности и горят все время, пока свет горит, что тратит энергию впустую и приводит к выходу из строя трубки, когда нить накала перегорает.
Балласты и трубки для быстрого пуска сняты с производства и заменены электронными балластами. Я не знаю, есть ли в новых лампах нити накаливания. Если они это делают, они используются только для запуска.
- Статус
- Закрыто для дальнейших ответов.
С
Что означает этот символ в техническом описании SN74ALS232B
- Автор: shashi123
- Ответов: 7
Элементарные электронные вопросы
С
Влияют ли входные данные на выходные данные мультиплексора?
- Автор: sahanthuli
- Ответов: 3
Элементарные электронные вопросы
как называется этот элемент в таблице данных?
- Автор: mohamis288
- Ответов: 8
Элементарные электронные вопросы
Ф
Что такое значение и определение величины?
- Начато Fret2
- Ответов: 2
Элементарные электронные вопросы
С
Кто-нибудь знает размеры конденсатора серии FG?
- Создано чашкой чая