Калькулятор сопротивление: Калькулятор цветовой маркировки резисторов

Содержание

Онлайн калькулятор: Работа и мощность тока

Данный калькулятор можно использовать для проверки решений задач на тему «Постоянный ток. Работа и мощность тока», которая изучается в школьном курсе физики. Чтобы воспользоваться калькулятором, надо ввести известные в задаче значения, и оставить пустыми поля для неизвестных значений. Калькулятор, если ему хватает введенных данных, рассчитает и отобразит неизвестные значения.

Пример задачи: Подъемный кран потребляет ток силой 40А из сети с напряжением 380В. На подъем бетонной плиты кран затратил 3.5 минуты. Определите работу, которую совершил кран.

Для проверки решения этой задачи калькулятором надо ввести 40 в поле «Сила тока», 380 — в поле «Напряжение» и 3.5 — в поле «Время», поставив значение единиц времени в «минуты». В результате калькулятор рассчитает величину работы, а также мощности и сопротивления. Формулы расчета приведены под калькулятором.

Работа и мощность тока
ЕдиницымААмперкАМАЕдиницымВВольткВМВЕдиницымОмОмкОмМОмЕдиницыДжоульМДжкВт•час
ЕдиницыВатткВтМВтЕдиницысекундыминутычасыТочность вычисления

Знаков после запятой: 2

Сила тока, Ампер

 

Напряжение, Вольт

 

Сопротивление, Ом

 

Работа, Джоуль

 

Мощность, Ватт

 

Время, секунд

 

content_copy Ссылка save Сохранить extension Виджет

Работа и мощность тока

Под работой тока понимают работу, совершаемую электрическими силами по переносу заряженных частиц. Эта работа оценивается как произведение величины перенесенного заряда на величину разности потенциалов (напряжения) между начальной и конечной точками переноса.

С другой стороны, силу тока можно также выразить через величину перенесенного заряда

Откуда можно выразить работу тока, как скалярную величину, равную произведению силы тока, напряжения и времени, в течении которого шел ток

Кстати, исходя из этого соотношения, 1Дж = 1В·1А·1с

Применяя закон Ома для участка цепи

Можно получить производные формулы для работы:

Так как мощность это работа, совершенная за единицу времени, соответственно, мощность тока — это работа тока, совершенная за единицу времени.

Соответственно, мощность можно выразить как

Excel-калькулятор трансформации комплексного волнового сопротивления на отрезках волноводных линий

При расчетах в технике высоких частот часто возникает две разновидности задачи:


  • рассчитать влияние линии передачи, которая является неотъемлемой конструктивной частью СВЧ устройства (антенны, симметрирующе-согласующего устройства, делителя, электронного усилителя) на результирующее комплексное волновое сопротивление устройства
  • специально рассчитать отрезок линии передачи (подобрать длину и собственное волновое сопротивление) для трансформации собственного волнового сопротивления устройства в более удобное.

Для мгновенного и удобного их решения, с представлением результата в табличную и графическую форму, создадим инструмент.

На схеме Za – исходное устройство, которое имеет известные волновые свойства.
Z0 – отрезок волноводной линии длиной L и волновым сопротивлением (characteristic impedance) Z0 (Ом)

Для частного случая, когда Za чисто активное (настроенная в резонанс антенна, или электронное устройство у которого реактивность убрана с помощью всевозможных LC шунтов) результирующее сопротивление Zin считается по широко известному телеграфному уравнению:

В случае, когда K кратна ¼ λ такой отрезок не добавляет реактивности, а лишь трансформирует одно реальное сопротивление в другое. Если K кратна ½ λ – линия вообще не вносит никаких изменений, независимо от того, согласована она или нет.

Такие частные свойства очень широко известны и очень широко используются:


  • для минимизации влияния линий по возможности их стараются делать кратными ½ λ
  • трансформаторы на ¼ λ отрезках очень широко распространены в технике СВЧ

Работа с такой формулой имеет 2 практических ограничения:


  • в широкой полосе частот отрезок фиксированной длины L имеет разную длину в λ и соответственно влияние на трансформацию будет разное (вплоть до направления)
  • устройства на входе не всегда настроены в резонанс, а в широкой полосе частот устройство по определению имеет реактивность (мнимую часть комплексного сопротивления)

Поэтому для работы с комплексным сопротивлением (с источником имеющим реактивность) надо вернуться к менее известной изначальной формуле:

Для частного случая, когда мнимая часть ZL=0, из неё и была выведена предыдущая формула с тангенсами.

Косинус и синус в этой формуле – гиперболические.
Косинус и синус берутся от константы распространения (propagation constant) — γ, это комплексное число, реальная часть состоит из константы затухания α (в Неперах на единицу длины, где Непер — аналог децибел, только с логарифмом не по десятичной основе, а натуральный по числу e) и фазовой константы ß (число радиан умещающихся в длине волны).

В общем случае, для произвольных длинных линий — вычисление γ непростая задача, для нее требуется знать все 4 первичных параметра линии передачи: R, L, C и G.
Но в частном случае, если линия без потерь, т.е. выполняются следующие условия:


  • линия очень короткая (до λ)
  • линия из хорошего толстого проводника (медь, алюминий, цинк и др.)
  • скин-слой линии не из феромагнетика (медь, алюминий, цинк. без железа/никеля и их сплавов)
  • воздушный/вакуумный диэлектрик и соответственно velocity factor = 1, скорость рапространения сигнала почти равна скорости света с, тангенс угла диэлектрических потерь близок к 0 (вакуум, воздух)
    тогда γ = 0 + j 2π/λ

Размерность единиц L, γ и λ — любая (метры, футы, миллиметры), главное чтобы все три единицы были в одной размерности. В калькуляторе будем использовать миллиметры.

В докомпьютерную эпоху работать с такой формулой было практически невозможно, поэтому инженеры пользовались диаграммой Вольперта-Смита

Работа с ней очень трудоёмка, особенно в широкой полосе частот.

Используя тот факт, что MS Excel полностью поддерживает комплексные числа и операции над ними, создадим калькулятор. Т.к. Google Docs не поддерживает функцию синусов/косинусов из комплексного числа (IMCOSH, IMSINH и др.), в столбцах M|N заменим эти функции на составные части. В оффлайн версии Excel/OpenOffice можно использовать прямую функцию.

Качество согласования обычно оценивают по результирующему КСВ, поэтому сразу добавим в калькулятор его расчет через коэффициент отражения Γ (греческая гамма, часто можно встретить запись через ρ)

В качестве обучающего примера возьмем популярную промышленную патч-антенну Цифра-9 для приема телевизионного вещания в ДМВ диапазоне 470-800 МГц.

Собственное волновое сопротивление антенны, без трансформирующего отрезка, приведено на графике:

В широкой полосе рабочих частот импеданс антенны изменяется в очень широких пределах: реактивность всегда положительная (индуктивная) с минимумом вблизи 530 МГц (почти резонанс) и достигает 200-350 Ом в полосе частот. Сопротивление излучения колеблется от 200 до 600 Ом.


Итак собственно калькулятор. Входящие данные вводим в желтые ячейки, значения которые необходимо вручную подбирать – в бирюзовые. Зеленые столбцы – выходной импеданс, сиреневый – значения КСВ для справки.

Подбирая длину и сопротивление – получаем мгновенный отчёт по КСВ во всей полосе частот. При желании можно добавить график КСВ.

Например, если линия имеет длину 155 мм и Z0=170 Ом, то получаем вот такой график КСВ на нагрузку 75 Ом:

Входными данными для желтых ячеек могут выступать:


  • данные CAD-симуляции (Ansys HFSS, CST Microwave, NEC2, MMANA)
  • данные лабораторных измерений
  • справочные данные (для электронных устройств и схем)

Используя калькулятор можно рассчитывать многокаскадные трансформаторы из нескольких отрезков включенных последовательно. Для этого необходимо в Excel создать дубликат «Листа», в желтый столбец ввести ссылки на зеленые ячейки из предыдущего листа. Или можно разместить данные на одном «Листе» – добавив новые строки, в которых в качестве входящих ячеек указать ссылки на предыдущие строки. Но в последнем случае необходимо создать несколько ячеек Zo/L (для каждого каскада) и подправить в формулах ссылки на Zo/L для нужного каскада.

В случае если источником данных является CAD-моделирование, то получить ответ можно просто смоделировав отрезок трансформатора в модели. Но расчет таких моделей по методу конечных элементов (HFSS, CST) занимает очень много времени, особенно в широкой полосе частот. Excel калькулятор дает мгновенный ответ и позволяет видеть тенденцию и чувствительность, поэтому удобнее для чернового подсчета.

Для случаев если линия будет изготовляться из материалов с затуханием:


  • коаксиальных или двухпроводных кабелей с невоздушным диэлектриком
  • микрополосковые линии на печатных платах
    с помощью этого калькулятора можно расчитать вакумный/воздушный эквивалент линии, а потом умножить её длину на коэффициент укорочения (velocity factor) используя паспортные данные кабеля или результаты анализа микрополосковой линии — расчет эквивалентной диэлектрической проницаемости субстрата с учетом геометрии полос: VF=1/sqrt(Eeff)

Для расчета импеданса в длинных линиях с затуханием (коаксиальные кабели, витые пары), можно пользоваться Excel калькулятором: https://ac6la. com/tlmath.html


Проверка правильности модели и калькулятора на ошибки

Т.к. модель калькулятора сравнительно сложная, в ней можно допустить и методологическую ошибку или в формуле — она нуждается в проверке.
Поскольку исходные данные для учебного примера мы получили из Ansys HFSS, то можем расчитанный с помощью Excel трансформатор дорисовать в модель HFSS и рассчитать волновое сопротивление на конце линии с помощью HFSS.
Для примера возьмем длину линии 152 мм и Zo=140 Ом.
В модели мы использовали отвод от патча из полоски 4х0.5 мм.
С помощью известных аналитических уравнений рассчитаем, что расстояние между полосой 4х0.5 мм и земляным бесконечным экраном должно составлять 6.0 мм для Zo=140 Ом.

Продолжим существующую полоску на длину 152 мм на высоте 6 мм от рефлектора и назначим на конце линии порт.
Сравним предсказанные Re/Im с результатами симуляции HFSS

Значения и тренды совпадают довольно точно, значит калькулятору можно доверять.
Незначительные расхождения объясняются небольшими изменениями в геометрию модели — подгонка точки соединение питающей полосы к высоте установки трансформаторного отрезка (измерение проводилось на высоте 4.0 мм, а трансформатор выбрали на высоту 6.0 мм), изгиб и подключение порта на конце трансформатора.

Расчет потерь напора по длине. Определение потерь давления

Посмотреть формулы для расчета потерь напора по длине.

Формулы для расчета потерь давления по длине

Данная автоматизированная система позволяет произвести расчет потерь напора по длине online. Расчет производится для трубопровода, круглого сечения, одинакового по всей длине диаметра, с постоянным расходом по всей длине (утечки или подпитки отсутствуют). Расчет производится для указанных жидкостей при температуре 20 град. С. Если вы хотите рассчитать потери напора при другой температуре, или для жидкости отсутствующей в списке, перейдите по указанной выше ссылке — Я задам кинематическую вязкость и эквивалентную шероховатость самостоятельно.

Для получения результата необходимо правильно заполнить форму и нажать кнопку рассчитать. В ходе расчета значения всех величин переводятся в систему СИ. При необходимости полученную величину потерь напора можно перевести в потери давления.

Порядок расчета потерь напора

    Вычисляются значения:
  • средней скорости потока
  • где Q — расход жидкости через трубопровод, A — площадь живого сечения, A=πd2/4, d — внутренний диаметр трубы, м
  • числа Рейнольдса — Re
  • где V — средняя скорость течения жидкости, м/с, d — диаметр живого сечения, м, ν — кинематический коэффициент вязкости, кв.м/с, Rг — гидравлический радиус, для круглой трубы Rг=d/4, d — внутренний диаметр трубы, м

Определяется режим течения жидкости и выбирается формула для определения коэффициента гидравлического трения.

  • Для ламинарного течения Re<2000 используются формула Пуазеля.
  • Для переходного режима 2000<Re<4000 — зависимость:
  • Для турбулентного течения Re>4000 универсальная формула Альтшуля.
  • где к=Δ/d, Δ — абсолютная эквивалентная шероховатость.

Потери напора по длине трубопровода вычисляются по формуле Дарси — Вейсбаха.

Потери напора и давления связаны зависимостью.

Δp=Δhρg где ρ — плотность, g — ускорение свободного падения.

Потери давления по длине можно вычислить используя формулу Дарси — Вейсбаха.

После получения результатов рекомендуется провести проверочные расчеты. Администрация сайта за результаты онлайн расчетов ответственности не несет.

Как правильно заполнить форму

Правильность заполнения формы определяет верность конечного результата. Заполните все поля, учитывая указанные единицы измерения. Для ввода чисел с десятичной частью используйте точки.

Как рассчитать падение напряжения на резисторе калькулятор

Формулы для радиолюбительских расчетов.

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле: R= U /I

Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле: P=I 2 R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад . =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле: P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ R ном .

Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно двух конденсаторов.

Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно более двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn

Где C1, C2 и Cn — емкость первого, второго и последующих конденсаторов (мФ).

Рекомендуем посмотреть:

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

21 комментарий

Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.

Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.

спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
правый(внизу) измеряют снимаемое (Uout) c
Uout и минуса входящего?

Просто и понятно описано, чтобы понять даже ребенку.

За калькуляторы отдельное спасибо — очень удобно!

Увы. Врет калькулятор безбожно!
Пытался рассчитать делитель с 6В на 2.5В.
Жаль нельзя скриншот вставить.
Результаты:
По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
В общем не фонтан.

Читайте примечание внизу калькулятора…

вполне приличный калькулятор.спасибо.

Спасибо за отличный и удобный калькулятор!

Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов

смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .

При умножении на R1 ты вычислишь разницу напряжений Uin-Uout

А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.

Без учета нарузки это сферический конь в вакууме.

Сама идея создать калькуляторы хорошая.
Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.

Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.

отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))

да кстати сколько ват рассеит резистор как посчитать?

Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.

Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).

Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

21 комментарий

Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.

Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.

спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
правый(внизу) измеряют снимаемое (Uout) c
Uout и минуса входящего?

Просто и понятно описано, чтобы понять даже ребенку.

За калькуляторы отдельное спасибо — очень удобно!

Увы. Врет калькулятор безбожно!
Пытался рассчитать делитель с 6В на 2.5В.
Жаль нельзя скриншот вставить.
Результаты:
По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
В общем не фонтан.

Читайте примечание внизу калькулятора…

вполне приличный калькулятор.спасибо.

Спасибо за отличный и удобный калькулятор!

Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов

смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .

При умножении на R1 ты вычислишь разницу напряжений Uin-Uout

А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.

Без учета нарузки это сферический конь в вакууме.

Сама идея создать калькуляторы хорошая.
Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.

Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.

отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))

да кстати сколько ват рассеит резистор как посчитать?

Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.

Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).

Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)

Калькулятор умений ArcheAge | ArcheAge

Калькулятор умений в ArcheAge — полезный инструмент, который можно найти на официальном сайте игры. Благодаря гибкой настройке параметров игроку дается прекрасная возможность экспериментировать при поиске наиболее оптимального пути развития любого из 220 классов.

Удобный интерфейс позволит сразу же разобраться во всех тонкостях: можно самостоятельно скомбинировать специализации или же выбрать класс из готового списка. Также доступна генерация ссылки на созданный билд, чтобы его было проще показать друзьям для оценки. Версия калькулятора ArcheAge регулярно обновляется по мере появления новых умений или изменения старых. Воспользовавшись этим удобным сервисом, вы без труда сможете создать лучший билд для мага, воина, лекаря, барда и лучника как для PvE или AOE-атак, так и для PvP.


Фильтр классов

Нападение

Волшебство

Преследование

Исцеление

Мистицизм

Скрытность

Оборона

Сопротивление

Гипноз

Воодушевление

Гнев

Коварство

Возможные классы

Дознаватель

Демонолог

Глашатай

Храмовник

Вершитель

Узурпатор

Наемник

Гладиатор

Стратег

Палач

Защитник

Паладин

Монах

Мститель

Завоеватель

Ассасин

Дуэлянт

Полководец

Догматик

Разрушитель

Разбойник

Убийца

Потрошитель

Судья

Инквизитор

Хиромант

Чернокнижник

Мнемоник

Законник

Пcионик

Скальд

Экзорцист

Оккультист

Капеллан

Магистр

Чудотворец

Охотник

Застрельщик

Юстициарий

Ловчий

Вождь

Пастырь

Каббалист

Лазутчик

Контрабандист

Мародер

Дозорный

Пилигрим

Хранитель

Страж

Тактик

Менестрель

Целитель

Госпитальер

Мистификатор

Бард

Проповедник

Телепат

Маэстро

Рыцарь

Каратель

Миротворец

Заступник

Мудрец

Следопыт

Разведчик

Вивисектор

Сказитель

Авантюрист

Фантом

Усмиритель

Загонщик

Странник

Отшельник

Анахорет

Зверолов

Трубадур

Знахарь

Месмер

Егерь

Эзотерик

Гаруспик

Миссионер

Друид

Геомант

Мошенник

Осквернитель

Плут

Стоик

Шулер

Ликвидатор

Импровизатор

Фаталист

Фанатик

Виртуоз

Теург

Колдун

Паломник

Чародей

Оракул

Иллюзионист

Вестник

Аскет

Теолог

Философ

Еретик

Элементалист

Эскулап

Летописец

Жрец

Эмпат

Отступник

Астролог

Клирик

Сновидец

Исповедник

Медиум

Шаман

Пророк

Авгур

Скриптор

Хронист

Прорицатель

Эпигон

Волхв

Понтифик

Кондотьер

Врачеватель

Подстрекатель

Фокусник

Экзарх

Пацифист

Паяц

Повстанец

Прецептор

Кардинал

Архонт

Ведьмак

Налетчик

Некромант

Мизантроп

Искатель

Чаромант

Истязатель

Созидатель

Визионер

Дервиш

Протектор

Адепт

Эокад

Мара

Ординарец

Браконьер

Секутор

Ликтор

Архат

Трикстер

Духовидец

Клеймитель

Угнетатель

Прокуратор

Провокатор

Воитель

Берсерк

Экзекутор

Покоритель

Единоборец

Изувер

Кошмар

Разоритель

Менталист

Преступник

Мятежник

Схоластик

Мучитель

Апокалиптик

Психокинетик

Иллюминат

Искуситель

Варлок

Морок

Бунтарь

Иезуит

Захватчик

Самнит

Аргус

Рудиарий

Телемит

Конвергент

Трувер

Схимник

Легионер

Зелот

Варвар

Одержимый

Изгнанник

Крамольник

Ритуалист

Тиран

Оборотень

Факир

Тень

Вольнодумец

Отравитель

Хунган

Уничтожитель

Гонитель

Эмиссар

Скиталец

Истребитель

Магик

Ясновидящий

Тайновидец

Демиург

Заговорщик

Спиритуалист

Терзатель

Утешитель

Агитатор

Гематик

Не определён

Требуемый уровень  0 Очки навыков  0 Доступно  20

Сбросить

Ссылка

Скопировать

Закрыть

Специализации
Калькулятор параллельных резисторов

— [100% бесплатно]

Может быть довольно утомительно вычислять эквивалентное сопротивление или REQ параллельных резисторов вручную. К счастью, этот калькулятор параллельных резисторов может помочь вам в расчетах независимо от того, сколько резисторов у вас параллельно. Вы также можете выполнить вычисления вручную, а затем использовать калькулятор параллельной схемы, чтобы проверить свой ответ.

Как использовать параллельный вычислитель резисторов?

Каким бы пугающим ни казался расчет параллельных резисторов, использование этого калькулятора параллельных резисторов является полной противоположностью.Этот онлайн-инструмент очень прост в использовании и понимании. Вот шаги, которые необходимо выполнить для использования этого калькулятора эквивалентного сопротивления или параллельного калькулятора сопротивления:

  • Сначала введите значение резистора 1.
  • Затем введите значения резистора 2, резистора 3, резистора 4 и резистора 5.
  • После ввода всех требуемых значений калькулятор параллельной цепи автоматически сгенерирует нужный вам результат. Поскольку единицей измерения для всех значений резистора является Ом, конечный результат также имеет ту же единицу измерения.

Что такое параллельный резистор?

Когда вы соединяете обе клеммы резисторов вместе параллельно, это означает, что вы соответственно подключили каждую клемму к другому резистору или резисторам. В отличие от других схем, вы также можете классифицировать схему с параллельными резисторами как делитель тока.

Это связано с тем, что параллельные резистивные цепи могут проходить более одного пути, поскольку они имеют несколько путей, через которые может проходить ток.Поскольку этот тип схемы обеспечивает несколько путей для прохождения источника тока, сила тока может быть неодинаковой во всех ответвлениях или путях.

Но падение напряжения, которое возникает на всех резисторах в параллельной цепи, остается неизменным. Это означает, что параллельные резисторы имеют общее напряжение, и этот факт применим ко всем элементам, соединенным параллельно.

По определению, параллельная резистивная цепь — это цепь, в которой резисторы имеют параллельные соединения или совместно используют одни и те же узлы или точки соединения.Кроме того, этот тип схемы имеет более одного пути, подключенного к одному источнику напряжения.

Как рассчитать сопротивление в параллельной цепи?

Основной характеристикой параллельной цепи является общее напряжение или разность потенциалов на концах всех резисторов. Даже без использования калькулятора эквивалентного сопротивления, вы можете рассчитать эквивалентное сопротивление для этого типа цепи по следующей формуле:

1 / R = 1 / R1 + 1 / R2 +… + 1 / Rn

где:

R относится к эквивалентному параллельному сопротивлению
R1, R2,… Rn относится к сопротивлениям отдельных резисторов с номерами 1… n .2) в базовых единицах СИ

Вот несколько шагов, которые необходимо выполнить для расчета параллельного сопротивления без использования параллельного калькулятора сопротивления:

  • Сначала определите значения сопротивления всех резисторов, подключенных параллельно. Например, у нас есть три номинала резистора: 4 Ом , 3 Ом и 6 Ом .
  • Подставьте эти значения в приведенную выше формулу:

1 / R = 1/4 + 1/3 +1/6

, следовательно, , 1 / R = 0.75, а R = 1,33

  • Чтобы проверить точность ответа, введите значения в калькулятор параллельного резистора.

Как рассчитать сопротивление?

Прежде чем вы сможете выполнить расчет, вы должны хорошо разбираться в параллельных цепях. Помните, что такая схема делится на несколько путей, а затем снова соединяется. Также имейте в виду, что ток течет по каждому из отдельных путей цепи.

Если в схеме есть резисторы на главном ответвлении или если в одном ответвлении имеется более одного резистора, следует выполнить другой расчет.Найдите общее сопротивление, используя значение сопротивления каждой из ветвей. Каждый из резисторов замедляет ток, проходящий через одну ветвь.

Но резисторы не так сильно влияют на общее сопротивление цепи. Следовательно, вы должны использовать формулу полного сопротивления:

1 / RT = 1 / R1 + 1 / R2 + 1 / R3 + 1 / R4… 1 / Rn

где:

R1 относится к сопротивлению 1-й ветви
R2 относится к сопротивлению 2-й ветви
R3 относится к сопротивлению 3-й ветви
R4 относится к сопротивлению 4-й ветви
и так далее, пока не дойдете до конечной ветки Rn .

Это самый простой способ рассчитать сопротивление. Но в некоторых случаях у вас может не быть значений отдельных сопротивлений. В таком случае вам нужно вместо этого использовать напряжение и ток. Вот шаги, которые необходимо выполнить:

  • В параллельных цепях напряжение на одной ветви имеет то же значение, что и общее напряжение, протекающее по всей цепи. Если вам известно значение напряжения одной из ветвей, вы можете выполнить расчет.
  • Вы также можете найти значение общего напряжения, равное источнику питания схемы, например, батарее. В параллельных цепях токи различаются от ветви к ветви. Вы должны знать значение общего тока. Без него вы не сможете рассчитать общее сопротивление.
  • Как только у вас есть общее напряжение и ток, вы можете вычислить полное сопротивление по закону Ома:

R = V / I.

  • Обратите внимание на любые ветви, у которых есть ноль. сопротивление.Если параллельная цепь имеет одну такую ​​ветвь, весь ток течет через эту ветвь, и сопротивление становится равным нулю.

Почему при параллельном подключении эквивалентное сопротивление меньше?

По мере того, как вы продолжаете добавлять резисторы в параллельную цепь, это уменьшает эквивалентное сопротивление всей цепи. Однако это также увеличивает общий ток цепи. Это происходит потому, что добавление резисторов параллельно предоставляет схемам больше путей для прохождения тока.

Калькулятор цветового кода резистора

(3-полосный, 4-полосный, 5-полосный и 6-полосный)

Цветовой код резистора был разработан в 1920 году.Цветные полосы напечатаны на корпусе крошечных резисторных компонентов. Как правило, для цветового кода мы можем использовать мнемонику резистора под названием BBROY Great Britain Very Good Wife. Тогда как первая буква обозначает уникальный цвет.

Этот ярлык с цветовым кодированием содержит аббревиатуру для обозначения номинала резистора.

Цветовой код резистора Обозначение
Код цвета Резистор Аббревиатура Цвет ремешка
0 B

Чернить

1 B

коричневый

2 R

красный

3 O

апельсин

4 Y

Желтый

5 G

Зеленый

6 B

Синий

7 В

фиолетовый

8 G

Серый

9 Вт

белый

Резисторы используют стандарт кодирования BS1852 (британский стандарт) для представления значений.Он использует букву «R» для ом, «K» для килоомов и «M» для мегаомов. Например, резистор 4,7 кОм отображается как 4K7.

Цветные полосы резистора

Резисторы из углеродного состава имеют от 3 до 6 цветовых полос резисторов. Трехполосный резистор трех цветов с множителем и без допуска.

Можно выбрать три диапазона, чтобы узнать номинал резистора. Принимая во внимание, что 4-полосные, 5-полосные и 6-полосные резисторы имеют дополнительный диапазон, известный как допуск.

На диаграмме цветового кода показаны 3 полосы, 4 полосы, 5 полос и 6 полос резисторов.

3-х полосный резистор 4-полосный резистор 5-полосный резистор 6-полосный резистор
1-я полоса Первая цифра Первая цифра Первая цифра Первая цифра
2-я полоса Вторая цифра Вторая цифра Вторая цифра Вторая цифра
3-я полоса Значение множителя Значение множителя Третья цифра Третья цифра
4-я полоса Значение допуска Значение множителя Значение множителя
5-я полоса Значение допуска Значение допуска
6 диапазон Температурный коэффициент

Чтобы узнать, как найти цветовой код, каждый цвет обозначает число от 0 до 9.Это число может использоваться как первая значащая цифра и вторая значащая цифра для 3-х и 4-х диапазонов. Для 5-полосных и 6-полосных резисторов первые 3 цифры обозначают значащие числа.

Значение множителя умножается на значащую цифру (одну, две или три цифры), чтобы получить желаемое значение сопротивления. В дополнение к этому 4-полосные, 5-полосные и 6-полосные резисторы имеют значение допуска от ± 0,10 до ± 10.

Шестиполосный резистор имеет особое свойство — температурный коэффициент сопротивления, выраженный в ppm / Кельвинах.Более высокое значение ppm указывает на то, что резистор может выдерживать более высокую или более низкую температуру. Изменение сопротивления постоянно зависит от температуры.

Таблица цветов резистора

— 3 полосы, 4 полосы, 5 полос и 6 полос

Чтобы понять, как читать цветовой код резистора для 3/4/5/6-полосных резисторов, вы можете использовать эту цветовую таблицу.

Из приведенной выше таблицы каждая цветная полоса на резисторе представляет собой число. Например, для расчета 1,2 МОм резистор показывает коричневые, красные и зеленые цвета (читать слева направо).Теперь поместите первые две полосы как числовое значение и третью полосу как множитель (10 5 ).

Отклонения в цветовой кодировке резисторов

Надежность

Резисторы, отвечающие военным требованиям, часто изготавливаются с диапазоном надежности. Этого ремешка нет в коммерческой электронике. Обычно 4-полосный резистор имеет полосу надежности.

Резистор нулевой сопротивления

Этот резистор имеет одну черную полосу, используемую для соединения дорожек на печатной плате (PCB).Он используется как соединение между двумя суставами.

Резисторные полосы с золотом и серебром

Золотая и серебряная полосы часто ошибочно представляют истинный цвет резистора. Следовательно, они заменены полосами серого и желтого цветов.

Как пользоваться калькулятором цветового кода резистора

Инструмент калькулятора резисторов вычисляет цветовой код для 3-полосных, 4-полосных, 5-полосных и 6-полосных резисторов, обычно в диапазоне Ом, Кило Ом и Мега Ом.

Калькулятор сопротивления имеет от 1 до 6 цветов полос с множителем (Mul) и допуском (Tol) и PPM / Кельвином.Вы должны выбрать правильный цвет, соответствующий каждому столбцу. Значение допуска говорит о точности изготовления резистора. Обычно для золота он составляет 5%, а для серебра — 10%.

Отображает истинное значение сопротивления с допуском и температурным коэффициентом сопротивления.

Примеры цветового кода резистора

Чтобы узнать больше, давайте обсудим несколько примеров цветовой маркировки резисторов для 4-, 5- и 6-полосных резисторов.

4 полосы Цветовой код

Например, 4-полосный резистор имеет цвет Коричневый Черный Оранжевый Золотой.Какое значение резистора?

Используя цветовую таблицу, запишите значения как: 1/0/10 3 = 10 * 10 3 = 10 кОм / 10 кОм. Допуск для золота составляет ± 5%. Таким образом, значение колеблется от 9,5 кОм до 10,5 кОм.

5-полосный цветовой код

Другой пример (Из таблицы): 5-полосный резистор имеет цвет Черный — Коричневый Черный Красный Коричневый.

Запишите значения как, 0/1 // 0/10 2 = 10 * 100 = 1 кОм / 1 кОм. Допуск для Брауна составляет ± 1%. Следовательно, сопротивление резистора составляет 900 Ом к 1.01КОм

6-полосный цветовой код

6-полосный резистор имеет черный коричневый красный коричневый синий коричневый

Используя таблицу, значения: 0/1/2/101 = 120 Ом / 120R. Допуск для синего составляет ± 0,25%, а температурный коэффициент сопротивления составляет 100 частей на миллион. Таким образом, сопротивление становится 119,7 Ом -120,3 Ом

.

Номиналы стандартных резисторов

Электронная цветовая кодировка стандартизирована Ассоциацией электронной промышленности (EIA), а затем Ассоциацией производителей радиотехники (RMA) в качестве стандартной цветовой маркировки резисторов.

Этот код маркировки меняется от одного десятилетия к другому. Это известно как цветовой код EIA. Для каждого диапазона допуска EIA выделяет серию E (E3, E6, E12, E24 и E96) для обозначения номиналов резисторов.

Стандартные декадные резисторы (также известные как предпочтительные значения) показаны в таблице ниже. Расчет сопротивления начинается с 1 Ом с диапазоном допуска (36%, 10%, 5% и 1%).

Серия E3 — сопротивление с допуском ± 36% (значение в омах)
1.0 2,2 4,7
Серия E6 — сопротивление с допуском ± 20% (значение в омах)
1,0 1,5 2,2 3,3 4,7 6,8
Серия E12 — сопротивление с допуском ± 10% (значение в омах)
1,0 1,2 1,5 1.8 2,2 2,7 3,3 3,9 4,7 5,6
Серия E24 — сопротивление с допуском ± 5% (значение в омах)
1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 ​​ 2,2 2,4
2,7 2,9 3,0 3,3 3,6 4.3 4,7 5,1 5,6 6,2
6,8 7,2 8,2 9,1
Серия E96 — сопротивление с допуском ± 1% (значение в омах)
1 1,02 1,05 1,07 1,10 1,13 1,15 1,18 1,21 1,24
1.27 1,30 1,33 1,37 1,40 1,43 1,47 1,50 1,54 1,58
1,62 1,65 1,69 1,74 1,78 1,82 1,87 1,91 1,96 2,00
2,05 2,10 2,15 2,21 2,26 2.32 2,37 2,43 2,49 2,55
2,61 2,67 2,74 2,80 2,87 2,94 3,01 3,09 3,16 3,24
3,32 3,40 3,48 3,57 3,65 3,74 3,83 3,92 4,02 4,12
4.22 4,32 4,42 4,53 4,64 4,75 4,87 4,99 5,11 5,23
5,36 5,49 5,62 5,76 5,90 6,04 6,19 6,34 6,49 6,65
6,81 6,98 7,15 7,32 7,50 7.68 7,87 8,06 8,25 8,45
8,66 8,87 9,09 9,31 9,53 9,76

Чтобы найти номиналы резисторов из серии E, выберите предпочтительный резистор с допуском. Мы получим сопротивления, умножив значение на постоянную множителя. Например, резистор серии E6 (1 Ом) с допуском ± 20, набор сопротивлений 1, 20, 400, 8K, 160K.

Заключение

Углеродные полосовые резисторы не имеют напечатанных значений сопротивления и допусков на корпусе из-за их размера. Таким образом, таблица цветового кода резистора и калькулятор помогают определить номинал резистора без использования цифрового мультиметра.

Вот некоторые моменты, которые следует помнить о цветовой кодировке резистора.

  1. Цветовой код резистора говорит о том, что пятая полоса черная, какой тип резистора?

    Для резистора с проволочной обмоткой 5-я полоса черного цвета, а для плавкого резистора 5-я полоса белого цвета.Если только одна полоса (черного цвета) посередине, то это резистор нулевым сопротивлением.

  2. С какой стороны читать резистор?

    Читайте слева направо. Идея в том, что золотые или серебряные полосы (для допуска) присутствуют с правой стороны. Если золотая, серебряная полосы отсутствуют, то первой полосой будет полоса, которая находится близко к свинцу.

  3. Какой тип серии E используется чаще всего?

    В большинстве схем предпочтительными сериями являются E6, E12 и E24.Серии E96 дороги, так как их толерантность меньше.

Калькулятор сопротивления серии

Калькулятор сопротивления серии

{{keyword}}

Таким образом, множитель по таблице равен 1 000 000. Это означает, что значение 52 МОм может изменяться до 5% в любом направлении, поэтому номинал резистора составляет 49,4 — 54,6 МОм. У кодированных компонентов есть как минимум три полосы: две полосы значащих цифр и множитель, но есть другие возможные варианты.Например, если вы хотите вычислить, калькулятор последовательного резистора — это эффективный инструмент, используемый для расчета эквивалентного сопротивления для введенных значений сопротивления.

В этом калькуляторе пользователь может выбрать, будет ли сопротивление выражено в Ом (Ом) или в килом (кОм). Наш светодиодный калькулятор поможет вам определить значение последовательного резистора, ограничивающего ток, при подключении одного или массив слаботочных светодиодов. Ниже приведены инструменты для расчета значения сопротивления и допусков на основе цветовой маркировки резисторов, общего сопротивления группы резисторов, включенных параллельно или последовательно, и сопротивления проводника в зависимости от размера и проводимости.Используйте этот калькулятор, чтобы узнать значение сопротивления и допуск на основе цветовой кодировки резистора. Используйте следующее для расчета сопротивления проводника. Если вы хотите вычислить общее сопротивление менее 10 резисторов, просто вставьте значения резисторов, которые у вас есть, и оставьте остальные поля. Этот множитель умножается на значащие цифры, определенные из предыдущих диапазонов, в данном случае 52, в результате чего при значении 52000000 Ом или 52 МОм. Четвертая полоса присутствует не всегда, но когда она присутствует, то представляет собой допуск.Это процент, на который может изменяться номинал резистора. если посчитать сразу все резисторы.

Рассчитайте общее последовательное и параллельное сопротивление цепи с помощью калькулятора параллельных и последовательных резисторов DigiKey. последовательное сопротивление 3 резисторов, просто введите значения в первые 3 поля, а остальные оставьте пустыми. Следующий калькулятор определяет влияние R s на коэффициент заполнения солнечного элемента. поместите его в один из ящиков и вставьте в другие ящики оставшиеся резисторы, которые у вас есть, последовательно.Также возможно наличие 5-ти. Чаще бывают пятиполосные резисторы, которые более точны из-за третьей значащей полосы. Например, компоненты, изготовленные в соответствии с военными спецификациями, обычно представляют собой четырехполосные резисторы, которые могут иметь пятую полосу, которая указывает на надежность резистора с точки зрения процента отказов на 1000 часов работы. Код для добавления этого калькулятора на свой веб-сайт Просто скопируйте и вставьте приведенный ниже код на свою веб-страницу, где вы хотите отобразить этот калькулятор.
результат, который он дает, выражается в единицах Ом (Ом). Калькулятор последовательных резисторов Введите все значения сопротивления последовательно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление. Для начала введите требуемые значения и нажмите… для настройки усилителя [3] 29.09.2019 16:29 Мужчина / Уровень 40 лет / Другое / Очень / Цель использования HNC для машиностроения [4] 2018/05 / 26 08:26 — / — / — / — / Цель использования самостоятельно занятый студент

МОм (МОм). В типичном четырехполосном резисторе существует промежуток между третьей и четвертой полосами, чтобы указать, как следует считывать показания резистора (слева направо, причем одинокая полоса после промежутка является самой правой полосой).Единица измерения Обратитесь к уравнению ниже для пояснения: Общее сопротивление резисторов, включенных параллельно, — это просто сумма сопротивлений каждого резистора. Этот калькулятор последовательных резисторов рассчитывает общее значение сопротивления для всех резисторов, соединенных последовательно. Этот калькулятор обращается только к резисторам. Цветовая кодировка резисторов является международным стандартом, который определен в IEC 60062. Это смещает положение умножителя и диапазона допуска в 4 резисторы — элементы схемы, которые придают электрическое сопротивление.Последовательно рассчитайте сопротивление. Просто добавьте количество резисторов в первый столбец, а затем введите значения каждого резистора, выбрав соответствующую единицу измерения сопротивления резистора в Ом, кОм или МОм. параллельное сопротивление 3 резисторов, просто введите значения в первые 3 поля, а остальные оставьте пустыми.

Гавайские авиалинии 787, Саймон Сез Имдб, Жан Пьер Пес 2020, Лауда Эйр Ryanair, Джордан Миллер Музыкант, Население Уичито 2019, Имя отца Озуны, Сцена подъема сарая в свидетельстве о значении, Бюджет американских животных, Кто изобрел самолет, Дальний радиолокатор против ближнего радиолокатора, Каковы три индикатора изменения климата? Quizlet, Статус рейса Ix 745, Винтажные плакаты American Airlines, Мужская хоккейная лига Скенектади, Альфа и Омега Определение, Сообщник Эша Игана, Новости Wizz Air сегодня, Футболка Украина, База данных инцидентов Faa, Диснейленд Ap Twitter, Кому принадлежит Expressjet Airlines, Стандарты разделения ФАА, Таитянин не является обозначением американцев азиатского / тихоокеанского происхождения, Что такое конвекционный ток, Женат ли Линтон Тэпп, Бунми Адамс Выживший Сосолисо, Когда я знаменитость с 2020 года, Аварийная посадка Philippine Airlines, Джонни Уокер Dj Net Worth, Уинстон Эльба Эйдж, Руководство по заказу Cisco 9130, Определение недвижимости с полным спектром услуг, Трофеи вашего труда, Кто такая жена Мика Моллоя, Пустой Лил Узи Верт, Рейтинг новичков фэнтези-футбола, Слова, связанные с авиацией, Камрадж Нагар, Пин-код Восточного Гхаткопара, Пожар в Национальном парке Редвуд, Джош Хайленд Эйдж, Губная помада Лизы Элдридж, Берлинская кулинарная культура, Имя отца Озуны, Форма утверждения консультанта Муниципалитет Дубая Pdf, Фермы в Суррее, Остерия Франческана Ньюк, Пин-код Манхурда, Тексты песен Santo & Johnny Sleep Walk, Кейси Десмит Контракт, Энвива Франклин, штат Вирджиния, Флот Midway Airlines, Аделайо Адедайо Рост, Брайан Белу Большой Брат, Crocs Literide Мужские, Плотина 999 Вики, Cherokee 180 против Comanche 180, Ryanair Evil, Альбом Тото Тамбу, КВ-85 Wot Best Gun, Как сбросить ретранслятор Wi-Fi, 101fm Маленький Simz Genius, Кто такой Рик Грейсон, Ты солгал мне песня 2016, Карта маршрутов Air Wisconsin, Крис Роланд Менеджер кампании, Аварийная служба, Роланд Бертон Эйдж, Сходства Малайзии и Филиппин, Харви Хут Гибсон, Детали Пан-карты по имени и дате рождения, Джокер — плохой фильм Reddit, Самолет Фотографии, Программа Dost Research, Chronic Ex Instagramshirley Bassey — Я то, что я есть, Джоан Хантингтон Актриса Википедия, Backlash Movie 1947 Актеры, Датчик расстояния Arduino Lidar, Слова Тройки, Кодекс этики учителей Объединенных Арабских Эмиратов K 12, Мемориал пустого неба, Больше не плачь

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *