Калькулятор тока по мощности и напряжению: формулы расчета и примеры применения

Как рассчитать силу тока по мощности и напряжению. Какие формулы используются для однофазной и трехфазной сети. Для чего нужен расчет тока по мощности. Как правильно выбрать сечение проводов и кабелей.

Содержание

Зачем нужен расчет тока по мощности и напряжению

Расчет силы тока по мощности и напряжению играет важную роль при проектировании и эксплуатации электрических сетей. Основные причины, по которым необходимо уметь производить такие расчеты:

  • Правильный выбор сечения проводов и кабелей
  • Подбор автоматических выключателей и предохранителей нужного номинала
  • Оценка нагрузки на электрическую сеть
  • Расчет потерь электроэнергии в проводах
  • Проверка соответствия оборудования параметрам сети

Неправильный расчет может привести к перегреву проводки, срабатыванию защиты, пожароопасным ситуациям. Поэтому важно уметь точно определять силу тока по известным значениям мощности и напряжения.

Формулы расчета тока по мощности для однофазной сети

Для однофазной сети с напряжением 220 В используется следующая формула расчета силы тока:


I = P / (U * cos φ)

Где:

  • I — сила тока, А
  • P — мощность, Вт
  • U — напряжение, В
  • cos φ — коэффициент мощности

Коэффициент мощности cos φ зависит от характера нагрузки:

  • Для чисто активной нагрузки (лампы накаливания, нагревательные приборы) cos φ = 1
  • Для бытовых приборов с двигателями cos φ ≈ 0.7-0.8
  • Для промышленных электродвигателей cos φ ≈ 0.8-0.9

Расчет тока для трехфазной сети

В трехфазных сетях с линейным напряжением 380 В используется формула:

I = P / (√3 * U * cos φ)

Здесь √3 ≈ 1.73 — это коэффициент, учитывающий межфазные соотношения напряжений и токов в трехфазной системе.

При расчетах важно учитывать:

  • Для симметричной нагрузки достаточно рассчитать ток для одной фазы
  • При несимметричной нагрузке нужно определять ток отдельно для каждой фазы
  • Линейный ток в 1.73 раза больше фазного

Практические примеры расчета тока по мощности

Рассмотрим несколько типичных примеров расчета силы тока по мощности для бытовых и промышленных потребителей.

Пример 1. Расчет тока для электрочайника

Дано: электрочайник мощностью 2000 Вт, напряжение сети 220 В.


Решение: I = P / U = 2000 / 220 = 9.1 А

Здесь мы используем упрощенную формулу без cos φ, так как нагрузка чисто активная.

Пример 2. Расчет тока для стиральной машины

Дано: стиральная машина мощностью 2200 Вт, напряжение 220 В, cos φ = 0.8

Решение: I = P / (U * cos φ) = 2200 / (220 * 0.8) = 12.5 А

Пример 3. Расчет тока для трехфазного двигателя

Дано: электродвигатель мощностью 5.5 кВт, напряжение 380 В, cos φ = 0.85

Решение: I = P / (√3 * U * cos φ) = 5500 / (1.73 * 380 * 0.85) = 9.8 А

Выбор сечения проводов по расчетному току

После определения расчетного тока необходимо правильно подобрать сечение проводов или кабелей. Для этого используются специальные таблицы допустимых токовых нагрузок.

Основные правила выбора сечения:

  • Рабочий ток не должен превышать допустимый для выбранного сечения
  • Необходимо учитывать способ прокладки проводов (открытый, в трубе, в земле)
  • Следует принимать во внимание температуру окружающей среды
  • Для групповых линий с несколькими потребителями учитывается коэффициент одновременности

Пример выбора сечения для кабеля:


Расчетный ток: 16 А Способ прокладки: открытый Выбираем по таблице медный провод сечением 2.5 мм² (допустимый ток 27 А)

Влияние коэффициента мощности на расчет тока

Коэффициент мощности cos φ оказывает существенное влияние на величину тока в электрической цепи. Чем ниже cos φ, тем больше будет ток при той же активной мощности.

Основные факторы, влияющие на cos φ:

  • Тип электрооборудования (двигатели, трансформаторы, сварочные аппараты и т.д.)
  • Режим работы (например, недогруженные двигатели имеют низкий cos φ)
  • Наличие компенсирующих устройств

Повышение cos φ позволяет снизить потери в сети и уменьшить нагрузку на провода. Поэтому на промышленных предприятиях часто применяют специальные меры для компенсации реактивной мощности и повышения коэффициента мощности.

Онлайн-калькуляторы для расчета тока по мощности

Для быстрого расчета тока по мощности удобно использовать онлайн-калькуляторы. Они позволяют быстро получить результат без необходимости вручную производить вычисления.

Типичные возможности онлайн-калькуляторов:


  • Расчет тока по мощности и напряжению
  • Определение мощности по току и напряжению
  • Расчет параметров для однофазных и трехфазных цепей
  • Учет коэффициента мощности
  • Выбор стандартных значений напряжения

При использовании калькуляторов важно правильно вводить исходные данные и выбирать нужные единицы измерения. Также следует критически оценивать полученный результат и проверять его на адекватность.

Особенности расчета тока для различных типов нагрузки

Расчет тока по мощности может иметь свои особенности в зависимости от типа нагрузки. Рассмотрим некоторые характерные случаи:

Активная нагрузка

К активной нагрузке относятся лампы накаливания, нагревательные приборы, электроплиты. Для них:

  • cos φ = 1
  • Расчет максимально прост: I = P / U
  • Нет реактивной составляющей тока

Индуктивная нагрузка

Индуктивной нагрузкой обладают электродвигатели, трансформаторы, дроссели. Особенности:

  • cos φ < 1 (обычно 0.7-0.9)
  • Необходимо учитывать реактивную мощность
  • Ток отстает по фазе от напряжения

Емкостная нагрузка

Емкостной характер имеют конденсаторы, некоторые типы осветительных приборов. Для них:


  • cos φ < 1
  • Ток опережает напряжение по фазе
  • Могут использоваться для компенсации реактивной мощности

При наличии в цепи нагрузок различного типа важно учитывать их взаимное влияние на общий коэффициент мощности.


формулы расчета на 220в и 380в

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Содержание

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Сила тока (А)

Стиральные машины

2,0 – 2,5

9,0 – 11,4

Электрические плиты стационарные

4,5 – 8,5

20,5 – 38,6

Микроволновые печи

0,9 – 1,3

4,1 – 5,9

Посудомоечные машины

2,0 – 2,5

9,0 – 11,4

Холодильники, морозильные камеры

0,14 – 0,3

0,6 – 1,4

Электрический подогрев полов

0,8 – 1,4

3,6 – 6,4

Мясорубка электрическая

1,1 – 1,2

5,0 – 5,5

Чайник электрический

1,8 – 2,0

8,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

1,3

0,98

0,75

10

2,2

1,13

1,0

14

3,1

1,38

1,5

15

3,3

10

2,2

1,6

2,0

19

4,2

14

3,1

1,78

2,5

21

4. 6

16

3,5

2,26

4,0

27

5,9

21

4,6

2,76

6,0

34

7,5

26

5,7

3,57

10,0

50

11,0

38

8,4

4,51

16,0

80

17,6

55

12,1

5,64

25,0

100

22,0

65

14,3

Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

2,25

0,98

0,75

10

3,8

1,13

1,0

14

5,3

1,38

1,5

15

5,7

10

3,8

1,6

2,0

19

7,2

14

5,3

1,78

2,5

21

7,9

16

6,0

2,26

4,0

27

10,0

21

7,9

2,76

6,0

34

12,0

26

9,8

3,57

10,0

50

19,0

38

14,0

4,51

16,0

80

30,0

55

20,0

5,64

25,0

100

38,0

65

24,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.

Как рассчитать мощность тока

Расчет тока по мощности

Содержание

  1. Зачем нужно рассчитывать ток
  2. Электричество
  3. Измерение мощности ваттметром
  4. Формула Закона Джоуля-Ленца
  5. Расчет электрических цепей
  6. Сила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле
  7. Расчет потребляемой мощности
  8. По какой формуле вычисляется мощность электрического тока
  9. Виды мощностей
  10. Активная мощность
  11. Реактивная мощность
  12. Полная мощность
  13. Комплексная мощность
  14. Расчет тока
  15. Категории элементов и устройств электрической цепи
  16. Работа электрического тока
  17. Как рассчитать сопротивление и мощность
  18. Сила тока – что это
  19. Измерение мощности приборами
  20. Измеритель мощности
  21. Измерение мощности с помощью электросчетчика
  22. Мощность тока
  23. Пример с обычной водой
  24. Закон Ома для цепи
  25. Мощность при параллельном соединение
  26. Итоги урока

Зачем нужно рассчитывать ток

На большинстве электроприборов указывается мощность потребления. Это необходимо для того, чтобы правильно вести учет потребления электроэнергии. Но для всего остального значение мощности несет мало информации. Параметры автоматов защиты и плавких вставок, сечение электропроводки, требуют знать протекающий ток или, как говорят электрики, ампераж нагрузки.

Простой пример: какой паяльник сильнее перегружает электропроводку, 42-х вольтовый на 80 Вт или 220-и вольтовый на 100 Вт? Логичный ответ, что более мощный, является неправильным. Ведь на самом деле, при включении второго паяльника в сети протекает ток около 0.5 А, а при включении первого — почти 2 А. Соответственно, для таких устройств требуется различная электропроводка и номинал защитных устройств. При одинаковой толщине проводов питания нагрев будет сильнее, при работе с низковольтным инструментом.

По этой же причине в линиях электропередач стремятся по максимуму повысить передаваемое напряжение. Поскольку мощность нагрузки остается одинаковой, при более высоком напряжении по проводам протекает меньший ток и поэтому:

  • Снижаются потери;
  • Уменьшается нагрев;
  • Снижается сечение проводов и, как следствие, их масса и нагрузка на опоры линий электропередач.

Высоковольтная опора ЛЭП

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом

Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством. Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10-19 Кл (Кулон). Обозначается е или е–.

Измерение мощности ваттметром

Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.

Трехфазный цифровой ваттметр

Варианты измерений:

  • Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
  • Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
  • Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.

Схемы измерения

На практике всегда стараются выполнить нагрузку симметричной. Это, во-первых, улучшает параметры сети, во-вторых, упрощает учет электрической энергии.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца.

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где
P – мощность, измеряется в ваттах и обозначается Вт;
U – напряжение, измеряется в вольтах и обозначается буквой В;
I – сила ток, измеряется в амперах и обозначается буквой А.

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

  Онлайн калькулятор для определения потребляемой мощности  
  Напряжение, В:  
  Сила тока, А:  
  

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

  Онлайн калькулятор для определения силы тока в зависимости от потребляемой мощности  
  Потребляемая мощность, Вт:  
  Напряжение питания, В:  
  

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Расчет электрических цепей

Все формулы, используемые для расчётов электроцепей, вытекают одна из другой.

Взаимосвязи электрических характеристик

Так, например, по формуле расчета мощности можно произвести расчет силы тока, если известны P и U.

Чтобы узнать, какой ток будет потреблять утюг (1100 Вт), включенный в сеть 220 В, нужно выразить силу тока из формулы мощности:

I = P/U = 1100/220 = 5 A.

Зная расчётное сопротивление спирали электроплиты, можно найти P устройства. Мощность через сопротивление узнают по формуле:

P = U2/R.

Существует несколько методов, позволяющих решать поставленные задачи по расчётам различных параметров заданной цепи.

Методы расчёта электрических цепей

Расчёт мощности для цепей разного рода тока помогает правильно оценить состояние линий электропитания. Бытовые и промышленные аппараты, подобранные в соответствии с заданными параметрами Pном и S, будут работать надёжно и выдерживать максимальные нагрузки годами.

Сила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле

Как уже стало понятно, сила электротока – это физическая величина, показывающая заряд, который проходит через проводник за единицу времени. Основная формула для ее вычисления выглядит так: I = q/t, где q – это заряд, который идет по проводнику в кулонах, а t  – это временной интервал в секундах.

Рассчитать силу электротока можно и с помощью закона Ома. Он гласит, что эта величина равна напряжению сети в вольтах, деленному на ее сопротивление в омах. В связи с этим имеет место формула такого рода — I = U/R. Этот закон применим для расчета значений постоянного тока.

Чтобы вычислить переменные параметры электричества, нужно разделить найденные величины на квадратный корень из двух.

К сведению! Это более практичный метод измерения, и им приходится пользоваться часто, так как все приборы в доме или в офисе работают от розеток, которые подают переменный ток. Делается это из-за того, что с ним легче работать, его удобнее трансформировать.

Закон Ома в таблице

Важно! Наглядный пример работы переменного электротока можно наблюдать при включении люминесцентных ламп. Пока они полностью не загорятся, они будут моргать, потому что ток  двигается в них то туда, то сюда

Единицей измерения силы тока является ампер. Он определяется как сила неизменяющегося тока, который проходит по бесконечным параллельным проводникам с наименьшим круговым сечением (с минимальной площадью кругового сечения), отдаленным друг от друга на 1 метр и расположенным в безвоздушном вакуумном пространстве. Это взаимодействие на одном метре длины этих проводников, равное 2 × 10 в минус 7-й степени Ньютона. Если в проводнике за одну секунду времени проходит один кулон заряда, то сила тока в нем равна одному амперу.

Аккумуляторы являются вторичными источниками, но неразрывно связаны с батарейками

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Подсчет потребляемой мощности

Подсчет потребляемой мощности

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

Типовые названия

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Работа электрического тока

Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t

Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,

Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.

Мощность электрического тока

Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Сила тока – что это

Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.

Основные величины, характеризующие поток электронов

Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».

Гальванометр для измерения небольшой силы тока

Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду. Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее

Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль

Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.

Схема, определяющая рассматриваемое понятие

Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.

Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.

Виды токов

Измерение мощности приборами

Для измерения Р можно воспользоваться специальными приборами. Для этого подойдёт мультиметр, к которому можно подключить токоизмерительные клещи. Как измерить мощность мультиметром? Тестер включается на режим измерения переменного напряжения, клещи должны обхватывать только один проводник, подводимый к нагрузке.

Измерение при помощи мультиметра

Разделение проводников в кабеле не всегда удобно. К тому же после измерений нужно рассчитывать мощность по формуле.

Измеритель мощности

Для измерения можно использовать специальный прибор – ваттметр. Прибор включается в розетку, в его выходное гнездо включают нагрузку, мощность которой нужно измерять. Результаты проводимого измерения выводятся на дисплей уже в киловаттах.

Измеритель мощности

Измерение мощности с помощью электросчетчика

Используя квартирный счётчик электроэнергии, можно также проверить потребляемую мощность отдельного прибора. Для этого необходимо:

  • выключить все потребители энергии, оставив в режиме потребления лишь тестируемый прибор;
  • отметить показания на текущий момент и зафиксировать их значения через час;
  • произвести вычитания последних значений из предыдущих показаний;
  • результат будет измеренной величиной.

Основной недостаток такого блока действий – отключение других необходимых бытовых приборов.

Информация. При использовании этого метода, пользуясь моментом, можно посмотреть, нет ли скрытой утечки тока, и исправность счётчика. При отключении всех приборов электросчётчик должен остановиться.

Мощность тока

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Расчетные формулы мощности тока

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Зависимость сопротивления воды от содержания солей

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей.  Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

Закон Ома для цепи

Проводя расчёты мощности по напряжению и току на практике, часто используют закон Ома. Он устанавливает связь между током, сопротивлением и напряжением. Этот закон был открыт путём проведения Симоном Омом ряда экспериментов и сформулирован им в 1826 году. Он выяснил, что величина тока на участке цепи прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению этого участка.

Закон Ома можно записать в следующем виде: I = U/R, где I — значение силы тока (А), U — разность потенциалов (В), R — сопротивление цепи прохождению тока (Ом).

Для полной же цепи эту формулу можно записать так: I = E/(R+ r0), где E — ЭДС источника питания (В), r0 — внутреннее сопротивление источника напряжения (Ом).

Таким образом, для участка цепи будет справедливо выражение P = U2/R = I2R, а для полной цепи — P = (E/(R+ R0))2*R. Именно эти две формулы и используются чаще всего для расчётов электрических сетей или мощности необходимого оборудования.

Различные компоненты электрической сети в определённый момент времени потребляют разную величину тока

Поэтому очень важно правильно рассчитать, какое количество энергии подводится в тот или иной момент в определённое место цепи, чтобы не допустить перегрузок на линии и возникновения аварийных ситуаций

Мощность при параллельном соединение

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом: P = I2 x R = 6,0242 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов: P1 = U2/R1 = 1002/200 = 50 Вт; P2 = U2/R2 = 1002/100 = 100 Вт; P3 = U2/R3 = 1002/51 = 195,9 Вт; P4 = U2/R4 = 1002/39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1234 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и параллельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

Последовательное и параллельное соединение резисторов

Последовательное и параллельное соединение резисторов

Напряжение при последовательном и параллельном соединении резисторов

Сопротивление при последовательном и параллельном соединении резисторов

Параллельное соединение резисторов

Последовательное и параллельное соединение проводников

Итоги урока

На этом уроке мы рассмотрели различные задачи на смешанное сопротивление проводников, а также на расчёт электрических цепей.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Домашнее задание

  1. П. 49, стр. 117, задание 23 (5). Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  2. Участок электрической цепи состоит из трех сопротивлений: ; ;  (см. Рис. 7). Определите показания вольтметров  и амперметров , если амперметр  показывает силу тока 2 А.

    Рис. 7. Иллюстрация к задаче (Источник)

  3. Как нужно соединить четыре резистора, сопротивления которых 0,5 Ом, 2 ОМ, 3,5 Ом и 4 Ом, чтобы их общее сопротивление было 1 Ом?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал School56.pips.ru (Источник).
  2. Интернет-портал Clck.ru (Источник).
  3. Интернет-портал Clck.ru (Источник).

сила тока, расчет мощности и напряжения

Содержание

  • Полезная информация для начинающего электрика
  • Связь работы и мощности
  • Понятия тока, напряжения и работы
  • Закон Ома для участка цепи
  • Примеры из реальной жизни
  • Простые примеры расчета

Полезная информация для начинающего электрика

Одним из первых шагов в профессиональной практике должно стать обучение использованию закона Ома для подсчетов различных показателей в сетях с одной или тремя фазами. Нужно также усвоить способы защиты электросети от выходов показателей тока и напряжения за дозволенные рамки и иных экстремальных ситуаций.

Как использовать закон Ома на практике

За выполняемую в сети работу всегда ответственен электроток. Именно он инициирует загорание электролампы, вращение ротора двигателя, сварку металлов и иные процессы, связанные с эксплуатацией электрического оборудования. Для рационального и безопасного выполнения таких работ необходимо, чтобы показатель электротока находился в пределах номинала. Он определяется резистивностью среды, в которой происходит токовое движение, и прилагаемым напряжением, которое, выступая в виде разницы прилагаемых энергетических потенциалов, ответственно за появление тока в цепи.

Важно! Если провод, через который осуществляется питание, обрывается или перегорает, схема обесточивается и становится неспособной реализовывать полезную работу. В проводах с тонким сечением это встречается чаще других

Сверхвысокое сопротивление дает противоположный эффект, настолько уменьшая ток, что становится невозможным выполнение им работы.

Примеры из жизни

Один из таковых – разрыв выключателем света цепи проводки, служащей для напряжения путем, по которому оно доходит до лампы. Просвет между контактами не дает току идти по светильнику.

Еще один пример – замыкание розеточных клемм, инициирующее инцидент короткого замыкания. Для его предотвращения применяются предохранители, обеспечивающие максимальную быстроту выключения запитывающего напряжения.

Что такое участок цепи

Простейший его вариант включает в себя лампу, аккумулятор и соединительные кабели. Батарея выступает как внутренний источник напряжения, а лампа и прилегающая проводка выступают как фрагмент электроцепи, в котором выполняется полезная работа.

Как использовать треугольник закона Ома

Этот символ облегчает запоминание омовского правила. Сверху его находится напряжение, внизу – две другие величины. При необходимости вычислить один из параметров по известным значениям других его выделяют из фигуры и производят релевантное случаю действие: умножение или деление.

Треугольник Ома

Без умения применять омовский закон и вытекающие из него следствия на практике невозможно корректное обращение с электропроводкой. Для облегчения запоминания рекомендуется использовать треугольник Ома.

Связь работы и мощности

Мощность электрического тока оценивается по количеству работы, которая выполняется в течение заданного времени. Из курса физики мы знаем, что мощность постоянного тока выражается простой формулой:

P = U × I

Постоянный ток — это электрический ток, который не меняет своего направления. Если вернуться к аналогии выше, то напор воды — это именно постоянный ток. Переменный ток в замкнутой цепи с определенной частотой изменяет свою полярность, а это приводит к запаздыванию напряжения. Для цепей переменного тока требуется учитывать сдвиг напряжения, который в векторной алгебре косинусом угла fi между векторами тока и напряжения:

P = U × I × cosfi

Если же вектора сонаправлены (угол между векторами равен 0 градусов), то косинус 0 превращается в единицу. Очевидно, что в формуле работы мы можем заменить произведение U × I на мощность и получим простую формулу:

A = P × t или P = A / t,

из чего следует, что мощность — это количество работы, совершаемой за единицу времени.

Наш калькулятор подходит для вычисления мощности постоянного или переменного тока: в формулу заложено итоговое значение мощности, поэтому нам не важен характер тока. Для использования инструмента достаточно заполнить две ячейки из трех, после чего неизвестное будет подсчитано автоматически. В школьных задачках вам потребуется вычислить мощность как произведение тока и напряжения, а в бытовых вопросах мощность всегда указывается на щитке электроприборов.

Понятия тока, напряжения и работы

Для упрощенного рассмотрения электрического тока и связанных с ним понятий напряжения, работы и мощности, возьмем простую аналогию с потоком жидкости. Представьте себе трубку, по которой течет вода. Жидкость может течь из-за разности высот разных точек гибкой трубки или под напором из крана. Поток воды обладает потенциальной энергией, которую можно использовать, направив его, например, на лопасти водяной мельницы. В этом случае вода начнет выполнять работу, приводя в движение жернова.

Все тоже самое и с электрическим током. Если в проводнике в разных точках присутствует разный электрический потенциал, то в этом месте создается напряжение, заставляющее электроны перетекать от одной точки к другой. Это и есть электрический ток. Пока ток течет «впустую», он обладает некой энергией. Если мы направим ток на замкнутую металлическую рамку, находящуюся в магнитном поле, то рамка начнет вращаться, совершая работу, и именно по этому принципу работают электродвигатели.

Работа воды на мельнице зависит от силы напора воды и ее объема. Сравните силу воды из водяного пистолета и пожарного брандспойта. Очевидно, что в последнем случае вода совершает гораздо большую работу. Аналогично все происходит и с электрическим током. Чем сильнее напряжение (напор) и сила тока (объем воды), тем большую работу мы можем выполнить. Естественно, любая работа выполняется не мгновенно, а в течение какого-то промежутка времени, даже если это миллисекунды. Математически для цепей постоянного тока это выражается следующей формулой:

A = I × U × t,

где I — сила тока, U — напряжение, t — время.

Закон Ома для участка цепи

Классическая формулировка имеет следующий вид: токовая сила на фрагменте электроцепи находится в обратно пропорциональном отношении с его сопротивлением и в прямом – с напряжением на его окончаниях. В формульном виде это можно представить так:

I=U/R, где латинские буквы обозначают (слева направо) силу электротока, напряжение и сопротивление.

Для цельной цепи формулировка будет иметь следующий вид: ток напрямую связан с имеющейся в электроцепи электродвижущей силой, а также находится в отношениях обратной зависимости с суммой двух сопротивлений: цепного и имеющегося у источника тока.

Важно! Закон Ома калькулятор онлайн позволит произвести расчет значения любого неизвестного показателя из трех. Пользователь вводит в поля имеющиеся результаты измерений и ожидает выдачи искомого параметра

Примеры из реальной жизни

Школьная задача

В простых задачах по физике не требуется промежуточных вычислений. Давайте попробуем вычислить время работы прибора, если его мощность составляет 300 Вт, а выполненная работа равна 65 000 Дж. Для решения нам достаточно заполнить соответствующие ячейки и получить ответ, что электроприбор работал 216 секунд.

Бытовой расчет

Давайте вычислим, на сколько времени непрерывной работы хватает обычного смартфона. Известно, что емкость аккумулятора составляет 4,1 А·ч, мощность смартфона равна 3 Вт, а напряжение заряда составляет 5 В. Мы знаем, что количество запасенной энергии можно подсчитать, просто умножив емкость на напряжение. Получим, что аккумулятор смартфона запасает 20,5 Вт·ч. Переведем Вт·ч в Дж, зная, что 1 Вт·ч = 3 600 Дж. Получим, что энергия, запасаемая аккумулятором смартфона, равна 73 800 Дж. Теперь у нас есть все данные. Введем в соответствующие ячейки значения энергии и мощности и получим, что телефон способен непрерывно работать 24 600 секунд или почти 8 часов. Похоже на правду.

Простые примеры расчета

Чтобы научиться пользоваться омовским правилом на практике, необходимо представлять, как проводятся расчеты для показателей электроприборов в домашних сетях, а также в подключенных к источнику постоянного тока схемах с параллельным или последовательным соединением.

Бытовая сеть переменного тока

С помощью калькулятора можно выполнять обработку данных, позволяющую установить исправность бытовых электроприборов. Пользователь может узнать, релевантны ли показатели заявленным производителем в инструкции, и нет ли нужды в замене каких-либо деталей агрегата.

Пример №1 Проверка ТЭНа

Имеется цель проверить функционирование трубчатого электрического нагревателя, установленного в стиральный агрегат. Известно, что он рассчитан на подключение к сети в 220 вольт, а мощность его составляет 1250 ватт. Базируясь на этих данных, можно рассчитать следующие показатели:

  • сила тока: I=1250/220=5,68 А;
  • сопротивление: R=220/5,68=38,7 Ом.

После этого можно проводить проверку измерительными приборами с целью установить, насколько получившиеся значения релевантны эталонным.

ТЭН стиральной машины

Пример №2 Проверка сопротивления двигателя

Наглядным примером может быть моющий пылесос для проведения влажной уборки. Целью будет определение сопротивления заводского электродвигателя и потребляемого агрегатом тока. Известно, что мощность прибора составляет 1600 ватт, и он рассчитан на использование в сети на 220 вольт. Из этих данных можно определить токовую силу:

I=1600/220=7,3 А.

В поля калькулятора нужно ввести значение напряжения, на которое рассчитано устройство, и подсчитанную токовую силу. Инициировав подсчет, нужно дождаться вывода результатов на экран. По полученным данным сопротивление при мощности в 1,6 квт будет составлять 30,1 Ом.

Цепи постоянного тока

Для иллюстрации работы с такими цепями на бытовом примере хорошо подойдет лампа, вмонтированная в автомобильную фару. Если галогенный элемент с мощностью 55 ватт имеет эксплуатационное напряжение 12 В, электроток будет равен:

I=55/12=4,6 А.

Чтобы узнать сопротивление размещенной в лампочке вольфрамовой нити, нужно заполнить поля калькулятора, указав найденную токовую силу и напряжение эксплуатации. Он вернет искомое значение R.

Важно! Если поставить щупы мультиметра к лампе в не нагретом состоянии, полученный показатель сопротивления будет меньше. Присущую вольфраму способность менять сопротивление при накаливании используют для создания недорогих ламп простой конструкции

Когда металлическая нить нагревается, сопротивление препятствует нарастанию тока. Если такой же электроток будет течь через холодную нить, есть шанс, что она перегорит. Чтобы увеличить срок эксплуатации таких ламп,  подойдет ступенчатое наращивание подаваемого напряжения от нулевого значения до номинала.

Для этого можно использовать ограничительное реле

Присущую вольфраму способность менять сопротивление при накаливании используют для создания недорогих ламп простой конструкции. Когда металлическая нить нагревается, сопротивление препятствует нарастанию тока. Если такой же электроток будет течь через холодную нить, есть шанс, что она перегорит. Чтобы увеличить срок эксплуатации таких ламп,  подойдет ступенчатое наращивание подаваемого напряжения от нулевого значения до номинала. Для этого можно использовать ограничительное реле.

Автомобильная лампа

Tags: автомат, бра, вид, внутренний, дом, е, емкость, как, квт, кт, лс, магнит, мощность, мультиметр, напряжение, номинал, ограничитель, подключение, полярность, постоянный, потенциал, правило, принцип, провод, пылесос, р, работа, расчет, реле, ряд, свет, светильник, сеть, соединение, сопротивление, срок, схема, тен, ток, треугольник, ук, фаза, щит, эффект

Закон Ома Калькуляторы и формулы

Прежде чем щелкнуть в каждом калькуляторе закона Ома для ответа, введите числа в уравнение, которое вы хотите использовать. для расчета тока, мощности, сопротивления или напряжения. *Обновлено 8 января 2011 г., чтобы принять/изменить запятые на точки для тех, кто использует запятые в качестве десятичных разделителей.

Калькуляторы закона Ома

• Текущие (I) калькуляторы
• Калькулятор мощности (P)
• Калькулятор сопротивления (R)
• Калькуляторы напряжения (E)

Ваш блокировщик рекламы препятствует правильному отображению этой страницы.

Текущие калькуляторы

Рассчитать ток (I)
И = П/Э
Мощность Напряжение Текущий
Вт Вольт Ампер
I = квадратный корень из (P/R)
Мощность Сопротивление Текущий
Вт Ом Ампер
И = Э/Р
Напряжение Сопротивление Текущий
Вольт Ом Ампер

Калькуляторы мощности

Рассчитать мощность (P)
P = I 2 x R
Текущий Сопротивление Мощность
Ампер Ом Вт
Р = Э х Я
Напряжение Текущий Мощность
Вольт Ампер Ватт
Р = Е 2 / Р
Напряжение Сопротивление Мощность
Вольт Ом Ватт

Калькулятор сопротивления

6
Рассчитать сопротивление (R)
Р = П/И 2
Мощность Ток Сопротивление
Вт Ампер Ом
Р = Э/И
Напряжение Ток Сопротивление
Вольт Ампер Ом
Р = Е 2 / Р
Напряжение Мощность Сопротивление
Вольт Ватт Ом

Калькуляторы напряжения

Расчет напряжения (E)
Е = I х R
Ток Сопротивление Напряжение
Ампер Ом Вольт
Э = П/Я
Мощность Ток Напряжение
Ватт Ампер Вольт
E = квадратный корень из (P x R)
Мощность Сопротивление Напряжение
Ватт Ом Вольт

Основы мобильной электроники:
• Диоды
• Глоссарий терминов и определений
• Закон Ома
• Рекомендуемые книги и DVD
• Рекомендуемые сечения проводов
• Реле
• Резисторы
• Инструменты и оборудование



  •  

Подпишитесь на the12volt. com
суббота, 8 октября 2022 г. • Авторское право © 1999-2022 the12volt.com, Все права защищены

• Политика конфиденциальности и использование файлов cookie

Отказ от ответственности: *Вся информация на этом сайте (the12volt.com) предоставляется «как есть» без каких-либо явных или подразумеваемых гарантий, включая, помимо прочего, пригодность для конкретного использования. Любой пользователь принимает на себя весь риск в отношении точности и использования этой информации. Пожалуйста проверьте все цвета проводов и схемы, прежде чем применять какую-либо информацию.


Калькулятор сопротивления и тока от Vaping Hardware

Добро пожаловать в калькулятор мощности, сопротивления и тока от Vaping Hardware!

Этот калькулятор следует использовать для определения безопасности используемого вами механического мода с используемой батареей и катушкой. По сути, ток, потребляемый от вашей батареи, полностью зависит от сопротивления вашей катушки. Для получения дополнительной информации о расчете потребляемого тока см. здесь

Чтобы убедиться, что батарея, которую вы используете, может выдерживать потребляемый ток, введите напряжение вашей батареи (полностью заряженная батарея показывает 4,2 вольта), CDR вашей батареи (Ампер), сопротивление вашей катушки (катушек). ) и конфигурация колоды сборки. Затем калькулятор подтвердит, безопасна ли установка, которую вы планируете использовать.

Обратите внимание: если вы используете механический мод с двумя или тремя батареями, вам сначала необходимо определить суммарное напряжение, емкость и силу тока ваших батарей. Чтобы помочь вам в этом, воспользуйтесь нашим калькулятором серийных и параллельных аккумуляторов.

Обратите внимание: результат «Потребление тока от батареи» НИКОГДА не должен превышать силу тока используемой батареи, иначе вы можете перегреть батарею и даже взорвать ее! Не беспокойтесь, если используемая вами установка небезопасна, наш калькулятор предупредит вас.


Входы

Результаты
Сопротивление сборочной колоды
Мощность парения
Потребляемый ток от батареи

Могу ли я использовать этот калькулятор, если я использую регулируемый мод?

№ Этот калькулятор действителен только для нерегулируемых (механических) модов.

Используйте наш Калькулятор расхода/разряда аккумулятора для всех расчетов регулируемых модов.

Какое минимальное, номинальное и максимальное напряжение батареи для вейпа?

Минимальное значение напряжения батареи для электронных сигарет составляет примерно 3,2 В.

Номинальное напряжение батареи для электронных сигарет составляет примерно 3,7 В.

Максимальное значение напряжения батареи для электронных сигарет составляет примерно 4,2 В.

Обратите внимание, что эти цифры могут незначительно различаться в зависимости от типа батареи и производителя.

Что означает CDR батареи?

Термин CDR означает непрерывный разряд.

По сути, это максимальное количество ампер, которое батарея может потреблять непрерывно, не вызывая повреждения батареи или, что еще хуже, не вызывая ее вентиляцию или взрыв.

CDR — это проверенное значение, которое гарантируется производителем.

Кроме того, CDR не следует путать с термином «Скорость импульсного разряда».

Что делать, если у меня есть мод с двумя батареями, подключенный последовательно или параллельно?

Если вы используете мод с двумя батареями, просто введите следующее в поля «Входное напряжение батареи» и «Номинальный ток батареи» (CDR):

При использовании батарей последовательно; 8,4 В и значение CDR только одной из батарей.
Если вы используете батареи параллельно; 4,2 В и суммарное значение CDR обеих батарей.

Кроме того, вы можете использовать наш калькулятор серии и параллельных аккумуляторов .

Не забывайте ВСЕГДА использовать вместе батареи одного типа и спецификации и ВСЕГДА держать их в паре.

Что означает количество мАч в аккумуляторе?

мАч батареи всегда отображается на самой ячейке (если это не так, вы, вероятно, используете китайскую подделку!) и означает миллиампер-час.

Это, по сути, мера емкости аккумулятора и определяет время, необходимое для полного разряда полностью заряженного аккумулятора.

Типичная емкость батареи для электронных сигарет составляет 2500 мАч.

Помните, что чем выше показатель мАч, тем дольше прослужит ваша батарея.

В чем разница между сопротивлением катушки и сопротивлением настила?

Сопротивление катушки — это измеренное значение одной катушки в Омах.

Сборка Сопротивление деки представляет собой разделение нескольких катушек, встроенных в деку RDA/RBA.

Например, одна катушка сопротивлением 1 Ом в деке будет считываться как 1 Ом. Две катушки по 1 Ом в деке будут показывать общее сопротивление 0,5 Ом.

Как контролировать мощность механического мода?

Мощность механического мода полностью зависит от сопротивления вашей катушки.

Если вы хотите парить на большей или меньшей мощности, вам нужно изменить сопротивление катушки.

Всегда стоит помнить, что мощность, с которой вы парите, будет постепенно уменьшаться по мере разрядки аккумулятора.

Что произойдет, если я потребляю больше тока от батареи, чем ее рейтинг CDR?

В лучшем случае вы уменьшите срок службы батареи.

В худшем случае он перегреется, выйдет наружу и может взорваться.

Использование батареи на пределе CDR в течение коротких периодов времени не является идеальным, но не является катастрофическим, превышение этого значения может быть.

ВСЕГДА будьте осторожны, работайте в пределах возможностей вашей батареи.

Что означает PDR и можно ли использовать эту цифру вместо CDR?

PDR батареи — это скорость импульсного разряда, которую может выдержать батарея, и не следует путать с CDR. Некоторые производители будут использовать это значение, поскольку оно обычно выше, чем значение CDR, в некоторых случаях специально для того, чтобы их батарея выглядела лучше!

Это , а НЕ , признанный стандарт, и это цифра, которую некоторые производители используют для определения максимального тока, который батарея может разрядить за короткий импульс. ВСЕГДА используйте значение CDR.

Что делать, если результат показывает красное предупреждающее сообщение?

Это сообщение означает, что ваша установка НЕ ​​безопасна.

Вам нужно либо увеличить сопротивление катушки, либо использовать батарею с более высоким значением CDR.

Спасибо за использование нашего калькулятора механических модов! Если у вас есть какие-либо вопросы, не стесняйтесь комментировать ниже. Если вы хотите поделиться этим калькулятором, нажмите одну из кнопок «Поделиться» ниже. Happy Vaping

Поделитесь этим калькулятором

Реальная мощность с использованием калькулятора среднеквадратичного напряжения и тока

✖Root Mean Square Current is defined as the root mean square of a given current.ⓘ Root Mean Square Current [I rms ]

AbampereAmpereAttoampereBiotCentiampereCGS EMCGS ES unitDeciampereDekaampereEMU of CurrentESU of CurrentExaampereFemtoampereGigaampereGilbertHectoampereKiloampereMegaampereMicroampereMilliampereNanoamperePetaamperePicoampereStatampereTeraampereYoctoampereYottaampereZeptoampereZettaampere

+10 %

-10%

. Среднее квадратное напряжение. Электрический потенциалФемтовольтГигавольтГектовольтКиловольтМегавольтМикровольтМилливольтНановольтПетавольтПиковольтПланковское напряжениеСтавольтТеравольтВольтВатт на АмперYоктовольтЗептовольт

+10%

-10%

✖Разность фаз определяется как разница между вектором кажущейся и активной мощности (в градусах) или между напряжением и током в цепи переменного тока. ⓘ Разность фаз [∠Φ]

CircleCycleDegreeGonGradianMilMilliradianMinuteMinutes of ArcPointQuadrantQuartercircleRadianRevolutionRight AngleSecondSemicircleSextantSignTurn

+10%

-10%

✖Реальная мощность P — это средняя мощность в ваттах, подаваемая на нагрузку. Это единственная полезная сила. Это фактическая мощность, рассеиваемая нагрузкой.ⓘ Реальная мощность с использованием среднеквадратичных значений напряжения и тока [P]

Аттоджоуль в секундуАттоваттТормозная мощность (bhp)Btu (IT) в часBtu (IT) в минутуBtu (IT) в секундуBtu (th) в часBtu (th) в минутуBtu (th) в секундукалория (IT) в часкалория (IT) в минутукалория (IT) ) в секундуКалория (й) в часКалория (й) в минутуКалория (й) в секундуСантиджоуль в секундуСантиваттCHU в часДекаджоуль в секундуДекаваттДециджоуль в секундуДециваттЭрг в часЭрг в секундуЭксаджоуль в секундуЭксаджоуль в секундуФемтоджоуль в секундуФемтоваттФут-фунт-сила в часФут-фунт-сила в минутуФут-фунт-сила в секундуГигаджоуль-сила в секунду СекундаГигаваттГектоджоуль в секундуГектоваттЛошадиная силаЛошадиная сила (550 ft*lbf per s)Лошадиная сила (котла)Лошадиная сила (электрическая)Лошадиная сила (метрическая)Лошадиная сила (вода)Джоуль в часДжоуль в минутуДжоуль в секундуКилокалория (ИТ) в часКилокалория (ИТ) в минутуКилокалория (ИТ) в секундуКилокалория ( й) в часКилокалория (й) в минутуКилокалория (й) в секундуКилоджоуль в часКилоджоуль в минутуКилоджоуль в секундуКиловольт Ам pereKilowattMBHMBtu (IT) per hourMegajoule per SecondMegawattMicrojoule per SecondMicrowattMillijoule per SecondMilliwattMMBHMMBtu (IT) per hourNanojoule per SecondNanowattNewton Meter per SecondPetajoule per SecondPetawattPferdestarkePicojoule per SecondPicowattPlanck PowerPound-Foot per HourPound-Foot per MinutePound-Foot per SecondTerajoule per SecondTerawattTon (refrigeration)Volt AmpereVolt Ampere ReactiveWattYoctowattYottawattZeptowattZettawatt

⎘ Копировать

👎

Формула

Перезагрузить

👍

Реальная мощность с использованием среднеквадратичного значения напряжения и тока

ШАГ 0: Сводка предварительного расчета

ШАГ 1: Преобразование входных данных в базовые единицы

Среднеквадратический ток: 40 ампер —> 40 ампер Преобразование не требуется
Среднеквадратичное напряжение: 7 вольт —> 7 вольт Преобразование не требуется
Разность фаз: 30 градусов —> 0,5235987755982 Радиан (проверьте преобразование здесь)

ШАГ 2: Вычислите формулу

ШАГ 3: Преобразуйте результат в единицу измерения выходного сигнала0003

< 10+ калькуляторов мощности и коэффициента мощности

Реальная мощность с использованием формулы среднеквадратичного значения напряжения и тока

Реальная мощность = среднеквадратический ток * среднеквадратичное напряжение * cos (разность фаз)
P = I СКЗ *V СКЗ *cos(∠Φ)

Чем активная мощность отличается от реактивной?

Реальная мощность равна реактивной мощности, т. е. в цепях постоянного тока нет VAr. Существует только Реальная Сила. В цепях постоянного тока нет реактивной мощности из-за нулевого фазового угла (Φ) между током и напряжением. Реальная мощность важна для производства тепла и использования электрического и магнитного поля, создаваемого реактивной мощностью.

Как рассчитать реальную мощность, используя среднеквадратичное значение напряжения и тока?

Калькулятор реальной мощности с использованием среднеквадратичного значения напряжения и тока использует Реальная мощность = Среднеквадратический ток*Среднеквадратичное напряжение*cos(Разность фаз) для расчета активной мощности. Реальная мощность с использованием среднеквадратичного значения напряжения и тока — это средняя мощность в ваттах, подаваемая на нагрузку. Это единственная полезная сила. Это фактическая мощность, рассеиваемая нагрузкой. Реальная мощность обозначается символом P .

Как рассчитать реальную мощность, используя среднеквадратичное значение напряжения и тока, с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для реальной мощности с использованием среднеквадратичного значения напряжения и тока, введите среднеквадратичное значение тока 9. 0489 (I rms ) , среднеквадратичное напряжение (V rms ) и разность фаз (∠Φ) и нажмите кнопку расчета. Вот как можно объяснить реальную мощность с использованием расчета среднеквадратичного напряжения и тока с заданными входными значениями -> 242,4871 = 40 * 7 * cos (0,5235987755982) .

Часто задаваемые вопросы

Что такое реальная мощность с использованием среднеквадратичного значения напряжения и тока?

Реальная мощность с использованием среднеквадратичного значения напряжения и тока — это средняя мощность в ваттах, подаваемая на нагрузку. Это единственная полезная сила. Это фактическая мощность, рассеиваемая нагрузкой, и она представлена ​​как P = I rms *V rms *cos(∠Φ) или Фактическая мощность = среднеквадратический ток*среднеквадратичное напряжение*cos(разность фаз) . Среднеквадратический ток определяется как среднеквадратичное значение заданного тока, среднеквадратичное напряжение — это квадратный корень из среднего квадрата напряжения по времени, а разность фаз определяется как разность между вектором кажущейся и реальной мощности (в градусов) или между напряжением и током в цепи переменного тока.

Как рассчитать реальную мощность, используя среднеквадратичное значение напряжения и тока?

Реальная мощность с использованием среднеквадратичного значения напряжения и тока — это средняя мощность в ваттах, подаваемая на нагрузку. Это единственная полезная сила. Фактическая мощность, рассеиваемая нагрузкой, рассчитывается по формуле . Реальная мощность = среднеквадратический ток * среднеквадратичное напряжение * cos (разность фаз) . Чтобы рассчитать реальную мощность с использованием среднеквадратичного значения напряжения и тока, вам необходимо среднеквадратичное значение тока (I rms ) , среднеквадратичное напряжение (V rms ) и разность фаз (∠Φ) . С помощью нашего инструмента вам нужно ввести соответствующее значение для среднеквадратичного тока, среднеквадратичного напряжения и разности фаз и нажать кнопку расчета. Вы также можете выбрать единицы измерения (если есть) для ввода (ов) и вывода.

Сколько существует способов расчета реальной мощности?

В этой формуле действительная мощность использует среднеквадратический ток, среднеквадратичное напряжение и разность фаз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *